
Neural Networks 167 (2023) 309–330

g
S
D

R
R
A
A

D
M
S
V
C

t
a
a
r
a
a
s
t
c
d
w
e
f
t
e

(

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Layer adaptive node selection in Bayesian neural networks: Statistical
uarantees and implementation details
anket Jantre ∗, Shrijita Bhattacharya, Tapabrata Maiti
epartment of Statistics and Probability, Michigan State University, United States of America

a r t i c l e i n f o

Article history:
eceived 8 July 2022
eceived in revised form 4 April 2023
ccepted 17 August 2023
vailable online 22 August 2023

Keywords:
Node selection
ynamic pruning
odel compression
pike-and-slab priors
ariational inference
ontraction rates

a b s t r a c t

Sparse deep neural networks have proven to be efficient for predictive model building in large-scale
studies. Although several works have studied theoretical and numerical properties of sparse neural
architectures, they have primarily focused on the edge selection. Sparsity through edge selection
might be intuitively appealing; however, it does not necessarily reduce the structural complexity of
a network. Instead pruning excessive nodes leads to a structurally sparse network with significant
computational speedup during inference. To this end, we propose a Bayesian sparse solution using
spike-and-slab Gaussian priors to allow for automatic node selection during training. The use of spike-
and-slab prior alleviates the need of an ad-hoc thresholding rule for pruning. In addition, we adopt
a variational Bayes approach to circumvent the computational challenges of traditional Markov Chain
Monte Carlo (MCMC) implementation. In the context of node selection, we establish the fundamental
result of variational posterior consistency together with the characterization of prior parameters. In
contrast to the previous works, our theoretical development relaxes the assumptions of the equal
number of nodes and uniform bounds on all network weights, thereby accommodating sparse networks
with layer-dependent node structures or coefficient bounds. With a layer-wise characterization of
prior inclusion probabilities, we discuss the optimal contraction rates of the variational posterior.
We empirically demonstrate that our proposed approach outperforms the edge selection method in
computational complexity with similar or better predictive performance. Our experimental evidence
further substantiates that our theoretical work facilitates layer-wise optimal node recovery.

© 2023 Elsevier Ltd. All rights reserved.
a
p
v
t
p

p
t
c
a
m
o
w
m
a
e
s
i
2
i
d
c

1. Introduction

Deep learning profoundly impacts science and society due
o its impressive empirical success driven primarily by copious
mounts of datasets, ever increasing computational resources,
nd deep neural network’s (DNN) ability to learn task-specific
epresentations. The key characteristic of deep learning is that
ccuracy empirically scales with the size of the model and the
mount of training data. As such, large neural network models
uch as OpenAI GPT-3 (175 Billion) now typify the state-of-
he-art across multiple domains such as natural language pro-
essing, computer vision, speech recognition etc. Nevertheless
eep neural networks do have some drawbacks despite their
ide ranging applications. First, this form of model scaling is
xorbitantly prohibitive in terms of computational requirements,
inancial commitment, energy requirements etc. Second, DNNs
end to overfit leading to poor generalization in practice (Zhang
t al., 2017). Finally, there are numerous scenarios where training

∗ Corresponding author.
E-mail addresses: jantresanket@gmail.com (S. Jantre), bhatta61@msu.edu

S. Bhattacharya), maiti@msu.edu (T. Maiti).
 l

ttps://doi.org/10.1016/j.neunet.2023.08.029
893-6080/© 2023 Elsevier Ltd. All rights reserved.
nd deploying such huge models is practically infeasible. Exam-
les of such scenarios include federated learning, autonomous
ehicles, robotics, recommendation systems where models have
o be refreshed daily/hourly or in an online manner for optimal
erformance.
A promising direction for addressing these issues while im-

roving the efficiency of DNNs is exploiting sparsity. From a prac-
ical perspective, it has been well-known that neural networks
an be sparsified without significant loss in performance, Mozer
nd Smolensky (1988), and there is growing evidence that it is
ore so in the case of modern DNNs. Sparsity can arise naturally
r be induced in multiple forms in DNNs, including input data,
eights, and nodes. Weight pruning approaches perform high
odel compression leading to significant storage cost reduction
t test-time (Frankle & Carbin, 2019; Han et al., 2016; Molchanov
t al., 2017; Zhu & Gupta, 2018). However, they result in un-
tructured sparsity in deep neural architectures which leads to
nefficient computational gains in practical setups (Wen et al.,
016). Instead, inducing group sparsity on collection of incom-
ng weights into a given node (or node selection) reduces the
imensions of weight matrices per layer allowing for significant
omputational savings. To that effect, edge selection and node se-

ection approaches are complementary with the former leading to

https://doi.org/10.1016/j.neunet.2023.08.029
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.08.029&domain=pdf
mailto:jantresanket@gmail.com
mailto:bhatta61@msu.edu
mailto:maiti@msu.edu
https://doi.org/10.1016/j.neunet.2023.08.029

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

s
d
a
t
t
c
e

u
d
r
e

n
d
a
J
s
B

Fig. 1. Sparse deep BNN using spike-and-slab priors achieves node selection in the given dense network on left leading to a sparse network on right.
torage reduction and the later leading to computational speedup
uring inference stage. Although one may argue node selection
rises as a byproduct of edge selection, we clearly demonstrate
hat an approach which targets node selection directly leads
o lower latency models (smaller number of nodes per layer)
ompared to an approach which achieves node selection through
dge selection.
Node selection in deep neural networks has been explored

nder frequentist setting in Alvarez and Salzmann (2016), Scar-
apane et al. (2017), Wen et al. (2016) using group sparsity
egularizers. On the other hand, Louizos et al. (2017), Neklyudov
t al. (2017), and Ghosh et al. (2019) incorporate group sparsity

via shrinkage priors in Bayesian paradigm. These group sparsity
approaches specifically applied for node selection have shown
significant computational speedup and lower memory footprint
at inference stage. However, all of the proposed methods of
neuron selection perform ad-hoc pruning requiring fine-tuned
thresholding rules. Moreover, the posterior inference of network
weights in Bayesian neural networks (BNN) through standard
MCMC method, ex. Hamiltonian Monte Carlo (Neal, 1992), does
ot scale well to modern neural network architectures and large
atasets used in practice. Instead computationally efficient vari-
tional inference as an alternative to MCMC (Blei et al., 2017;
ordan et al., 1999), has been explored in the context of edge
election both theoretically and numerically by Bai et al. (2020),
lundell et al. (2015), Chérief-Abdellatif (2020). On the other

hand, Louizos et al. (2017) and Ghosh et al. (2019) have explored
variational inference for node selection problem. In this work, we
propose a Gaussian spike-and-slab prior for automatic node selec-
tion in Bayesian neural networks thereby alleviating the need of
an ad-hoc thresholding rule for pruning (see a schematic Fig. 1).
Further for scalability, we develop a variational Bayes algorithm
for posterior inference of BNN model parameters in our proposed
model and demonstrate its numerical performance through sim-
ulation and real regression and classification datasets. Finally, we
provide the theoretical guarantees to our node selection method
under mild restrictions on the network topology.

Related Work. A closely related work to our paper is Bai
et al. (2020)’s automated edge selection model using spike-and-
slab prior. There the slab distribution controls the magnitude of
weights and spike allows for the exact setting of weights to 0. We
introduce spike-and-slab framework for node selection in BNNs
and show the key resource efficiency trade-off between node and
edge selection at test-time. There are two main advantages to
node selection over edge selection (1) fewer parameters to train
during optimization, (2) results in structurally compact network
leading to computational speedup at test-time.
310
On the theoretical front, sparse BNNs have been studied in
the works of Polson and Ročková (2018) and Sun et al. (2021).
In the context of variational inference, sparse BNNs have been
studied in the recent works of Chérief-Abdellatif (2020) and Bai
et al. (2020). All these works concentrate on the problem of edge
selection facilitated through the use of Gaussian spike-and-slab
priors. In the context of node selection, Ghosh et al. (2019) makes
use of regularized horseshoe prior. The main limitations of their
approach include (1) need for fine tuning of the thresholding rule
for node selection, and (2) lack of a theoretical justification.

The only two works which have provided theoretical guar-
antees of their proposed sparse DNN methods under variational
inference include those of Chérief-Abdellatif (2020) and Bai et al.
(2020). Since they focus on the problem of edge selection, their
theoretical developments are related to the results of Schmidt-
Hieber (2020) (see the sieve construction in relation (4) in
Schmidt-Hieber (2020)) and not directly extendable to our setup.
Additionally, they assume certain restrictions on the network
topology like (i) equal number of nodes in each layer, (ii) a known
uniform bound B on all network weights, and (iii) a global sparsity
parameter which may not lead to a structurally compact network.
Although from a numerical standpoint, one may implicitly extend
the problem of edge selection to node selection, the theoretical
guarantees of node selection consistency in sparse DNNs is not
immediate.

Detailed Contributions.

1. We propose a Gaussian spike-and-slab node selection
model and develop a variational Bayes approach for pos-
terior inference of the model parameters. We call our ap-
proach SS-IG (Spike-and-Slab Independent Gaussian)
model.

2. We derive the variational consistency using a functional
space of neural networks which takes two layer dependent
bounds, one which upper bounds the number of neurons in
each layer and the other which upper bounds the L1 norm
of the weights incident onto each node of a layer. These
layer dependent bounds allow the generalization of the
theoretical results presented to guarantee the consistency
of any generic shaped network structure. Further, it also
guides the calculation of layer-wise prior inclusion proba-
bilities which allow for optimal node recovery per layer in
the computational experiments.

3. We measure the computational gains achieved by our ap-
proach using layer-wise node sparsities for shallow models
and floating point operations in larger models. Our numer-
ical results validate the proposed theoretical framework for

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

2

s

Y

w
c

m

f

y
Y

f

R

w
t
w
a
I
T

t
t

c

3

a
d
r
n
d
s

w
k
B
f
n

P
t
(

π

t

Π

t
t
a

π̃

the node selection in DNN models. These empirical exper-
iments further justify the use of layer-wise node inclusion
probabilities to facilitate the optimal node recovery.

. Nonparametric regression: deep learning approach

Consider the nonparametric regression model with p dimen-
ional covariate X .

i = η0(X i)+ ei, i = 1, . . . , n, (1)

here ei
i.i.d.
∼ N(0, σ 2

e) (here i.i.d. denotes independent and identi-
ally distributed) and η0(·) : Rp

→ R.
Thus, the conditional distribution of Y |X = x under the true

odel is

0(y|x) = (
√
2πσ 2

e)
−1 exp

(
−(y− η0(x))2/(2σ 2

e)
)

(2)

where x is a feature vector from a marginal distribution PX and
is the corresponding output from the conditional distribution
|X = x.
Let g : Rp

→ R be a measurable function, then for some loss
unction L, the risk of g is

(g) =
∫
Y×X

L(Y , g(X))dPX,Y

here PX,Y , the joint distribution of (X, Y) is product of PX and
he conditional distribution Y |X = x. (see Cannings and Sam-
orth (2017) for more details). For the squared error loss, the
bove risk is minimized by g∗(x) = η0(x) (Friedman et al., 2009).
n practice, this estimator is not useful since η0(x) is unknown.
hus, an estimator of η0(x) is obtained based on the training ob-

servations, D = {(x1, y1), . . . , (xn, yn)}, drawn from PX,Y . To find
he class of optimal estimators, we use DNNs as an approximation
o η0(x).

For a p × 1 input vector x, consider a DNN with L hidden
layers with k1, . . . , kL as the number of nodes in the hidden layers
denoted by ηθ(x). Also,

ηθ(x) = vL+W Lψ(vL−1+W L−1ψ(· · ·ψ(v1+W 1ψ(v0+W 0x)))) (3)

where vl and W l, l = 0, . . . , L are kl+1 × 1 vectors and kl+1 × kl
matrices, respectively and ψ is the activation function. Let θ =

{W 0, . . . ,W L} denote all the parameters in the DNN model under
consideration. Using the DNN in (3) to approximate the true
function η0(x), the conditional distribution of Y |X = x is

fθ(y|x) = (
√
2πσ 2

e)
−1 exp

(
−(y− ηθ(x))2/(2σ 2

e)
)

Thus, the likelihood function for the data D under the model and
the truth is

Pn
θ =

n∏
i=1

fθ(yi|xi), Pn
0 =

n∏
i=1

f0(yi|xi). (4)

For theoretical development in the subsequent sections we shall
assume PX = U[0, 1]p and σ 2

e = 1 and ψ is any 1-Lipschitz
ontinuous activation function.

. Node selection with spike-and-slab prior

To allow for automatic node selection, we consider a spike-
nd-slab prior consisting of a Dirac spike (δ0) at 0 and a slab
istribution (Mitchell & Beauchamp, 1988). The spike part is
epresented by an indicator variable which is set to 0 if a node is
ot present in the network. The slab part comes from a Gaussian
istributed random variable. To allow for the layer-wise node
election, we assume that the prior inclusion probability λ varies
l

311
as a function of the layer index l. The symbol i.d. is used to denote
independently distributed random variables.

Prior: We assume a spike-and-slab prior of the following form
with zlj as the indicator for the presence of jth node in the lth
layer

wlj|zlj
i.d.
∼
[
(1− zlj)δ0 + zljN(0, σ 2

0 I)
]
, zlj

i.d.
∼ Ber(λl)

where l = 0, . . . , L, j = 1, . . . , kl+1. Also, wlj = (wlj1, . . . , wljkl+1)
is a vector of edges incident on the jth node in the lth layer. In the
above formula, note δ0 is a Dirac spike vector of dimension kl+1
ith all entries zero and I is the identity matrix of dimension
l + 1 × kl + 1. Furthermore, zlj with j = (1, . . . , kl+1) all follow
ernoulli(λl) to allow for common prior inclusion probability, λl,
or each node from a given layer l. We set λL = 1 to ensure no
ode selection occurs in the output layer.

osterior: With z l = (zl1, . . . , zlkl+1), let z = (z1, . . . , zL) denote
he vector of all indicator variables. The posterior distribution of
θ, z) given D is given by

(θ, z|D) =
Pn

θ π (θ|z)π (z)∑
z

∫
Pn

θ π (θ|z)π (z)dθ
=

Pn
θ π (θ|z)π (z)

m(D)
(5)

where Pn
θ =

∏n
i=1 fθ(yi|xi) is the likelihood function as in (4), π (z)

is the probability mass function of z with respect to the counting
measure and π (θ|z) is the conditional probability density function
with respect to the Lebesgue measure of θ given z . Further, m(D)
is the marginal density of the data and is free of (θ, z).

Let π̃ (θ) =
∑

z π (θ, z) be the marginal prior of θ. We shall use
he notation˜(A) =

∫
A
π̃ (θ)dθ (6)

o denote the probability distribution function corresponding to
he density function π̃ . The marginal posterior of θ expressed as
function of the marginal prior for θ is

(θ|D) =
∑
z

π (θ, z|D) =
Pn

θ π̃ (θ)∫
Pn

θ π̃ (θ)dθ
=

Pn
θ π̃ (θ)
m(D)

Thus, the probability distribution function corresponding to the
density function π̃ (|D) is then given by

Π̃(A|D) =
∫
A
π̃ (θ|D)dθ (7)

Variational family: We posit the following mean field variational
family (QMF) on network weights as

QMF
=

{
wlj|zlj

i.d.
∼
[
(1− zlj)δ0 + zljN(µlj, diag(σ

2
lj))
]
,

zlj
i.d.
∼ Ber(γlj)

}
for l = 0, . . . , L, j = 1, . . . , kl+1. This ensures that weight dis-
tributions follow spike-and-slab structure which allows for node
sparsity through variational approximation. Further, the weight
distributions conditioned on the node indicator variables are all
independent of each other (hence use of the term mean field
family). The variational distribution of parameters obtained post
optimization will then inherently prune away redundant nodes
from each layer. Also, Gaussian distribution for slab component
is widely popular for approximating neural network weight dis-
tributions (Bai et al., 2020; Blundell et al., 2015; Louizos et al.,
2017).

Additionally, µlj = (µlj1, . . . , µljkl+1) and σ2
lj = (σ 2

lj1, . . . ,

σ 2
ljkl+1) denote the vectors of variational mean and standard devi-

ation parameters of the edges incident on the jth node in the lth
layer. Similarly, γ denotes the variational inclusion probability of
lj

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

t
s

V
K
t
1

π

q

∥

s
(
o
d
s
H

w
s
w
s

he jth node in the lth layer. We set γLj = 1 to ensure no node
election occurs in the output layer.

ariational posterior: Variational posterior aims to reduce the
ullback–Leibler (KL) distance between a variational family and
he true posterior (Blei & Lafferty, 2007; Hinton & Van Camp,
993) as
∗
= argmin

q∈QMF
dKL(q, π (|D)) (8)

where dKL(q, π (|D)) denotes the KL-distance between q and
π (|D).

Note, the variational member q can be written as q(θ, z) =

(θ|z)q(z) where q(z) is the probability mass function of z with
respect to the counting measure and q(θ|z) is the conditional
density function given with respect to the Lebesgue measure of θ
given z . Further,

π∗
= argmin

q∈QMF

∑
z

∫
[log q(θ, z)− log π (θ, z|D)]q(θ, z)dθ

= argmin
q∈QMF

(∑
z

∫
[log q(θ, z)− logπ (θ, z,D)]q(θ, z)dθ

+ logm(D)
)

= argmin
q∈QMF

[−ELBO(q, π (|D))] + logm(D)

= argmax
q∈QMF

ELBO(q, π (|D)) (9)

Since logm(D) is free from q, it suffices to maximize the evidence
lower bound (ELBO) above.

Let π̃∗(θ) =
∑

z π
∗(θ|z)π∗(z) then π̃∗ denotes the marginal

variational posterior for θ. We shall use the notation

Π̃∗(A) =
∫
A
π̃∗(θ)dθ (10)

to denote the probability distribution function corresponding to
the density function π̃∗.

4. Posterior contraction rates

In this section, we develop the theoretical consistency of the
variational posterior in (10) in context of node selection. Previ-
ous works which establish the statistical consistency of sparse
deep neural networks do so only in the context of edge selec-
tion. Thereby, the works of Polson and Ročková (2018), Chérief-
Abdellatif (2020) and Bai et al. (2020) use several results from
the pioneer work of Schmidt-Hieber (2020). In addition to node
selection consistency, we also relax certain network restrictions
considered in the previous works. These restrictions include (1)
equal number of nodes in each layer which restricts one from
using any previous information on the number of nodes in the
deep neural architecture (2) a known bound B on all the neural
network weights as they essentially rely on the sieve construction
in equation 3 of Schmidt-Hieber (2020) which assumes that L∞
norm of all θ entries is smaller than 1 (3) a global sparsity
parameter s which does not always consider structurally sparse
networks.

Towards the proof, firstly our sieve construction allows the
number of nodes of the neural network to vary as a function of
the layer. Secondly, instead of global sparsity parameter s (see the
sieve construction in relation (4) of Schmidt-Hieber (2020)) we
allow for layer wise sparsity vector s to account for the number of
nodes in each layer. Finally, we relax the assumption of a known
bound B by considering a sieve with a layer wise constraint
(denoted by the vector B) on the L norm of the incoming edges
1

312
of a node. Thus, our work extends on current literature along
three directions: (1) theoretically quantifies predictive perfor-
mance of Bayesian neural networks with node based pruning; (2)
establishes that even without a fixed bound on network weights,
one can recover the true solution by appropriate choice of the
prior; (3) provides layer wise node inclusion probabilities to
allow for structurally sparse solutions. The relaxation of these
network structure assumptions requires us to provide the frame-
work for node selection including appropriate sieve construction
together with the derivation of the results in Schmidt-Hieber
(2020) customized to our problem.

To establish the posterior contraction rates, we show that the
variational posterior in (8) concentrates in shrinking Hellinger
neighborhoods of the true density function P0 with overwhelming
probability. Since X ∼ U[0, 1]p, thus f0(x) = fθ(x) = 1. This
further implies P0 = f0(y|x)f0(x) = f0(y|x) and similarly Pθ =

fθ(y|x). We next define the Hellinger neighborhood of the true
density P0 as

Hε = {θ : dH(P0, Pθ) < ε}

where the Hellinger distance between the true density function
P0 and the model density Pθ is

d2H(P0, Pθ) =
1
2

∫ (√
fθ(y|x)−

√
f0(y|x)

)2
dydx

We also define the KL neighborhood of the true density P0 as

Nε = {θ : dKL(P0, Pθ) < ε}

where the KL distance dKL between the true density function P0
and the model density Pθ is

dKL(P0, Pθ) =
∫

log
f0(y|x)
fθ(y|x)

f0(y|x)dydx

Let k = (k0, . . . , kL+1) be the node vector, W l = (w⊤

l1, . . . ,

w⊤

lkl+1
)⊤ be the row representation of W l and w̃l = (∥wl1∥1, . . . ,

wlkl+1∥1) be the vector of L1 norms of the rows of W l. Next
we consider layer-wise sparsity, s = (s1, . . . , sL) for node se-
lection. Similarly, we consider layer-wise norm constraints, B =

(B1, . . . , BL) on L1 norms of weights including bias incident onto
any given node in each layer. Based on s and B, we define the
following sieve of neural networks (check definition A.1).

F(L, k, s,B) = {ηθ ∈ (3) : ∥w̃l∥0 ≤ sl, ∥w̃l∥∞ ≤ Bl} . (11)

The construction of a sieve is one of the most important tools
towards the proof of consistency in infinite-dimensional spaces.
In the works of Schmidt-Hieber (2020), Polson and Ročková
(2018), Chérief-Abdellatif (2020) and Bai et al. (2020), the sieve
in the context of edge selection is given by

F(L, k, s) = {ηθ ∈ (3) : ∥θ∥0 ≤ s, ∥θ∥∞ ≤ 1} .

which works with an overall sparsity parameter s. In addition,
note the L∞ norm of all the entries in θ is assumed to be known
constant equal to 1 (see relation (4) in Schmidt-Hieber (2020) and
ection 4 in Polson and Ročková (2018)). Section 3 in Bai et al.
2020) does not explicitly mention the dependence of their sieve
n some fixed bound B on the edges in a network, however, their
erivations on covering numbers (see proof of Lemma 1.2 in the
upplement of Bai et al. (2020)) borrow results from (Schmidt-
ieber, 2020) which is based on sieve with B = 1.
Consider any sequence ϵn. For Lemmas 4.1 and 4.2, we work

ith the sieve F(L, k, s,B) in (11) with s = s◦ and B = B◦ where
◦

l + 1 = nϵ2n/(
∑L

j=0 uj) and log B◦l = (nϵ2n)/((L+ 1)
∑L

j=0(s
◦

j + 1))
ith ul = (L+1)2(log n+ log(L+1)+ log kl+1+ log(kl+1)). Note,

◦ and B◦ do not depend on l.
l l

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

B

∞

0

w
r

L
n

t
c
d
g
a
a
n
n

ξ

B

ϑ

s
4
t
c
p
t

p
t

T
4
i

Π

i
H

t
n
i
o
i
f

R
a
w
e
f

P

D

d

Lemma 4.1 below holds when the covering number (check def-
inition A.2) of the functions which belong to the sieve F(L, k, s◦,
◦) is well under control. Lemma 4.2 below states that for the

same choice of the sieve, the prior gives sufficiently small proba-
bilities on the complement space F(L, k, s◦,B◦)c (see the discus-
sion under Theorem 4.4 for more details).

For the subsequent results, the symbol Ac will be used to
denote complement of a set A.

Lemma 4.1 (Existence of Test Functions). Let ϵn → 0 and nϵ2n →

. There exists a testing function φ ∈ [0, 1] and constants C1, C2 >
,

EP0 (φ) ≤ exp{−C1nϵ2n}

sup
θ∈Hc

ϵn ,ηθ∈F(L,k,s◦,B◦)
EPθ

(1− φ) ≤ exp{−C2nd2H(P0, Pθ)}

here Hϵn = {θ : dH(P0, Pθ) ≤ ϵn} is the Hellinger neighborhood of
adius ϵn.

emma 4.2 (Prior mass condition.). Let ϵn → 0, nϵ2n → ∞ and
ϵ2n/

∑L
l=0 ul → ∞, then for Π̃ as in (6) and some constant C3 > 0,

Π̃(F(L, k, s◦,B◦)c) ≤ exp(−C3nϵ2n/
L∑

l=0

ul)

Whereas Lemmas 4.1 and 4.2 work with a specific choice of
he sieve, the following Lemma 4.3 is developed for any generic
hoice of sieve indexed by s and B. The final piece of the theory
eveloped next tries to addresses two main questions (1) Can we
et a sparse network solution whose layer-wise sparsity levels
nd L1 norms of incident edges (including the bias) of the nodes
re controlled at levels s and B respectively? (2) Does this sparse
etwork retain the same predictive performance as the original
etwork?
In this direction, let

= minηθ∈F(L,k,s,B)∥ηθ − η0∥
2
∞

ased on the values s and B, we also define

l = Bl
2/(kl + 1)+

L∑
m=0,m̸=l

log Bm + L+ log kl+1

+ log(kl + 1)+ log n+ log(
L∑

m=0

um)

rl = sl(kl + 1)ϑl/n (12)

Lemma 4.3 has two sub conditions. Condition 1. requires that
shrinking KL neighborhood of the true density function P0 gets
ufficiently large probability. This along with Lemmas 4.1 and
.2 is an essential condition to guarantee the convergence of the
rue posterior in (5). Condition 2. is the assumption needed to
ontrol the KL distance between true posterior and variational
osterior and thereby guarantees the convergence of the varia-
ional posterior in (8) (see the discussion under Theorem 4.4 for
more details).

Lemma 4.3 (Kullback–Leibler Conditions). Suppose
∑L

l=0 rl+ξ → 0
and n(

∑L
l=0 rl + ξ) → ∞ and the following two conditions hold for

the prior Π̃ in (6) and some q ∈ QMF

1. Π̃

(
N∑L

l=0 rl+ξ

)
≥ exp(−C4n(

L∑
l=0

rl + ξ))

2. dKL(q, π)+ n
∑∫

dKL(P0, Pθ)q(θ, z)dθ ≤ C5n(
L∑

rl + ξ)

z l=0

313
where π is the joint prior of (θ, z), q is the joint variational dis-
tribution of (θ, z) and N∑L

l=0 rl+ξ
is the KL neighborhood of radius∑L

l=0 rl + ξ .

The following result shows that the variational posterior is
consistent as long as Lemma 4.1, Lemmas 4.2 and 4.3 hold. The
roof of Theorem 4.4 demonstrates how the validity of these
hree lemmas imply variational posterior consistency.

heorem 4.4. Suppose Lemma 4.3 holds and Lemmas 4.1 and

.2 hold for ϵn =

√
(
∑L

l=0 rl + ξ)
∑L

l=0 ul. Then for some slowly
ncreasing sequence Mn → ∞, Mnϵn → 0 and Π̃∗ as in (10),˜∗(Hc

Mnϵn
) → 0, n → ∞

n Pn
0 probability where Hc

Mnϵn
= {θ : dH(P0, Pθ) ≤ Mnϵn} is the

ellinger neighborhood of radius Mnϵn.

Note, the above contraction rate depends mainly on two quan-
ities rl and ξ . Note rl controls the number of nodes in the neural
etwork. If the network is not sparse, then rl is kl+1(kl + 1)ϑl/n
nstead of sl(kl + 1)ϑl/n which can in turn make the convergence
f ϵn → 0 difficult. On the other hand, if sl and Bl are too small,
t will cause ξ to explode since a good approximation to the true
unction may not exist in a very sparse space.

emark (Rates as a Function of n). Let L ∼ O(log n), B2
l ∼ O(kl+1)

nd sl(kl + 1) = O(n1−2ϱ), for some ϱ > 0, then one can work
ith ϵn = n−ϱ log3(n) as long as ξ = O(n−2ϱ log2(n)). The exact
xpression of ϱ is determined by the degree of smoothness of the
unction η0.

roof of Theorem 4.4.

iscussion. To further enunciate Lemmas 4.1 and 4.2 consider
the quantity E1n =

∫
Hc

Mnϵn
(Pn

θ /P
n
0)π̃ (θ)dθ as used in the following

proof. Here, E1n can be split into two parts

E1n =
∫
Hc

Mnϵn
∩F(L,k,s◦,B◦)

(Pn
θ /P

n
0)π̃ (θ)dθ

+

∫
Hc

Mnϵn
∩F(L,k,s◦,B◦)c

(Pn
θ /P

n
0)π̃ (θ)dθ

Whereas Lemma 4.1 provides a handle on the first term by con-
trolling the covering number of the sieve F(L, k, s◦,B◦),
Lemma 4.2 gives a handle on the second term by controlling
Π̃(F(L, k, s◦,B◦)c) (for more details we refer to Lemma A.8 in Ap-
pendix A).

Next, consider the quantity E2n = log
∫
(Pn

θ /P
n
0)π̃ (θ)dθ in the

following proof. Lemma 4.3 part 1. provides a control on this term
(see Lemma A.9 in Appendix A for more details). Finally, consider
the quantity E3n = dKL(q, π) +

∑
z

∫
log(Pn

0/P
n
θ)q(θ, z)dθ in the

following proof. Indeed Lemma 4.3 part 2. provides a control on
this term (see Lemma A.10 in Appendix A for further details).

Proof. Let Π̃ and Π̃∗ be as in (7) and (10) respectively. Now,

KL(π̃∗, π̃ (|D)) =
∫
A
π̃∗(θ) log

π̃∗(θ)
π̃ (θ|D)

dθ

+

∫
Ac
π̃∗(θ) log

π̃∗(θ)
π̃ (θ|D)

dθ

= −Π̃∗(A)
∫
A

π̃∗(θ)
Π̃∗(A)

log
π̃ (θ|D)
π̃∗(θ)

dθ

− Π̃∗(Ac)
∫

π̃∗(θ)
log

π̃ (θ|D)
dθ
Ac Π̃∗(Ac) π̃∗(θ)

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

T
a

w

d

w

s
p

n

T

σ

t
c

C

Π

i
H

i
i
s
f

R
c

s
b
T
b
e

5

E
L

≥ Π̃∗(A) log
Π̃∗(A)
Π̃(A|D)

+ Π̃∗(Ac) log
Π̃∗(Ac)
Π̃(Ac |D)

,

Jensen’s inequality

where the above lines hold for any set A. Since Π̃(A|D) ≤ 1,

≥ Π̃∗(A) log Π̃∗(A)+ Π̃∗(Ac) log Π̃∗(Ac)− Π̃∗(Ac) log Π̃(Ac
|D)

≥ −Π̃∗(Ac) log Π̃(Ac
|D)− log 2,

(∵ x log x+ (1− x) log(1− x) ≥ − log 2)

= −Π̃∗(Ac)
(
log
∫
Ac

(Pn
θ /P

n
0)π̃ (θ)dθ  

E1n

− log
∫

(Pn
θ /P

n
0)π̃ (θ)dθ  

E2n

)

− log 2

he above representation is similar to the proof of Theorems 3.1
nd 3.2 in Bhattacharya and Maiti (2021). For any q ∈ QMF,

− Π̃∗(Ac)E1n ≤ dKL(π̃∗, π̃ (|D))− Π̃∗(Ac)E2n + log 2
≤ dKL(π∗, π (|D))− Π̃∗(Ac)E2n + log 2

by Lemma A.5
≤ dKL(q, π (|D))− Π̃∗(Ac)E2n + log 2

π∗ is the KL minimizer

≤ dKL(q, π)+
∑
z

∫
log

Pn
0

Pn
θ

q(θ, z)dθ  
E3n

+ (1− Π̃∗(Ac))E2n + log 2

= E3n + (1− Π̃∗(Ac))E2n + log 2 (13)

here the fourth inequality in the above equation follows since

KL(q, π (|D)) =
∑
z

∫
(log q(θ, z)− log Pn

θ − logπ (θ, z)

+ logm(D))q(θ, z)dθ

=

∑
z

∫
(log q(θ, z)− logπ (θ, z))q(θ, z)dθ  

dKL(q,π)

+

∑
z

∫
(log Pn

0 − log Pn
θ)q(θ, z)dθ

+ logm(D)− log Pn
0  

E2n

here m(D) is the marginal distribution of data as in (5).
Take A = Hc

Mnϵn
= {θ : dH(P0, Pθ) > Mnϵn}

If Lemmas 4.1 and 4.2 hold, then by Lemma A.8, it can be
hown that E1n ≤ −nCM2

nϵ
2
n/
∑

ul for any Mn → ∞ with high
robability.
If Lemma 4.3 condition 1. holds, then by Lemma A.9, E2n ≤

Mn(
∑L

l=0 rl + ξ) for any Mn → ∞.
If Lemma 4.3 condition 2. hold, then by Lemma A.10, E3n ≤

nMn(
∑L

l=0 rl + ξ) for any Mn → ∞.
Therefore, by (13), we get

nCM2
nϵ

2
n∑

ul
Π̃∗

(
Hc

Mnϵn

)
≤ nMn(

L∑
l=0

rl + ξ)+ nMn(
L∑

l=0

rl + ξ)+ log 2

≤ nMn(
L∑

l=0

rl + ξ)+ nMn(
L∑

l=0

rl + ξ)

+ Mn(
L∑

rl + ξ)

l=0

314
H⇒ Π̃∗
(
Hc

Mnϵn

)
≤

3Mn(
∑L

l=0 rl + ξ)
∑

ul

C1M2
nϵ

2
n

aking ϵn =

√∑L
l=0(rl + ξ)

∑
ul and noting Mn → ∞, the proof

follows. □

We next give conditions on the prior probabilities λl and
0 to guarantee that Lemmas 4.1–4.3 hold. This in turn implies
he conditions of Theorem 4.4 hold and variational posterior is
onsistent.

orollary 4.5. Let σ 2
0 = 1, − log λl = log(kl+1)+Cl(kl+1)ϑl, then

conditions of Theorem 4.4 hold and Π̃∗ as in (10) satisfies˜∗(Hc
Mnϵn

) → 0, n → ∞

n Pn
0 probability where and HMnϵn = {θ : dH(P0, Pθ) ≤ Mnϵn} is the

ellinger neighborhood of radius Mnϵn.

The proof of the corollary has been provided in Appendix A.
In the preceding corollary, note that our expression of prior

nclusion probability varies as a function of l thereby provid-
ng a handle on layer-wise sparsity. Indeed, using these expres-
ions in numerical studies further substantiates the theoretical
ramework developed in this section.

emark (Optimal Contraction). For a fixed choice of k, the optimal
ontraction rate is achieved at s⋆,B⋆ = argmin

s,B
(
∑

rl + ξ). Thus,
⋆ and B⋆ are the optimal values of s and B which give the
est sparse network with minimal loss in the true accuracy.
he corresponding probability expressions in Corollary 4.5 can
e accordingly modified by setting s = s⋆ and B = B⋆ in the
xpressions of ϑl and rl in (12).

. Implementation details

vidence Lower Bound. The ELBO presented in (9) is given by
= −Eq[log Pn

θ] + dKL(q, π) which is further simplified as

− Eq[log Pn
θ] + dKL(q, π)

= −Eq(θ|z)q(z)[log Pn
θ] + dKL (q(θ|z)q(z), π (θ|z)π (z))

= −Eq(θ|z)q(z)[log Pn
θ] +

∑
l,j

dKL(q(zlj)||π (zlj))

+

∑
l,j

[
q(z lj = 1)dKL(q(wlj|zlj = 1)||π (wlj|zlj = 1))

+ q(z lj = 0)dKL(q(wlj|zlj = 0)||π (wlj|zlj = 0))
]

= −Eq(θ|z)q(z)[log Pn
θ] +

∑
l,j

dKL(q(zlj)||π (zlj))

+

∑
l,j

q(z lj = 1)dKL(q(wlj|zlj = 1)||π (wlj|zlj = 1))

= −Eq(θ|z)q(z)[log Pn
θ] +

∑
l,j

dKL(q(zlj)||π (zlj))

+

∑
l,j

q(z lj = 1)dKL(N(µlj, diag(σ
2
lj))||N(0, σ 2

0 I))

The KL of discrete variables appearing in the above expres-
sion creates a challenge in practical implementation. Jang et al.
(2017), Maddison et al. (2017) proposed to replace discrete ran-
dom variable with its continuous relaxation. Specifically, the con-
tinuous relaxation approximation is achieved through Gumbel-
softmax (GS) distribution, that is q(z) ∼ Ber(γ) is approximated
lj lj

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

η

w
s
p
s
e
N
w

6

d
G
i
t
a
u
l
a
B
f
s
d

n
s
2
e
t
B
a
2
i
p
σ
C
i
d
p

m
a
p
u
C

N
s
e
n
o
t
o
t
d

6

t
a
W
g
n
1
m
t
t
i

t
m
i
m
B
e
s
c
b
e

Algorithm 1 Variational inference in SS-IG Bayesian neural
networks
Inputs: training dataset, network architecture, and optimizer
tuning parameters.
Model inputs: prior parameters for θ, z .
Variational inputs: number of Monte Carlo samples S.
Output: Variational parameter estimates of network weights
and sparsity.
Method: Set initial values of variational parameters.
repeat
Generate S samples from ζlj ∼ N(0, I) and ulj ∼ U(0, 1)
Generate S samples for (zlj, z̃lj) using ulj
Use µlj, σ lj, ζlj and zlj to compute loss (ELBO) in forward pass

Use µlj, σ lj, ζlj and z̃lj to compute gradient of loss in backward
pass
Update the variational parameters with gradient of loss using
stochastic gradient descent algorithm (e.g. Adam (Kingma &
Ba, 2015))

until change in ELBO < ϵ

by q(z̃lj) ∼ GS(γlj, τ), where

z̃lj = (1+ exp(−ηlj/τ))−1,

lj = log(γlj/(1− γlj))+ log(ulj/(1− ulj)), ulj ∼ U(0, 1)

here τ is the temperature. We set τ = 0.5 for this paper (also
ee section 5 in Bai et al. (2020)). z̃lj is used in the backward
ass for easier gradient calculation, while zlj will be used for
electing nodes in the forward pass. We use non-centered param-
terization for the Gaussian slab variational approximation where
(µlj, diag(σ2

lj)) is reparameterized as µlj+σ lj⊙ζlj for ζlj ∼ N(0, I),
here ⊙ denotes the entry-wise (Hadamard) product.

. Numerical experiments

In this section, we present several numerical experiments to
emonstrate the performance of our spike-and-slab independent
aussian (SS-IG) Bayesian neural networks which we implement
n PyTorch (Paszke et al., 2019). Further, to evaluate the efficacy of
he variational inference we benchmark our model on synthetic
s well as real datasets. Our numerical investigation justifies the
se of proposed choices of prior hyperparameters specifically
ayer-wise prior inclusion probabilities, which in turn substanti-
tes the significance of our theoretical developments. With fully
ayesian treatment, we are also able to quantify the uncertainties
or the parameter estimates and variational inference helps to
cale our model to large network architectures as well as complex
atasets.
We compare our sparse model with a node selection tech-

ique: horseshoe BNN (HS-BNN) (Ghosh et al., 2019) and an edge
election technique: spike-and-slab BNN (SV-BNN) (Bai et al.,
020) in the second simulation study and UCI regression dataset
xamples. We use optimal choices of prior parameters and fine
uning parameters provided by the authors of HS-BNN and SV-
NN in their respective models. Further we compare our model
gainst dense variational BNN model (VBNN) (Blundell et al.,
015) in all of the experiments. Since it has no sparse structure,
t serves as a baseline allowing to check whether sparsity com-
romises accuracy. In all the experiments, we fix σ 2

0 = 1 and
2
e = 1. For our model, the choices of layer-wise λl follow from
orollary 4.5: λl = (1/kl+1) exp(−Cl(kl + 1)ϑl). We take Cl values
n the negative order of 10 such that prior inclusion probabilities
o not fall below 10−50 otherwise λl values close to 0 might
rune away all the nodes from a layer (check appendix B for
 a

315
ore discussion). The remaining tuning parameter details such
s learning rate, minibatch size, and initial parameter choice are
rovided in the appendix B. The prediction accuracy is calculated
sing variational Bayes posterior mean estimator with 30 Monte
arlo samples in testing phase.

ode sparsity estimates. In our experiments, we provide node
parsity estimates for each hidden layer separately. For all mod-
ls, the node sparsity in a given hidden layer is the ratio of
umber of neurons with at least one nonzero incoming edge
ver the original number of neurons present in that layer before
raining. The layer-wise node sparsity estimates give clear picture
f the structural compactness of the trained model during test
ime. The structurally compact trained model has lower latency
uring inference stage.

.1. Simulation study - I

We consider a two dimensional regression problem where the
rue response y0 is generated by sampling X from U([−1, 1]2)
nd feeding it to a deep neural network with known parameters.
e add a random Gaussian noise with σ = 5%

√
Var(y0) to y0 to

et noisy outputs y. We create the dataset using a shallow neural
etwork consisting of 2 inputs, one hidden layer with 2 nodes and
output (2-2-1 network). We train our SS-IG model and VBNN
odel using a single hidden layer network with 20 neurons in

he hidden layer and administer sigmoid activation. Each model is
rained till convergence. We found that both models give compet-
tive predictive performance while fitting the given data. In Fig. 2
we plot the magnitudes of the incoming weights into the hidden
layer nodes using boxplots. Our model with the help of spike and
slab prior is able to prune away redundant nodes not required for
fitting the model. Since VBNN is densely connected, it shows all
the nodes being active in its final model. From this experiment,
it is clear that neural networks can be pruned leading to more
compact models at inference stage without compromising the
accuracy. We also performed the same experiment with a wider
neural network consisting of 100 nodes in the single hidden
layer and provide the results in Appendix B. There again we
show that our model can easily recover very sparse solution with
competitive predictive performance.

6.2. Simulation study - II

We consider a nonlinear regression example where we gener-
ate the data from the following model:

y =
7x2

1+ x21
+ sin(x3x4)+ 2x5 + ε,

where ε ∼ N(0, 1). Further all the covariates are i.i.d. N(0, 1) and
independent of ε. We generated 3000 data entries to create the
training data for the experiment. Additional 1000 observations
were generated for testing. We modeled this data using 2-hidden
layer neural network which consists of 20 neurons per hidden
layer. Sigmoid activation function is administered for each model
used for comparative analysis. Table 1 provides the RMSEs on
rain and test dataset as well as layer-wise node sparsity esti-
ates for SS-IG, SV-BNN, HS-BNN, and VBNN models. Our model

s extremely well at pruning redundant nodes which leads to the
ost compact model compared to the other sparse models: SV-
NN and HS-BNN. Moreover it exhibits lower root mean squared
rror (RMSE) values on test data among the sparse models while
howing similar predictive performance compared to the densely
onnected VBNN. This experiment further underscores the major
enefit of our proposed approach to generate very compact mod-
ls which could reduce computational times and memory usage
t inference stage.

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

(
B
p
g
d

t
m
d
p
s
w
V
m
h
i

i

Fig. 2. Node-wise weight magnitudes recovered by VBNN and proposed SS-IG model in the synthetic regression data generated using 2-2-1 network. The boxplots
show the distribution of incoming weights into a given hidden layer node.
8
a
o

D
c
p
a
2
W
p
i

M
c
t
m
c

Table 1
Performance of the proposed SS-IG, SV-BNN, HS-BNN, and VBNN models in
simulation study II. Each model was trained for 10k epochs with learning rate
5 × 10−3 . Mean and S.D. of RMSE values and median sparsity estimates were
calculated from last 1000 epochs (with jump of 10 giving us sample of 100).
The sparsity estimates are given as a tuple of 2 values representing layer-1 and
layer-2 node sparsities.
Model Train RMSE Test RMSE Sparsity estimate

SS-IG 1.2087 ± 0.0490 1.1947 ± 0.0587 (0.35, 0.05)
SV-BNN 1.2897 ± 0.0323 1.2760 ± 0.0363 (0.45, 0.35)
HS-BNN 1.2580 ± 0.0305 1.2436 ± 0.0394 (1.00, 1.00)
VBNN 1.1661 ± 0.0335 1.1614 ± 0.0349 NA

6.3. UCI regression datasets

We apply our model to traditional UCI regression datasets
Dua & Graff, 2017) and contrast our performance against SV-
NN, HS-BNN, and VBNN models. We follow the protocol pro-
osed by Hernandez-Lobato and Adams (2015) and train a sin-
le layer neural network with sigmoid activations. For smaller
atasets - Concrete, Wine, Power Plant, Kin8nm, we take 50 nodes

in the hidden layer, while for larger datasets - Protein, Year, we
ake 100 nodes in the hidden layer. We spilt data randomly while
aintaining 9:1 train–test ratio in each case and for smaller
atasets we repeat this technique 20 times. In Protein data we
erform 5 repetitions while in Year data we use a single random
plit (more details in Appendix B). For the comparative analysis,
e benchmark against SV-BNN, HS-BNN and VBNN. Moreover,
BNN test RMSEs serve as baseline in each dataset. Table 2 sum-
arizes our results including the sparsity estimate representing
idden layer-1 node sparsity (since there is only one hidden layer
n the networks considered).

We achieve lower RMSEs compared to SV-BNN and HS-BNN
n Power Plant, Kin8 nm, and Year datasets and in other cases
we achieve comparable RMSE values. In all the datasets, our
predictive performance is close to the dense baseline of VBNN.
We provide node sparsity estimates in our SS-IG and SV-BNN
models. HS-BNN was not able to achieve sparse structure which
is consistent with the results provided in the appendix of Ghosh
et al. (2019). In contrast to HS-BNN, our model sparsifies the
model during training without requiring ad-hoc thresholding rule
for pruning. Table 2 demonstrates that our model uniformly
achieves better sparsity than SV-BNN. In particular, Concrete and
Wine datasets show the high compressive ability of our model
over SV-BNN leading to very compact models for inference.
316
6.4. Image classification datasets

Here, we benchmark the empirical performance of our pro-
posed SS-IG method on network architectures and image classi-
fication datasets used in practice.

Baselines. We compare our model against VBNN model which
serves as a dense baseline to gauge the trade-off between predic-
tive performance and sparsity. Moreover, to highlight the com-
plementary behavior in memory and computational efficiency of
node selection compared to edge selection achieved via Bayesian
spike-and-slab prior framework, we compare our model against
the edge selection model, SV-BNN.

Network architectures. We consider 2 neural network model
architectures: (i) multi-layer perceptron (MLP), and (ii) Lenet-
Caffe. In MLP model, we take 2 hidden layers with 400 neurons in
each layer. Output layer has 10 neurons since there are 10 classes
in both datasets. Next, Lenet-Caffe model has 2 convolutional
layers with 20 and 50 feature maps respectively with filter size
5 × 5 for both layers. In SS-IG model, for convolution layers, we
prune output channels (similar to neurons in linear layers) using
our spike-and-slab prior where each output channel is assigned
a Bernoulli variable to collectively prune parameters incident on
that channel. On the other hand for SV-BNN model, each weight
in the convolution layer is assigned a spike-and-slab prior which
prunes weights similar to fully connected layers. We apply 2 × 2
max pooling layer after each convolution layer. The flattened
feature layer after second convolution layer has size 4 ∗ 4 ∗ 50 =

00 serving as input to the fully connected block, where there
re 2 hidden layers with 800 and 500 neurons respectively. The
utput layer has 10 neurons.

atasets.We apply each network architecture on 2 image classifi-
ation datasets: (i) MNIST: dataset of 60,000 small square 28× 28
ixel grayscale images of handwritten single digits between 0
nd 9, and (ii) Fashion-MNIST: dataset of 60,000 small square
8 × 28 pixel grayscale images of items of 10 types of clothing.
e preprocess the images in the MNIST data by dividing their
ixel values by 126. In Fashion-MNIST data, we horizontally flip
mages at random with probability of 0.5.

etrics. We quantify the predictive performance using the ac-
uracy of the test data (MNIST and Fashion-MNIST). Besides the
est accuracy, we evaluate our model against SV-BNN using the
etrics that relate to the model compression and computational
omplexity. First the compression ratio is the ratio of number of
nonzero weights in the compressed network versus the dense
model and is an indicator of storage cost at test-time. Next,

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

w
x
c
n

N
2
p
R
p
a
t
s
W
a
a

M

F
c
i

V
b
d
g
(
a
a
i
t
t
i
m
a
a

s
∼

a
3
a
m
h
h
o
o
d

Table 2
Results on UCI regression datasets.
Dataset n(k0) Test RMSE Sparsity estimate

SS-IG SV-BNN HS-BNN VBNN SS-IG SV-BNN

Concrete 1030 (8) 7.92 ± 0.68 8.22 ± 0.70 5.34 ± 0.53 7.34 ± 0.62 0.42 ± 0.06 0.98 ± 0.02
Wine 1599 (11) 0.66 ± 0.05 0.65 ± 0.05 0.66 ± 0.05 0.64 ± 0.05 0.18 ± 0.05 0.87 ± 0.04
Power Plant 9568 (4) 4.28 ± 0.20 4.32 ± 0.19 4.34 ± 0.18 4.27 ± 0.17 0.18 ± 0.03 0.24 ± 0.03
Kin8 nm 8192 (8) 0.09 ± 0.00 0.11 ± 0.01 0.10 ± 0.00 0.09 ± 0.00 0.43 ± 0.04 0.47 ± 0.04
Protein 45730 (9) 4.85 ± 0.05 4.93 ± 0.06 4.59 ± 0.02 4.78 ± 0.06 0.81 ± 0.03 0.93 ± 0.03
Year 515345 (90) 8.68 ± NA 8.78 ± NA 9.33 ± NA 8.67 ± NA 0.71 ± NA 0.78 ± NA
we present layer-wise node sparsities in MLP experiments to
highlight the computational speedups at test-time. In Lenet-Caffe
experiments, we provide the floating point operations (FLOPs) ratio
hich is the ratio of number of FLOPs required to predict y from
during test time in the compressed network versus its dense
ounterpart. We have detailed the FLOPs calculation in neural
etworks in Appendix B.

onlinear activation. We use swish activations (Elfwing et al.,
018; Ramachandran et al., 2017) instead of ReLUs in our pro-
osed SS-IG model to avoid the dying neuron problem where
eLU neurons become inactive and only output 0 for any in-
ut (Lu et al., 2020). Specifically in large scale datasets turning off
node with more than 100 incoming edges adversely impacts the
raining process of ReLU networks. Smoother activation functions
uch as sigmoid, tanh, swish etc help alleviate this problem.
e choose swish since it has the best performance. For VBNN

nd SV-BNN, we use ReLU activations as recommended by their
uthors.

LP experiments
The results of MLP network experiments on MNIST and

ashion-MNIST are presented in Fig. 3. We provide test data ac-
uracy, model compression ratio, and layer-wise node sparsities
n each experiment.

In MLP-MNIST experiment (Figs. 3(a)–3(d)), we observe that
BNN and SS-IG models only require∼400 epochs to achieve sta-
le predictive performance (Fig. 3(a)). In contrast, SV-BNN slightly
egrades after 600 epochs and takes longer to achieve conver-
ence in layer-wise node sparsities compared to our approach
Figs. 3(c) and 3(d)). Moreover, for SS-IG model, we observe that
s we start to learn sparse network our model shows peak test
ccuracy when most of the nodes are present in the model and
t starts to drop as we learn sparser network and ultimately the
est accuracy stabilizes when the node sparsities converge. Fur-
hermore, SV-BNN has better model compression ratio (Fig. 3(b))
n this experiment at the expense of lower predictive perfor-
ance. Our method is prunes off∼80% of first hidden layer nodes
nd ∼90% of second hidden layer nodes at the expense of ∼2%
ccuracy loss due to sparsification compared to the dense VBNN.
In MLP-Fashion-MNIST experiment (Figs. 3(e)–3(h)), we ob-

erve that VBNN model takes ∼200 epochs and our model takes
600 epochs for convergence. SV-BNN model takes longer to
chieve convergence in layer-wise node sparsities (Figs. 3(g) and
(h)). We also observe the complementary behavior of our model
nd SV-BNN in memory and computational efficiency where our
odel achieves better layer-wise node sparsities and SV-BNN
as better model compression ratio (Fig. 3(f)) with both models
aving similar predictive performance (Fig. 3(e)). Furthermore,
ur method prunes off∼90% of first hidden layer nodes and∼92%
f second hidden layer nodes at the expense of ∼3% accuracy loss
ue to sparsification compared to the densely connected VBNN.
317
Lenet-Caffe experiments
The results of more complex Lenet-Caffe network experiments

on MNIST and Fashion-MNIST are presented in Fig. 4. We provide
test data accuracy, model compression ratio, and FLOPs ratio in
each experiment over 1200 epochs. Here, FLOPs ratio serves as a
collective indicator of layer-wise node sparsities since FLOPs are
directly related to how many neurons or channels are remaining
in linear or convolution layers respectively.

In Lenet-Caffe-MNIST experiment (Figs. 4(a)–4(c)), we ob-
serve that our model has better predictive accuracy than SV-BNN
(Fig. 4(a)). Moreover, we achieve 10% more reduction in Flops
(Fig. 4(c))) compared to SV-BNN whereas SV-BNN achieves better
model compression than our approach (Fig. 4(b)). In particular,
we prune out more output channels in two convolution layers
and nodes in two fully connected layers leading to lower FLOPs
at inference compared to SV-BNN. We only include FLOPs ratio
for brevity. Lastly, our method is able to reduce the FLOPs of the
model during inference at test-time by 90% at the expense of
∼0.5% accuracy loss due to sparsification compared to the densely
connected VBNN.

In Lenet-Caffe-Fashion-MNIST experiment (Figs. 4(d)–4(f)), we
observe that both SS-IG and SV-BNN have similar test accuracies
at convergence (Fig. 4(d)). However, our model has 40% less
FLOPs (Fig. 4(f)) during inference stage compared to SV-BNN
which again achieves better model compression (Fig. 4(e)). In
comparison to SV-BNN, we observe fewer output channels in
two convolution layers and nodes in two fully connected layers
leading to lower FLOPs at inference. However, we only present
FLOPs ratio for brevity. This highlights the complementary nature
of our method of node selection that leads to a structurally sparse
model with significantly lower (almost 5 times) FLOPs compared
to weight pruning approach, SV-BNN, which induces unstruc-
tured sparsity in the pruned network leading to significant model
compression with low storage cost. Lastly, our method leads to a
sparse model with only 8% of the FLOPs as compared to VBNN
at the expense of ∼3% accuracy loss underscoring the trade-off
between predictive accuracy and sparsity.

7. Conclusion and discussion

Deep learning has been harnessed by big industrial corpo-
rations in recent years to improve their products. However, as
deep learning models are pushed into smaller and smaller em-
bedded devices, such as smart cameras recognizing visitors at
your front door, designing resource-efficient neural networks for
real-time, on-device inference is of practical importance. Our
work addresses this computational bottleneck by compressing
neural networks by inducing structured sparsity during training.
The estimation of posterior allows us to quantify uncertainties
around the parameter estimates which can be vital in medical
diagnostics.

In this paper, we have proposed sparse deep Bayesian neural
networks using spike-and-slab priors for optimal node recovery.
Our method incorporates layer-wise prior inclusion probabilities
and recovers underlying structurally sparse model effectively. Our
theoretical developments highlight the conditions required for

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330
Fig. 3. MLP architecture experiment results. First two rows (a)–(d) represent the MLP on MNIST experiment results. Bottom two rows (e)–(h) represent the MLP on
Fashion-MNIST experiment results.
the posterior consistency of the variational posterior to hold.
With the layer-wise characterization of prior inclusion probabili-
ties, we show that the proposed sparse BNN approximations can
achieve predictive performance comparable to dense networks.
Our results relax the constraints of equal number of nodes and
uniform bounds on weights thereby achieving optimal node re-
covery on a more generic neural network structure. The closeness
318
of a true function to the topology induced by layer-wise node
distribution depends on the degree of smoothness of the true
underlying function. In this work, this has not been studied in
depth and forms a promising direction for future work.

We have developed variational posterior consistency in our
model under MLP network assumption. One can extend this the-
oretical derivation to CNN by (see Section 3.4.1 in Gal (2016)).

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

n
L
t
w

a
b
h
e
f
a
s
t
p
n
n
l
n
v
a
c
m
p
i

D

c
t

Fig. 4. Lenet-Caffe architecture experiment results. Top row (a)–(c) represent the Lenet-Caffe on MNIST experiment results. Bottom row (d)–(f) represent the
Lenet-Caffe on Fashion-MNIST experiment results.
F

In fact, each convolutional operation can be taken as a special
case of linear mapping with a Toeplitz weight matrix. Thereby,
the corresponding weight matrix of the fully connected layer
is a large matrix that is mostly zero except for certain blocks
(due to local connectivity) where the weights in many of the
blocks are equal (due to parameter sharing). To generalize the
theory developed for MLPs to CNNs, one will need an adaptation
of the sieve construction in (11) for the case of convolutional
eural networks together with a rederivation of the Kullback–
eibler neighborhoods of the true density function by modifying
he expressions in (12). We leave this development for future
ork.
Note, in contrast to previous works, our work assumes a spike-

nd-slab prior on the entire vector of incoming weights and
ias onto a node. We underscore the fact that node selection
as complementary behavior with edge selection approaches as
stablished by our empirical experiments. Node selection of-
ers significant computational speedup whereas edge selection
chieves significant model compression at test-time. The demon-
tration of the efficacy of our node selection approach opens
he avenue for the exploration of sophisticated group sparsity
riors for node selection. Our detailed experiments show the sub-
etwork selection ability of our method which underscores the
otion that deep neural networks can be heavily pruned without
osing predictive performance. The experiment with convolution
eural network (Lenet-Caffe), where we induce structural sparsity
ia channel pruning in convolution layers, highlights the gener-
lizability of our approach from mere multi-layer perceptron to
omplex deep learning models. Although our method performs
odel reduction while maintaining predictive power, further im-
rovements may be obtained by choosing the number of layers
n a data-driven fashion and can be a part of future work.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared

o influence the work reported in this paper.

319
Data availability

Data will be made available on request.

Acknowledgments

The authors thank the editor, the action editor, and anony-
mous referees for their insightful comments and suggestions that
significantly improved the quality of the work. The work is par-
tially supported by the grants NSF-1924724, NSF-1952856, NSF-
2124605, and an agreement between Michigan State University
and Argonne National Laboratory, IF-60562.

Appendix A. Proofs of theoretical results

A.1. Definitions

Definition A.1 (Sieve). Consider a sequence of function classes
1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ Fn+1 ⊆ · · · ⊆ F , where ∀f ∈ F, ∃ fn ∈

Fn s.t. d(f , fn) → 0 as n → ∞ where d(., .) is some pseudo-
metric on F . More precisely, ∪∞

n=1Fn is dense in F . Fn is called
a sieve space of F with respect to the pseudo-metric d(., .), and
the sequence {fn} is called a sieve (Grenander, 1981).

Definition A.2 (Covering Number). Let (V , ∥.∥) be a normed space,
and F ⊂ V . {V1, . . . , VN} is an ε-covering of F if F ⊂ ∪

N
i=1B(Vi, ε),

or equivalently, ∀ ϱ ∈ F , ∃ i such that ∥ϱ − Vi∥ < ε. The
covering number of F denoted by N(ε,F, ∥.∥) = min{n : ∃ ε −

covering over F of size n} (Pollard, 1991).

A.2. General lemmas

Lemma A.3. Let g1 and g2 be any two density functions. Then

Eg1 (|log(g1/g2)|) ≤ dKL(g1, g2)+ 2/e
Proof. Refer to Lemma 4 in Lee (2000). □

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

L∑
d

w

P

η

f

A

a

A

T
i
f
k
b

|

(

W

R
a

n
w
c

N

emma A.4. For any K > 0, let a, a0
∈ [0, 1]K such that

K
k=1 ak =

∑K
k=1 a

0
k = 1, then the KL divergence between mixture

ensities
∑K

k=1 akgk and
∑K

k=1 a
0
kg

0
k is bounded as

dKL

(
K∑

k=1

a0kg
0
k ,

K∑
k=1

akgk

)
≤ dKL(a0, a)+

K∑
k=1

a0kdKL(g
0
k , gk)

Proof. Refer to Lemma 6.1 in Chérief-Abdellatif and Alquier
(2018). □

Lemma A.5.

dKL(π̃∗, π̃ (|D)) ≤ dKL(π∗, π (|D))

Proof. Using Lemma A.4 with a0
= π∗(z), a = π (z|D), g0

=

π∗(θ|z) and g = π (θ|z,D), we get

dKL(π̃∗, π̃ (|D)) = dKL(
∑
z

π∗(θ|z)π∗(z),
∑
z

π (θ|z,D)π (z|D))

≤ dKL(π∗(z), π (z|D))

+

∑
z

dKL(π∗(θ|z), π (θ|z,D))π∗(z)

= dKL(π∗(θ, z), π (θ, z|D)) = dKL(π∗, π (|D)) □

Lemma A.6. For any 1-Lipschitz continuous activation function ψ
such that ψ(x) ≤ x ∀x ≥ 0,

N(δ,F(L, k, s,B), ∥.∥∞)

≤

∑
s∗L≤sL

· · ·

∑
s∗0≤s0

[
L∏

l=0

(
Bl

δBl/(2(L+ 1)(
∏L

j=0 Bj))
kl+1

)sl]
here N denotes the covering number.

roof. Given a neural network

(x) = vL +W Lψ(vL−1 +W L−1ψ(vL−2

+ W L−2ψ(· · ·ψ(v1 +W 1ψ(v0 +W 0x)))))

or l ∈ {1, . . . , L}, we define A+l η : [0, 1]p → Rkl ,
+

l η(x) = ψ(vl−1 +W l−1ψ(vl−2

+ W l−2ψ(· · ·ψ(v1 +W 1ψ(v0 +W 0x)))))

nd A−l η : Rkl−1 → RkL+1 ,
−

l η(y) = vL +W Lψ(vL−1

+ W L−1ψ(· · ·ψ(vl +W lψ(vl−1 +W l−1y))))

he above framework is also used in the proof of lemma 5
n Schmidt-Hieber (2020). Next, set A+0 η(x) = A−L+2η(x) = x and
urther note that for η ∈ F(L, k), |A+l η(x)|∞ ≤

∏l−1
j=0 Bj where

= (p, k1, . . . , kL, kL+1) and kL+1 = 1. Next, we derive upper
ound on Lipschitz constant of A−l η.

W LA+L η(x1)−W LA+L η(x2)|∞
= |A−l η(A

+

l−1η(x1))− A−l η(A
+

l−1η(x2))|∞ (14)

l.h.s. is bounded above by
∏L

j=0 Bj and r.h.s consists of compo-
sition of Lipschitz functions A−l η and A+l−1η with C1 and C2 being
corresponding Lipschitz constants. So we can bound r.h.s. by,

|A−l η(A
+

l−1η(x1))− A−l η(A
+

l−1η(x2))|∞ ≤ C1C2∥x1 − x2∥∞
∀x1, x2 ∈ Rp

If we choose x1 = x ∈ [0, 1]p and x2 = 0 then,
− + − + p
|Al η(Al−1η(x))− Al η(Al−1η(0))|∞ ≤ C1C2 ∀x ∈ [0, 1]

320
Since C2 is Lipschitz constant for A+l−1η and we know that
|A+l−1η|∞ ≤

∏l−2
j=0 Bj. So we get C2 ≤ 2

∏l−2
j=0 Bj. We use this in

above expression,

|A−l η(A
+

l−1η(x))− A−l η(A
+

l−1η(0))|∞ ≤ 2C1

l−2∏
j=0

Bj ∀x ∈ [0, 1]p

(15)

Next we know that l.h.s. of (15) can be bounded above by
2
∏L

j=0 Bj because of (14). So we get bound on Lipschitz constant
of A−l η,

2C1

l−2∏
j=0

Bj ≤ 2
L∏

j=0

Bj H⇒ C1 ≤

L∏
j=l−1

Bj

Let η, η∗ ∈ F(L, k, s,B) be two neural networks with W l =

vl,W l) and W
∗

l = (v∗l ,W
∗

l) respectively. Here, we define δl using
the L1 norms of the rows of Dl = W l −W

∗

l as follows

Dl = (d
⊤

l1, . . . , d
⊤

lkl+1
)⊤ δl = (∥d l1∥1, . . . , ∥d lkl+1∥1)

e choose η, η∗ such that ∥δl∥∞ ≤ ζBl. This also means that all
parameters in each layer of these two networks are at most ζBl
distance away from each other. Then, we can bound the absolute
difference between these two neural networks by,

|η(x)− η∗(x)|

≤

L+1∑
l=1

|A−l+1η(ψ(vl−1 +W l−1A+l−1η
∗(x)))

− A−l+1η(ψ(v∗l−1 +W ∗

l−1A
+

l−1η
∗(x)))|

≤

L+1∑
l=1

⎛⎝ L∏
j=l

Bj

⎞⎠ ||ψ(vl−1 +W l−1A+l−1η
∗(x))

− ψ(v∗l−1 +W ∗

l−1A
+

l−1η
∗(x))||

∞

≤

L+1∑
l=1

⎛⎝ L∏
j=l

Bj

⎞⎠ ∥vl−1 − v∗l−1 + (W l−1 −W ∗

l−1)A
+

l−1η
∗(x)∥∞

≤

L+1∑
l=1

⎛⎝ L∏
j=l

Bj

⎞⎠ ∥δl−1∥∞∥A+l−1η
∗(x)∥∞

≤

L+1∑
l=1

⎛⎝ L∏
j=l

Bj

⎞⎠ ζBl−1

l−2∏
j=0

Bj = ζ (L+ 1)

⎛⎝ L∏
j=0

Bj

⎞⎠ (16)

ecall that we have at most kl number of nodes in each layer
nd there are

(kl+1
sl

)
≤ ksll+1 combinations of nodes to choose

sl active nodes in the given layer. Since supremum norm of L1
norms of the rows of W l is bounded above by Bl in our family of
eural networks F(L, k, s,B) so we can discretize these L1 norms
ith grid size δBl/(2(L+ 1)(

∏L
j=0 Bj)) and obtain upper bound on

overing number as follows

(δ,F(L, k, s,B), ∥.∥∞)

≤

∑
s∗L≤sL

· · ·

∑
s∗0≤s0

[
L∏

l=0

(
Bl

δBl/(2(L+ 1)(
∏L

j=0 Bj))
kl+1

)sl]

≤

L∏
l=0

⎛⎝2δ−1(L+ 1)

⎛⎝ L∏
j=0

Bj

⎞⎠ kl+1

⎞⎠(sl+1)

□ (17)

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

L
s

ϕ

R

ϕ

T

L
w

l

P

emma A.7. Let θ∗ = argminθ∈F(L,k,s,B) ∥ηθ − η0∥
2
∞

and W̃l =

upi ∥wli − w∗

li∥1, then for any density q =
∏L

j=0 q(θj),∫
∥ηθ − ηθ∗∥

2
2q(θ)dθ

≤

L∑
j=0

c2j−1

∫
W̃ 2

j qj(θj)dθj
L∏

m=j+1

∫
(W̃m + Bm)2q(θ)dθ

+ 2
L∑

j=0

j−1∑
j′=0

cj−1cj′−1

∫
W̃j(W̃j + Bj)qj(θj)dθj

×

L∏
m=j+1

∫
(W̃m + Bm)2q(θ)dθ

×

∫
W̃j′qj′ (θj′)dθj′

j−1∏
m=j′+1

∫
(W̃m + Bm)q(θ)dθ (18)

where cj−1 ≤
∏j−1

m=0 Bm.

Proof. Let ηlθ be the partial networks defined as⎧⎨⎩
η0θ (x) := ψ(W 0x+ v0),
ηlθ(x) := ψ(W lη

l−1
θ (x)+ vl),

ηLθ(x) := W Lη
L−1
θ (x)+ vL.

Similar to the proof of theorem 2 in Chérief-Abdellatif (2020),
define

ϕl(θ) = sup
x∈[0,1]p

sup
1≤i≤kl+1

|ηlθ(x)i − η
l
θ∗ (x)i|.

We next show by induction

ϕl(θ) ≤
l∑

j=0

W̃jcj−1Rl
j+1

where we define cl = max(supx∈[0,1]p sup1≤i≤kl+1
|ηl

θ∗
(x)i|, 1), c0 =

1, Rl
j+1 =

∏l
m=j+1(W̃m + Bm).

Claim: cl ≤ Blcl−1. Note

cl ≤ sup
x∈[0,1]p

sup
1≤i≤kl+1

(|w∗

li
⊤
ηl−1

θ∗
(x)| + |vli|)

≤ sup
x∈[0,1]p

sup
1≤i≤kl+1

(
kl∑
j=1

|w∗

lij||η
l−1
θ∗

(x)j| + |vli|)

≤ sup
1≤i≤kl+1

(cl−1

kl∑
j=1

|w∗

lij| + cl−1|vli|)

≤ cl−1 sup
1≤i≤kl+1

∥w∗

li∥1 = Blcl−1

where the above result holds since supi ∥w
∗

li∥1 ≤ Bl. Next,

l(θ)

≤ sup
x∈[0,1]p

sup
1≤i≤kl+1

(
kl∑
j=1

|wlijη
l−1
θ (x)j − w∗

lijη
l−1
θ∗

(x)j| + |vli − v
∗

li |)

≤ sup
x∈[0,1]p

sup
1≤i≤kl+1

(
kl∑
j=1

|wlijη
l−1
θ (x)j − w∗

lijη
l−1
θ (x)j|

+ |w∗

lijη
l−1
θ (x)j − w∗

lijη
l−1
θ∗

(x)j| + |vli − v
∗

li |)

≤ sup
x∈[0,1]p

sup
1≤i≤k

(
kl∑

|wlij − w
∗

lij||η
l−1
θ (x)j|
l+1 j=1 n

321
+

kl∑
j=1

|w∗

lij||η
l−1
θ (x)j − ηl−1

θ∗
(x)j| + |vli − v

∗

li |)

≤ sup
x∈[0,1]p

sup
1≤i≤kl+1

(
kl∑
j=1

|wlij − w
∗

lij||η
l−1
θ (x)j − ηl−1

θ∗
(x)j|

+

kl∑
j=1

|wlij − w
∗

lij||η
l−1
θ∗

(x)j| + |vli − v
∗

li |)

+ ϕl−1(θ)Bl

≤ W̃l(ϕl−1(θ)+ cl−1)+ ϕl−1(θ)Bl = ϕl−1(θ)(W̃l + Bl)+ cl−1W̃l

Now applying recursion we get

ϕl(θ) ≤ (ϕl−2(θ)(W̃l−1 + Bl−1)+ cl−2W̃l−1)(W̃l + Bl)+ cl−1W̃l

= ϕl−2(θ)(W̃l + Bl)(W̃l−1 + Bl−1)

+ cl−2W̃l−1(W̃l + Bl)+ cl−1W̃l

epeating this we get

l(θ) ≤ ϕ0(θ)
l∏

j=1

(W̃j + Bj)+
l∑

j=1

cj−1W̃j

l∏
u=j+1

(W̃j + Bj)

= W̃0

l∏
j=1

(W̃j + Bj)+
l∑

j=1

B1 · · · Bj−1W̃j

l∏
u=j+1

(W̃j + Bj)

=

l∑
j=0

B1 · · · Bj−1W̃j

l∏
u=j+1

(W̃j + Bj) =
l∑

j=0

W̃jcj−1Rl
j+1

∫
∥ηθ − ηθ∗∥

2
2q(θ)dθ ≤

∫
∥ηθ − ηθ∗∥

2
∞
q(θ)dθ =

∫
ϕ2
L (θ)q(θ)dθ

=

∫
(

L∑
j=0

W̃jcj−1RL
j+1)

2q(θ)dθ

=

L∑
j=0

c2j−1

∫
W̃ 2

j (R
L
j+1)

2q(θ)dθ

+ 2
L∑

j=0

j−1∑
j′=0

cj−1cj′−1

∫
W̃jW̃j′RL

j+1R
L
j′+1q(θ)dθ

=

L∑
j=0

c2j−1

∫
W̃ 2

j

⎛⎝ L∏
m=j+1

(W̃m + Bm)

⎞⎠2

q(θ)dθ

+ 2
L∑

j=0

j−1∑
j′=0

cj−1cj′−1

∫
W̃jW̃j′

L∏
m=j+1

(W̃m + Bm)

×

L∏
m=j′+1

(W̃m + Bm)q(θ)dθ

he proof follows by noting q(θ) =
∏L

j=0 q(θj). □

emma A.8. Suppose Lemmas 4.1 and 4.2 in the main paper hold,
ith dominating probability

og
∫
Hc
ϵn

Pn
θ

Pn
0
π (θ)dθ ≤ −

Cnϵ2n∑
ul

roof. Let Fn = F(L, k, s◦,B◦), s◦l + 1 = nϵ2n/
∑L

j=0 uj, log B◦l =

ϵ2/((L+ 1)
∑L (s◦ + 1)) and H = {θ : d (P , P) < ϵ } is the
n j=0 j ϵn H 0 θ n

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

H∫

(

T

T

w
r
T

P

T∫

L

P

P

w
m

L
t

d

P

P

ellinger neighborhood of size ϵn

Hc
ϵn

Pn
θ

Pn
0
π̃ (θ)dθ ≤

∫
Hc
ϵn∩Fn

Pn
θ

Pn
0
π̃ (θ)dθ +

∫
Fc

n

Pn
θ

Pn
0
π̃ (θ)dθ

≤

∫
Hc
ϵn∩Fn

Pn
θ

Pn
0
π̃ (θ)dθ + exp

(
−

(C0/2)nϵ2n∑
ul

)
where the last inequality follows from Lemma 4.2 because by
Markov’s inequality

PPn0

(∫
Fc

n

Pn
θ

Pn
0
π̃ (θ)dθ > exp

(
−

(C0/2)nϵ2n∑
ul

))
≤ exp

(
(C0/2)nϵ2n∑

ul

)
EPn0

(∫
Fc

n

Pn
θ

Pn
0
π̃ (θ)dθ

)
≤ exp

(
(C0/2)nϵ2n∑

ul

)
Π̃ (F c

n) = exp
(
−

(C0/2)nϵ2n∑
ul

)
→ 0

Further,∫
Hc
ϵn∩Fn

Pn
θ

Pn
0
π̃ (θ)dθ ≤

∫
Hc
ϵn∩Fn

φ
Pn

θ

Pn
0
π̃ (θ)dθ  

T1

+

∫
Hc
ϵn∩Fn

(1− φ)
Pn

θ

Pn
0
π̃ (θ)dθ  

T2

Next, borrowing steps from proof of theorem 3.1 in Pati et al.
2018), we have EPn0

(φ) ≤ exp(−C1nϵ2n), thus for any C ′

1 < C1,
φ ≤ exp(−C ′

1nϵ
2
n) with probability at least 1−exp(−(C1−C ′

1)nϵ
2
n).

hus,

1 ≤ exp(−C ′

1nϵ
2
n)T1 + T2

hich implies with dominating probability T1 ≤ T2. Thus, it only
emains to show T2 ≤ exp(−C ′

2(nϵ
2
n)/(

∑
ul)) for some C ′

2 > 0.
his is true since

Pn0
(T2 > e

−
C2nϵ

2
n∑

ul) ≤ e
C2

nϵ2n∑
ul EPn0

(T2)

≤ e
C2nϵ

2
n∑

ul

∫
Hc
ϵn∩Fn

EPθ
(1− φ)π̃ (θ)dθ

≤ e
C2nϵ

2
n∑

ul

∫
Hc
ϵn∩Fn

e−C2nd2H(P0,Pθ)π̃ (θ)dθ

≤ e
C2nϵ

2
n∑

ul e−C2nϵ2n

∫
Hc
ϵn∩Fn

π̃ (θ)dθ

≤ exp(−C ′

2nϵ
2
n/
∑

ul)

herefore, for sufficiently large n and C = min(C0/2, C ′

2)/2

Hc
ϵn

Pn
θ

Pn
0
π̃ (θ)dθ ≤ 2 exp(−C ′

2nϵ
2
n/
∑

ul)

+ exp(−(C0/2)nϵ2n/
∑

ul)

≤ exp(−Cnϵ2n/
∑

ul) □

emma A.9. Suppose Lemma 4.3 part 1. in the main paper holds,
then for any Mn → ∞, with dominating probability,

log
∫

Pn
0

Pn
θ

π̃ (θ)dθ ≤ nMn(
∑

rl + ξ)

roof. By Markov’s inequality,

Pn0

(
log
∫

Pn
0
n π̃ (θ) ≥ nMn(

∑
rl + ξ)

)

Pθ

(

322
≤
1

nMn(
∑

rl + ξ)
EPn0

⏐⏐⏐⏐log ∫ Pn
θ

Pn
0
π̃ (θ)dθ

⏐⏐⏐⏐
=

1
nMn(

∑
rl + ξ)

∫ ⏐⏐⏐⏐log ∫ Pn
θ

Pn
0
π̃ (θ)dθ

⏐⏐⏐⏐ Pn
0dµ

≤
1

nMn(
∑

rl + ξ)

(
dKL(Pn

0 , L
∗)+

2
e

)
where L∗ =

∫
Pn

θ π̃ (θ)dθ and the last inequality follows from
Lemma A.3.

dKL(Pn
0 , L

∗) = EPn0

(
log

Pn
0∫

Pn
θ π̃ (θ)dθ

)

≤ EPn0

⎛⎝log
Pn
0∫

N∑ rl+ξ
Pn

θ π̃ (θ)dθ

⎞⎠
≤

∫
N∑

rl+ξ

π̃ (θ)dθ

+

∫
N∑

rl+ξ

dKL(Pn
0 , P

n
θ)π̃ (θ)dθ Jensen’s inequality

≤ − log e−nC(
∑

rl+ξ) + n(
∑

rl + ξ)

= n(C + 1)(
∑

rl + ξ)

here the last inequality follows from Lemma 4.3 part 1. in the
ain paper. The proof follows by noting C/Mn → 0. □

emma A.10. Suppose Lemma 4.3 part 2. in the main paper holds,
hen for any Mn → ∞, with dominating probability,

KL(q, π)+
∑
z

∫
log

Pn
0

Pn
θ

q(θ, z)dθ ≤ nMn(
∑

rl + ξ)

roof. By Markov’s inequality we have

Pn0

(
dKL(q, π)+

∑
z

∫
q(θ, z) log

Pn
0

Pn
θ

dθ > nMn(
∑

rl + ξ)

)

≤
1

nMn(
∑

rl + ξ)

(
dKL(q, π)+ EPn0

⏐⏐⏐⏐⏐∑
z

∫
q(θ, z) log

Pn
0

Pn
θ

dθ

⏐⏐⏐⏐⏐
)

≤
1

nMn(
∑

rl + ξ)

(
dKL(q, π)+ EPn0

(∑
z

∫
q(θ, z)

⏐⏐⏐⏐log Pn
θ

Pn
0

⏐⏐⏐⏐ dθ
))

=
1

nMn(
∑

rl + ξ)

(
dKL(q, π)+

∑
z

∫
q(θ, z)

∫ ⏐⏐⏐⏐log Pn
0

Pn
θ

⏐⏐⏐⏐ Pn
0dµdθ

)
By Lemma A.3, we get

≤
1

nMn(
∑

rl + ξ)

(
dKL(q, π)+

∑
z

∫
q(θ, z)

(
dKL(Pn

0 , P
n
θ)+

2
e

)
dθ

)

=
1

nMn(
∑

rl + ξ)

(
dKL(q, π)+ n

∑
z

∫
q(θ, z)dKL(P0, Pθ)dθ +

2
e

)
=

C
nMn(

∑
rl + ξ)

(
n(
∑

rl + ξ)+ (2/e)
)
→ 0

where the last line in the above holds due to Lemma 4.3 part 2.
in the main paper. □

A.3. Proof of lemmas and corollary in the main paper

Proof of Lemma 4.1. Take s◦l +1 = (nϵ2n)/(
∑L

j=0 uj) and log B◦l =
nϵ2)/((L+ 1)

∑L (s◦ + 1)).
n j=0 j

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

a
i

E

f
s
t

E

w

P

A

Π

w

s

We know from Lemma 2 of Ghosal and van der Vaart (2007)
that, there exists a function ϕ ∈ [0, 1], such that

EP0 (ϕ) ≤ exp{−nd2H(Pθ1 , P0)/2}

EPθ
(1− ϕ) ≤ exp{−nd2H(Pθ1 , P0)/2}

for all Pθ ∈ F(L, k, s◦,B◦) satisfying dH(Pθ, Pθ1) ≤ dH(P0, Pθ1)/18.
Let H = N(ϵn/19,F(L, k, s◦,B◦), dH(., .)) denote the covering

number of F(L, k, s◦,B◦), i.e., there exist H Hellinger balls of
radius ϵn/19, that entirely cover F(L, k, s◦,B◦). For any θ ∈

F(L, k, s◦,B◦) w.l.o.g we assume Pθ belongs to the Hellinger ball
centered at Pθh and if dH(Pθ, P0) > ϵn, then we must have that
dH(P0, Pθh) > (18/19)ϵn and there exists a testing function ϕh,
such that

EP0 (ϕh) ≤ exp{−nd2H(Pθh , P0)/2}

≤ exp{−((182/192)/2)nϵ2n}

EPθ
(1− ϕh) ≤ exp{−nd2H(Pθh , P0)/2}

≤ exp{−n(dH(P0, Pθ)− ϵn/19)2/2}

≤ exp{−((182/192)/2)nd2H(P0, Pθ)}.

Next we define φ = maxh=1,...,H ϕh. Then we must have

EP0 (φ) ≤
∑
h

EP0 (ϕh) ≤ H exp{−((182/192)/2)nϵ2n}

≤ exp{−((182/192)/2)nϵ2n − logH}

Using Lemma A.6 with s = s◦ and B = B◦, we get

logH = logN(ϵn/19,F(L, k, s◦,B◦), dH(., .))

≤ logN(
√
8σ 2

e ϵn/19,F(L, k, s◦,B◦), ∥.∥∞)

≤ log

⎡⎢⎣ L∏
l=0

⎛⎝ 38
√
8σ 2

e ϵn
(L+ 1)

⎛⎝ L∏
j=0

B◦j

⎞⎠ kl+1

⎞⎠(s◦l +1)
⎤⎥⎦

=

L∑
l=0

(s◦l + 1) log

⎛⎝ 38
√
8σ 2

e ϵn
(L+ 1)

⎛⎝ L∏
j=0

B◦j

⎞⎠ kl+1

⎞⎠
≤ C

⎡⎣ L∑
l=0

(s◦l + 1)

⎛⎝log
1
ϵn

+ log(L+ 1)+
L∑

j=0

log B◦j + log kl+1

⎞⎠⎤⎦
≤ C

L∑
l=0

(s◦l + 1)(log n+ log(L+ 1)+
L∑

j=0

log B◦j + log kl+1)

≤ C
L∑

l=0

(s◦l + 1)(log n+ log(L+ 1)

+

L∑
j=0

log B◦j + log kl+1 + log(kl + 1)) ≤ Cnϵ2n

where, C in each step is different which tends to absorb the extra
constants in it. First inequality holds due to the following

d2H(Pθ, P0) ≤ 1− exp
{
−

1
8σ 2

e
∥η0 − ηθ∥

2
∞

}
nd ϵn = o(1), the second inequality is due to (17), and fourth
nequality is due to s◦l log(1/ϵn) ≍ s◦l log n. Therefore,

P0 (φ) ≤
∑
h

EP0 (ϕh) = exp{−C1nϵ2n}

or some C1 = (182/192)/2 − 1/4. On the other hand, for any θ,
uch that dH(Pθ, P0) ≥ ϵn, say Pθ belongs to the hth Hellinger ball,
hen we have

(1− φ) ≤ E (1− ϕ) ≤ exp{−C nd2 (P , P)}
Pθ Pθ h 2 H 0 θ

323
here C2 = (182/192)/2. This concludes the proof. □

roof of Lemma 4.2.

ssumption : s◦l + 1 = (nϵ2n)/(
L∑

j=0

uj), λlkl+1/s◦l → 0,∑
ul log L = o(nϵ2n) (19)

˜(F(L, k, s◦,B◦)c)

≤ Π̃

(
L⋃

l=0

{∥w̃l∥0 > s◦l }

)
+ Π̃

(
L⋃

l=0

{∥w̃l∥∞ > B◦l }

)

≤

L∑
l=0

Π̃(∥w̃l∥0 > s◦l)+
L∑

l=0

Π̃(∥w̃l∥∞ > B◦l)

=

L∑
l=0

∑
z

Π(∥w̃l∥0 > s◦l |z)π (z)+
L∑

l=0

∑
z

Π(∥w̃l∥∞ > B◦l |z)π (z)

≤

L∑
l=0

P

⎛⎝kl+1∑
i=1

zli > s◦l

⎞⎠+

L∑
l=0

P

(
sup

i=1,...,kl+1

∥wli∥1 > B◦l
⏐⏐⏐z)

here w̃l = (∥wl1∥1, . . . , ∥wlkl+1∥1)
T and the last inequality holds

since Π(∥w̃l∥0 > s◦l |z) ≤ 1, Π(∥w̃l∥0 > s◦l |z) = 1 iff
∑

zli > s◦l
and π (z) ≤ 1. We will now break the proof in two parts as
follows.

Part 1.

L∑
l=0

P

⎛⎝kl+1∑
i=1

zli > s◦l

⎞⎠ =

L∑
l=0

P

⎛⎝kl+1∑
i=1

zli − kl+1λl > s◦l − kl+1λl

⎞⎠
By Bernstein inequality

≤

L∑
l=0

exp
(

−1/2(s◦l − kl+1λl)2

kl+1λl(1− λl)+ 1/3(s◦l − kl+1λl)

)

≤

L∑
l=0

exp
(

−1/2(s◦l − kl+1λl)2

kl+1λl + 1/3(s◦l − kl+1λl)

)

=

L∑
l=0

exp
(
−s◦l /2(1− kl+1λl/s◦l)

2

1/3(1+ 2kl+1λl/s◦l)

)
→

L∑
l=0

exp
(
−

3s◦l
2

)
since

kl+1λl

s◦l
→ 0 by (19)

=

L∑
l=0

exp
(
−

3nϵ2n
4
∑

ul
+

3
2

)
≤ 5(L+ 1) exp

(
−

nϵ2n
2
∑

ul

)
≤ exp

(
−

nϵ2n
4
∑

ul

)
ince

∑
ul log(5(L+ 1)) ∼

∑
ul log L = o(nϵ2n) by (19).

Part 2.
L∑

l=0

P

(
sup

i=1,...,kl+1

∥wli∥1 > B◦l
⏐⏐⏐z)

≤

L∑
l=0

kl+1∑
i=1

P
(
∥wli∥1 > B◦l

⏐⏐⏐z)

≤

L∑ kl+1∑
P
(
∥wli∥∞ >

B◦l
k + 1

⏐⏐⏐z)

l=0 i=1 l

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

w
a
l

T
a

P

A

d

S

d

H

N

w

d

≤

L∑
l=0

kl+1∑
i=1

kl+1∑
j=1

P
(
|wlij| >

B◦l
kl + 1

⏐⏐⏐z)

≤ 2
L∑

l=0

kl+1∑
i=1

kl+1∑
j=1

exp
(
−

B◦l
2

(kl + 1)2

)
By concentration inequality

= 2
L∑

l=0

kl+1∑
i=1

kl+1∑
j=1

exp
(
− exp

(2nϵ2n
(L+ 1)

∑L
j′=0(s

◦

j′ + 1)

− 2 log(kl + 1)
))

≤

L∑
l=0

kl+1∑
i=1

kl+1∑
j=1

1
(L+ 1)kl+1(kl + 1)

exp(−nϵ2n) = exp(−nϵ2n)

here the third inequality holds since |wlij| given z is bound
bove by a |N(0, σ 2

0)| random variable. The above proof holds as
ong as

exp

(
2nϵ2n

(L+ 1)
∑L

j′=0(s
◦

j′ + 1)
− 2 log(kl + 1)

)
≥ nϵ2n + log(L+ 1)+ log kl+1 + log(kl + 1)+ log 2

Taking log on both sides we get(
nϵ2n

(L+ 1)
∑L

j′=0(s
◦

j′ + 1)
− log(kl + 1)

)

≥
1
2
log(nϵ2n + log(L+ 1)+ log kl+1 + log(kl + 1)+ log 2)

his is true since
∑L

j′=0(s
◦

j′ + 1) = (L + 1)nϵ2n/
∑

ul is bounded
bove by

nϵ2n
(L+ 1)(log(kl + 1)+ 1

2 log(nϵ2n + log(L+ 1)+ log kl+1 + log(kl + 1)+ log 2))

□

roof of Lemma 4.3 part 1.

ssumption : − log λl = O{(kl + 1)ϑl},

− log(1− λl) = O{(sl/kl+1)(kl + 1)ϑl} (20)

KL(P0, Pθ) =
∫
x∈[0,1]p

∫
y∈R

(
log

P0(y, x)
Pθ(y, x)

)
P0(y, x)dydx

P0(y, x) =
1√

2πσ 2
e

exp
(
−

(y− η0(x))2

2σ 2
e

)
Pθ(y, x) =

1√
2πσ 2

e

exp
(
−

(y− ηθ(x))2

2σ 2
e

)
o we get,

KL(P0, Pθ)

=

∫
x∈[0,1]p

∫
y∈R

log
(
exp

[
−

(y− η0(x))2

2σ 2
e

+
(y− ηθ(x))2

2σ 2
e

])
P0(y, x)dydx

=

∫
x∈[0,1]p

∫
y∈R

2y(η0(x)− ηθ(x))− (η20(x)− η
2
θ (x))

2σ 2
e

P0(y, x)dydx

=

∫
x∈[0,1]p

2η20(x)− 2η0(x)ηθ(x)− η20(x)+ η
2
θ (x)

2σ 2
e

dx

=

∫
x∈[0,1]p

(η0(x)− ηθ(x))2

2
dx =

1
2
∥η0 − ηθ∥

2
2 (21)
324
where, σ 2
e = 1 can be chosen w.l.o.g. Next, let ηθ∗ (x) be θ∗

satisfying argminηθ∈F(L,k,s,B) ∥ηθ − η0∥
2
∞
. Then,

∥ηθ∗ − η0∥1 ≤ ∥ηθ∗ − η0∥∞ =

√
ξ (22)

ere, we redefine δl by considering the L1 norms of the rows of
Dl = W l −W

∗

l as follows

Dl = (d
⊤

l1, . . . , d
⊤

lkl+1
)⊤ δl = (∥d l1∥1, . . . , ∥d lkl+1∥1)

ext we define a neighborhood M√∑
rl
as follows:

M√∑
rl
=

{
θ : ∥d li∥1 ≤

√∑
rlBl

(L+ 1)(
∏L

j=0 Bj)
,

i ∈ Sl, ∥d li∥1 = 0, i ∈ Sc
l , l = 0, . . . , L

}
here Sc

l is the set where ∥w∗

li∥1 = 0, l = 0, . . . , L. Then, for
every θ ∈ M√∑

rl
using (16), we have

∥ηθ − ηθ∗∥1 ≤

√∑
rl (23)

Combining (22) and (23), we get for θ ∈ M√∑
rl
, ∥ηθ − η0∥1 ≤√∑

rl +
√
ξ . So we get,

KL(P0, Pθ) ≤
(
√∑

rl +
√
ξ)2

2
≤

∑
rl + ξ

Since θ ∈ N∑
rl+ξ for every θ ∈ M√∑

rl
; therefore,∫

θ∈N∑
rl+ξ

π̃ (θ)dθ ≥

∫
θ∈M√∑

rl

π̃ (θ)dθ

Let δn = (
√∑

rlBl)/((L + 1)(
∏L

j=0 Bj)) and A = {wli : ∥wli −

w∗

li∥1 ≤ δn}

Π̃

(
M√∑

rl

)
=

∑
z

Π

(
M√∑

rl

⏐⏐⏐z)π (z)
≥

∑
{z:zli=1,i∈Sl,zli=0,i∈Sc

l ,l=0,...,L}

Π

(
M√∑

rl

⏐⏐⏐z)π (z)
=

L∏
l=0

(1− λl)kl+1−slλ
sl
l

∏
i∈Sl

E(1{wli∈A}|zli = 1)

≥

L∏
l=0

(1− λl)kl+1−slλ
sl
l

∏
i∈Sl

∫
wli∈A

(
1
2π

) kl+1
2

kl+1∏
j=1

exp

(
−
w2

lij

2

)
dwlij

≥

L∏
l=0

(1− λl)kl+1−slλ
sl
l

∏
i∈Sl

(
1
2π

) kl+1
2

×

kl+1∏
j=1

∫ w∗
lij+

δn
kl+1

w∗
lij−

δn
kl+1

exp

(
−
w2

lij

2

)
dwlij

=

L∏
l=0

(1− λl)kl+1−slλ
sl
l

∏
i∈Sl

(
1
2π

) kl+1
2

kl+1∏
j=1

2δn
kl + 1

exp

(
−
ŵ2

lij

2

)

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

w

w

w

w
i

O

A

d∑
R∑

w
p

s

e

here the third equality follows since E(1{wli∈A}|zli = 0) = 1 since
∥w∗

li∥1 = 0, for i ∈ Sc
l . The last equality is by mean value theorem,

l̂ij ∈ [w∗

lij − δn/(kl + 1), w∗

lij + δn/(kl + 1)], thus

=

L∏
l=0

(1− λl)kl+1−slλ
sl
l

∏
i∈Sl

exp
(

kl + 1
2

log
1
2π

+ (kl + 1) log
2δn

kl + 1
−

kl+1∑
j=1

ŵ2
lij

2

)

= exp
[
−

L∑
l=0

{
sl log

(
1
λl

)
+ (kl+1 − sl) log

(
1

1− λl

)
+

∑
i∈Sl

(
−

kl + 1
2

log
1
2π

− (kl + 1) log
2δn

kl + 1
+

kl+1∑
j=1

ŵ2
lij

2

)}]

= exp
[
−

L∑
l=0

{
sl log

(
1
λl

)
+ (kl+1 − sl) log

(
1

1− λl

)
−

sl(kl + 1)
2

log
1
2π

− sl(kl + 1) log
2δn

kl + 1

+

∑
i∈Sl

kl+1∑
j=1

ŵ2
lij

2

}]
(24)

Now,

L∑
l=0

∑
i∈Sl

kl+1∑
j=1

ŵ2
lij

2

≤
1
2

L∑
l=0

∑
i∈Sl

kl+1∑
j=1

max((w∗

lij − δn/(kl + 1))2, (w∗

lij + δn/(kl + 1))2)

≤

L∑
l=0

∑
i∈Sl

kl+1∑
j=1

(w∗2
lij + δ

2
n/(kl + 1)2)

≤

L∑
l=0

∑
i∈Sl

∥w∗

li∥
2
1 +

L∑
l=0

∑
i∈Sl

δ2n/(kl + 1)

≤

L∑
l=0

sl(B2
l + 1) ≤ n

∑
rl ≤ n

(∑
rl + ξ

)
(25)

here the above line uses δn → 0. Finally

L∑
l=0

(
sl log

(
1
λl

)
+ (kl+1 − sl) log

(
1

1− λl

)
−

sl(kl + 1)
2

log
1
2π

− sl(kl + 1) log
2δn

kl + 1

)
≤

L∑
l=0

(
Cnrl +

sl(kl + 1)
2

{
2 log(kl + 1)+ 2 log(L+ 1)

+ 2
L∑

m=0,m̸=l

log Bm − log
∑

rl

})
≤ Cn

∑
rl ≤ Cn

(∑
rl + ξ

)
(26)

here the first inequality follows from and expanding δn. The last
nequality follows since n

∑
r → ∞ which implies − log

∑
r =
l l

325
(log n). Combining (25) and (26) and replacing (24), the proof
follows. □

Proof of Lemma 4.3 part 2.

ssumption : − log λl = O{(kl + 1)ϑl},

− log(1− λl) = O{(sl/kl+1)(kl + 1)ϑl}

Suppose there exists q ∈ QMF such that

KL(q, π) ≤ C1n
∑

rl,

z

∫
Θ
∥ηθ − ηθ∗∥

2
2 q(θ, z)dθ ≤

∑
rl. (27)

ecall θ∗ = argminθ∈θ(L,p,s,B) ∥ηθ − η0∥
2
∞
. By relation (21),

z

∫
ndKL(P0, Pθ)q(θ, z)dθ =

∑
z

n
2

∫
∥η0 − ηθ∥

2
2q(θ, z)dθ

≤
n
2

∑
z

∫
∥ηθ∗ − ηθ∥

2
2q(θ, z)dθ

+
n
2
∥ηθ∗ − η0∥

2
∞

≤ Cn(
∑

rl + ξ)

here the above relation is due to (27) which will complete the
roof.
We next construct q ∈ QMF as

wlij|zli ∼ zliN (w∗

lij, σ
2
l)+ (1− zli)δ0,

zli ∼ Bern(γ ∗

li) γ ∗

li = 1(∥w∗

li∥1 ̸= 0)

where σ 2
l =

sl
8n(L+1) (4

L−l(kl + 1) log(kl+12kl+1)
∏L

m=0,m̸=l B
2
m)

−1.
We next consider the relation (18) in Lemma A.7.
We upper bound the expectation of the supremum of L1 norm

of multivariate Gaussian variables:∫
W̃lq(θ, z)dθ ≤

∫
sup

i
∥wli − w∗

li∥1q(θ|z)dθ

≤

∫
sup

i
∥wli − w∗

li∥1q(θ|z = 1)dθ

ince q(z) ≤ 1. If zli = 1, then ∥wli − w∗

li∥1 = 0, thus the above
integral is maximized at z = 1 where z = 1 indicates all neurons
are present in the network. In this case, all wlij are nothing
but independent Gaussian random variables. In this direction we
make use of concentration inequalities similar to the proof of
theorem 2 in Chérief-Abdellatif (2020). Let, Y = supi ∥wli −w∗

li∥1.

xp(tEY) ≤ E(exp(tY)) = E[sup
i

exp(t∥wli − w∗

li∥1)]

≤

kl+1∑
i=1

E[exp(t
kl+1∑
j=1

|wlij − w
∗

lij|)]

=

kl+1∑
i=1

kl+1∏
j=1

E[exp(t|wlij − w
∗

lij|)]

=

kl+1∑
i=1

kl+1∏
j=1

2 exp
[
σ 2
l t

2

2

]
Φ(σlt)

≤ kl+12kl+1 exp
[
(kl + 1)

σ 2
l t

2

2

]

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

T

E

L

T
t

E

∫

L

T

d

hus, EY ≤ (log(kl+12kl+1) + (kl + 1)σ 2
l t

2/2)/t . Let t = (1/σl)√
(2/(kl + 1)) log(kl+12kl+1),

Y ≤ σl

√
kl + 1

2

[√
log(kl+12kl+1)+

√
log(kl+12kl+1)

]
=

√
2σ 2

l (kl + 1) log(kl+12kl+1) ≤
√
4σ 2

l (kl + 1) log(kl+12kl+1)

Similarly,∫
W̃ 2

l q(θ, z)dθ =

∫
sup

i
(∥wli − w∗

li∥1)
2q(θ, z)dθ

≤

∫
sup

i
(∥wli − w∗

li∥1)
2q(θ|z = 1)

et, Y ′
= supi(∥wli − w∗

li∥1)
2.

exp(tEY ′) ≤ E(exp(tY ′)) = E[sup
i

exp(t(∥wli − w∗

li∥1)
2)]

≤

kl+1∑
i=1

E[exp(t(
kl+1∑
j=1

|wlij − w
∗

lij|)
2)]

≤

kl+1∑
i=1

E[exp(t(kl + 1)
kl+1∑
j=1

(wlij − w
∗

lij)
2)]

=

kl+1∑
i=1

kl+1∏
j=1

E[exp(t(kl + 1)(wlij − w
∗

lij)
2)]

=

kl+1∑
i=1

kl+1∏
j=1

(
1

1− 2t(kl + 1)σ 2
l

) 1
2

≤ kl+1

(
1

1− 2t(kl + 1)σ 2
l

) kl+1
2

hus, EY ′
≤ (log kl+1 − ((kl + 1)/2) log(1 − 2t(kl + 1)σ 2

l))/t . Let
= 1/(4σ 2

l (kl + 1)),

Y ′
≤ 4σ 2

l (kl + 1)
[
log kl+1 +

(
kl + 1

2

)
log 2

]
= 4σ 2

l (kl + 1) log(kl+12
kl+1
2)

≤ 4σ 2
l (kl + 1) log(kl+12kl+1)

Next we also get,

(W̃l + Bl)q(θ, z)dθ =

∫
W̃lq(θ, z)dθ + Bl

≤

√
4σ 2

l (kl + 1) log(kl+12kl+1)+ Bl ≤ 2Bl

∫
(W̃l + Bl)2q(θ, z)dθ =

∫
W̃ 2

l q(θ, z)dθ + 2Bl

∫
W̃lq(θ, z)dθ + B2

l

≤ 4σ 2
l (kl + 1) log(kl+12kl+1)

+ 2Bl

√
4σ 2

l (kl + 1) log(kl+12kl+1)+ B2
l ≤ 4B2

l∫
W̃l(W̃l + Bl)q(θ, z)dθ =

∫
W̃ 2

l q(θ, z)dθ + Bl

∫
W̃lq(θ, z)dθ

≤ 4σ 2
l (kl + 1) log(kl+12kl+1)+ Bl

√
4σ 2

l (kl + 1) log(kl+12kl+1)

≤

√
4σ 2

l (kl + 1) log(kl+12kl+1)
(√

4σ 2
l (kl + 1) log(kl+12kl+1)+ Bl

)
≤ 2Bl

√
4σ 2

l (kl + 1) log(kl+12kl+1)
326
since
√
4σ 2

l (kl + 1) log(kl+12kl+1) is bounded above by

√ 4sl
8n(L+ 1)

(
4L−l(kl + 1) log(kl+12kl+1)

L∏
m=0,m̸=l

B2
m

)−1

(kl + 1) log(kl+12kl+1)

= Bl

√ sl
2n(L+ 1)

(
4L−l

L∏
m=0

B2
m

)−1

≤ Bl,

The quantity in square root < 1 for large n.

et bj = (kj + 1) log(kj+12kj+1). From relation (18), we get∫
∥ηθ − ηθ∗∥

2
2q(θ, z)dθ ≤

L∑
j=0

c2j−1(4σ
2
j bj)

(L∏
m=j+1

4B2
m

)

+ 2
L∑

j=0

j−1∑
j′=0

cj−1cj′−12Bj

√
4σ 2

j bj

(L∏
m=j+1

4B2
m

)

×

√
4σ 2

j′ bj′
(j−1∏

m=j′+1

2Bm

)

= 4
L∑

j=0

4L−jσ 2
j bj

(j−1∏
m=0

B2
m

)(L∏
m=j+1

B2
m

)

+ 8
L∑

j=0

j−1∑
j′=0

(j−1∏
m=0

Bm

)(j−1∏
m=0

Bm

)
2Bj

(L∏
m=j+1

4B2
m

)

×

(j−1∏
m=j′+1

2Bm

)√
σ 2
j bj
√
σ 2
j′ bj′

= 4
L∑

j=0

22L−2jσ 2
j bj

L∏
m=0,m̸=j

B2
m

+ 8
L∑

j=0

j−1∑
j′=0

4L−j2j−j′
(j−1∏

m=0

Bm

)(j−1∏
m=0

Bm

)

×

(L∏
m=j+1

Bm

)(L∏
m=j′+1

Bm

)√
σ 2
j bj
√
σ 2
j′ bj′

= 4
L∑

j=0

22L−2jσ 2
j bj

(L∏
m=0,m̸=j

B2
m

)

+ 8
L∑

j=0

j−1∑
j′=0

2L−j2L−j′
(L∏

m=0,m̸=j

Bm

)(L∏
m=0,m̸=j′

Bm

)√
σ 2
j bj
√
σ 2
j′ bj′

= 4
(L∑

j=0

2L−j
√
σ 2
j bj

(L∏
m=0,m̸=j

Bm

))2

= 4
(L∑

j=0

√
sj

8n(L+ 1)

)2

=
1

2n(L+ 1)

(L∑
j=0

√
sj

)2

≤

∑L
j=0 sj
2n

≤

L∑
j=0

rl

his concludes the proof of (27). Next,

KL(q, π) ≤ log
1
π (z)

+ 1(z = γ∗)dKL

({ L−1∏
l=0

kl+1∏
i=1

kl+1∏
j=1

{
γ ∗

li N (w∗

lij, σ
2
l)+ (1− γ ∗

li)δ0
}

kL+1∏
N (w∗

Lj, σ
2
L)
}
,

{ L−1∏ kl+1∏ kl+1∏ {
zliN (0, σ 2

0)

j=1 l=0 i=1 j=1

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

w
i

T

P
T
m

l
w

V
O∑
+ (1− zli)δ0
} kL+1∏

j=1

N (0, σ 2
0)
})

= log
1∏L−1

l=0 λ
sl
l (1− λl)

kl+1−sl

+

L−1∑
l=0

kl+1∑
i=1

kl+1∑
j=1

dKL
(
γ ∗

li N (w∗

lij, σ
2
l)+ (1− γ ∗

li)δ0,

γ ∗

li N (0, σ 2
0)+ (1− γ ∗

li)δ0
)
+

kL+1∑
j=1

dKL
(
N (w∗

Lj, σ
2
L),N (0, σ 2

0)
)

=

L−1∑
l=0

(
sl log

1
λl

+ (kl+1 − sl) log
1

1− λl

)

+

L−1∑
l=0

kl+1∑
i=1

kl+1∑
j=1

γ ∗

li

{
1
2
log

σ 2
0

σ 2
l
+
σ 2
l + w∗

lij
2

2σ 2
0

−
1
2

}

+

kL+1∑
j=1

{
1
2
log

σ 2
0

σ 2
L
+
σ 2
L + w∗

Lj
2

2σ 2
0

−
1
2

}

≤

L−1∑
l=0

Cnrl +
L−1∑
l=0

slkl + sl
2

[
σ 2
l

σ 2
0
+

B2
l

σ 2
0 (kl + 1)

− 1+ log
σ 2
0

σ 2
l

]
+

kL + 1
2

[
σ 2
L

σ 2
0
+

B2
L

σ 2
0 (kL + 1)

− 1+ log
σ 2
0

σ 2
L

]
here the first inequality follows from Lemma A.4. The inequality

n the above line uses
∑kl+1

j=1 w
∗

lij
2
≤ B2

l and similar to the proof
of Lemma 4.1 in Bai et al. (2020) uses .

Let σ 2
0 = 1 and it could be easily derived that σ 2

l ≤ 1.

dKL(q, π) ≤
L−1∑
l=0

Cnrl +
L−1∑
l=0

sl
2
(kl + 1)

[
B2
l

kl + 1
− log σ 2

l

]

+
(kL + 1)

2

[
B2
L

kL + 1
− log σ 2

L

]

=

L−1∑
l=0

Cnrl +
L−1∑
l=0

sl
2
(kl + 1)

[
B2
l

kl + 1

− log
(

sl
8n(L+ 1)

[
4L−lbl

L∏
m=0,m̸=l

B2
m

]−1)]

+
(kL + 1)

2

[
B2
L

kL + 1
− log

(
1

8n(L+ 1)

[
bL

L∏
m=0,m̸=L

B2
m

]−1)]

=

L−1∑
l=0

Cnrl +
L∑

l=0

sl
2
(kl + 1)

[
B2
l

kl + 1

− log
(

sl
8n(L+ 1)

[
4L−lbl

L∏
m=0,m̸=l

B2
m

]−1)]

=

L−1∑
l=0

Cnrl +
L∑

l=0

sl
2
B2
l +

L∑
l=0

sl
2
(kl + 1) log

(
8n(L+ 1)

sl

)

+

L∑
l=0

sl(kl + 1)(L− l) log 2+
L∑

l=0

sl
2
(kl + 1) log(kl + 1)

+

L∑ sl
2
(kl + 1) log

(
log(kl+12kl+1)

)

l=0

327
+

L∑
l=0

sl(kl + 1)
(L∑

m=0,m̸=l

log Bm

)

≤

L−1∑
l=0

Cnrl +
L∑

l=0

sl
2
B2
l +

L∑
l=0

sl
2
(kl + 1) log

(
8n(L+ 1)

sl

)

+ L
L∑

l=0

sl(kl + 1)

+

L∑
l=0

sl
2
(kl + 1)(log(kl + 1)+ log(kl+1 + kl + 1))

+

L∑
l=0

sl(kl + 1)
(L∑

m=0,m̸=l

log Bm

)

≤

L−1∑
l=0

Cnrl +
L∑

l=0

sl
2
B2
l +

L∑
l=0

sl
2
(kl + 1) log

(
8n(L+ 1)

sl

)

+ L
L∑

l=0

sl(kl + 1)

+

L∑
l=0

sl(kl + 1) log(kl+1 + kl + 1)

+

L∑
l=0

sl(kl + 1)
(L∑

m=0,m̸=l

log Bm

)

≤

L−1∑
l=0

Cnrl +
L∑

l=0

sl(kl + 1)
[

B2
l

2(kl + 1)
+

(L∑
m=0,m̸=l

log Bm

)
+ L+ log(kl+1 + kl + 1)

+
1
2
log
(
8n(L+ 1)

sl

)]

≤

L−1∑
l=0

(C + C ′)nrl + C ′nrL

+

L∑
l=0

sl(kl + 1)
[

B2
l

kl + 1
+

(L∑
m=0,m̸=l

log Bm

)

+ L+ log(kl+1 + kl + 1)+ log
(
n
sl

)]

≤

L−1∑
l=0

(C + C ′)nrl + C ′nrL +
L∑

l=0

sl(kl + 1)ϑl ≤ C1n
L∑

l=0

rl

his concludes the proof of (27). □

roof of Corollary 4.5. The proof is a direct consequence of
heorem 4.4 in the main paper as long as assumptions of Lem-
as 4.2 and 4.3 parts 1 and 2 hold when σ 2

0 = 1, − log λl =

og(kl+1)+Cl(kl+1)ϑl and ϵn =
√
(
∑L

l=0 rl + ξ)
∑L

l=0 ul. This what
e show next.

erifying assumption (19) under Proof of Lemma 4.2: Note,
∑

ul =

(ϵ2n), thus

ul log L = o(nϵ2n) ⇐⇒ log L = o(n(
∑

rl + ξ))

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

w

w
k

A

1

a

F

w

hich is indeed true since log L = o(L2) and L2 ≤ n
∑

rl. We will
show that (kl+1λl)/s◦l → 0. With λl = (1/kl+1) exp(−Cl(kl + 1)ϑl),

kl+1λl

s◦l
≤

∑
ul exp(−C(kl + 1)ϑl)

nϵ2n

=
exp(−C(kl + 1)ϑl + log

∑
ul)

nϵ2n

≤
exp(−C(kl + 1)ϑl + ϑl)

nϵ2n
→ 0

here the above relation holds since log
∑

ul ≤ ϑl, ϑl → ∞,
l → ∞ and nϵ2n → ∞.

Verifying assumption under Proof of Lemma 4.3 part 1. and part 2.
Note,

− log λl = log(kl+1)+Cl(kl+1)ϑl ≤ ϑl+Cl(kl+1)ϑl = O{(kl+1)ϑl}

nd then,

− λl = 1− exp(−Clϑl(kl + 1))/kl+1

− log(1− λl) ∼ exp(−Clϑl(kl + 1))/kl+1 = O{(kl + 1)slϑl/kl+1}

since exp(−Clϑl(kl + 1)) → 0 and (kl + 1)slϑl → ∞. □

Appendix B. Additional numerical experiments details

B.1. FLOPs calculation

We only count multiply operation for floating point operations
(FLOPs) similar to Zhao et al. (2019). In 2D convolution layer, we
assume convolution is implemented as a sliding window and that
the nonlinearity function is computed for free. Then, for a 2D
convolutional layer (given bias is present) we get FLOPs as:

FLOPs = (Cin,prunedKwKh + 1)OwOhCout,pruned

where, Cin,pruned, Cout,pruned are the number of input channels and
output channels after pruning. Channels are pruned if all the
parameters associated with that channel in convolution mapping
are zero. Kw and Kh are the kernel width and height respectively.
Finally, Ow,Oh are output width and height where Ow = (Iw+2×
Pw−Dw× (Kw−1)−1)/Sw+1 and Oh = (Ih+2×Ph−Dh× (Kh−

1) − 1)/Sh + 1. Here, Iw, Ih are input, Pw, Ph are padding, Dw,Dh
re dilation, Sw, Sh are stride widths and heights respectively.
For fully connected (linear) layers (with bias) we get FLOPs as:

LOPs = (Ipruned + 1)Opruned

here, Ipruned is the number of pruned input neurons and Opruned
is the number of pruned output neurons.

B.2. Variational parameters initialization

We initialize the γlj’s at a value close to 1 for all of our exper-
iments. This ensures that at epoch 0, we have a fully connected
deep neural network. This also warrants that most of the weights
do not get pruned off at a very early stage of training which might
lead to bad performance. The variational parameters µljj′ are
initialized using U(−0.6, 0.6) for simulation and UCI regression
examples whereas for classification Kaiming uniform initializa-
tion (He et al., 2015) is used. Moreover, σljj′ are reparameterized
using softplus function: σljj′ = log(1 + exp(ρljj′)) and ρljj′ are
initialized using a constant value of −6. This keeps initial values
of σljj′ close to 0 ensuring that the initial values of network
weights stay close to Kaiming uniform initialization.
328
B.3. Hyperparameters for training

We keep MC sample size (S) to be 1 during training. We choose
learning rate of 3 × 10−3, batch size of 400, and 10000 epochs
in the 20 neurons case of simulation study-I. We use learning
rate of 10−3, batch size of 400, and 20000 epochs in the 100
neurons case of simulation study-I. Next, we use learning rate of
5× 10−3, full batch, and 10000 epochs for simulation study-II. In
UCI regression datasets, we choose batch size = 128 and run 500
epochs for Concrete, Wine, Power Plant, 800 epochs for Kin8nm. For
Protein and Year datasets, we choose batch size of 256 and run
100 epochs. For all the UCI regression datasets we keep learning
rate of 10−3. The Adam algorithm (Kingma & Ba, 2015) is chosen
for optimization of model parameters.

In image classification datasets, for SS-IG model, we use 10−3

learning rate and minibatch size of 1024 in all experiments except
in Lenet-Caffe on Fashion-MNIST experiment where we use 2 ×

10−3 learning rate and 1024 minibatch size. For SV-BNN model,
we take 10−3 learning rate and 1024 minibatch size in all exper-
iments after extensive hyperparameter search. For VBNN model,
we take learning rate of 10−4 and minibatch size of 128 according
to Blundell et al. (2015). We train each model for 1200 epochs
using Adam optimizer in all the image classification experiments
provided in main paper.

B.4. Fine tuning of constant in prior inclusion probability expression

Recall the layer-wise prior inclusion probabilities: λl = (1/kl+1)
exp(−Cl(kl + 1)ϑl) from Corollary 4.5. In our numerical experi-
ments, we use this expression to choose an optimal value of λl
in each layer of a given network. The λl varies as we vary our
constant Cl and we next describe how is Cl chosen. The influence
of Cl is mainly due to the kl + 1 term and Bl

2/(kl + 1) from ϑl
term. We ensure that each incoming weight and bias onto the
node from layer l+1 is bounded by 1 which leads us to choose Bl
to be kl+1. So the leading term from (kl+1)ϑl is (kl+1) and Cl has
to be chosen such that we avoid making exponential term from λl
expression close to 0. In our experiments we choose Cl values in
the negative order of 10 such that prior inclusion probabilities
do not fall below 10−50. If we instead choose a λl value very
close to 0 then we might prune off all the nodes in each layer or
might make the training unstable which is not ideal. Overall the
aforementioned strategy of choosing Cl constant values ensure
reasonable values for the λl in each layer.

B.5. Simulation study I: extra details

First we provide the network parameters used to generate
the data for this simulation experiment. The edge weights in
the underlying 2-2-1 network are as follows: W 0 = {w011 =

10, w012 = 15, w021 = −15, w022 = 10};W 1 = {w111 =

−3, w121 = 3} and v0 = {v01 = −5, v02 = 5}; v1 = {v11 = 4}.
Below we provide additional results demonstrating the model

selection ability of our SS-IG approach in a wider network consist-
ing of 100 nodes in the single hidden layer structure considered
in the simulation study-I from main paper (see Fig. 5).

B.6. Effect of hidden layer widths

Here, we explore 2-hidden layer neural networks with varying
widths. For our SS-IG model we use 10−3 learning rate and
minibatch size of 1024 while for VBNN model, we take learning
rate of 10−4 and minibatch size of 128 according to Blundell et al.
(2015). We train both the models for 400 epochs using Adam
optimizer.

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

3
e
a
t
t
h
l
V
s
a
s

R

A

B

B

B

B

Fig. 5. Node-wise weight magnitudes recovered by VBNN and proposed SS-IG model in the synthetic regression data generated using 2-2-1 network. The boxplots
show the distribution of incoming weights into a given hidden layer node. Only the 20 nodes with the largest edge weights are displayed.
Fig. 6. MNIST experiment results for varying hidden layer widths.
C

D

E

F

F

G
G

G

G
H

H

Fig. 6 summarizes the results. We have provided results for
different architectures which have 400, 800, and 1200 nodes
ach in their 2-hidden layers. In Fig. 6(a), we find that across the
rchitectures both SS-IG and VBNN models have similar predic-
ive performance. Further, our method is able to prune off more
han 88% of first hidden layer nodes and more than 92% of second
idden layer nodes (Fig. 6(b)) at the expense of 2% accuracy
oss due to sparsification compared to the densely connected
BNN. We also observe that as model capacity increases the
parsity percentage per layer decreases. This suggests that, each
rchitecture is trying to reach a sparse network of comparable
ize.

eferences

lvarez, J. M., & Salzmann, M. (2016). Learning the number of neurons in deep
networks. In Proceedings of the 30th Advances in neural information processing
systems. Barcelona, Spain.

ai, J., Song, Q., & Cheng, G. (2020). Efficient variational inference for sparse deep
learning with theoretical guarantee. In Proceedings of the 34th Advances in
neural information processing systems (pp. 466–476). Vancouver, Canada.

hattacharya, S., & Maiti, T. (2021). Statistical foundation of Variational Bayes
neural networks. Neural Networks, 137, 151–173.

lei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A
review for statisticians. Journal of the American Statistical Association, [ISSN:
1537-274X] 112(518), 859–877.

lei, D. M., & Lafferty, J. D. (2007). A correlated topic model of science. The
Annals of Applied Statistics, 1(1), 17–35.

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight
uncertainty in neural network. In Proceedings of machine learning research,
vol. 37 (pp. 1613–1622). PMLR.
329
Cannings, T. I., & Samworth, R. J. (2017). Random-projection ensemble classifi-
cation. Journal of the Royal Statistical Society. Series B. Statistical Methodology,
79(4), 959–1035.

Chérief-Abdellatif, B.-E. (2020). Convergence rates of variational inference in
sparse deep learning. In Proceedings of the 37th International conference on
machine learning, vol. 119 (pp. 1831–1842). Vienna, Austria.

hérief-Abdellatif, B.-E., & Alquier, P. (2018). Consistency of variational Bayes
inference for estimation and model selection in mixtures. Electronic Journal
of Statistics, 12(2), 2995–3035. http://dx.doi.org/10.1214/18-EJS1475.

ua, D., & Graff, C. (2017). UCI machine learning repository.
http://archive.ics.uci.edu/ml.

lfwing, S., Uchibe, E., & Doya, K. (2018). Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning. Neural
Networks, [ISSN: 0893-6080] 107, 3–11. http://dx.doi.org/10.1016/j.neunet.
2017.12.012, Special issue on deep reinforcement learning.

rankle, J., & Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In International conference on learning rep-
resentations. New Orleans, USA: URL https://openreview.net/forum?id=rJl-
b3RcF7.

riedman, J., Hastie, T., & Tibshirani, R. (2009). Springer series in statistics., The
elements of statistical learning. Springer, New York.

al, Y. (2016). Uncertainty in deep learning Ph.D. thesis.
hosal, S., & van der Vaart, A. W. (2007). Convergence rates of posterior

distributions for noniid observations. The Annals of Statistics, 35(1), 192–223.
hosh, S., Yao, J., & Doshi-Velez, F. (2019). Model selection in Bayesian neural

networks via horseshoe priors. Journal of Machine Learning Research, 20, 1–46.
renander, U. (1981). Abstract inference. New York: Wiley.
an, S., Mao, H., & Dally, W. J. (2016). Deep compression: Compressing deep

neural network with pruning, trained quantization and huffman coding. In
4th International conference on learning representations. San Juan, Puerto Rico.

e, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In IEEE International
conference on computer vision (pp. 1026–1034). http://dx.doi.org/10.1109/
ICCV.2015.123.

http://refhub.elsevier.com/S0893-6080(23)00449-5/sb1
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb1
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb1
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb1
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb1
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb2
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb2
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb2
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb2
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb2
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb3
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb3
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb3
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb4
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb4
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb4
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb4
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb4
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb5
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb5
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb5
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb6
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb6
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb6
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb6
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb6
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb7
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb7
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb7
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb7
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb7
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb8
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb8
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb8
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb8
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb8
http://dx.doi.org/10.1214/18-EJS1475
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb10
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb10
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb10
http://dx.doi.org/10.1016/j.neunet.2017.12.012
http://dx.doi.org/10.1016/j.neunet.2017.12.012
http://dx.doi.org/10.1016/j.neunet.2017.12.012
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb13
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb13
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb13
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb14
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb15
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb15
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb15
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb16
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb16
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb16
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb17
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb18
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb18
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb18
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb18
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb18
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123

S. Jantre, S. Bhattacharya and T. Maiti Neural Networks 167 (2023) 309–330

H

H

J

J

Z

Z

ernandez-Lobato, J. M., & Adams, R. (2015). Probabilistic backpropagation for
scalable learning of Bayesian neural networks. In Proceedings of the 32nd
International conference on machine learning (pp. 1861–1869). Lille, France.

inton, G. E., & Van Camp, D. (1993). Keeping the neural networks simple by
minimizing the description length of the weights. In Proceedings of the Sixth
annual conference on computational learning theory (pp. 5–13). Santa Cruz,
USA.

ang, E., Gu, S., & Poole, B. (2017). Categorical reparameterization with gumbel-
softmax. In 5th International conference on learning representations. Toulon,
France.

ordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Sau, L. K. (1999). An intro-
duction to variational methods for graphical models. Machine Learning, 37,
183–233.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
3rd International conference on learning representations. San Diego, USA.

Lee, H. K. H. (2000). Consistency of posterior distributions for neural networks.
Neural Networks, 13, 629–642.

Louizos, C., Ullrich, K., & Welling, M. (2017). Bayesian compression for deep
learning. In Proceedings of the 30th Advances in neural information processing
systems (pp. 3288–3298). Long Beach, CA, USA.

Lu, L., Shin, Y., Su, Y., & Em Karniadakis, G. (2020). Dying ReLU and initialization:
Theory and numerical examples. Communications in Computational Physics,
28(5), 1671–1706. http://dx.doi.org/10.4208/cicp.OA-2020-0165.

Maddison, C. J., Mnih, A., & Teh, Y. W. (2017). The concrete distribution:
A continuous relaxation of discrete random variables. In 5th International
conference on learning representations. Toulon, France.

Mitchell, T. J., & Beauchamp, J. J. (1988). Bayesian variable selection
in linear regression. Journal of the American Statistical Association, 83,
(404), 1023–1032.

Molchanov, D., Ashukha, A., & Vetrov, D. (2017). Variational dropout sparsifies
deep neural networks. In Proceedings of the 34th international conference on
machine learning, vol. 70 (pp. 2498–2507). Sydney, NSW, Australia.

Mozer, M. C., & Smolensky, P. (1988). Skeletonization: A technique for trimming
the fat from a network via relevance assessment. In Advances in neural
information processing systems, vol. 1 (pp. 107–115). Denver, USA.

Neal, R. (1992). Bayesian learning via stochastic dynamics. In Proceedings of the
5th Advances in neural information processing systems, vol. 5.

Neklyudov, K., Molchanov, D., Ashukha, A., & Vetrov, D. P. (2017). Structured
Bayesian pruning via log-normal multiplicative noise. In Proceedings of the
30th Advances in neural information processing systems (pp. 6775–6784). Long
Beach, CA, USA.
330
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Chintala, S. (2019).
PyTorch: An imperative style, high-performance deep learning library. In
Advances in neural information processing systems, vol. 32 (pp. 8024–8035).
Curran Associates, Inc..

Pati, D., Bhattacharya, A., & Yang, Y. (2018). On statistical optimality of vari-
ational Bayes. In A. Storkey, & F. Perez-Cruz (Eds.), Proceedings of Machine
Learning Research: vol. 84, Proceedings of the Twenty-First International Con-
ference on Artificial Intelligence and Statistics (pp. 1579–1588). PMLR, URL
http://proceedings.mlr.press/v84/pati18a.html.

Pollard, D. (1991). Bracketing methods in statistics and econometrics. In W.
A. Barnett, J. Powell, & G. E. Tauchen (Eds.), Nonparametric and semiparametric
methods in econometrics and statistics: proceedings of the fifth international
symposium in econometric theory and econometrics (pp. 337–355). Cambridge,
UK: Cambridge University Press.

Polson, N., & Ročková, V. (2018). Posterior concentration for sparse deep learning.
In 32nd Conference on advances in neural information processing systems
(pp. 930–941). Montréal, Canada.

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation functions.
CoRR abs/1710.05941 arXiv:1710.05941.

Scardapane, S., Comminiello, D., Hussain, A., & Uncini, A. (2017). Group sparse
regularization for deep neural networks. Neurocomputing, 241, 81–89.

Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks
with ReLU activation function. The Annals of Statistics, 48(4), 1875–1897.

Sun, Y., Song, Q., & Liang, F. (2021). Consistent sparse deep learning: Theory and
computation. Journal of the American Statistical Association, (ja), 1–42.

Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. (2016). Learning structured sparsity
in deep neural networks. In Proceedings of the 29th Advances in neural
information processing systems. Barcelona, Spain.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understand-
ing deep learning requires rethinking generalization. In 5th International
conference on learning representations. Toulon, France.

hao, C., Ni, B., Zhang, J., Zhao, Q., Zhang, W., & Tian, Q. (2019). Variational
convolutional neural network pruning. In 2019 IEEE/CVF Conference on com-
puter vision and pattern recognition (pp. 2775–2784). http://dx.doi.org/10.
1109/CVPR.2019.00289.

hu, M., & Gupta, S. (2018). To prune, or not to prune: Exploring the efficacy of
pruning for model compression. In 6th International conference on learning
representations (ICLR 2018), Workshop Track Proceedings. Vancouver, Canada:
OpenReview.net, URL https://openreview.net/forum?id=Sy1iIDkPM.

http://refhub.elsevier.com/S0893-6080(23)00449-5/sb20
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb20
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb20
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb20
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb20
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb21
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb21
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb21
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb21
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb21
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb21
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb21
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb22
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb22
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb22
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb22
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb22
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb23
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb23
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb23
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb23
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb23
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb24
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb24
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb24
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb25
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb25
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb25
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb26
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb26
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb26
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb26
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb26
http://dx.doi.org/10.4208/cicp.OA-2020-0165
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb28
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb28
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb28
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb28
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb28
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb29
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb29
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb29
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb29
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb29
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb30
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb30
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb30
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb30
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb30
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb31
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb31
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb31
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb31
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb31
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb32
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb32
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb32
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb33
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb33
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb33
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb33
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb33
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb33
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb33
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb34
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb34
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb34
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb34
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb34
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb34
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb34
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb34
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb34
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb34
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb34
http://proceedings.mlr.press/v84/pati18a.html
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb36
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb36
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb36
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb36
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb36
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb36
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb36
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb36
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb36
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb37
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb37
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb37
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb37
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb37
http://arxiv.org/abs/1710.05941
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb39
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb39
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb39
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb40
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb40
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb40
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb41
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb41
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb41
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb42
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb42
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb42
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb42
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb42
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb43
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb43
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb43
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb43
http://refhub.elsevier.com/S0893-6080(23)00449-5/sb43
http://dx.doi.org/10.1109/CVPR.2019.00289
http://dx.doi.org/10.1109/CVPR.2019.00289
http://dx.doi.org/10.1109/CVPR.2019.00289
https://openreview.net/forum?id=Sy1iIDkPM

	Layer adaptive node selection in Bayesian neural networks: Statistical guarantees and implementation details
	Introduction
	Nonparametric regression: deep learning approach
	Node selection with spike-and-slab prior
	Posterior contraction rates
	Implementation Details
	Numerical Experiments
	Simulation Study - I
	Simulation Study - II
	UCI regression datasets
	Image classification datasets
	MLP Experiments
	Lenet-Caffe Experiments

	Conclusion and Discussion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Proofs of theoretical results
	Definitions
	General Lemmas
	Proof of Lemmas and Corollary in the main paper

	Appendix B. Additional numerical experiments details
	FLOPs Calculation
	Variational parameters initialization
	Hyperparameters for training
	Fine tuning of constant in prior inclusion probability expression
	Simulation study I: extra details
	Effect of Hidden Layer Widths

	References

