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Dynamic pruning and-slab prior alleviates the need of an ad-hoc thresholding rule for pruning. In addition, we adopt
Model compression a variational Bayes approach to circumvent the computational challenges of traditional Markov Chain
Spike-and-slab priors Monte Carlo (MCMC) implementation. In the context of node selection, we establish the fundamental

Variational inference

! result of variational posterior consistency together with the characterization of prior parameters. In
Contraction rates

contrast to the previous works, our theoretical development relaxes the assumptions of the equal
number of nodes and uniform bounds on all network weights, thereby accommodating sparse networks
with layer-dependent node structures or coefficient bounds. With a layer-wise characterization of
prior inclusion probabilities, we discuss the optimal contraction rates of the variational posterior.
We empirically demonstrate that our proposed approach outperforms the edge selection method in
computational complexity with similar or better predictive performance. Our experimental evidence
further substantiates that our theoretical work facilitates layer-wise optimal node recovery.
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1. Introduction and deploying such huge models is practically infeasible. Exam-
ples of such scenarios include federated learning, autonomous
Deep learning profoundly impacts science and society due vehicles, robotics, recommendation systems where models have
to its impressive empirical success driven primarily by copious  to be refreshed daily/hourly or in an online manner for optimal
amounts of datasets, ever increasing computational resources, performance. o ) ) o
and deep neural network’s (DNN) ability to learn task-specific A promising direction for addressing these issues while im-
representations. The key characteristic of deep learning is that proving the efficiency of DNNs is exploiting sparsity. From a prac-
accuracy empirically scales with the size of the model and the  tical perspective, it has been well-known that neural networks
amount of training data. As such, large neural network models can be sparsified without 51gn1f1ca1_1t loss n perfprmance, l\/lqze_r
such as OpenAl GPT-3 (175 Billion) now typify the state-of- and Smo.lensky (1988), and there is growing ev1der1pe that it is
the-art across multiple domains such as natural language pro- more so in the case of modern DNNs. Sparsity can arise naturally

. - L or be induced in multiple forms in DNNs, including input data,
cessing, computer vision, speech recognition etc. Nevertheless

. . weights, and nodes. Weight pruning approaches perform high
de,eP neurlal nemqus, do ha.ve some drawbacks deSplte, the}r model compression leading to significant storage cost reduction
wide ranging applications. First, this form of model scaling is 3¢ test-time (Frankle & Carbin, 2019; Han et al., 2016; Molchanov

exorbitantly prohibitive in terms of computational requirements, et al, 2017; Zhu & Gupta, 2018). However, they result in un-
financial commitment, energy requirements etc. Second, DNNs  s¢ryctured sparsity in deep neural architectures which leads to
tend to overfit leading to poor generalization in practice (Zhang  jnefficient computational gains in practical setups (Wen et al,
et al., 2017). Finally, there are numerous scenarios where training 2016). Instead, inducing group sparsity on collection of incom-

ing weights into a given node (or node selection) reduces the
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Sparse deep BNN with
spike-and-slab priors
for node selection
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Fig. 1. Sparse deep BNN using spike-and-slab priors achieves node selection in the given dense network on left leading to a sparse network on right.

storage reduction and the later leading to computational speedup
during inference stage. Although one may argue node selection
arises as a byproduct of edge selection, we clearly demonstrate
that an approach which targets node selection directly leads
to lower latency models (smaller number of nodes per layer)
compared to an approach which achieves node selection through
edge selection.

Node selection in deep neural networks has been explored
under frequentist setting in Alvarez and Salzmann (2016), Scar-
dapane et al. (2017), Wen et al. (2016) using group sparsity
regularizers. On the other hand, Louizos et al. (2017), Neklyudov
et al. (2017), and Ghosh et al. (2019) incorporate group sparsity
via shrinkage priors in Bayesian paradigm. These group sparsity
approaches specifically applied for node selection have shown
significant computational speedup and lower memory footprint
at inference stage. However, all of the proposed methods of
neuron selection perform ad-hoc pruning requiring fine-tuned
thresholding rules. Moreover, the posterior inference of network
weights in Bayesian neural networks (BNN) through standard
MCMC method, ex. Hamiltonian Monte Carlo (Neal, 1992), does
not scale well to modern neural network architectures and large
datasets used in practice. Instead computationally efficient vari-
ational inference as an alternative to MCMC (Blei et al., 2017;
Jordan et al,, 1999), has been explored in the context of edge
selection both theoretically and numerically by Bai et al. (2020),
Blundell et al. (2015), Chérief-Abdellatif (2020). On the other
hand, Louizos et al. (2017) and Ghosh et al. (2019) have explored
variational inference for node selection problem. In this work, we
propose a Gaussian spike-and-slab prior for automatic node selec-
tion in Bayesian neural networks thereby alleviating the need of
an ad-hoc thresholding rule for pruning (see a schematic Fig. 1).
Further for scalability, we develop a variational Bayes algorithm
for posterior inference of BNN model parameters in our proposed
model and demonstrate its numerical performance through sim-
ulation and real regression and classification datasets. Finally, we
provide the theoretical guarantees to our node selection method
under mild restrictions on the network topology.

Related Work. A closely related work to our paper is Bai
et al. (2020)’s automated edge selection model using spike-and-
slab prior. There the slab distribution controls the magnitude of
weights and spike allows for the exact setting of weights to 0. We
introduce spike-and-slab framework for node selection in BNNs
and show the key resource efficiency trade-off between node and
edge selection at test-time. There are two main advantages to
node selection over edge selection (1) fewer parameters to train
during optimization, (2) results in structurally compact network
leading to computational speedup at test-time.
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On the theoretical front, sparse BNNs have been studied in
the works of Polson and Rockova (2018) and Sun et al. (2021).
In the context of variational inference, sparse BNNs have been
studied in the recent works of Chérief-Abdellatif (2020) and Bai
et al. (2020). All these works concentrate on the problem of edge
selection facilitated through the use of Gaussian spike-and-slab
priors. In the context of node selection, Ghosh et al. (2019) makes
use of regularized horseshoe prior. The main limitations of their
approach include (1) need for fine tuning of the thresholding rule
for node selection, and (2) lack of a theoretical justification.

The only two works which have provided theoretical guar-
antees of their proposed sparse DNN methods under variational
inference include those of Chérief-Abdellatif (2020) and Bai et al.
(2020). Since they focus on the problem of edge selection, their
theoretical developments are related to the results of Schmidt-
Hieber (2020) (see the sieve construction in relation (4) in
Schmidt-Hieber (2020)) and not directly extendable to our setup.
Additionally, they assume certain restrictions on the network
topology like (i) equal number of nodes in each layer, (ii) a known
uniform bound B on all network weights, and (iii) a global sparsity
parameter which may not lead to a structurally compact network.
Although from a numerical standpoint, one may implicitly extend
the problem of edge selection to node selection, the theoretical
guarantees of node selection consistency in sparse DNNs is not
immediate.

Detailed Contributions.

1. We propose a Gaussian spike-and-slab node selection
model and develop a variational Bayes approach for pos-
terior inference of the model parameters. We call our ap-
proach SS-IG (Spike-and-Slab Independent Gaussian)
model.

2. We derive the variational consistency using a functional
space of neural networks which takes two layer dependent
bounds, one which upper bounds the number of neurons in
each layer and the other which upper bounds the L; norm
of the weights incident onto each node of a layer. These
layer dependent bounds allow the generalization of the
theoretical results presented to guarantee the consistency
of any generic shaped network structure. Further, it also
guides the calculation of layer-wise prior inclusion proba-
bilities which allow for optimal node recovery per layer in
the computational experiments.

3. We measure the computational gains achieved by our ap-
proach using layer-wise node sparsities for shallow models
and floating point operations in larger models. Our numer-
ical results validate the proposed theoretical framework for
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the node selection in DNN models. These empirical exper-
iments further justify the use of layer-wise node inclusion
probabilities to facilitate the optimal node recovery.

2. Nonparametric regression: deep learning approach

Consider the nonparametric regression model with p dimen-
sional covariate X.

Yi=noX;)+e, i=1,... (1)
where e; e N(0, 62) (here i.i.d. denotes independent and identi-
cally distributed) and no(-) : RP — R.

Thus, the conditional distribution of Y|X = x under the true

model is

foy®) = (/2w 02) ™" exp (—(v — mo(x))*/(20)) (2)

where x is a feature vector from a marginal distribution Px and
y is the corresponding output from the conditional distribution
YIX =x.

Let g : R — R be a measurable function, then for some loss
function £, the risk of g is

?n7

R(g) = / LY, g(X))dPy.y
YxXx

where Py y, the joint distribution of (X, Y) is product of Px and
the conditional distribution Y|X = x. (see Cannings and Sam-
worth (2017) for more details). For the squared error loss, the
above risk is minimized by g*(x) = no(x) (Friedman et al., 2009).
In practice, this estimator is not useful since ny(x) is unknown.
Thus, an estimator of 7g(x) is obtained based on the training ob-
servations, D = {(X1,¥1), ..., (Xn, ¥n)}, drawn from Py y. To find
the class of optimal estimators, we use DNNs as an approximation
to no(X).

For a p x 1 input vector X, consider a DNN with L hidden
layers with kq, ..., k; as the number of nodes in the hidden layers
denoted by ng(x). Also,

ne(X) = v +W (v +Wi_ (- - - (v +W i (vo+Wox)))) (3)

where v, and W, [ =0, ..., L are k;y; x 1 vectors and k.11 x k
matrices, respectively and 1// is the activation function. Let § =
{Wo, ..., W,} denote all the parameters in the DNN model under
con51derati0n. Using the DNN in (3) to approximate the true
function 7o(x), the conditional distribution of Y|X = x is

foy1%) = ((/2702) "  exp (—(y — no(%))?/(207))

Thus, the likelihood function for the data D under the model and
the truth is

n n

Py = [ [fotyilxi). = [ [fowilx).
i=1 i=1

For theoretical development in the subsequent sections we shall

assume Py U[o, 1P and o2 1 and  is any 1-Lipschitz
continuous activation function.

(4)

3. Node selection with spike-and-slab prior

To allow for automatic node selection, we consider a spike-
and-slab prior consisting of a Dirac spike (§p) at 0 and a slab
distribution (Mitchell & Beauchamp, 1988). The spike part is
represented by an indicator variable which is set to 0 if a node is
not present in the network. The slab part comes from a Gaussian
distributed random variable. To allow for the layer-wise node
selection, we assume that the prior inclusion probability A; varies
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as a function of the layer index I. The symbol i.d. is used to denote
independently distributed random variables.

Prior: We assume a spike-and-slab prior of the following form
with z; as the indicator for the presence of jth node in the Ith
layer

i.d.
U1—4w0+4M00Mﬂ z; ~ Ber())

where [=0,...,Lj=1,..., k1. Also, wj = (wy, ..., Wik+1)
is a vector of edges incident on the jth node in the Ith layer. In the
above formula, note §j is a Dirac spike vector of dimension k; + 1
with all entries zero and I is the identity matrix of dimension
ki 4+ 1 x k; + 1. Furthermore, z; with j = (1, ..., k1) all follow
Bernoulli(A;) to allow for common prior inclusion probability, A;,
for each node from a given layer I. We set A; = 1 to ensure no
node selection occurs in the output layer.

‘le|ZIJ

Posterior: With z; = (z;1, ..., zi,, ), let z = (zy, ..., z;) denote
the vector of all indicator variables. The posterior distribution of
(0, z) given D is given by
n(0|z)m(z )
(0|1z)

"7 (0)2)7(2)

7(0,2|D) = D)

(5)

5, j"P” (2)d0

where Pj = ]_[i:1f9(yi|x,-) is the likelihood function as in (4), 7(z)
is the probability mass function of z with respect to the counting
measure and i7(0|z) is the conditional probability density function
with respect to the Lebesgue measure of # given z. Further, m(D)
is the marginal density of the data and is free of (6, z).

Let 7(0) = Y, 7(0, z) be the marginal prior of . We shall use
the notation

[ 7(0)do
A

to denote the probability distribution function corresponding to
the density function 7. The marginal posterior of § expressed as
a function of the marginal prior for @ is

P"N(ﬂ)
er 0,z|D) = an

Thus, the probability distribution function corresponding to the
density function 7 (|D) is then given by

mAm=/;mmw
A

Variational family: We posit the following mean field variational
family (Q™F) on network weights as

~

1(A) = (6)

P(;’?f(0)

FOIP) = m(D)

(7)

QM ={ Wylzy  [(1 - 280 + 2N(wy. diag(o})]

.d.
le l’\* Ber(ylj) }

forl = 0,...,L, j = 1,..., k1. This ensures that weight dis-
tributions follow spike-and-slab structure which allows for node
sparsity through variational approximation. Further, the weight
distributions conditioned on the node indicator variables are all
independent of each other (hence use of the term mean field
family). The variational distribution of parameters obtained post
optimization will then inherently prune away redundant nodes
from each layer. Also, Gaussian distribution for slab component
is widely popular for approximating neural network weight dis-
tributions (Bai et al., 2020; Blundell et al., 2015; Louizos et al.,
2017).

Additionally, m; = (uj1, ..., Mii+1) and a,] (a,ﬂ,...,
%k +1) denote the vectors of variational mean and standard devi-
ation parameters of the edges incident on the jth node in the Ith
layer. Similarly, y;; denotes the variational inclusion probability of
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the jth node in the Ith layer. We set y;; = 1 to ensure no node
selection occurs in the output layer.

Variational posterior: Variational posterior aims to reduce the
Kullback-Leibler (KL) distance between a variational family and
the true posterior (Blei & Lafferty, 2007; Hinton & Van Camp,
1993) as

(/D)) (8)

m* = argmin dg(q,
qEQMF

where d(q,

(D).

Note, the variational member g can be written as q(6, z)
q(0|z)q(z) where q(z) is the probability mass function of z with
respect to the counting measure and q(f|z) is the conditional
density function given with respect to the Lebesgue measure of 6
given z. Further,

7(|D)) denotes the KL-distance between g and

* = argmin Z /[log q(0,z)—log (0, z|D)]q(0, z)dO

qeQMF 7

= argmin Z/[logq(o,z) — log (0, z, D)]q(0, z)dO
qe QMF Z

+ log m(D))

= argmin [—ELBO(q, 7(|P))] + log m(D)
quMF

= argmax ELBO(q, 7 (|D)) (9)
quMF

Since log m(D) is free from g, it suffices to maximize the evidence
lower bound (ELBO) above

Let 7%(0) = ), w*(0|z)m*(z) then 7* denotes the marginal
variational posterlor for #. We shall use the notation

IT*(A) = f 74(0)dé
A

to denote the probability distribution function corresponding to
the density function 7*.

(10)

4. Posterior contraction rates

In this section, we develop the theoretical consistency of the
variational posterior in (10) in context of node selection. Previ-
ous works which establish the statistical consistency of sparse
deep neural networks do so only in the context of edge selec-
tion. Thereby, the works of Polson and Rockova (2018), Chérief-
Abdellatif (2020) and Bai et al. (2020) use several results from
the pioneer work of Schmidt-Hieber (2020). In addition to node
selection consistency, we also relax certain network restrictions
considered in the previous works. These restrictions include (1)
equal number of nodes in each layer which restricts one from
using any previous information on the number of nodes in the
deep neural architecture (2) a known bound B on all the neural
network weights as they essentially rely on the sieve construction
in equation 3 of Schmidt-Hieber (2020) which assumes that L.,
norm of all @ entries is smaller than 1 (3) a global sparsity
parameter s which does not always consider structurally sparse
networks.

Towards the proof, firstly our sieve construction allows the
number of nodes of the neural network to vary as a function of
the layer. Secondly, instead of global sparsity parameter s (see the
sieve construction in relation (4) of Schmidt-Hieber (2020)) we
allow for layer wise sparsity vector s to account for the number of
nodes in each layer. Finally, we relax the assumption of a known
bound B by considering a sieve with a layer wise constraint
(denoted by the vector B) on the L; norm of the incoming edges
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of a node. Thus, our work extends on current literature along
three directions: (1) theoretically quantifies predictive perfor-
mance of Bayesian neural networks with node based pruning; (2)
establishes that even without a fixed bound on network weights,
one can recover the true solution by appropriate choice of the
prior; (3) provides layer wise node inclusion probabilities to
allow for structurally sparse solutions. The relaxation of these
network structure assumptions requires us to provide the frame-
work for node selection including appropriate sieve construction
together with the derivation of the results in Schmidt-Hieber
(2020) customized to our problem.

To establish the posterior contraction rates, we show that the
variational posterior in (8) concentrates in shrinking Hellinger
neighborhoods of the true density function Py with overwhelming
probability. Since X ~ U[O0, 177, thus fo(x) = fys(x) = 1. This
further implies Py = fo(y|X)fo(x) = fo(y|x) and similarly Py =
fo(y|x). We next define the Hellinger neighborhood of the true
density Py as

= {0 : dy(Po, Py) < &}

where the Hellinger distance between the true density function
Py and the model density Py is

5 [ (Vi — Vi) ayex

We also define the KL neighborhood of the true density Py as
Ne = {0 : dgi(Po, Pp) < €}

dii(Po, Pg) =

where the KL distance di; between the true density function Py
and the model density Py is

dl(L(P07P9):/ ;:Eﬂ ;

Let k = (ko, ..., k1) be the node vector, w, = (w,Tl,

T T . o ~
w,km) be the row representation of W, and w;, = (||lwi||1, ...,

lwik,,, l1) be the vector of Ly norms of the rows of W,. Next
we consider layer-wise sparsity, s = (sq,...,s;) for node se-
lection. Similarly, we consider layer-wise norm constraints, B =
(B1,...,B) on Ly norms of weights including bias incident onto
any given node in each layer. Based on s and B, we define the
following sieve of neural networks (check definition A.1).

F(L7 k’ s’ B) =

fo(ylx)dydx

{ne € (3) : llwillo < s, lWilloc < By} (11)

The construction of a sieve is one of the most important tools
towards the proof of consistency in infinite-dimensional spaces.
In the works of Schmidt-Hieber (2020), Polson and Rockova
(2018), Chérief-Abdellatif (2020) and Bai et al. (2020), the sieve
in the context of edge selection is given by

F(L k,s)= [0llo < s, [10llcc < 1}.

{ng € (3):

which works with an overall sparsity parameter s. In addition,
note the Ly, norm of all the entries in # is assumed to be known
constant equal to 1 (see relation (4) in Schmidt-Hieber (2020) and
section 4 in Polson and Rockova (2018)). Section 3 in Bai et al.
(2020) does not explicitly mention the dependence of their sieve
on some fixed bound B on the edges in a network, however, their
derivations on covering numbers (see proof of Lemma 1.2 in the
supplement of Bai et al. (2020)) borrow results from (Schmidt-
Hieber, 2020) which is based on sieve with B = 1.

Consider any sequence ¢,. For Lemmas 4.1 and 4.2, we work
with the sieve F(L, k, s, B) in (11) with s = s° and B = B° where
s;+1=ne2 /(Y _ou;) and log By = (ne2)/(L+ 1) Y 4(s? + 1))
with u; = (L+ 1)*(log n + log(L + 1) + log k.1 + log(k; + 1)). Note,
s; and B} do not depend on L.
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Lemma 4.1 below holds when the covering number (check def-
inition A.2) of the functions which belong to the sieve F(L, k, s°,
B°) is well under control. Lemma 4.2 below states that for the
same choice of the sieve, the prior gives sufficiently small proba-
bilities on the complement space F(L, k, s°, B°) (see the discus-
sion under Theorem 4.4 for more details).

For the subsequent results, the symbol A° will be used to
denote complement of a set A.

Lemma 4.1 (Existence of Test Functions). Let €, — 0 and neﬁ —
o<. There exists a testing function ¢ € [0, 1] and constants Cy, C; >
0,

Epy(¢p) < exp{—Cine}

sup Ep,(1— ¢) < exp{—Cond5(Po, Pp)}

OcHE, ngeF(Lk,s°.B°)

where H,, = {0 : du(Po, Py) < €} is the Hellinger neighborhood of

radius €.

Lemma 4.2 (Prior mass condition.). Let €, — O, ne,f — oo and
neﬁ/ ZLO u; — oo, then for IT as in (6) and some constant C3 > 0,

M(F(L k. s°, B°Y) < exp(—Csner/ Y " u)
=0

Whereas Lemmas 4.1 and 4.2 work with a specific choice of
the sieve, the following Lemma 4.3 is developed for any generic
choice of sieve indexed by s and B. The final piece of the theory
developed next tries to addresses two main questions (1) Can we
get a sparse network solution whose layer-wise sparsity levels
and L; norms of incident edges (including the bias) of the nodes
are controlled at levels s and B respectively? (2) Does this sparse
network retain the same predictive performance as the original
network?

In this direction, let

£ = minyyer@ksplne — nollZ
Based on the values s and B, we also define

L

Z log By, + L + log k11
m=0,m#l

O =B /(ki+ 1) +

L
+ log(k; + 1) + logn + log(Z Un)
m=0

=s(k+ 1)y/n

Lemma 4.3 has two sub conditions. Condition 1. requires that
shrinking KL neighborhood of the true density function Py gets
sufficiently large probability. This along with Lemmas 4.1 and
4.2 is an essential condition to guarantee the convergence of the
true posterior in (5). Condition 2. is the assumption needed to
control the KL distance between true posterior and variational
posterior and thereby guarantees the convergence of the varia-
tional posterior in (8) (see the discussion under Theorem 4.4 for
more details).

(12)

Lemma 4.3 (Kullback-Leibler Conditions). Suppose Zz —oh+&—0
and n(Zl*D 1+ &) — oo and the following two conditions hold for
the prior I1 in (6) and some q € QMF

1. ﬁ(/\/

S exp(—C4n(Z n+8)

=0

2. dwlq,m +HZ/dKLPo,P0 (02d0<C5anl+.§

=0
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where w is the joint prior of (0,z), q is the joint variational dis-
tribution of (0, z) and NZIL is the KL neighborhood of radius

L o nt+E
Zl:O T + 5

The following result shows that the variational posterior is
consistent as long as Lemma 4.1, Lemmas 4.2 and 4.3 hold. The
proof of Theorem 4.4 demonstrates how the validity of these
three lemmas imply variational posterior consistency.

Theorem 4.4. Suppose Lemma 4.3 holds and Lemmas 4.1 and

4.2 hold for ¢, = \/(Z,L:O T +E)ZIL:0 u;. Then for some slowly
increasing sequence M,, — 0o, M€, — 0 and IT* as in (10),

ﬁ*(HlCVInen) -0, n— oo

in Py probability where 1y, = {0 : du(Po, Ps) < Mpen} is the
Hellinger neighborhood of radius Mye,,.

Note, the above contraction rate depends mainly on two quan-
tities r; and &. Note r; controls the number of nodes in the neural
network. If the network is not sparse, then r; is k. 1(kj + 1)%;/n
instead of s;(k; + 1)9%/n which can in turn make the convergence
of ¢, — 0 difficult. On the other hand, if s; and B, are too small,
it will cause & to explode since a good approximation to the true
function may not exist in a very sparse space.

Remark (Rates as a Function of n). Let L ~ O(logn), 312 ~ O(k;+ 1)
and s;(k; + 1) = 0O(n'~2¢), for some ¢ > 0, then one can work
with €, = n~2log?(n) as long as & = O(n22 log?(n)). The exact
expression of p is determined by the degree of smoothness of the
function 7.

Proof of Theorem 4.4.

Discussion. To further enunciate Lemmas 4.1 and 4.2 consider
the quantity &1, = ch (Py/P§)7(0)de as used in the following

proof. Here, &7, can be spllt into two parts

Em = /
HC

Mnen

+ f (P} /PR (0)d0
Higyen\F (LIS BO)

Whereas Lemma 4.1 provides a handle on the first term by con-
trolling the covering number of the sieve F(L,k,s°, B°),
Lemma 4.2 gives a handle on the second term by controllmg

(}‘(L k, s°, B°)°) (for more details we refer to Lemma A.8 in Ap-
pendix A).

Next, consider the quantity &, = log f (Py/P§)(6)de in the
following proof. Lemma 4.3 part 1. provides a control on this term
(see Lemma A.9 in Appendix A for more details). Finally, consider
the quantity &, = dx(q, ) + Y, [ log(P§/P;)q(6, z)dé in the
following proof. Indeed Lemma 4.3 part 2. provides a control on
this term (see Lemma A.10 in Appendix A for further details).

(Pg /Pg)7(0)d6

NF(Lk,s°,B°)

Proof. Let 7 and IT* be as in (7) and (10) respectively. Now,
=+
7*(9) 0

G, 7 (D)) = /
A 7(8|D

+ / “(0)log

H*

7%(0)log =

)
7(8)
de
(0|D)

(0|D)
do

7*(6)
7(0|D)

(0) lo
£ 50

ac TT#(A°)

de

— (A
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> ﬁ*(A) log é—[(j‘r;))

Jensen’s inequality

IT#(A°)
M(A|D)’

+ IT*(A%)log

where the above lines hold for any set .A. Since H(AlD) <1,
> [T*(A)log IT*(A) + IT*(A°) log TT*(A) — IT*(A%)log IT( A
—IT*(A%) log TT(AS|D) — log 2,

(. xlogx+ (1 —x)log(1 —x) > —log2)

_ —ﬁ*w)(log / (P /PLYF(6)d6 — log / (Pg/Pg)%(o)dO)
AC

Em

A|D)

>

En
— log2

The above representation is similar to the proof of Theorems 3.1
and 3.2 in Bhattacharya and Maiti (2021). For any q € QMF,

— IT*(A)E1n < di(F*, 7(|D)) — TT*(A )Ean + log 2
< di(*, 7(|D)) — IT*(A )€z + log 2
by Lemma A.5
< dyu(g, 7(|D)) — IT*(A)Ean + log 2
7* is the KL minimizer

< du(q, 7 +Z/log—q(0 z)d

E3n
+ (1= [T*(A)Esn + log 2
= &3+ (1 = IT"(A))En + log2 (13)
where the fourth inequality in the above equation follows since
di(q. 7(1D) =Y f (log q(6, z) — log Py — log (6, 2)
z
+ logm(D))q(0, z)dé

= Z /(logq(&,z) — log (0, 2))q(0, z)do

dy(q,7)
+y f (log P — log P} )q(6, 2)d6
z

+ logm(D) — log P§

En

where m(D) is the marginal distribution of data as in (5).

Take A = Hﬁ,,nen = {0 : dy(Po, Py) > M€}

If Lemmas 4.1 and 4.2 hold, then by Lemma A.8, it can be
shown that &, < —nCM2e2/ > u for any M, — oo with high
probability.

If Lemma 4.3 condition 1. holds, then by Lemma A.9, &, <
nM,,(Z,L:0 r + &) for any M, — oo.
If Lemma 4.3 condition 2. hold, then by Lemma A.10, &, <

nMn(Z,L:0 1 + &) for any M, — oo.
Therefore, by (13), we get

ncM2e2

W0 7—LMG <nMy( ) 1+ &)+ nM,( rl—i-“;‘ +log2
Zul nén

=0 =0

L L
<MY i+ E) + M (> 1+ £)

=0 =0

L
+ Ma() ri+8)

1=0
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3Mu(Yp o +E) Y1
C]M%G%

Taking €, = 4/ Zleo(rl + &)Y u, and noting M, — oo, the proof

follows. O

= ﬁ* (Hgﬂnfn) =

We next give conditions on the prior probabilities A; and
o0y to guarantee that Lemmas 4.1-4.3 hold. This in turn implies
the conditions of Theorem 4.4 hold and variational posterior is
consistent.

Corollary 4.5. Let o = 1, —log A = log(ki11)+ Ci(kj+ 1)9, then
conditions of Theorem 4.4 hold and IT* as in (10) satisfies

f[*(Hg/lnén) — 0, n— o0

in Py probability where and Hp,e, = {0 : du(Po, Pg) < Mpe,} is the
Hellinger neighborhood of radius Mje,,.

The proof of the corollary has been provided in Appendix A.

In the preceding corollary, note that our expression of prior
inclusion probability varies as a function of [ thereby provid-
ing a handle on layer-wise sparsity. Indeed, using these expres-
sions in numerical studies further substantiates the theoretical
framework developed in this section.

Remark (Optimal Contraction). For a fixed choice of k, the optimal
contraction rate is achieved at s*, B* = argmin(}_ r; + &). Thus,
s,B

s* and B* are the optimal values of s and B which give the
best sparse network with minimal loss in the true accuracy.
The corresponding probability expressions in Corollary 4.5 can
be accordingly modified by setting s = s* and B = B* in the
expressions of ¥; and r; in (12).

5. Implementation details

Evidence Lower Bound. The ELBO presented in (9) is given by
£ = —Eg[log Pj] + dii(q, ) which is further simplified as
— Eg[log Pg] + dii(q, )
—Eqei2)q2)[10g Py 1 + dic. (q(012)q(2), 7 (812)7
= —Eqj2)q2)[10g Py] + Z dx(q(zy)l|m (zy))
Lj
+ > [atzy = Ddialg(@ylzy = 1)l (Wylzy = 1))
Lj
+q(z; = 0)d.(q(Wy|z; = 0)||7 (Wy|z; = 0))]
= —Eqoiaollog Pyl + Y _ dia(qlzy)llm(zy))
Lj
+ ZQ(ZU = Ddw(q(wylzy = 1)||7(wylz; = 1))
Lj
= —Eqoiollog Py1+ Y di(qlz)llm(zy))
Lj

+ ) azy = Dd(N(py, diag(af))IIN(0, o31))
Li

(2))

The KL of discrete variables appearing in the above expres-
sion creates a challenge in practical implementation. Jang et al.
(2017), Maddison et al. (2017) proposed to replace discrete ran-
dom variable with its continuous relaxation. Specifically, the con-
tinuous relaxation approximation is achieved through Gumbel-
softmax (GS) distribution, that is q(zj;) ~ Ber(y;) is approximated
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Algorithm 1 Variational inference in SS-IG Bayesian neural
networks
Inputs: training dataset, network architecture, and optimizer
tuning parameters.
Model inputs: prior parameters for 6, z.
Variational inputs: number of Monte Carlo samples S.
Output: Variational parameter estimates of network weights
and sparsity.
Method: Set initial values of variational parameters.
repeat
Generate S samples from ¢; ~ N(0, I) and u; ~ U(0, 1)
Generate S samples for (zj, Z;) using uy;
Use py;, a5, &) and z;; to compute loss (ELBO) in forward pass

Use py;, 05, §; and Zj to compute gradient of loss in backward
pass
Update the variational parameters with gradient of loss using
stochastic gradient descent algorithm (e.g. Adam (Kingma &
Ba, 2015))

until change in ELBO < ¢

by q(zj;) ~ GS(yy, T), where

Zjy = (1+exp(—n;/7))"",
nij = log(y;i/(1 — vy)) + log(uy; /(1 — uy)),

where t is the temperature. We set = 0.5 for this paper (also
see section 5 in Bai et al. (2020)). z; is used in the backward
pass for easier gradient calculation, while z; will be used for
selecting nodes in the forward pass. We use non-centered param-
eterization for the Gaussian slab variational approximation where
N(py;, diag(afj)) is reparameterized as p;+0;O8;; for &; ~ N(O, I),
where © denotes the entry-wise (Hadamard) product.

uy ~ U0, 1)

6. Numerical experiments

In this section, we present several numerical experiments to
demonstrate the performance of our spike-and-slab independent
Gaussian (SS-IG) Bayesian neural networks which we implement
in PyTorch (Paszke et al., 2019). Further, to evaluate the efficacy of
the variational inference we benchmark our model on synthetic
as well as real datasets. Our numerical investigation justifies the
use of proposed choices of prior hyperparameters specifically
layer-wise prior inclusion probabilities, which in turn substanti-
ates the significance of our theoretical developments. With fully
Bayesian treatment, we are also able to quantify the uncertainties
for the parameter estimates and variational inference helps to
scale our model to large network architectures as well as complex
datasets.

We compare our sparse model with a node selection tech-
nique: horseshoe BNN (HS-BNN) (Ghosh et al., 2019) and an edge
selection technique: spike-and-slab BNN (SV-BNN) (Bai et al.,
2020) in the second simulation study and UCI regression dataset
examples. We use optimal choices of prior parameters and fine
tuning parameters provided by the authors of HS-BNN and SV-
BNN in their respective models. Further we compare our model
against dense variational BNN model (VBNN) (Blundell et al.,
2015) in all of the experiments. Since it has no sparse structure,
it serves as a baseline allowing to check whether sparsity com-
promises accuracy. In all the experiments, we fix (rg = 1 and
o2 = 1. For our model, the choices of layer-wise A, follow from
Corollary 4.5: A = (1/ki1) exp(—Ci(k; + 1)9). We take C; values
in the negative order of 10 such that prior inclusion probabilities
do not fall below 107°° otherwise A; values close to 0 might
prune away all the nodes from a layer (check appendix B for
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more discussion). The remaining tuning parameter details such
as learning rate, minibatch size, and initial parameter choice are
provided in the appendix B. The prediction accuracy is calculated
using variational Bayes posterior mean estimator with 30 Monte
Carlo samples in testing phase.

Node sparsity estimates. In our experiments, we provide node
sparsity estimates for each hidden layer separately. For all mod-
els, the node sparsity in a given hidden layer is the ratio of
number of neurons with at least one nonzero incoming edge
over the original number of neurons present in that layer before
training. The layer-wise node sparsity estimates give clear picture
of the structural compactness of the trained model during test
time. The structurally compact trained model has lower latency
during inference stage.

6.1. Simulation study - I

We consider a two dimensional regression problem where the
true response yo is generated by sampling X from U([—1, 1]?)
and feeding it to a deep neural network with known parameters.
We add a random Gaussian noise with o = 5%+/Var(yp) to yo to
get noisy outputs y. We create the dataset using a shallow neural
network consisting of 2 inputs, one hidden layer with 2 nodes and
1 output (2-2-1 network). We train our SS-IG model and VBNN
model using a single hidden layer network with 20 neurons in
the hidden layer and administer sigmoid activation. Each model is
trained till convergence. We found that both models give compet-
itive predictive performance while fitting the given data. In Fig. 2
we plot the magnitudes of the incoming weights into the hidden
layer nodes using boxplots. Our model with the help of spike and
slab prior is able to prune away redundant nodes not required for
fitting the model. Since VBNN is densely connected, it shows all
the nodes being active in its final model. From this experiment,
it is clear that neural networks can be pruned leading to more
compact models at inference stage without compromising the
accuracy. We also performed the same experiment with a wider
neural network consisting of 100 nodes in the single hidden
layer and provide the results in Appendix B. There again we
show that our model can easily recover very sparse solution with
competitive predictive performance.

6.2. Simulation study - II

We consider a nonlinear regression example where we gener-
ate the data from the following model:

7x;

14

where ¢ ~ N(0, 1). Further all the covariates are i.i.d. N(0, 1) and
independent of . We generated 3000 data entries to create the
training data for the experiment. Additional 1000 observations
were generated for testing. We modeled this data using 2-hidden
layer neural network which consists of 20 neurons per hidden
layer. Sigmoid activation function is administered for each model
used for comparative analysis. Table 1 provides the RMSEs on
train and test dataset as well as layer-wise node sparsity esti-
mates for SS-IG, SV-BNN, HS-BNN, and VBNN models. Our model
is extremely well at pruning redundant nodes which leads to the
most compact model compared to the other sparse models: SV-
BNN and HS-BNN. Moreover it exhibits lower root mean squared
error (RMSE) values on test data among the sparse models while
showing similar predictive performance compared to the densely
connected VBNN. This experiment further underscores the major
benefit of our proposed approach to generate very compact mod-
els which could reduce computational times and memory usage
at inference stage.

y= + sin(x3x4) + 2xs + &€,
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Fig. 2. Node-wise weight magnitudes recovered by VBNN and proposed SS-IG model in the synthetic regression data generated using 2-2-1 network. The boxplots

show the distribution of incoming weights into a given hidden layer node.

Table 1

Performance of the proposed SS-IG, SV-BNN, HS-BNN, and VBNN models in
simulation study II. Each model was trained for 10k epochs with learning rate
5 x 1073, Mean and S.D. of RMSE values and median sparsity estimates were
calculated from last 1000 epochs (with jump of 10 giving us sample of 100).
The sparsity estimates are given as a tuple of 2 values representing layer-1 and
layer-2 node sparsities.

Model Train RMSE Test RMSE Sparsity estimate
SS-IG 1.2087 + 0.0490 1.1947 + 0.0587 (0.35, 0.05)
SV-BNN 1.2897 + 0.0323 1.2760 + 0.0363 (0.45, 0.35)
HS-BNN 1.2580 + 0.0305 1.2436 + 0.0394 (1.00, 1.00)
VBNN 1.1661 + 0.0335 1.1614 + 0.0349 NA

6.3. UCI regression datasets

We apply our model to traditional UCI regression datasets
(Dua & Graff, 2017) and contrast our performance against SV-
BNN, HS-BNN, and VBNN models. We follow the protocol pro-
posed by Hernandez-Lobato and Adams (2015) and train a sin-
gle layer neural network with sigmoid activations. For smaller
datasets - Concrete, Wine, Power Plant, Kin8nm, we take 50 nodes
in the hidden layer, while for larger datasets - Protein, Year, we
take 100 nodes in the hidden layer. We spilt data randomly while
maintaining 9:1 train-test ratio in each case and for smaller
datasets we repeat this technique 20 times. In Protein data we
perform 5 repetitions while in Year data we use a single random
split (more details in Appendix B). For the comparative analysis,
we benchmark against SV-BNN, HS-BNN and VBNN. Moreover,
VBNN test RMSEs serve as baseline in each dataset. Table 2 sum-
marizes our results including the sparsity estimate representing
hidden layer-1 node sparsity (since there is only one hidden layer
in the networks considered).

We achieve lower RMSEs compared to SV-BNN and HS-BNN
in Power Plant, Kin8 nm, and Year datasets and in other cases
we achieve comparable RMSE values. In all the datasets, our
predictive performance is close to the dense baseline of VBNN.
We provide node sparsity estimates in our SS-IG and SV-BNN
models. HS-BNN was not able to achieve sparse structure which
is consistent with the results provided in the appendix of Ghosh
et al. (2019). In contrast to HS-BNN, our model sparsifies the
model during training without requiring ad-hoc thresholding rule
for pruning. Table 2 demonstrates that our model uniformly
achieves better sparsity than SV-BNN. In particular, Concrete and
Wine datasets show the high compressive ability of our model
over SV-BNN leading to very compact models for inference.
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6.4. Image classification datasets

Here, we benchmark the empirical performance of our pro-
posed SS-IG method on network architectures and image classi-
fication datasets used in practice.

Baselines. We compare our model against VBNN model which
serves as a dense baseline to gauge the trade-off between predic-
tive performance and sparsity. Moreover, to highlight the com-
plementary behavior in memory and computational efficiency of
node selection compared to edge selection achieved via Bayesian
spike-and-slab prior framework, we compare our model against
the edge selection model, SV-BNN.

Network architectures. We consider 2 neural network model
architectures: (i) multi-layer perceptron (MLP), and (ii) Lenet-
Caffe. In MLP model, we take 2 hidden layers with 400 neurons in
each layer. Output layer has 10 neurons since there are 10 classes
in both datasets. Next, Lenet-Caffe model has 2 convolutional
layers with 20 and 50 feature maps respectively with filter size
5 x 5 for both layers. In SS-IG model, for convolution layers, we
prune output channels (similar to neurons in linear layers) using
our spike-and-slab prior where each output channel is assigned
a Bernoulli variable to collectively prune parameters incident on
that channel. On the other hand for SV-BNN model, each weight
in the convolution layer is assigned a spike-and-slab prior which
prunes weights similar to fully connected layers. We apply 2 x 2
max pooling layer after each convolution layer. The flattened
feature layer after second convolution layer has size 4 x4 x50 =
800 serving as input to the fully connected block, where there
are 2 hidden layers with 800 and 500 neurons respectively. The
output layer has 10 neurons.

Datasets. We apply each network architecture on 2 image classifi-
cation datasets: (i) MNIST: dataset of 60,000 small square 28 x 28
pixel grayscale images of handwritten single digits between 0
and 9, and (ii) Fashion-MNIST: dataset of 60,000 small square
28 x 28 pixel grayscale images of items of 10 types of clothing.
We preprocess the images in the MNIST data by dividing their
pixel values by 126. In Fashion-MNIST data, we horizontally flip
images at random with probability of 0.5.

Metrics. We quantify the predictive performance using the ac-
curacy of the test data (MNIST and Fashion-MNIST). Besides the
test accuracy, we evaluate our model against SV-BNN using the
metrics that relate to the model compression and computational
complexity. First the compression ratio is the ratio of number of
nonzero weights in the compressed network versus the dense
model and is an indicator of storage cost at test-time. Next,
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Table 2

Results on UCI regression datasets.
Dataset n(ko) Test RMSE Sparsity estimate

SS-IG SV-BNN HS-BNN VBNN SS-IG SV-BNN

Concrete 1030 (8) 7.92 + 0.68 8.22 £ 0.70 534 £+ 053 7.34 £ 0.62 0.42 + 0.06 0.98 + 0.02
Wine 1599 (11) 0.66 + 0.05 0.65 &+ 0.05 0.66 + 0.05 0.64 + 0.05 0.18 £+ 0.05 0.87 + 0.04
Power Plant 9568 (4) 428 + 0.20 432 £+ 0.19 434 + 0.18 427 £ 0.17 0.18 £ 0.03 0.24 + 0.03
Kin8 nm 8192 (8) 0.09 + 0.00 0.11 £ 0.01 0.10 £ 0.00 0.09 £ 0.00 0.43 + 0.04 0.47 + 0.04
Protein 45730 (9) 4.85 + 0.05 493 + 0.06 4.59 + 0.02 4,78 + 0.06 0.81 £+ 0.03 0.93 4+ 0.03
Year 515345 (90) 8.68 + NA 8.78 £ NA 933 £ NA 8.67 £ NA 0.71 £ NA 0.78 +£ NA

we present layer-wise node sparsities in MLP experiments to
highlight the computational speedups at test-time. In Lenet-Caffe
experiments, we provide the floating point operations (FLOPs) ratio
which is the ratio of number of FLOPs required to predict y from
x during test time in the compressed network versus its dense
counterpart. We have detailed the FLOPs calculation in neural
networks in Appendix B.

Nonlinear activation. We use swish activations (Elfwing et al.,
2018; Ramachandran et al., 2017) instead of ReLUs in our pro-
posed SS-IG model to avoid the dying neuron problem where
ReLU neurons become inactive and only output O for any in-
put (Lu et al., 2020). Specifically in large scale datasets turning off
a node with more than 100 incoming edges adversely impacts the
training process of ReLU networks. Smoother activation functions
such as sigmoid, tanh, swish etc help alleviate this problem.
We choose swish since it has the best performance. For VBNN
and SV-BNN, we use ReLU activations as recommended by their
authors.

MLP experiments

The results of MLP network experiments on MNIST and
Fashion-MNIST are presented in Fig. 3. We provide test data ac-
curacy, model compression ratio, and layer-wise node sparsities
in each experiment.

In MLP-MNIST experiment (Figs. 3(a)-3(d)), we observe that
VBNN and SS-IG models only require ~400 epochs to achieve sta-
ble predictive performance (Fig. 3(a)). In contrast, SV-BNN slightly
degrades after 600 epochs and takes longer to achieve conver-
gence in layer-wise node sparsities compared to our approach
(Figs. 3(c) and 3(d)). Moreover, for SS-IG model, we observe that
as we start to learn sparse network our model shows peak test
accuracy when most of the nodes are present in the model and
it starts to drop as we learn sparser network and ultimately the
test accuracy stabilizes when the node sparsities converge. Fur-
thermore, SV-BNN has better model compression ratio (Fig. 3(b))
in this experiment at the expense of lower predictive perfor-
mance. Our method is prunes off ~80% of first hidden layer nodes
and ~90% of second hidden layer nodes at the expense of ~2%
accuracy loss due to sparsification compared to the dense VBNN.

In MLP-Fashion-MNIST experiment (Figs. 3(e)-3(h)), we ob-
serve that VBNN model takes ~200 epochs and our model takes
~600 epochs for convergence. SV-BNN model takes longer to
achieve convergence in layer-wise node sparsities (Figs. 3(g) and
3(h)). We also observe the complementary behavior of our model
and SV-BNN in memory and computational efficiency where our
model achieves better layer-wise node sparsities and SV-BNN
has better model compression ratio (Fig. 3(f)) with both models
having similar predictive performance (Fig. 3(e)). Furthermore,
our method prunes off ~90% of first hidden layer nodes and ~92%
of second hidden layer nodes at the expense of ~3% accuracy loss
due to sparsification compared to the densely connected VBNN.
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Lenet-Caffe experiments

The results of more complex Lenet-Caffe network experiments
on MNIST and Fashion-MNIST are presented in Fig. 4. We provide
test data accuracy, model compression ratio, and FLOPs ratio in
each experiment over 1200 epochs. Here, FLOPs ratio serves as a
collective indicator of layer-wise node sparsities since FLOPs are
directly related to how many neurons or channels are remaining
in linear or convolution layers respectively.

In Lenet-Caffe-MNIST experiment (Figs. 4(a)-4(c)), we ob-
serve that our model has better predictive accuracy than SV-BNN
(Fig. 4(a)). Moreover, we achieve 10% more reduction in Flops
(Fig. 4(c))) compared to SV-BNN whereas SV-BNN achieves better
model compression than our approach (Fig. 4(b)). In particular,
we prune out more output channels in two convolution layers
and nodes in two fully connected layers leading to lower FLOPs
at inference compared to SV-BNN. We only include FLOPs ratio
for brevity. Lastly, our method is able to reduce the FLOPs of the
model during inference at test-time by 90% at the expense of
~0.5% accuracy loss due to sparsification compared to the densely
connected VBNN.

In Lenet-Caffe-Fashion-MNIST experiment (Figs. 4(d)-4(f)), we
observe that both SS-IG and SV-BNN have similar test accuracies
at convergence (Fig. 4(d)). However, our model has 40% less
FLOPs (Fig. 4(f)) during inference stage compared to SV-BNN
which again achieves better model compression (Fig. 4(e)). In
comparison to SV-BNN, we observe fewer output channels in
two convolution layers and nodes in two fully connected layers
leading to lower FLOPs at inference. However, we only present
FLOPs ratio for brevity. This highlights the complementary nature
of our method of node selection that leads to a structurally sparse
model with significantly lower (almost 5 times) FLOPs compared
to weight pruning approach, SV-BNN, which induces unstruc-
tured sparsity in the pruned network leading to significant model
compression with low storage cost. Lastly, our method leads to a
sparse model with only 8% of the FLOPs as compared to VBNN
at the expense of ~3% accuracy loss underscoring the trade-off
between predictive accuracy and sparsity.

7. Conclusion and discussion

Deep learning has been harnessed by big industrial corpo-
rations in recent years to improve their products. However, as
deep learning models are pushed into smaller and smaller em-
bedded devices, such as smart cameras recognizing visitors at
your front door, designing resource-efficient neural networks for
real-time, on-device inference is of practical importance. Our
work addresses this computational bottleneck by compressing
neural networks by inducing structured sparsity during training.
The estimation of posterior allows us to quantify uncertainties
around the parameter estimates which can be vital in medical
diagnostics.

In this paper, we have proposed sparse deep Bayesian neural
networks using spike-and-slab priors for optimal node recovery.
Our method incorporates layer-wise prior inclusion probabilities
and recovers underlying structurally sparse model effectively. Our
theoretical developments highlight the conditions required for
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Fig. 3. MLP architecture experiment results. First two rows (a)-(d) represent the MLP on MNIST experiment results. Bottom two rows (e)-(h) represent the MLP on

Fashion-MNIST experiment results.

the posterior consistency of the variational posterior to hold.
With the layer-wise characterization of prior inclusion probabili-
ties, we show that the proposed sparse BNN approximations can
achieve predictive performance comparable to dense networks.
Our results relax the constraints of equal number of nodes and
uniform bounds on weights thereby achieving optimal node re-
covery on a more generic neural network structure. The closeness

of a true function to the topology induced by layer-wise node
distribution depends on the degree of smoothness of the true
underlying function. In this work, this has not been studied in
depth and forms a promising direction for future work.

We have developed variational posterior consistency in our
model under MLP network assumption. One can extend this the-
oretical derivation to CNN by (see Section 3.4.1 in Gal (2016)).
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Fig. 4. Lenet-Caffe architecture experiment results. Top row (a)-(c) represent the Lenet-Caffe on MNIST experiment results. Bottom row (d)-(f) represent the

Lenet-Caffe on Fashion-MNIST experiment results.

In fact, each convolutional operation can be taken as a special
case of linear mapping with a Toeplitz weight matrix. Thereby,
the corresponding weight matrix of the fully connected layer
is a large matrix that is mostly zero except for certain blocks
(due to local connectivity) where the weights in many of the
blocks are equal (due to parameter sharing). To generalize the
theory developed for MLPs to CNNs, one will need an adaptation
of the sieve construction in (11) for the case of convolutional
neural networks together with a rederivation of the Kullback-
Leibler neighborhoods of the true density function by modifying
the expressions in (12). We leave this development for future
work.

Note, in contrast to previous works, our work assumes a spike-
and-slab prior on the entire vector of incoming weights and
bias onto a node. We underscore the fact that node selection
has complementary behavior with edge selection approaches as
established by our empirical experiments. Node selection of-
fers significant computational speedup whereas edge selection
achieves significant model compression at test-time. The demon-
stration of the efficacy of our node selection approach opens
the avenue for the exploration of sophisticated group sparsity
priors for node selection. Our detailed experiments show the sub-
network selection ability of our method which underscores the
notion that deep neural networks can be heavily pruned without
losing predictive performance. The experiment with convolution
neural network (Lenet-Caffe), where we induce structural sparsity
via channel pruning in convolution layers, highlights the gener-
alizability of our approach from mere multi-layer perceptron to
complex deep learning models. Although our method performs
model reduction while maintaining predictive power, further im-
provements may be obtained by choosing the number of layers
in a data-driven fashion and can be a part of future work.
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Appendix A. Proofs of theoretical results

A.1. Definitions

Definition A.1 (Sieve). Consider a sequence of function classes
FI1CFhC - CFRCFp S-S F whereVf e F, 3f; €
Fn st d(f,fp) — 0asn — oo where d(.,.) is some pseudo-
metric on F. More precisely, Uy2 | 7, is dense in F. 7, is called
a sieve space of F with respect to the pseudo-metric d(., .), and
the sequence {f,} is called a sieve (Grenander, 1981).

Definition A.2 (Covering Number). Let (V, |.||) be a normed space,
and F C V. {Vy,..., Vy} is an e-covering of F if ¥ C UY B(V;, ¢),
or equivalently, V o € F, 31 such that |0 — Vi|| < e. The
covering number of F denoted by N(g, F, |.||) = min{n : 3¢ —
covering over F of size n} (Pollard, 1991).

A.2. General lemmas

Lemma A.3. Let g, and g, be any two density functions. Then
Eg (Ilog(g1/22)1) < dki(g1, &2) +2/e

Proof. Refer to Lemma 4 in Lee (2000). O
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Lemma A4. Forany K > O, let a,a® < [0, 11X such that
Z’,f:1 ax = p le al =1, rli<1en the KL divergence between mixture
densities Y, axgx and Y, _, a’g? is bounded as

K K

dye (Z apge. Z akgk>

k=1 k=

< di(a®, @) + Z adeL gk &k)

k=

Proof. Refer to Lemma 6.1 in Chérief-Abdellatif and Alquier
(2018). O

Lemma A.5.

di (7T, T(ID)) < di (™, 7(|D))

Proof. Using Lemma A.4 with a°
7%(0|z) and g = w(0|z, D), we get

di (7*, 7T(ID)) = dl(L(Z T (0\2)m

< di (" (2),
Z d (7

= dKL(JT 0,2), 7

n*(z), a = n(z|D), g°

2), Y 7(8|z, D)r(z|D))

z

7(z|D))

*(012), 7 (012, D)7 *(2)

(0.2|D)) = dy (7", 7(ID)) O

Lemma A.6. For any 1-Lipschitz continuous activation function
such that ¥(x) < x Vx > 0,
S|
kl+1) :|

N8, F(L, k,s,B), |I.llo)

=Xzl

SL <s st<s =0

B
(531/(2(L+1 X1, B)

where N denotes the covering number.

Proof. Given a neural network
nx) = v +W(v_1 +Wi_1¥ (v
+ Wi oy(- - (v + Wiy (vo + Wok)))))

for 1€ {1,...,L}, we define An : [0, 117 — RN,
Afnx) = Y(vio1 + Wiy (v_s

+ Wi (- - (v + Wi(vg + WokX)))))
and A; n : Ri-1 — Rkt
Arn) = v+ Wir(v_q

+ Wiy (- (v + Wi (v + Wi_1y))))

The above framework is also used in the proof of lemma 5
in Schmidt-Hieber (2020). Next, set Agn( ) = AL+277( ) = x and

further note that for n € F(L, k), |A nXl, =< B where
k = (p,kq,...,ky,ki+q1) and k1 = 1. Next, we derlve upper
bound on Lipschltz constant of A; .

|W LA n(x1) — WA (%)l
= |A (AL n(x1)) — A (AL n(x2))l
Lh.s. is bounded above by ]_[;:0 B; and r.h.s consists of compo-

sition of Lipschitz functions A; n and A,t]r; with C; and G, being
corresponding Lipschitz constants. So we can bound r.h.s. by,

IA (AL n(x1)) — AT (AL n(x2))]
VX1, X, € RP

(14)

< GGlIx — 22l

If we choose x; = x € [0, 1]° and X, = 0 then,

IA; n(A (%)) — AT (A n(0))] _ < CiC, Vx e [0, 17

0o —

320

Neural Networks 167 (2023) 309-330

Since C, is Lipschitz constant for Af_]n and we know that
Al < T15 B So we get G < 2[5 B;. We use this in
above expression,

1-2
AT (A () — A (AT n(0)] < 2C, [ [ B vxe [0, 1P
j=0
(15)

Next we know that Lh.s. of (15) can be bounded above by
2 ]_[jLzo B; because of (14). So we get bound on Lipschitz constant
of An,

2c1]_[3,<2]_[3] = G < ]_[B,

j=I1-1

Let n, n* E*}—(L’ k, s, B) be two neural networks WithWI
(v, W;)and W, = (v;, W}) respectively. Here, we define §; using
the L; norms of the rows of D, = W, — W,* as follows

Jdy, ) i, 1)

We choose 7, n* such that ||8;]|s < ¢B;. This also means that all
parameters in each layer of these two networks are at most ¢B;
distance away from each other. Then, we can bound the absolute

difference between these two neural networks by,

T

D =,,... & =ldull, ...,

In(x) — n*(x)|
[+1
<Y ALY (o + WAL (X))
=1
— AL (W (v + WAL 0" (%))
[+1 L
<Y ATTB | 1¥o + WAl p* @)
=1 \ j=I
= v(v, +WT—1 @)
L+1 L
< ATIB | s = vy + Wi = Wi AT (%)l
=1 \ j=I
[+1 L
<D T8 | 18tllcliaf i@l
I=1 \ j=I
[+1 L -2 L
< [18|eBa[]B=cc+1(]]B (16)
j=0

I

1\ j=I j=0

Recall that we have at most k; number of nodes in each layer
and there are (k’;f) < kfﬁr] combinations of nodes to choose
s; active nodes in the given layer. Since supremum norm of L,
norms of the rows of W, is bounded above by B; in our family of
neural networks F(L, k, s, B) so we can discretize these L; norms
with grid size 8B;/(2(L + 1)(]_[;20 B;)) and obtain upper bound on
covering number as follows

N(s, F(L, ks, B). |I.ll)

L Ni
B,
52...2[1—[( m)}
sf<sp sh<sp LI=0 8B/ (2(L + 1)( H] 0Bj))
L L (s1+1)
5]_[ 287 L+ 1) HB,- ki1 O (17)
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Lemma A.7. Let 0* = arg mingerri.sp 76 — noll% and W,

sup; |wi; — wj;||1, then for any density q = ]_[;:0 q(6;),

[ 10 = e 2acerco
L

=3¢ [ Waws [T [ W+ 8. Pato)o

=0 m=j+1

L j-1

+2ZZCJ—1CJ’—1/W/j(ﬁ/j+3j)qj(‘9j)dej

j=0 j=0

L
x T1 [ -+ B Paton

m=j+1

j—1
x f Wyapep)aey T / (Win + Br)a(6)d6 (18)

m=j'+1

) -1
where ¢i_1 < [[}_o Bm-

Proof. Let '75 be the partial networks defined as

n(X) == Y (WoX + 1),
ny(x) = (W (%) + vy),
nh(x) = Wing (%) + vy

Similar to the proof of theorem 2 in Chérief-Abdellatif (2020),
define

@i(0)

1 1
= sup sup |[ny(X)i — nge(X)il.
x€[0,11P 1<i<kj11

We next show by induction

- I
where we define ¢; = max(supyepo,1p SUP1 <<k, , [7g:(X)il, 1), Co =

I o 1
L, Rj+1. = Hm:j+l(Wm + Bin).

Claim: ¢; < Bjc;—1. Note

T 1-1
a=< sup sup (Jwj 7,
x€[0,11P 1<i<kj4q
ky

sup sup (Y wigling=" (@)l + [oal)

x€[0,11P 1<i<kj4q

(®)| + vil)

<

j=1
ki

sup (a1 Y |wiyl + ci-1lval)

1<i<kiyq j=1

lwill1 = Bici—1

IA

<c-1 sup

1<i<kiyq
where the above result holds since sup; ||wj|l1 < B;. Next,

@(0)

ky

-1 -1
< sup sup ( E lwing (%) — wing. (XY + v — vii])
x€[0,11P 1<i<kj;q =

ki 1

sup  sup () Jwyng (%),

xel0.1P 1<iskiyy {5

* 1-1
— Wiy

IA

(x);]

-1 -1
+ lwing (X — winge (X)i] + lvi — vyi)
kl

sup sup () Jwi — wiglln ()|
j=1

xe[0, 1P 1<iskipy 5

IA
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ky

- -
+ > fwplng X — 0 @)1+ o — vj1)
j=1

ki

sup sup () fwy — wigling ' (*); — ne (x)]

x€[0,11P 1<i<kiyq =1

<

ky

-1
+ ) wi — wigllngs )1+ lvi — vi])
j=1

+ ¢-1(0)B
< Wi(@1-1(0) + c1—1) + ¢1-1(0)B; = ¢1_1(8)(W; + B)) + c-1 W,

Now applying recursion we get

01(0) < (@20 Wi_1 4 B_1) + caWi_1 )W, + B)) + i1 W
= @—2(0)W; + B))(Wi—1 + Bi—1)
+ c2Wi_1(W) + By) + ¢ W,

Repeating this we get

1
i(0) < 9o(®) [ [(W; + B) +
j=1
' 1 - 1 _
B)+ Y B BaW; [ (W +B8)

u=j+1

1
Wo H(Wj +
j=1 j=1
1 1
Bi--BaW [ (Wi+B)=) W iRiy,
u=j+1 j=0

j=0

f llng — ne=1159(0)d0 < / g — me+112,q(6)d0 = / 97(6)q(0)do

=Y &, f WA(RE, | q(0)d6
j=0
L j-1
+ 2229_19—/,]/VVJ»V\/J-/R}HR},Hq(O)do
j=0 j’=0
2
L L
=Y [ w7 (T )| atores
j=0 m=j+1
L j-1 L
#2303 g0 [ Wiy [T o+ 80
j=0 j'=0 m=j+1

L

<[] (W +Bn)g(6)do
m=j’+1

The proof follows by noting q(#) = ]_[4=0 q(6;). O

Lemma A.8. Suppose Lemmas 4.1 and 4.2 in the main paper hold,
with dominating probability
2

pn C
log/ 07 (0)df < — o
ne, Po 2w

Proof. Let 7, = F(L k.s°.B°), 57 + 1 =ne2/ Y. ,u;, logB;
ne2/(L+ 1) Yj_o(s? + 1)) and He, = {0 : dy(Po. Pp) < ey} is the
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Hellinger neighborhood of size €,

Py Py Py
—m(0)do < T 7(0)d6 + —7(0)de
HE, Py HENFn Py Fh P
Py Co/2)ne?
< [ 0 %(0)d6 + exp ( (Co/ )”G")
’Hgn NFn PO Z U

where the last inequality follows from Lemma 4.2 because by
Markov’s inequality

Py (Co/2)ne;
Ppn (/FC P 7(0)do > exp( Su ))
(Co/2)ne? Py
<o (S50 o | o)
2
< exp <(C0§Z:€ﬂ ) ﬁ(]—‘ﬁ) = exp ( (Cogz:,% ) -0
Further,
/ Fo 7(0)do < f 0 7(60)do
e PG HE,NFn P Py
T
Py
+ / (1—¢)-7m(0)db
HE,NFn P
T

Next, borrowing steps from proof of theorem 3.1 in Pati et al.
(2018), we have Epn(qb) < exp(— C1ne ). thus for any C] < G,
¢ < exp(—Cjne? )w1th probability at least 1—exp(—(C; — C{ nel).
Thus,

T; < exp(—Cine2)T; + T,

which implies with dominating probability T; < T,. Thus, it only
remains to show T, < exp(—C;(ne2)/(}_u)) for some C;, > O.
This is true since

Czne%

2
— e C- Nep
Ppn(T, > e 24 ) < e " ZuEp(T,)

| en - otos
HE,NFn

Czne,%
<e T

Czne%

e Xy

IA

/ e~ C2ndi(Po-P) (9)dg
HE,NFn

/;-Lﬁn NFn

< exp(—Cyne?/ Z u)
Therefore, for sufficiently large n and C = min(Cy/2, C;)/2

Cznen
<eZXu e_CZ"Gn

7(8)do

/ b 7(0)d0 < 2exp(—Cjne/ > u)
Hey Py
+ exp(—(Co/2)ner/ D ")
< exp(—Cne?/ Zu,)

Lemma A.9. Suppose Lemma 4.3 part 1. in the main paper holds,
then for any M,, — oo, with dominating probability,

log/P #(0)d0 < nMy(Y i+ 8)
0

Proof. By Markov’s inequality,

(log/Pn (0) = nMy( Zﬁ"’g)
Py
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7(0)d6| Pydy.

1 n
Epn 0 n(0)d0‘
0
P
pn
1 2
<dKL(P(T)ls L)+ E)
df and the last inequality follows from
Lemma A.3.
0

I)
<— lo
S M E) g/ [
1

_ lo

nMn(Zrl‘I'%_)/ g/P()
S e

Tan(Z rn+é£)
where [* = [ P;7(0)

P
d Pn, L* = [Epn l —_—
alfo- L) =Er <°g T Pgn(o)de))
Pn
S, Poe(8)d0

< Epn | log

S /.
NS+

+ / dx(Py, Pg)7(0)d@  Jensen’s inequality
Ny e

7(6)do

< —loge "X 4 n(y “r+£)
=n(C+1))_n+8)

where the last inequality follows from Lemma 4.3 part 1. in the
main paper. The proof follows by noting C/M, — 0. O

Lemma A.10. Suppose Lemma 4.3 part 2. in the main paper holds,
then for any M,, — oo, with dominating probability,

Pn
daa. )+ Y [ log [2at0.2)0 < na,(3 "+ €)
Z 0

Proof. By Markov’s inequality we have

Pn
Ppn (dKL(q, Y. f a(6. 2)log Ly d6 > nMy(y Jri+ s>>
2 0

1 Py
< m (dKL(Q»Tf)"‘EPg Z/qw’z)l()g Pgdo)
P4
< T (d‘“ B (Z/qw e r ))
= i Zn+€ (dKL q.m +Z/ 0,z f log Poducw)

By Lemma A.3, we get

2

Zrl +%_ (dKL q, T + n Z / q(0 Z)d[(]_(Po, Pg)do + )

(n(z "+ £) +(2/e)) -0

N nMn Zrl+€)

where the last line in the above holds due to Lemma 4.3 part 2.
in the main paper. O

A.3. Proof of lemmas and corollary in the main paper

Proof of Lemma 4.1. Takes)+1 = (ngfl)/(zfzo u;) and log B} =
(ne2)/((L+ 1) Y_o(s + 1)).
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We know from Lemma 2 of Ghosal and van der Vaart (2007)
that, there exists a function ¢ € [0, 1], such that

Epy(¢) < exp{—nd;(Py,, Po)/2}
Epy(1— ¢) < exp{—nd;(Py,, Po)/2}
for all Py € F(L, k, s°, B®) satisfying dy(Py, Ps,) < du(Po, Py,)/18.
Let H = N(e,/19, F(L, k, s°, B°), dy(., .)) denote the covering
number of F(L, k, s°, B°), i.e., there exist H Hellinger balls of
radius €,/19, that entirely cover F(L, k, s°, B°). For any 6 €
F(L, k,s°, B°) w.l.o.g we assume Py belongs to the Hellinger ball
centered at Py, and if dy(Py, Py) > €, then we must have that

du(Po, Pg,) > (18/19)e, and there exists a testing function ¢,
such that

Epy(@n) < exp{—nd}(Py,. Po)/2}
< exp{—((18°/19%)/2)ne;}
Ep,(1— ¢n) < exp{—nd}(Py,, Po)/2}
< exp{—n(du(Po, Ps) — €n/19)?/2}
< exp{—((18°/19%)/2)nd};(Po. Py)}.

Next we define ¢ = maxp—1.._y ¢p. Then we must have

,,,,,

Epy(¢) < ) Epy(pn) < Hexp{—((18?/19%)/2)ne?}
h

< exp(—((18%/19%)/2)ne; — log H}
Using Lemma A.6 with s = s° and B = B°, we get
logH = logN(e, /19, F(L, k, s°, B°), dy(., .))
< log N(v/852¢,/19, F(L, k, s°, B°), |.ll0)

L (s7+1)
< log l_[ 7(L+] ]_[B ki1
=0 e €n
L L
38
=> (57 + Dlog | ———@+ 1| []B | ki1
= \/go'ezen

Jj=0

0
L L
Z s+ 1) log— + log(L + 1)+ZlogB + log ki1
j=0
L

L
2(510 + 1)(logn + log(L + 1) + Z log B} + logki+)
=0

1)(logn + log(L + 1)

+ Y logB + logki1 + log(ki + 1)) < Cne;
j=0

where, C in each step is different which tends to absorb the extra
constants in it. First inequality holds due to the following

5 2IIno nollio}

and ¢, = o(1), the second inequality is due to (17), and fourth
inequality is due to s} log(1/e,) < s} log n. Therefore,

Epy(#) < ) Epy(gn) = exp{—Cinez}
h

di(Pg, Po) < 1— exv{

for some C; = (182/19%)/2 — 1/4. On the other hand, for any 6,
such that dy(Py, Py) > €,, say Py belongs to the hth Hellinger ball,
then we have

Epy(1— ¢) < Ep,(1 — 1) < exp{—Cond§y(Po, Py)}
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where C, = (182/192)/2. This concludes the proof. O

Proof of Lemma 4.2.

Assumption: s+ 1= né ZUJ) Aikiy1/s) — 0,
j=0
Z ulogL = o(ne?) (19)
M(F(L k,s°, B°Y

=0

< (U{leﬂo > 57

) <g Wil > By )

L

+2_7

=0

aqwlo > s;) (Iwilloc > B})

O(lwillo > s7lz)w

+ZZH 1Bl > B lz)7(2)

L ki1
Zzh > |+ ZP ( sup il > B;’\z)
where w; = (|[wn 1, - . ., Wi, II1)T and the last inequality holds

since (|willo > sp1z) < 1, H(|willo > sPlz) = 1iff Y z; > s}
and n(z) < 1. We will now break the proof in two parts as
follows.

Part 1.

ki1

ZP Zzl, > S,

By Bernstein inequality

<Ze (
sZeXP(
—Ze (

sinc

K141

Z]P’ Zzh —kip1h > 57 — ki

)

—1/2(s) — kip1hi)?
krpad(1 = A) + 1/3(s] — kip1Ar)

)

)l

—1/2(sp — kipadr)?
kipid + 1/3(s7 — ki dp)

— ki1 hi/5;)?
1/3(1 + 2k1+1}»z/51

ki 1A
o

~o

)

— 0 by (19)
I

e
2
3ne;

L
= ex —
,;.: p( 4>

2
ool

42111

since Y ulog(5(L + 1))
Part 2.

> (o

~ Y ulogL = o(ne2) by (19).
ki1

< ZZP<”wll”1 > Bl‘ )

=0 i=1
w 5 .

+ ;) <5(L+1)exp (—

2
n

ZZu,

)

L kg

<) )P

=0 i=1
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BO
wij| I+1’z

L kg k1

=220 p(w

1=0 i=1 j=1
L ki k1

By concentration inequality
L kigq k+1

ZZZZZeXP<—GXP( 2ne;
=0 i=1 j—1 (L+ UZ —o(8y + 1)
— 2logll + 1)))
L kg1 k1

where the third inequality holds since |wy;| given z is bound
above by a |[N(O, 002)| random variable. The above proof holds as

long as
exp I — 2log(k; + 1)
((L+ DY o(s5 + 1)

> nel + log(L + 1) + log ki1 + log(k; + 1) + log 2

2ne?

Taking log on both sides we get

(

This is true since Z -0 s +1)=(L+
above by

ne; — log(k; + 1)
(L+1)2 (0 + 1) ’

> 5 log(nen + log(L + 1) + log ki1 + log(k; + 1) + log 2)
1)ne2/ >  u is bounded

2
n

(L+ 1)(log(k + 1)+ 1 log(ne? + log(L + 1) + log ki1 + log(k; + 1) + log 2))
O

ne

Proof of Lemma 4.3 part 1.

O{(k + 1)1},
— log(1 — Ar) = O{(si/ki1 ki + 1)}

dx.(Po, Pg) = / / (
xe[O 1]P JyeR

Assumption : —logh =

(20)

o(y, X)
Po y, X)

) Po(y, x)dydx

oy, ) — exp [~
o ,/Zmrez 207
1 (y — no(x))
= e P (-*5")
So we get,
dy1(Po, Py)
_ _ 2
_ [ f log(exp[ 0= @) = ) D Po(y. x)dydx
x€[0,1]P JyeR 2 20‘e2

f / 2y(no(x) — ne(x)) - (no(x) — 15(X)) Po(y. %)dydx
x€[0,1]P JyeR o
2n0(X)ne(x )—no( )+ ng(x)

_ /‘ 2170 X)—
xe[0,1]P 2092

_ [ (o) = me®)?
x€[0,1]P 2

dx

1
= 5||no—noui (21)
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where, o2

satisfying arg min,,c =w.k.s.) ll1e — noll%

= 1 can be chosen w.l.o.g. Next, let ng«(x) be 6*
. Then,

g — moll < e — Mollos = V& (22)

Here, we redefme 8; by considering the L; norms of the rows of

D=W,— W, as follows
D =(d,..., dlkm)T d = (lldnll, ..., ld, 1)

Next we define a neighborhood M JEn as follows:

M _ {0 ”El”1 < Ve VzrlBl
- . 1 — L ’
v (L+ 1)1 By)
ies, |dill =0,ie$,‘,l=0,...,L}
where Sf is the set where |w;ll; = 0,1 = ., L. Then, for
every 0 Mﬁ using (16), we have
lne = nells < /D1 (23)

Combining (22) and (23), we get for 0 € Mﬁ e — noll1 <

VD 1+ E. So we get,
( Zﬁ-i-f <Zrz+5

dyi(Po, P) <

Since 6 € Ny~ for every 6 € Mﬁ: therefore,

/ 7(0)do > /
0Ny 16 e M

Let 8, = (/2 nB)/((L +

will1 < 8n}

and A = {w;; :  |wy —

(T 1o B)

7 (Mys)
:;H(Mm
>

1,i€8),2=0,iSf ,I=0,...,L}

z) 7(z)

v

z) 7(z)

(1 — a1 —sipg! HE(H(E,,-eA}lln =1)

i€S;

{z:zjj=

I
-

Il
[S)

L 1 S kg wz
_ ki41—s19 51 - =
o1 () o)
1=0 i€S; li
L k1
(=g ] 1)
b 2
1=0 ieS)
kj+1 E?f__'_‘siﬂ —2
ij 7 kg1 wh-j -
X l_[ /w*”isin exp (—2> du);u
Jj=1 lij™ k+1
L K+t k+1 ~2
1_[ — ) SIASIH i ’ 261 Xp _ Wi
2 1Lk +1 2
1=0 ieS) Jj=1
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where the third equality follows since E(1g,eaylzi = 0) = 1 since
lwgll1 = 0, fori € Sf. The last equality is by mean value theorem,
'u\)h-j IS [Wﬁj —&n/(ki + 1), wﬁj + 8,/(k; + 1)], thus

L
ki+1 1
— 1 ’<1+1 5()\5’ lo
[Ta-» [Tow (5 os

ieS)
ki+1 ~2
W
k+ 1)1 Nl
(ki + )ogk1~|—1 ; >
L 1
:exp|: Z{sﬂog( )—i—(lc,+1—s,)log<1 )\)
— Al
1=0
n I([+1 1
271
i€S)
k(+1/u\)2
)

1
— M

L
= exp [ Z { s,log( >+(k,+1 —s,)log(1
1=0

(kl + 1) 1 n
— 71 — — sk + 1)1
5 0g 5 si(ki + )nglJr1
kj+1 Az
+2.0.5 iy ” (24)
ieS) j=1
Now,
k41 Az
ZZZ
=0 1e81} 1
1 k41
<3 Z D0 max((wyy; — 8 /tki+ 1)), (W + 8a/(ki + 1))
=0 ieS;| j=1
ki+1
=T s+ 1)
1=0 ieS; j=1
L L
<O IR+ Y D 82 ki + 1)
1=0 ieS; =0 ieS;
L
fZSI(Berl)fnann(ZnJré) (25)
1=0
where the above line uses §, — 0. Finally
- 1
Z (sl log( ) + (kie1 — s»log( )
= 1—XN
si(ki+ 1) 1 25,
— 71 — —si(k+ 1)1
o log o —sila+ 1) ogle)
L
ki +1
<> <Cnr, + sitki + 1) { 2log(k; + 1) + 2log(L + 1)
1=0 2
L
+ 2 Z log By, —long; })
m=0,m##l
§Can,§Cn(Zrl+E) (26)

where the first inequality follows from and expanding §,. The last
inequality follows since n ) r; — oo which implies —log ) r, =
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O(log n). Combining (25) and (26) and replacing (24), the proof
follows. O

Proof of Lemma 4.3 part 2.

Assumption : — log A; = O{(k; + 1)v4},

— log(1 — Ar) = O{(s1/ ki1 )(ki + 1)}

Suppose there exists ¢ € QVF such that

)< Cin Z T,
> /@ lng — ng+ 113 a(8, 2)d0 < .
z

Recall 6* = arg mingeo(p 5.8 ln6 — n0ll2

E /ndI(L Po, Pg)q(0, z)d0 =
2
= 5 Ez /”770* — ngll3q(0, z)do

n 2
+ 5”’79* —1oll5%

<cn() n+¢)

where the above relation is due to (27) which will complete the
proof.
We next construct g € QVF as

dyi(q, 7

(27)

. By relation (21),

[llno 19115q(0, z)d6

Wilzi ~ 2N (W, o) + (1 = zi)So,

vi = Wllwilli #0)

where o = MH (4l + 1)log(k,+12"’+1)]_[m —omzt Ba) ™!
We next consider the relation (18) in Lemma A.7.

We upper bound the expectation of the supremum of L; norm
of multivariate Gaussian variables:

/ Wia(6. 2)d6 < / sup i — w1 1(012)d6
1

z; ~ Bern(y;)

< / sup I[@is — @} 11q(6]z = 1)d6
1

since q(z) < 1. If z; = 1, then ||w; — wj;|l; = 0, thus the above
integral is maximized at z = 1 where z = 1 indicates all neurons
are present in the network. In this case, all wy; are nothing
but independent Gaussian random variables. In this direction we
make use of concentration inequalities similar to the proof of
theorem 2 in Chérief-Abdellatif (2020). Let, Y = sup; [|wj; — wj /1.

exp(tEY) < E(exp(tY)) = E[sup exp(t[[wi — wjl1)]
1

K41 k41
< > Elexp(t Y [ — Wi|)]
i=1 j=1
kip1 ki+1
= > [ ] ®lexp(t iy — wiy )1
i=1 j=1
kip1 k41
—ZHZexp[ :| D(ojt)
i=1 j=1

o2
< ki 129+ exp [(k, + 1):|
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Thus, EY < (log(ki12Y) + (ki + 1)0t?/2)/t. Let t = (1/o7)
V(2/(k + 1)) log(kiy12577),

ki +1
= UI\/? [\/log(k,sz:H) + \/1°g(kl+12k’+l)]

= \/ZUIZ(kl + 1) log(kjy12k+1) < \/4(712(’(1 + 1) log(ky12k+1)

Similarly,
/ W2q(8, z)d

/ sup(|[@i — w; I1)2q(0. 2)d6

<fsup (i — ;1 Pq(8lz = 1)

Let, Y' = sup;(|[w; — wj]|1)*.
exp(tEY’) < E(exp(tY")) = E[sup exp(t(||wy — W 1)*)]
1
ki1 ki+1
< D Elexp(t() ) [wyy — wiyl))]
i=1 j=1
ki1 ki+1
<) Elexp(t(ki + 1) Y (Wi — wy))]
i=1 j=1
kit1 k41
= > [ ] Blexp(t(ki + 1)@ — w;;)*)]
i=1 j=1
D3] {[——
=1 =1 1—2tk1+1)

kj+1

1 2
<k -
=t (1 2tk + 1)0,2>

Thus, EY’ < (log ki1 — ((ki + 1)/2)log(1 — 2t(k; + 1)o))/t. Let
t = 1/(4of (ki + 1)),

ki +1
EY' < 4olz(k, +1) [logkm + (%) logz]

) k1
= 4o (k + 1)log(k;12727)
< 407 (ki + 1)log(k 1211

Next we also get,

/ (W, + B))q(6, z)d0 = / Wiq(6, z)d0 + B

< J407(k + 1) log(ki124+1) + By < 28,

/ (W, + B))*q(6, z)d6 = f W2q(6, z)d6 + 2B, / Wiq(6, z)d0 + B?

< 402 (ki + 1) log(kp 1251

+ 23,\/40,2(/<, + 1) log(kyy124+1) + B2 < 4B?

/ Wi(W, + B)q(8, z)d6 = / W2q(8, z)d6 + B, f Wiq(6, z)do

< 407k + 1)log(kis12*1) + Bry 40 (ks + 1) log(kiy1241+1)

< \/40,2(1<, + 1) log(kip12k+1) (\/4012“(1 + 1) log(ki 1 2k+1) + Bl>

< 2B,\/407(l + 1)log(ki.125+)
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since \/4olz(kl + 1)log(ki12k+1) is bounded above by

L -1
451
JS"@ +1)<4H<k1+1)log<kz+12kf+1) I1 B%n) (ki + 1) log(ky124+1)

m=0,m#l

-1
=ﬂmwanﬁ>f“

The quantity in square root < 1 for large n.

Let b; = (k; + 1)log(k;12%"1). From relation (18), we get

/Ilﬂo—ﬂo*llzqo 2) 0<Zc (407 b;) <1_[ 4Bf">

m=j+1
L j-1

+2) ) Goigp12B;,/40} b(l_[ 4Bﬁ1>

j=0 j'=0 m=j+1

j—1
x /4aj%bj/< I1 23m>

m=j'+1

= 4Z4L “o2b; (]_[ B2><m]_11 32)

i) (11 )

m=j+1

_4222L Y2 by 1—[ B
m=0,m#j
L j—1

+8) > 42T (1_[ Bm) (,ij)Bm>

j=0 j/=0

L
x (1_[ Bm>< l_[ Brn),/(rjzbj,/aﬁbj/
m=j+1 m=j'+1
L L
:4222L—zfaj2bj< I B%n>
j=0 m=0,m#j
L j-1 L
+8) > 2 12“( [ Bm>< ),/ bj\/o2by
Jj=0 j’=0 m=0,m#j m=0,m#
L L S 2
=z T ) =+ \/8(L+1))

2 L L
1 Zj 0 Sj
:%WH(§$OSMS§n

This concludes the proof of (27). Next,

1
dii(q, 7) < log ——
(g, 7) < gn(z)
L—1 ki1 kj+1
(z =y )dx ({ 1_[ l_[ Vi N wlu’al )+ ( Vz;k)fso}
1=0 i=1 j=1
ki +1 L—1 ki1 kg+1
[T~@s o2 | TITTTT { 280,08
j=1 =0 i=1 j=1
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ki+1
+ (1= 208 | [T 00, 03) ])
j=1
= log !
zL;(} A1 = a1t
L—1 kg1 ki+1
+ DD da (N @ 0P + (1= %6,
1=0 i=1 j=1
kp+1
VN0, 08+ (1= 780 ) + 2 dKL<N wy,, o), N (O, 002)>
j=1
L-1 1
= silog — + (kipq — si) 1
2 (l gk1+(l+] I)Ogl—kl)
L—1 Kip1 k+1 2 | k2
‘71 + Wy 1
+ ZZ%{ 1°g t—a 3
=0 i=1 j=1 0
ki +1

{, Og% &_%}

+ Z
< Z Cnr + Z
=0 =0

kL+]
2

2
Bl

siki+s | o
ag ao(kl +1)

%
—1+log—
9]

o2 2 o2
+ Gy i 14105 %0
|: of ok +1) & o
where the first inequality follows from Lemma A.4. The inequality
in the above line uses Z *}Zz < B? and similar to the proof
of Lemma 4.1 in Bai et al. (2020) uses .

Let o = 1 and it could be easily derived that o < 1.

L71$ Bz
I I
—(k+1
+22( ot )[k,+1

-1
dgi(q, ) < Zcm’l - 108012:|

=0 I=
(ke +1)[ B? )
—1
+ 2 kL —+ 1 08 UL
S+ Y 2 1) [ ’
= 1 =k
Py Py 2 ki+1
L -1
1 L—I 2
8n(L+1) 0o
L -1
(1<L+1)[ B ( 1 [ )
+ —log| ——— 1_[ B,
2 ke +1 8n(L+ 1) me.mL

2
1

_ZCnr1+Z (ki +1 [

ki+1
s L -1
1 LI 2
(ol I =
-1 L L
_ S| o s 8n(L+1)
= ZCnrl + Z EBI + Z E(kl + 1)10g<T

L L
N
+ 3 sk + (L~ Dlog2+ E’(k, + 1) log(k; + 1)
=0 =0
L S,
2 + 1)log10g(ki+121))
=0
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L
+ ) stk +1)

log Bm>
1=0

=l L Ls 8n(L+1)
I ]
§ZCnr1+Z§B +Z§ ki +1) 10g<7sl >
1=0 1=0 1=0
L

+ Lzsl(kl +1)

=0

(%

m=0,m##l

L
S
+y E(lq + 1)(log(k; + 1) + log(ki1 + ki + 1))

1=0
L L
+ s,(k,—i—l)( Z logBm>
=0 m=0,m#l
-1 L L
S, S 8n(L+1)
< C —B —(k;+ 1)log| ——
<Y a3 T8+ Y S0+ ntog( L

+ 3 stk + 1) log(kie1 + ki + 1)

1=0
L
Z log Bm)

L
+ stk + 1)(
=0 m=0,m#l

L1 L
BZ
< chrl + Zsl(kl +1) |: m + (
1=0 1=0

+ L+ log(ki 1+ ki + 1)

1 <8n(L+])> i|
2 M

L1
< Z(C + Cnrp 4+ C'nry
1=0

L
+ Zs,(kl +1) [ log Bm>
1=0

n
+ L+ log(ki 1 + ki + 1)+ log(;) :|

L
Z log Bm>

m=0,m##l

+

B2 L
1
(X

m=0,m##l

L-1 L

<Z(C+C nrl+C/an+Zs, k1+1)1?,<C1anl
1=0 1=0 1=0

This concludes the proof of (27). O

Proof of Corollary 4.5. The proof is a direct consequence of
Theorem 4.4 in the main paper as long as assumptions of Lem-
mas 4.2 and 4.3 parts 1 and 2 hold when 002 1, —log A,

log(ki1)+G(ki+ 1) and €, = \/ (o + &) Y1 w. This what
we show next.

Verifying assumption (19) under Proof of Lemma 4.2: Note, > uj =
0(e?), thus

Z”’ logL = o(ne?) <= loglL = O(TI(Z n+é&))
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which is indeed true since logL = o([?) and [? < n ) ;. We will
show that (ki.1A)/s; — 0. With &) = (1/kiq1) exp(—=Ci(k; + 1)),
kividr _ > urexp(—C(k + 1))
s; ne?
exp(—C(ki + 1)9; + log ) uy)
ne?
_ exp(=C(ki + 1)9 + %)
- ne?

— 0

where the above relation holds since log) u; < &, & — oo,
kj — oo and ne? — oc.

Verifying assumption under Proof of Lemma 4.3 part 1. and part 2.
Note,

—log A = log(kit1)+Ci(ki+ 1) < 91+ C(ki+1)9; = Of(k+ 1)}
And then,
11— =1—exp(—=Ci(k + 1))/kiq

—log(1 — Ar) ~ exp(—Cdi(k + 1))/kipr = Of(ki + 1)s191/kig1}
since exp(—Cith(k; + 1)) — 0 and (k; + 1)s;9; — o0, O

Appendix B. Additional numerical experiments details

B.1. FLOPs calculation

We only count multiply operation for floating point operations
(FLOPs) similar to Zhao et al. (2019). In 2D convolution layer, we
assume convolution is implemented as a sliding window and that
the nonlinearity function is computed for free. Then, for a 2D
convolutional layer (given bias is present) we get FLOPs as:

FLOPs = (Cin,prunedeKh + 1)Owohcout,pruned

where, Cin pruned> Cout,pruned are the number of input channels and
output channels after pruning. Channels are pruned if all the
parameters associated with that channel in convolution mapping
are zero. K,, and K}, are the kernel width and height respectively.
Finally, O,,, Oy are output width and height where O0,, = (I, +2 x
Py —Dy X (Ky —1)—1)/Sy + 1 and O = (I +2 x Py — Djy x (K —
1) — 1)/Sy + 1. Here, I, I are input, P, P, are padding, D,,, Dy,
are dilation, S,,, Sy, are stride widths and heights respectively.
For fully connected (linear) layers (with bias) we get FLOPs as:

FLOPs = (Ipruned + 1)Opruned

where, Ipuneq is the number of pruned input neurons and Opuned
is the number of pruned output neurons.

B.2. Variational parameters initialization

We initialize the y;;’s at a value close to 1 for all of our exper-
iments. This ensures that at epoch 0, we have a fully connected
deep neural network. This also warrants that most of the weights
do not get pruned off at a very early stage of training which might
lead to bad performance. The variational parameters pjy are
initialized using U(—0.6, 0.6) for simulation and UCI regression
examples whereas for classification Kaiming uniform initializa-
tion (He et al,, 2015) is used. Moreover, oy are reparameterized
using softplus function: oy = log(1 4 exp(py)) and pyy are
initialized using a constant value of —6. This keeps initial values
of oy close to O ensuring that the initial values of network
weights stay close to Kaiming uniform initialization.
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B.3. Hyperparameters for training

We keep MC sample size (S) to be 1 during training. We choose
learning rate of 3 x 1073, batch size of 400, and 10000 epochs
in the 20 neurons case of simulation study-1. We use learning
rate of 1073, batch size of 400, and 20000 epochs in the 100
neurons case of simulation study-I. Next, we use learning rate of
5 x 1073, full batch, and 10000 epochs for simulation study-II. In
UCI regression datasets, we choose batch size = 128 and run 500
epochs for Concrete, Wine, Power Plant, 800 epochs for Kin8nm. For
Protein and Year datasets, we choose batch size of 256 and run
100 epochs. For all the UCI regression datasets we keep learning
rate of 1073, The Adam algorithm (Kingma & Ba, 2015) is chosen
for optimization of model parameters.

In image classification datasets, for SS-IG model, we use 1073
learning rate and minibatch size of 1024 in all experiments except
in Lenet-Caffe on Fashion-MNIST experiment where we use 2 x
1073 learning rate and 1024 minibatch size. For SV-BNN model,
we take 1073 learning rate and 1024 minibatch size in all exper-
iments after extensive hyperparameter search. For VBNN model,
we take learning rate of 10~* and minibatch size of 128 according
to Blundell et al. (2015). We train each model for 1200 epochs
using Adam optimizer in all the image classification experiments
provided in main paper.

B.4. Fine tuning of constant in prior inclusion probability expression

Recall the layer-wise prior inclusion probabilities: A; = (1/k;11)
exp(—Ci(k; + 1)9) from Corollary 4.5. In our numerical experi-
ments, we use this expression to choose an optimal value of X;
in each layer of a given network. The A; varies as we vary our
constant C; and we next describe how is C; chosen. The influence
of C; is mainly due to the k; + 1 term and B,z/(k, + 1) from
term. We ensure that each incoming weight and bias onto the
node from layer [+ 1 is bounded by 1 which leads us to choose B,
to be k;+1. So the leading term from (k;+ 1)v; is (k;41) and C; has
to be chosen such that we avoid making exponential term from X;
expression close to 0. In our experiments we choose C; values in
the negative order of 10 such that prior inclusion probabilities
do not fall below 107°°, If we instead choose a A; value very
close to 0 then we might prune off all the nodes in each layer or
might make the training unstable which is not ideal. Overall the
aforementioned strategy of choosing C; constant values ensure
reasonable values for the ), in each layer.

B.5. Simulation study I: extra details

First we provide the network parameters used to generate
the data for this simulation experiment. The edge weights in
the underlying 2-2-1 network are as follows: Wy = {wp11
10, wo12 15, w21 = =15, wez = 10}; Wy = {wi
=3, w21 = 3} and v = {vo1 = —5, vo2 = 5}; v1 = {v11 = 4}.

Below we provide additional results demonstrating the model
selection ability of our SS-IG approach in a wider network consist-
ing of 100 nodes in the single hidden layer structure considered
in the simulation study-I from main paper (see Fig. 5).

B.6. Effect of hidden layer widths

Here, we explore 2-hidden layer neural networks with varying
widths. For our SS-IG model we use 1073 learning rate and
minibatch size of 1024 while for VBNN model, we take learning
rate of 10~* and minibatch size of 128 according to Blundell et al.
(2015). We train both the models for 400 epochs using Adam
optimizer.
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Fig. 5. Node-wise weight magnitudes recovered by VBNN and proposed SS-IG model in the synthetic regression data generated using 2-2-1 network. The boxplots
show the distribution of incoming weights into a given hidden layer node. Only the 20 nodes with the largest edge weights are displayed.
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Fig. 6. MNIST experiment results for varying hidden layer widths.

Fig. 6 summarizes the results. We have provided results for
3 different architectures which have 400, 800, and 1200 nodes
each in their 2-hidden layers. In Fig. 6(a), we find that across the
architectures both SS-IG and VBNN models have similar predic-
tive performance. Further, our method is able to prune off more
than 88% of first hidden layer nodes and more than 92% of second
hidden layer nodes (Fig. 6(b)) at the expense of 2% accuracy
loss due to sparsification compared to the densely connected
VBNN. We also observe that as model capacity increases the
sparsity percentage per layer decreases. This suggests that, each
architecture is trying to reach a sparse network of comparable
size.
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