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Abstract
Score distillation sampling (SDS) has proven to be an important tool, enabling
the use of large-scale diffusion priors for tasks operating in data-poor domains.
Unfortunately, SDS has a number of characteristic artifacts that limit its useful-
ness in general-purpose applications. In this paper, we make progress toward
understanding the behavior of SDS and its variants by viewing them as solving
an optimal-cost transport path from a source distribution to a target distribution.
Under this new interpretation, these methods seek to transport corrupted images
(source) to the natural image distribution (target). We argue that current methods’
characteristic artifacts are caused by (1) linear approximation of the optimal path
and (2) poor estimates of the source distribution. We show that calibrating the text
conditioning of the source distribution can produce high-quality generation and
translation results with little extra overhead. Our method can be easily applied
across many domains, matching or beating the performance of specialized methods.
We demonstrate its utility in text-to-2D, text-based NeRF optimization, translating
paintings to real images, optical illusion generation, and 3D sketch-to-real. We
compare our method to existing approaches for score distillation sampling and
show that it can produce high-frequency details with realistic colors.

1 Introduction

Diffusion models have shown tremendous success in modeling complex data distributions like
images [51, 54, 3, 22], videos [59, 4] and robot action policies [13]. In domains where data is
plentiful, they produce state-of-the-art results. Many data modalities, however, cannot enjoy the same
scaling benefits due to their lack of sufficiently large datasets. In these cases, it is useful to exploit
diffusion models trained on domains with rich data sources as a prior in an optimization framework.
Score Distillation Sampling (SDS) [48, 69] and its variants [70, 20, 76] are a widely adopted way to
optimize parametric images, i.e., images produced by a model like NeRF, with a pre-trained diffusion
model. Despite being applicable to a wide range of applications, SDS is also known to suffer from
several significant artifacts, such as oversaturation and oversmoothing. As such, several variants have
been proposed to alleviate these artifacts [70, 76, 32], often at the cost of efficiency, diversity, or other
artifacts.

In this paper, we investigate the core issues with SDS by casting the class of score distillation
optimization problems as a Schrödinger Bridge (SB) problem [55, 12, 11, 42], which finds the
optimal transport between two distributions. Specifically, given some images from the current
optimized distribution (e.g., renderings from a NeRF), applying the transport maps them to their pair
images in a target distribution (e.g., text-conditioned natural image distribution). The density flow
formed by these mappings is transport-optimal, as defined in the SB problem. In an optimization
framework, the difference between paired source and target samples, computed with an SB, can be
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used as a gradient to update the source. Su et al. [65] have shown that this path can be explicitly
solved using two pre-trained diffusion models. We show that one can also compose these models as
an optimizer to approximate transport paths on the fly.

Under this framework, we can understand SDS and its variants as approximating a source-to-target
distribution bridge with the difference of two denoising directions. The denoising scores point to the
source and target distributions respectively, with the source representing the current optimized image
that updates with each optimization step.

This framing reveals two sources of errors. First, these methods are a first-order approximation of the
diffusion bridge. Specifically, Gaussian noise is sampled to perturb the current optimized image, and
single denoising steps, instead of the full PF-ODE simulation, are used to estimate the transport. This
induces error in estimating the desired path. Recent works [34, 41] that use multi-step estimation
can be explained as mitigating this error. Second, estimating the denoising direction to the current
source distribution is non-trivial, since the current optimized image may not necessarily look like a
real image (e.g., initializing with Gaussian noise or starting from a render of an untextured 3D model).
Our analysis reveals that SDS approximates the current distribution with the unconditional image
distribution, which is not accurate and results in a distribution mismatch error. We show that recent
SDS variants [70, 76, 32] can be seen as proposals to improve this distribution mismatch error.

Finally, our analysis motivates a simple method that rectifies the distribution mismatch issue without
additional computational overhead. Our insight is that the large-scale text-to-image diffusion models
learn from billions of caption-image pairs [56], where a breadth of image corruptions are present in
their training sets. They are also equipped with powerful pre-trained text encoders, which empower the
models with zero-shot capacity in generating unseen concepts [53, 52]. As such, simply describing the
current source distribution with text, even if it is not part of the real image manifold, can approximate
the distribution of the current optimized image, leading to improved transport paths. Our simple
and efficient solution can be easily applied to any existing application that uses SDS. We show that
it consistently improves the visual quality in the desired domain. We comprehensively compare
our approach with standard distillation sampling methods over several generation tasks, where our
approach matches or outperforms the baselines.

Our contributions are as follows:

• We propose to cast the problem of using a pre-trained diffusion model as a prior in an
optimization problem as solving the Schrödinger Bridge (SB) problem between two image
distributions. Specifically, it can be seen as bridging the distribution of the current optimized
image to the target distribution under a dual-bridge framework.

• We analyze recent SDS-based methods under the lens of our framework and explain the
pros and cons of the individual methods.

• Our analysis motivates a simple yet effective alternative to SDS by using textual descriptions
to specify the current optimized image distribution. It achieves consistently more realistic
results than SDS, producing quality comparable with VSD [70] without its computational
overhead. We compare various generation tasks to show its wall-clock efficiency and quality
generations against state-of-the-art methods.

2 Related Work

Score Distillation Sampling Modalities like 3D, 4D, sketch, and vector graphics (SVGs) lack
the large-scale, diverse, and high-quality datasets needed to train a domain-specific diffusion model.
In these domains, previous works explore exploiting image or video as a proxy modality [26, 16].
By computing the gradient on a proxy representation with a pretrained model, optimization in
the target modality is viable with differentiable mappings, e.g. differentiable rasterization [33]
for SVGs or differentiable rendering [44] for 3D objects and scenes. The seminal method, Score
Distillation Sampling (SDS) [48], first proposed to apply a pretrained text-to-image diffusion model
for text-to-3D generation. However, it requires a high classifier-free guidance weight and, therefore,
suffers from artifacts such as over-saturation and over-smoothing. Recent works have built upon
SDS to adapt it for editing tasks [30, 20, 46, 29] or more broadly improve over the original SDS
formulation [28, 1, 70, 77, 76, 78]. NFSD [28] and LMC-SDS [1] inspect the individual components
of the SDS gradient and propose methods to rectify the high guidance weights. However, the over-
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Figure 1: Optimization with diffusion models as approximation of a Schrödinger Bridge Problem (SBP). (a)
We propose to formulate optimization with diffusion models as bridging the distribution of the current optimized
image xθ to the target distribution under a dual-bridge framework (a). Current methods can be interpreted as
approximating the optimal transport ϵ∗SBP between these distributions via the difference between projections of
a noised image xθ,t onto the two distributions. This analysis reveals two sources of error: (1) these gradients
are linear approximations of the optimal path, as illustrated in (a), and (2) the source distribution used for
computing this approximation (e.g., the unconditional distribution in SDS [48]) may not be aligned with the
current distribution, illustrated in (b).

saturation problem is mitigated but not fully resolved. VSD [70] formulates the problem as particle-
based variational inference and proposes to train a LoRA [24] on the fly to estimate the score of proxy
distribution. We present a new framework that allows rethinking all the variants under the same lens.
This framework also motivates a method that improves the quality of SDS without losing efficiency.

Visual Content Generation with SDS Since SDS was developed for text-to-3D generation, it has
also been adopted to generate various other visual content such as SVGs [18, 73], sketches [72],
texture [43, 6–8, 75], typography [25], 3D bodies [45], dynamic 4D scenes [2, 60, 37] and illusions [5].
Among these applications, text-to-3D has been the most active research direction. In addition
to designing better distillation sampling methods [70, 77, 28], prior work has also studied the
underlying 3D neural representations [74, 66, 35, 9] and leveraging multiview data to improve the
3D consistency [57, 40, 39, 49, 78]. We note that these explorations are orthogonal to our study and
should be able to work jointly with our method. In this paper, we look into existing applications like
text-based NeRF optimization, painting-to-real, and illusion generation. We also propose a new AR
application called 3D sketch-to-real.

3 Method

In this section, we present an analytical framework that casts the score distillation sampling (SDS)
family of methods as instantiations of a Schrödinger Bridge problem. We show that many recent SDS
based methods can be interpreted as an online solver for the problem. That is, each SDS optimization
step is a first-order approximation of a dual diffusion bridge formed by two probability flow (PF)
ODEs [65]. We analyze SDS and its variants under this general framework. Then, we present a
simple solution based on the analysis, which leads to significant quality improvement with little extra
computational overhead.

3.1 Background

Diffusion models define a forward “noising" process that degrades data samples x gradually from
the image distribution to noised samples zt, and eventually the i.i.d. Gaussian distribution [23, 62].
This process is indexed by timesteps t, where t = 1 indexes the full Gaussian noise distribution and
t = 0 indexes the data distribution. A diffusion model, parameterized by ϕ, is then trained to reverse
this encoding process, iteratively transforming the noise distribution into the data distribution with
the following denoising objective:

LDiff(ϕ,x) = Et∼U(0,1),ϵ∼N (0,I)

[
w(t) ∥ϵϕ (αtx+ σtϵ; y, t)− ϵ∥22

]
, (1)

where w(t) is a loss weighting function, y is a conditioning text prompt, and αt and σt are hyperpa-
rameters from the predefined noise schedule.
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Probability Flow ODE. Denoising score matching [64, 27, 61] shows that the diffusion model
denoising prediction can be rewritten as a score vector field:

∇x log pt(x) = − 1√
1− αt

ϵt. (2)

Because of its special connection to marginal probability densities, the resulting ODE is named the
probability flow (PF) ODE with the following expression:

dx = [f(x, t)− 1

2
g2(t)∇x log pt(x))]dt, (3)

where f(x, t) and g(t) are pre-defined schedule parameters. This PF-ODE can be solved determinis-
tically [63], mapping a noise sample to its corresponding data sample through the reverse process
and the opposite through the forward process (inversion). This cycle-consistent conversion between
image and latent representations is important in establishing dual diffusion implicit bridges.

Dual Diffusion Implicit Bridges. Dual Diffusion Implicit Bridges (DDIBs) [65] compose a diffusion
inversion and generation process for solving image-to-image translation problems without requiring
a paired image dataset. Instead, DDIBs use two diffusion models trained on different domains (or,
analogously, one model with two different text conditions). DDIB inverts the source image into
a noise latent via the forward PF-ODE and then decodes the latent in the target domain via the
reverse PF-ODE. DDIBs can be interpreted as a concatenation of the Schrödinger Bridges from
source-to-latent and latent-to-target, hence the dual bridges in its name. DDIBs enable solving
transport between two distributions using a single pre-trained diffusion model. We build on this
insight in an optimization context.

3.2 Optimization with Diffusion Model Approximates a Dual Schrödinger Bridge

Many generative vision tasks involve optimizing corrupted images to the image manifold. For
example, in 3D generation, a 3D representation like NeRF is optimized to render natural images
matching a prescribed text prompt. Methods like SDS enable this by using a pre-trained diffusion
model as a prior. We propose formulating such optimization problems as solutions to an instantiation
of a Schrödinger Bridges Problem (SBP). SBP finds cost-optimal paths between a source image
distribution psrc and a target image distribution ptgt [68, 14]. Optimizing a parametrized image toward
the natural image distribution can be cast as finding the optimal paths between the current optimized
image(s) and the natural image distribution. Instead of solving this problem directly, which would
require training a generative model from scratch [38, 14, 10], we show that pre-trained diffusion
models can be exploited as an optimizer that approximates the path. Further, the gradient computed
by the existing score distillation methods can be viewed as the first-order approximation of this path.
This formulation is illustrated in Figure 1.

Let xθ ∈ Rd represent a parametric image, i.e., an image produced differentiably by a model with
parameter θ, such as a NeRF. To leverage the pretrained diffusion model, we add noise ϵ ∼ N (0, I)
to obtain a latent at timestep t:

xθ,t = αtxθ + σtϵ (4)

Suppose that ψt′,src and ψt′,tgt denote the paths obtained by solving the PF ODE as in Eq. 3 from t
to 0, both starting from xθ,t, such that ψ0,src ∈ psrc, ψ0,tgt ∈ ptgt, ψt,src = ψt,tgt = xθ,t. This forms
a dual diffusion bridge [65] from ψ0,src to ψ0,tgt. We approximate this path per-iteration using a
pretrained diffusion model. We denote the displacement of this path as:

ϵ∗SBP = ψ0,tgt − ψ0,src. (5)

Fully simulating this bridge involves solving two PF ODEs, which invokes dozens of neural function
evaluations (NFEs) to estimate the gradient of each iteration. Instead, one can estimate each half of
the bridge with a single-step prediction by computing two denoising directions ϵϕ,src and ϵϕ,tgt. We
thus obtain a first-order approximation of a dual diffusion bridge with the difference vector:

ϵSBP = ϵϕ,tgt − ϵϕ,src, (6)
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Figure 2: Comparision of SDS variants under our analysis. We illustrate the major gradient components of
different SDS variants and provide a straightforward comparison with ϵSBP.

which is subject to the following sources of errors.

1. First-order approximation error. Instead of performing full PF-ODE simulations, the
single-step noising and prediction are less accurate and induce errors. Recent work ISM [34]
can be interpreted as reducing this error with a multi-step simulation to obtain xθ,t.

2. Source distribution mismatch. The dual diffusion bridge relies on ϵϕ,src accurately estimat-
ing the distribution of the current sample, xθ. A series of works can be viewed as improving
this error [70, 28, 76] by computing more accurate ϵϕ,src .

We show that ϵϕ,tgt − ϵϕ,src is an effective gradient when both the source and target distribution are
well expressed. Next, we discuss the popular score distillation methods under this analysis. We argue
that their characteristic artifacts can largely be understood due to the errors above.

3.3 Analyzing Existing Score Distillation Methods

We analyze SDS and its variants through our framework by inspecting each component in the
computed gradient. For notation, ytgt is the text prompt representing the target distribution, and ∅
denotes the unconditional prompt. For each method, we present its gradient update and discuss its
implications.

Score Distillation Sampling [48]:
ϵSDS = ϵϕ (xθ,t;∅, t) + s · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t;∅, t))− ϵ,

where s is the strength of classifier-free guidance. When s is small, the ϵ functions as an averaging
term to regress the image to the mean. However, the SDS gradient has been shown to work best with
extreme values of classifier-free guidance s like 100. We can rewrite the gradient to emphasize how
the conditional-unconditional delta dominates at high CFG scales.

ϵSDS = s · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t;∅, t))︸ ︷︷ ︸
Dominant when s≫1

+ϵϕ (xθ,t;∅, t)− ϵ,

Experimentally, we produce very similar results at high CFG with or without the non-dominant
terms. We argue that SDS should be interpreted through the dominant term, which fits within our
analysis. Under this interpretation, the unconditional direction ϕ (xθ,t;∅, t) approximates the source
distribution of xθ poorly, instead representing images of any identity with low contrast and geometric
artifacts. Figure 1(b) illustrates the effect of a poor approximation. The bridge from the unconditional
to conditional distribution leads to the characteristic oversaturation and smoothing of SDS results.

Delta Distillation Sampling [20]:
ϵDDS = ϵϕ (xθ,t; ytgt, t)− ϵϕ (xref,t; ysrc, t) ,

where xref,t is a noised version of a reference image in the image editing task. As shown in Figure 2
(b), this increases the source distribution mismatch since ϵϕ,src is not calculated based on the current
optimized image xθ,t.

Noise Free Score Distillation [28]:
ϵNFSD = (ϵϕ (xθ,t;∅, t)− (t < 0.2) · ϵϕ (xθ,t; yneg, t)) + s · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t;∅, t)),
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where the strength of classifier-free guidance s is set to 7.5 and yneg =“unrealistic, blurry, low quality
...”. NFSD greatly reduces the guidance strength while it is observed to perform very similarly to
SDS in practice. We can better explain this phenomenon since the prompt yneg does not accurately
describe the source distribution as it omits the image’s content. In addition, the second component
with weight s = 7.5 still forms the major part of the gradient, which is the dominant term in SDS.

Classifier Score Distillation [76]:
ϵCSD = w1 · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t;∅, t)) + w2 · (ϵϕ (xθ,t;∅, t)− ϵϕ (xθ,t; ysrc, t)),

where w1 and w2 are hyperparameters. As shown in Figure 2 (c), the second term approximates the
bridge from the source distribution to the unconditional distribution, which is not ideal since it does
not point to the target distribution. It explains the observation made by the authors [76] that this
undermines the alignment with the text prompt. Therefore, the authors always anneal w2 to 0 during
the optimization. However, we show this often reintroduces the SDS artifacts in practice.

Variational Score Distillation [70, 32]:
ϵVSD = ϵϕ (xθ,t;∅, t) + s · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t;∅, t))− ϵLoRA (xθ,t; ytgt, t) .

Out of all the discussed methods, VSD attempts to minimize the source distribution mismatch error
most directly by test-time finetuning a copy of the diffusion model with LoRA on the current set
of xθ. Note that in the original paper, the use of LoRA was motivated based on a particle-based
variational framework. Our analysis enables an alternative understanding of VSD. As shown in
Figure 2 a), this approach is well-justified in our dual diffusion bridge framework. However, training a
LoRA every iteration is computationally expensive, adds complexity, and introduces its own low-rank
approximation errors. Given this insight, we propose a simple yet efficient approach to mitigating
source distribution without LoRA.

3.4 Mitigating Source Distribution Mismatch with Textual Descriptions

Our analysis reveals that the LoRA model in VSD most closely approximates the distribution of the
current optimized parametrized image, addressing the distribution mismatch error. Unfortunately, it
incurs 200− 300% runtime overhead on top of SDS, making it impractical, despite its significant
performance gains. With this understanding, we propose a simple approach that better expresses the
source distribution. Our insight is that pre-trained diffusion models have learned the distribution of
natural and corrupted images through a combination of powerful text representation and enormous
image-caption datasets. We find that by simply describing image corruptions with a text prompt, we
can improve our estimate of the source distribution.

Specifically, we propose to use the gradient

ϵours = w · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t; ysrc, t)),

where we get ysrc by adding descriptions of the current image distribution to ytgt (the base prompt).
The remaining question is how to set this description. In generation tasks, we propose a simple
two-stage solution.

1. We use ϵSDS to produce a generation with the method’s characteristic artifacts:
2. We switch to optimization with our gradient, ϵours, to transport the image parameter toward

the natural image distribution.

To describe the artifacts produced by SDS, we append the descriptors “, oversaturated, smooth,
pixelated, cartoon, foggy, hazy, blurry, bad structure, noisy, malformed”
and drop the descriptors of the high-quality generation. This description ysrc does not require
hand-crafting based on problem domains—it is fixed across all shown examples and use cases.
As shown in Appendix Figure A5, we explored searching for other prompts but did not find that
variations in these descriptions made a big difference.

In editing tasks, we have an initialization that ysrc describes accurately. In such cases, we omit the
first SDS stage and only apply our gradient to optimization. We also append a “domain descriptor.”
For instance, in painting-to-real, this is simply “, painting” to represent the initial distribution.
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DDIM Sampling SDS NFSD

CSD VSD Ours

Figure 3: Text-to-image generation results with COCO Captions. We compare different score distillation
methods for generating images with COCO captions by optimizing a randomly initialized image. DDIM
sampling indicates the lower bound that the diffusion model can achieve. VSD [70] and our method generate the
least color artifacts while ours is more efficient than VSD.

Table 1: Zero-shot FID comparison with different score distillation methods. We report FID scores of
text-to-image generation using 5K captions randomly sampled from the COCO dataset. The best score distillation
result is indicated in bold, while the second best is underlined.

DDIM (lower bound) SDS [48] NFSD [28] CSD [76] VSD [70] Ours

Zero-Shot FID (↓) 49.12 86.02 91.70 89.96 59.22 67.89
Zero-Shot CLIP FID (↓) 16.56 28.39 29.25 27.07 18.86 20.31
Time per Sample (mins) 0.05 4.48 7.20 6.21 16.02 4.48

While the use of such negative prompting has been explored before, such as in NFSD, our analysis
motivates a principled way to incorporate it into score distillation. We find that these simple
modifications significantly narrow the quality gap between SDS and resource-intensive methods like
VSD. We verify this finding experimentally with qualitative results and quantitative comparisons
across applicable tasks.

4 Experiments

In this section, we test our proposed method on several generation problems where SDS is adopted.
We compare against SDS and other task-specific baselines. Note that our goal is not to show another
state-of-the-art text-to-3D generation method, but to verify our findings, where the proposed score
distillation approach based on textual description efficiently improves the results by mitigating the
source distribution mismatch error. We first perform a thorough experiment in a controlled setting
on text-to-image generation. Then, we compare it on text-guided NeRF optimization to SDS and
VSD and evaluate the painting-to-real image translation task against image editing baselines. Please
see more results in the appendix, including additional qualitative results and comparison, ablation
studies and our method’s application to optical illusion generation and 3D-sketch-to-real task.

4.1 Zero-Shot Text-to-Image Generation with Score Distillation

To verify our analysis of existing SDS variants and the proposed method, we perform text-to-image
generation by optimizing an image of size 64× 64× 4 in the Stable Diffusion latent space [70, 28]
(We explore other base models like MVDream [57] and SDXL [47] in Appendix Figure A3). The
benefit of choosing image generation as the evaluation task is that its generation quality has the least
confounding variables among other tasks. (e.g., in text-to-3D, many designs like regularizations [77],
initialization [35], 3D representations [9, 67, 74, 66], and 2D prior models [57, 40, 39, 49, 78] could
affect the final quality.)
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A giant rock with moss on it, detailed, high 
resolution, high quality, sharp

A wooden chair, detailed, high resolution, 
high quality, sharp

A 3D model of an adorable cottage with a thatched roof.

VSD SDS Ours VSD SDS Ours

Various hollow, asymmetrical, textured seashells, collected 
in a sand-filled, clear glass jar with a twine-tied neck

Figure 4: Text-guided NeRF optimization with different score distillation methods. We make a fair
comparison of SDS and VSD for text-to-3D generation. For each generation, we show three uniformly sampled
views. SDS results like the cottage and pepper mill still suffer from over-saturation problems, while ours and
VSD can produce realistic details, color, and texture.

We use the MS-COCO [36] dataset for the evaluation. Consistent with the prior study [3], we
randomly sample 5K captions from the COCO validation set as conditions for generating images.
For each caption, we optimize a randomly initialized the image with the score distillation gradients.
We compare our method with several SDS variants including SDS [48], NFSD [28], CSD [76],
and VSD [70]. For all the methods, we use the same learning rate of 0.01 and optimize for 2, 500
steps where we generally observe convergence. We compute the zero-shot FID [21] and CLIP FID
scores [31] between these generated images and the ground truth images. We also report results
generated by DDIM with 20 steps as a lower bound for renference.

We report the FID scores and the time to optimize one image in Table 1. Among all the score
distillation methods, VSD [70] achieves the lowest FID scores. However, it requires training a LoRA
along the optimization process. Instead, ours achieves a comparable FID score with over 3× faster
speed. We visualize random examples generated by different score distillation methods in Figure 3.
We notice that SDS and NSFD suffer from the over-saturation and over-smoothness issues. CDS
has slightly fewer color artifacts. VSD and ours generate the samples that most closely resemble
the DDIM sampling.

4.2 Text-guided NeRF Optimization

We now evaluate the text-to-3D generation problem, where we intentionally aim to exclude variables
that could affect the generation quality other than the score distillation methods. We use the Three-
Studio [19] repository to optimize a NeRF with settings tuned for ProlificDreamer stage 1 (NeRF
optimization) [70]. Note that we do not perform stages 2 and 3, i.e. geometry fine-tuning and texture
refinement. Specifically, we initialize the NeRF with the method proposed by Magic3D [35], use the
regularization losses on the sparsity and opacity, and optimize for 25K steps. We adopt the native
SDS and VSD guidance implementations for comparison. In Appendix Figure A4, we evaluate our
methods with additional text-to-3D systems, including Fantasia3D [9], Magic3D [35] and CSD [76].

Table 2: Quantitative comparisons of NeRF opti-
mization. We measure the average CLIP similarity
of rendered views using SDS, VSD and our.

ViT-L/14 ViT-B/16 ViT-B/32

SDS [48] 0.2811 0.3196 0.3139
VSD [70] 0.2837 0.3292 0.3166
Ours 0.2848 0.3282 0.3148

We first show visual comparisons of different score
distillation methods in Figure 4. We notice that SDS
tends to generate fewer details, as shown by the rock
and chair examples, and sometimes suffers from over-
saturation issues, as in 2D, as demonstrated by the
cottage and seashell examples. Instead, both VSD
and ours can generate highly photo-realistic 3D ob-
jects, while ours does not require training a LoRA
model and shares a similar computational cost as
SDS.
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Input Plug-and-Play SDS OursCycleGANSDEdit Strength 0.5

“a DSLR photo of a blue pond with water lilies”

Input Plug-and-Play SDS OursCycleGANSDEdit Strength 0.5

“a DSLR photo of a historic stone church in a park with gravel and trees”

Figure 5: Painting-to-Real comparison. We compare our gradient in optimization to image restoration and
image-conditional generation baselines. While SDEdit produces convincing textures, it is difficult to find a
strength value that balances structure and quality. Other baselines fail to reproduce natural image quality, while
our method produces the best combination of quality and faithfulness.

We also perform a quantitative evaluation and user study on the NeRFs optimized based on 31
different text prompts. Note that this number is similar to the choice of existing works on the text-to-
3D task [34, 32, 15]. However, different from these works that ignore the confounding 3D variables
that contribute to the generation quality, we disentangle this by isolating the score distillation method
as the only comparison variable. We follow these works to evaluate the generation quality with
CLIP [50]. We report the CLIP similarity in Table 2. Our method consistently outperforms SDS and
achieves comparable results with VSD. In addition, in a user study consisting of 37 users, shown
pairwise comparisons of rotating 3D renders (i.e., comparisons of our result and a random choice of
VSD or SDS, with the prompt: “For a text-to-3D system, given the prompt [p], which result would
you be happiest with?”), our results were chosen in 75.7% of all responses.

4.3 Painting-to-Real

We examine our method’s ability to serve as a general-purpose realism prior. Paintings are "near-
manifold" images, meaning they do not possess natural image statistics but live near the image
distribution in image space. An effective image prior should guide a painting toward a nearby natural
image through optimization.

We initialize a latent image by encoding scans of the artwork through Stable Diffusion’s encoder. We
specify a prompt for each painting to condition the diffusion model and then apply the second opti-
mization stage of our method (SDS stage omitted). We experimented with automatically generating
prompts via pretrained vision language models but found the results inconsistent, so we leave this
to future work. Since the large image datasets used to train diffusion models contain artwork, we
append the domain descriptor “, painting” to ysrc to optimize away from this distribution.

While SDS is proposed to leverage a pretrained text-to-image diffusion model as an image prior, its
artifacts make it ineffective in practice. In comparison, our method realistically synthesizes details
and relights the image naturally. We observe that SDS methods diverge more easily in 2D experiments
than in 3D but that the issue can be mostly resolved with tuning. A future goal is to formulate a
gradient that can be applied idempotently [58]. We compare with image reconstruction baselines in
Figure 5 and provide a small gallery of painting-to-real results in Figure 6.

5 Discussion on Solving the Linear Approximation Error

As we have shown that reducing the distribution mismatching error can significantly improve the
generation quality of the score distillation optimization, it is natural to ask whether one can also
reduce the first-order approximation error, induced by linear bridge estimation, to improve the results
further. Several recent studies, including SDI [41] and ISM [34], can be viewed as mitigating
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Figure 6: Painting-to-Real results.We show selected Painting-to-Real samples with diverse art styles and
subjects. Initialization images are shown on the left, optimized images are shown on the right.

Table 3: Reducing first-order approximation error improves generation quality. Using full PF-ODE
simulation (“Full-path”) to replace single-step prediction improves visual quality in all settings.

Approximate the bridge Single-step Full-path
Estimate source distribution Uncond. (SDS) Bridge LoRA (VSD) Uncond. Bridge LoRA

Zero-Shot COCO FID (↓) 86.02 67.89 59.22 63.31 60.07 55.65

this error by replacing the single-step estimation with a multi-step estimation to an intermediate
timestep. Under our framework, one can estimate the entire dual bridge by solving both PF-ODE
paths. Specifically, via inversion, one can solve the PF-ODE path from ψ0,src to xθ,T , and then walk
to the ψ0,tgt via sampling. In this way, it is possible to obtain the most accurate gradient direction
with little approximation error ϵ∗SBP = w · (ψ0,tgt − ψ0,src). We refer to this approach as “full path”.
Note that this resolves the linear approximation error, and it is independent of handling the source
approximation error, which could be addressed via the discussed text description or LoRA.

However, solving the inversion ODE is not trivial [27]. We noticed that the inversion can exaggerate
the distribution mismatch error and cause the optimization to get stuck at a local optimum at the
beginning of the optimization. Instead, the stochasticity of the single-step methods often shows
more robustness to the input image. Therefore, we first perform the single-step score distillation
optimization to obtain reasonable results and then switch to solving the full bridge. We also anneal the
timestep endpoint of the bridge throughout the optimization. With this approach, we can now explore
addressing both the first and second sources of error. The first source (linear approximation) has
“full-path,” and the second source (source distribution mismatch error) has “Bridge” or “LoRA”. We
find that using the “full-path” multi-step (mitigating linear approximation error) always outperforms
the single-step methods, achieving a lower FID, as shown in Table 3. However, the same trend does
not fully transfer to the text-to-3D experiments. We observe that solving the entire bridge typically
introduces additional artifacts and makes the optimization less stable. We leave the best way of
leveraging this gradient for future research exploration.

6 Conclusion

We present an analysis that formulates the use of a pre-trained diffusion model in an optimization
framework as seeking an optimal transport between two distributions. Under this lens, we analyze
SDS variants with a unified framework. We also develop a simple approach based on textual
descriptions that work comparably well to the best-performing approach, VSD, without its significant
computational burden. However, neither approach has yet to achieve the quality and diversity of
images generated by the reverse process. We hope that our analysis enables the development of a more
sophisticated solution that can one day achieve the same quality and diversity as the reverse process
in an optimization framework. Combining our proposed method with multi-step approximations
like ISM [34] or schedules like DreamFlow [32] could mitigate the first-order approximation error
and further improve the efficiency, which is an interesting future research direction. With the rise of
high-quality video diffusion models, we anticipate that the question of how to effectively use such
models as a prior in various problems will become even more important.
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3D Sketching SDS BaselineOurs with Prompt “a flower”

Figure A1: 3D sketch-to-real. We introduce a conditional generation task in 3D where a coarse human-drawn
mesh is optimized into a high-quality mesh. While SDS and our gradient both adhere to the prompt and shape
conditions, our method produces higher fidelity colors and texture.

Appendix

In this appendix, we discuss the additional experiment details and provide more visual results,
including optical illusion sketch, text-based NeRF optimization, and 3D paint-to-real results. We also
perform an ablation study of our method.

A Additional Experimental Setup

In this section, we describe our experimental setups in more detail.

Text-to-image generation with score distillation. We use the stable-diffusion-v2-1-base model
by default for our experiments if not specified. For CSD, we follow the original paper [76] to use
w1 = w2 = 40 at the initialization steps and anneal w2 = 0 within the first 500 steps. We use
s = 100 for SDS and s = 7.5 for NFSD and VSD, which are consistent with the best practice. We
use s = 40 and w = 25 for our method. And we optimize with ϵSDS loss for 500 iterations and then
switch to ϵours for the rest of 2, 000 iterations. For all the methods, we use a learning rate of 0.01, and
we use a learning rate of 1e− 4 to train the LoRA in VSD.

Text-guided NeRF optimization with score distillation. For our method, we optimize with ϵSDS
loss for 20, 000 iterations and then switch to ϵours for the rest of 5, 000 iterations. We use s = 100
and w = 1 for our method. We find that a high s is necessary to establish geometry in the first stage
of the text-to-3D setting, but our method is not too sensitive to this hyperparameter in 2D. We use the
rest of the learning rates and regularization strengths as the default settings.

B More Visual Results

In this section, we provide extra visual results. Specifically, we show 3D sketch-to-real and optical
illusion generation as additional applications of our method. We also report more comparisons and
ablation studies of text-based NeRF optimzition.

B.1 Additional Applications

3D Sketch-to-Real Head-mounted displays with hand tracking are a natural platform for a sort of
"3D sketching," where 3D primitives trail from your hand like ink from a pen. The resulting coarse
mesh is structurally accurate but lacks geometric or texture detail. To this end, we propose a new
application that transfers these 3D sketches to more realistic versions. We extend our text-to-3D
solution to generate these details.

We first fit an implicit SDF volume to multi-view renders of the mesh, then apply our gradient with
the same schedule as in text-based NeRF optimization. We lower the learning rate for geometry
parameters to prevent divergence from the guiding sketch. Holding other hyperparameters equal, we
compare our gradient and the SDS gradient in Figure A1.
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SDS [48] Ours
Figure A2: Diffusion illusions. We generate overlaid optic illusions with SDS and our method. While SDS
suffers from color artifacts, our methods produce more details and proper color.

SDS Bridge

(a) MVDream [57]

SDS

Bridge

(b) SDXL [47]

Figure A3: Comparison of SDS and ours with MVDream [57] and SDXL [47]. We compare SDS with our
two-stage process in two new settings (MVDream and SDXL). The two-stage process produces more natural
colors and realistic details.

Illusion Generation. Prior works have shown that diffusion models can be leveraged to generate op-
tical illusions [17, 5]. In these settings, the same image looks semantically different when transformed.
To use the diffusion model sampling process, a previous study shows that the transformation has to
be orthogonal [17]. However, there remain interesting illusions that are not formed by orthogonal
transformation. One such is the rotation overlays. Given a base and a rotator image, by composing
the base image with the rotator image at different angles, rotation overlays use two images to display
four images. As such composition is not defined by an orthogonal matrix, the existing method [5]
employs SDS to optimize the base and rotator images. Such a method suffers from the over-saturation
problem, as shown in Figure A2. We show that our method can generate such optical illusions with
better visual quality.

B.2 Additional Qualitative Results

Additional text-to-image results. We explore our proposed method across different base models
in text-to-image experiments, including MVDream [57] and SDXL [47]. Since MVDream denoises
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Fantasia3D w/ BridgeFantasia3D w/ SDS Magic3D w/ BridgeMagic3D w/ SDS

A delicious hamburgerA DSLR photo of an ice cream sundae

CSD w/ BridgeCSD

A pineapple

Figure A4: Comparison with more text-to-3D baselines. We apply our two-stage optimization as a drop-in
replacement of SDS in Fantasia3D [9], Magic3D [35] and CSD [76] for texture refinement. We notice that this
change greatly improves details and visual quality and reduces SDS artifacts.

SDS CFG 40 SDS CFG 100 Bridge, Our Prompt Bridge, GPT 1 Bridge, GPT 2 Bridge, GPT 3 Bridge, GPT 4 Bridge, GPT 5

Figure A5: Ablation study of negative prompts. We compare SDS results with those from the two-stage
optimization (bridge) using our negative prompts and five sets of negative prompts generated by GPT (GPT 1 is
the first set, GPT 2 second, GPT 3 third, etc.). All negative prompts produce similar results and outperform the
SDS baseline.

four camera-conditioned images jointly, we treat the canvas of four images as a single optimization
variable for the SDS gradient. In Figure A3, we compare the SDS baseline to the proposed two-stage
optimization, in which we generate more natural colors and detail. This is especially noticeable in
the background around the crocodile and donkey.

Additional text-guided NeRF optimization results. For text-guided NeRF optimization compari-
son against baselines, we show more results in Fig. A7. We test on the prompts used in the original
paper [70] and additional prompts [71] that we find to be challenging. We notice that SDS often
suffers from over-saturation problems. Our method does not require training a LoRA while it can
still improve SDS by getting rid of the color artifacts and generating more details.

We also perform comparisons with more competitive baselines. We test with Fantasia3D [9],
Magic3D [35], and CSD [76] through a drop-in replacement of SDS with our method. Specifi-
cally, all three methods optimize a textured DMTet, which is initialized from an SDS-optimized
NeRF, using SDS or CSD for 5k or 10k iterations. We replace the SDS or CSD stage of these
approaches with the two-stage optimization motivated by our framework. Just like our text-to-3D
NeRF experiment, we perform the first stage for 60% of iterations and the second stage for 40%
of iterations. Note that we keep all the other hyperparameters the same, which were tuned for the
baselines, not our method. This replacement leads to the same optimization time as the original
methods. For Fantaisia3D and Magic3D, we use threestudio for fair comparison (Magic3D does not
have code available) and the default prompts, which are generally believed to work the best with this
reimplementation. For CSD, we use the official implementation. As shown in Figure A4, our method
improves the visual quality of all the methods by reducing the oversaturated artifacts of SDS and
improving the details.

B.3 Ablation Study

Ablation study of the negative prompts. We explore how the choice of negative prompts in our
proposed methods affects the optimization. We prompted GPT-4 through ChatGPT a single time to
generate alternative negative prompts using the following:

Here’s a set of "negative prompts" to append to a text-to-image prompt that describe undesirable
image characteristics: ", oversaturated, smooth, pixelated, cartoon, foggy, hazy, blurry, bad structure,
noisy, malformed" I want to try a variety of them, please brainstorm many of roughly the same length.

We produce five variants through these methods as the alternative negative prompts:
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(a) SDS + Stage 2 source prompt (Stage 2 only)

(b) SDS (Stage 1 only)

(c) Ours (Stage 1 + Stage 2)
Figure A6: Ablation study of our method without stage 1. We show directly optimizing with ysrc from the
start can undermine the quality of the geometry and produce unnecessary content.

1. ", washed out, grainy, distorted, flat, smeared, overexposed, undefined, choppy, glitchy, dull"
2. ", low contrast, jumbled, faint, abstract, over-sharpened, muddy, cluttered, vague, jagged,

poor detail"
3. ", soft focus, muffled, streaky, patchy, ghosted, murky, unbalanced, skewed, mismatched,

overcrowded"
4. ", overbright, scrambled, bleary, blocky, misshapen, uneven, fragmented, obscured, chaotic,

messy"
5. ", dull tones, compressed, smeary, out of focus, unrefined, lopsided, erratic, irregular, spotty,

stark"

We keep other hyperparameters identical and only ablate the negative prompts with the variations. As
shown in Figure A5, we do not see obvious differences between our prompts and the variants.

Ablation study of stage 2. Instead of switching to stage 2 during the optimization process, we
ablate with starting without any SDS optimization from the beginning. That is, we always use the
ysrc with the descriptors “, oversaturated, smooth, pixelated, cartoon, foggy, hazy,
blurry, bad structure, noisy, malformed”. As shown in Figure A6, this makes it hard
to generate the proper geometry even though the local texture looks reasonable and is inclined to
produce excessive details that are not described by the texts. We suspect that this is because using ysrc
increases the mismatching error at the beginning of the optimization process when the initialization
does not resemble the target prompt at all.

C Potential Social Impact

We analyze how to use a pre-trained image diffusion as a prior in an optimization setup, necessary for
domains such as 3D. On the positive side, these models can empower individuals to make 3D content
creation more accessibly without requiring specialized skills. Additionally, professional artists and
designers could rapidly prototype and visualize their ideas, accelerating the creative process. On
the negative side, the ease of generating visual content could facilitate the spread of misinformation,
proliferate biases in the training set and enable the usage of generated content for malicious purposes.
In addition, there are ethical concerns regarding the potential for job displacement in industries
reliant on traditional art-making skills and the copyright issues appeared in the training dataset.
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A pineapple, detailed, high resolution, high quality, sharp. A toucan on the wood.

A plate piled high with chocolate chip cookies.

VSD SDS Ours

A llama, detailed, high resolution, high quality, sharp.

VSD SDS Ours

A tree of potatoes, detailed, high resolution, high quality, sharp. An elephant skull.

A solid, smooth, symmetrical porcelain teapot, with a cobalt blue dragon design, 
steam rising from the spout, suggesting it's just been filled with boiling water

A large, multi-layered, symmetrical wedding cake, with smooth fondant, delicate 
piping, and lifelike sugar flowers in full bloom, displayed on a silver stand.

A model of a house in Tudor style. A bulldog, detailed, high resolution, high quality, sharp.

A walnut, detailed, high resolution, high quality, sharp. A medium-sized, layered, radially symmetrical conch shell, with a rough texture 
on the outside, fading from pink to cream, sitting alone on a sandy beach

Figure A7: Additional comparison of text-guided NeRF optimization. We show more examples to compare
with different distillation methods, SDS and VSD.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, and we also summarized the contributions of the paper at the end of the
introduction, which is supported by our analysis in the method section and results in the
experiment section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our theoretical result of score distillation as an optimization that approximates
a Schrödinger Bridge path is obvious once we connect the score distillation formula with
the Dual Diffusion Implicit Bridge. We also provide an intuitive error analysis of existing
SDS variants.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the details of experiments and will release the code to reproduce
the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will release the code with an opensource license when the paper is
published.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We mention these details in the experiment section of the main paper and the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Most of our experiments are too expensive for us to run multiple rounds. For
example, each run of our text-to-image generation with baseline VSD takes 1.3K GPU
hours.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide these details in the experiment section as well as Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We briefly discuss this in the conclusion section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We use human evaluation for our text-to-3D experiment, and we include the
details about how the experimentation was done.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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