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Wide, highly eccentric (e > 0.9) compact binaries can naturally arise as progenitors of gravitational
wave (GW) mergers. These systems are expected to have a significant population in the mHz band (e.g.,
∼3–45 detectable stellar-mass binary black holes with e > 0.9 in the Milky Way), with their GW signals
characterized by “repeated bursts” emitted upon each pericenter passage. In this study, we show that the
detection of mHz GW signals from highly eccentric stellar mass binaries in the local universe can strongly
constrain their orbital parameters. Specifically, it can achieve a relative measurement error of ∼10−6 for
orbital frequency and ∼1% for eccentricity (as 1 − e) in most of the detectable cases. On the other hand, the
binary’s mass ratio, distance, and intrinsic orbital orientation may be less precisely determined due to
degeneracies in the GW waveform. We also perform mock LISA data analysis to evaluate the realistic
detectability of highly eccentric compact binaries. Our results show that highly eccentric systems could be
efficiently identified when multiple GW sources and stationary Gaussian instrumental noise are present in
the detector output. This work highlights the potential of extracting the signal of “bursting” LISA sources to
provide valuable insights into their orbital evolution, surrounding environment, and formation channels.
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I. INTRODUCTION

Many compact object binaries are expected to have
non-negligible eccentricity in the millihertz gravitational
wave (GW) band. In particular, GW sources formed via*Contact author: zeyuan.xuan@physics.ucla.edu

PHYSICAL REVIEW D 111, 043018 (2025)

2470-0010=2025=111(4)=043018(25) 043018-1 © 2025 American Physical Society



dynamical channels can naturally undergo a progenitor
stage before the final merger, during which the environment
perturbs the binary and excites the orbital eccentricity
(e.g., e≳ 0.9); therefore, even if the GW source is initially
characterized by a large semimajor axis (e.g., a ≳ 0.1 au),
its pericenter distance, rp ¼ að1 − eÞ, can become suffi-
ciently small to induce strong millihertz GW emission
[1–3], leading to orbital energy loss and eventually result-
ing in a GW merger. For example, in dense star clusters,
external perturbations like GW capture, binary-single, and
binary-binary scattering (see, e.g., Refs. [4–24]) can drive a
significant fraction of wide compact object binaries into
highly eccentric orbits. In a hierarchical triple system,
where a tight binary orbits a third body on a much wider
“outer orbit,” the inner binary can undergo eccentricity
oscillations due to the eccentric Kozai-Lidov mechanism
[25–29], potentially leading to an eccentric GW merger.
Furthermore, eccentric compact binaries could form in
stellar disks or active galactic nucleus accretion disks
[22,30–38]. In the galactic field, fly-by interactions and
galactic tides may also produce eccentric GW sources (see,
e.g., Refs. [39–42]). These eccentric binaries can signifi-
cantly contribute to the number of sources in mHz GW
detection (e.g., ∼3–45 detectable stellar-mass binary black
holes with e > 0.9 in the Milky Way [3]) and yield non-
negligible merger rate of compact objects in the Local
Group [11,29,43–49] over the expected observation time of
the future Laser Interferometer Space Antenna (LISA)
mission [50].
So far, many studies have focused on measuring the

residual eccentricity of GW mergers detected by LIGO,
Virgo, and KAGRA, which could significantly enhance our
understanding of the formation mechanisms of compact
binaries [9,49,51–60]. However, there is still a lack of clear
observational evidence for the eccentricity of GW sources
(see, e.g., Refs. [22,61–64]), mostly because GW radiation
tends to circularize the orbit, rendering eccentricity
negligible within the sensitive frequency band of
current detectors [65,66]. On the other hand, LISA [50]
will observe sources in a lower-frequency band
(10−4–10−1 Hz), allowing us to probe the earlier evolu-
tionary stages of these eccentric GW mergers (see, e.g.,
Refs. [67–77]). Therefore, it is crucial to evaluate the
detectability and parameter measurement accuracy of
eccentric GW sources, particularly for mHz detections
by LISA.
This work focuses on the astrophysical inference of

highly eccentric, stellar-mass compact object binaries.
Specifically, the GW signal emitted by wide, highly eccen-
tric compact binaries has a unique signature in the mHz
band. For example, when a binary’s eccentricity is small, its
GW signal can be approximated by a near-monochromatic,
sinusoidal wave (see, e.g., Ref. [78]). However, as the
eccentricity increases, the GW emission becomes stronger
upon each pericenter passage, transforming the signal into a

burstlikewaveform (see, e.g., Refs. [3,7,79]). These bursting
GW signals, characterized by transient pulses in the time
domain, generate a frequency power spectrum with numer-
ous harmonics (on the order of ∼103–106) that contribute
significantly to the total signal-to-noise ratio (see, e.g.,
Refs. [3,7]). As a result, the energy of the GW signal is
spread across a wide frequency range, making it necessary
to employ methods that can resolve broadband transient
signals, such as wavelet decomposition [80–84].
Furthermore, multiple bursting sources may simultaneously
contribute to the signal [3], highlighting the need to identify
and disentangle individual sources, as demonstrated below.
The collective GW signal from multiple highly eccentric
binaries could also form a stochastic GW background,
where numerous GW harmonics from different sources
overlap [79], and interfere with our understanding of other
LISA sources.
It has been suggested that eccentric GW signals can

be detected in the LISA band, leading to extracting
information about the astrophysical sources (see, e.g.,
Refs. [5,48,68,71,77,85–102]). Furthermore, many efforts
have been made to analyze the mHz bursting GW signals
using various waveform templates [1,2,103–107].
However, it remains unclear whether we can successfully
distinguish highly eccentric (e > 0.9) sources in mHz data
analysis and what level of parameter estimation accuracy
can be realistically achieved for such systems. Below, we
quantify the parameter measurement accuracy using a
Fisher matrix analysis and, for the first time, demonstrate
the application of matched filtering for identifying highly
eccentric stellar-mass binaries in the LISA band, in the
presence of multiple GW sources and instrumental detector
noise. In this work, we analyze the bursting compact
binaries in the Milky Way as a representative example.
However, the results of Fisher matrix analysis and matched
filtering can be generalized, with a rescaling of distance and
signal-to-noise ratio, to bursting sources in the local
universe with negligible redshift.
Note that the Fisher matrix analysis [78,108] has been

widely used in the literature to evaluate the parameter
measurement accuracy for LISA, because of its simplicity
and computational efficiency. However, this method can
sometimes provide inaccurate results, particularly for
waveforms with low expected signal-to-noise ratios (SNR)
or for signals that depend weakly on certain parameters
(see, e.g., Refs. [109,110]). Therefore, the parameter
measurement accuracy presented in our work should be
interpreted as an initial estimation for this new class of
sources (i.e., wide, highly eccentric binaries with slow
orbital evolution). A Bayesian analysis is beyond the scope
of this paper.
The paper is organized as follows. In Sec. II A, for

completeness, we review the astrophysical properties of
highly eccentric GW sources [3,79]. Next, we discussed the
waveform model used in this work and described the
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parametrization of the waveform template (see Sec. II B). In
Sec. III A, we estimated LISA’s parameter measurement
accuracy for highly eccentric GW sources using the Fisher
matrix analysis. Furthermore, we carried out mock LISA
data analysis to discuss the identification of bursting
sources under realistic assumptions. In particular, we
introduce the matched filtering method in Sec. III B, which
is commonly adopted to analyze GW data, then highlight
the difference between the data analysis of bursting and
other quasicircular GW sources (see Sec. IVA). The
simulation of mock LISA data is discussed in Sec. IV B,
and the mock analysis results are shown in Sec. IV C. In
Sec. V, we summarized the paper and discussed the
astrophysical implications. Throughout the paper, unless
otherwise specified, we set G ¼ c ¼ 1.

II. ASTROPHYSICAL PROPERTIES AND

WAVEFORM MODELING

A. Astrophysical properties

As discussed in Sec. I, wide, highly eccentric compact
binaries often serve as progenitors of GW mergers, par-
ticularly in dynamical channels where environmental per-
turbations cause close encounters between two compact
objects. Furthermore, as shown in our previous works
[3,79], these highly eccentric binaries could have promising
prospects for detectability, extended lifetime, and a sig-
nificant population in the local universe. Therefore, for
completeness, we briefly summarize the relevant findings
and discuss the signatures of highly eccentric waveforms in
the mHz band in this section.
The GW emission from a highly eccentric binary is

largely suppressed for most of the orbital period. However,
during each pericenter passage, the distance between the
two components of the binary will decrease significantly,
producing a sudden burst of GW radiation. Thus, the GW
signal from wide, highly eccentric sources is characterized
by “repeated bursts” [1,7,54,84,106,111,112], where the
separation between two bursts is the orbital period.
Furthermore, the duration of each GW burst is approx-
imately the pericenter passage time, Tp [3,4], which can be
estimated using the pericenter distance divided by the
orbital velocity at pericenter,

Tp ∼
rp

vp
∼ ð1 − eÞ3=2Torb; ð1Þ

where vp is the orbital velocity at pericenter and Torb ¼
2πa3=2M−1=2 is the period of a binary with a total mass M.
Note that we omit an order unity factor of ð1þ eÞ−1=2,
following our previous work [3].
Furthermore, we can estimate the strain amplitude, hburst,

and peak frequency, fburst, of a single GW pulse in the
waveform of a highly eccentric compact binary using the
relations [3]

fburst ∼ 2forbð1 − eÞ−3
2

∼ 3.16 mHz

�

M

20M⊙

�1
2

�

a

1 au

�

−
3
2

�

1 − e

0.002

�

−
3
2

; ð2Þ

and

hburst∼

ffiffiffiffiffi
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5

r
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Rað1−eÞ
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�
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�2
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�
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8 kpc

�

−1

;

ð3Þ

in which forb ¼ 1=Torb is the orbital frequency of the
bursting source; R is the distance of the binary from the
observer; m1 and m2 are the mass of the binary’s compo-
nents; and ηs ¼ 4m1m2=ðm1 þm2Þ2 is unity for equal mass
sources. We note that the peak GW frequency of eccentric
sources is often estimated as fpeak¼forbð1þeÞ1=2ð1−eÞ−3=2
[4]. A more detailed expression of the peak frequency can
also be found in Refs. [43,94]. For consistency with other
definitions in our previous treatment [3], here we adopt
fburst ∼ 2forbð1 − eÞ−3=2, which differs by an order of unity.
As shown in Eqs. (2) and (3), even when the binary is

considerably wide and the orbital frequency is well below
the LISA band (e.g., a ∼ 1 au), an increase in the orbital
eccentricity can result in mHz GW burst emission, with the
strain amplitude strong enough to be detected by LISA.
In particular, we can estimate the signal-to-noise ratio of
these bursting sources using the following analytical
equation [3,113],

SNR ∼

8

>

>

<

>

>

:

hburst
ffiffiffiffiffiffiffiffiffiffiffiffiffi

SnðfburstÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tobsð1 − eÞ3=2
p

ðTobs ≥ TorbÞ
hburst

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fburstSnðfburstÞ=2
p ðTobs ≤ TorbÞ

; ð4Þ

where Tobs is the observational time and SnðfÞ is the
spectral noise density of LISA evaluated at GW frequency
f (see, e.g., Refs. [114–117]). [Note that Eq. (4) is an
approximation. For a more precise expression of the SNR,
see, for example, Appendix B of Ref. [3].]
We highlight that, for a bursting source, the strong GW

emission only happens for a short amount of time near the
pericenter passage, while the binary will remain quiescent
for the rest of the orbital period. Therefore, the overall
energy emission and SNR will be suppressed by a factor of
∼ð1 − eÞ3=2 compared to circular binarieswith the sameGW
frequency [see, e.g., Eq. (4)]. However, such suppression in
energy emission also results in a much slower orbital
shrinkage and a significantly longer detectable time within
the LISA band. In particular, we can estimate the lifetime of
a bursting source, τburst, by considering themerger timescale
of binaries with extreme eccentricity [3,65],
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τburst ∼
3

85 μM2
a4ð1 − e2Þ7=2 ∼ 1.17 × 106 yr

×
2

qð1þ qÞ
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ð5Þ

where μ ¼ m1m2=ðm1 þm2Þ and q ¼ m1=m2.
As shown in Eq. (5), with the parameters of a ∼ 1 au,

e ∼ 0.998, m1 ¼ m2 ¼ 10M⊙, and R ¼ 8 kpc, a stellar-
mass bursting sources can remain detectable in the mHz
band for ∼106 years [note that this system has a signal-to-
noise ratio SNR ∼ 50 for a 3 yr LISA observation; see
Eq. (4)]. Such a lifetime is much longer than a stellar-mass
circular binary’s merger timescale, which is typically
∼103–104 yr in the mHz band [65]. Therefore, as a
progenitor stage of GW mergers, the extended lifetime
of highly eccentric binary indicates their large population in
the local universe. For future observation, we expect LISA
to detect many slowly evolving bursting sources as a
natural consequence of compact binaries’ dynamical
formation.
In Fig. 1, we illustrate a representative example

of bursting GW signals from highly eccentric, stellar-
mass binary black hole (BBH) systems. Specifically, we
choose the parameters of m1 ¼ 15M⊙, m2 ¼ 10M⊙,
a ¼ 0.100148 au, e ¼ 0.99, and Θ ¼ Φ ¼ π=4 (note that
Θ,Φ is the spherical polar angles of the observer’s direction
as viewed in the source’s comoving frame; see Fig. 2 and
Sec. II B for more details). This system is placed at
R ¼ 8 kpc and observed for 3 yr, which stand for repre-
sentative parameters of the bursting sources in the
Milky Way (see, e.g., the population analysis in
Refs. [3,79,118]). Furthermore, for this system, the SNR
of a single GW burst is ∼62, and the total SNR is ∼1353
[see Eq. (4)]. However, in realistic observations, some
detectable bursting sources may have the SNR of a single
GW burst below the detection threshold (see, e.g., Ref. [3]).
The time-domain waveform is generated using the x-model
as described in Sec. II B, and we choose to show the plus
polarization, hþ, for demonstration purposes.
Wenote that the black-colored region in the upper panel of

Fig. 1 represents a clustering of ∼473 GW bursts, with the
long-term amplitudemodulation of their envelope caused by
the general relativistic precession. Furthermore, due to the
slow orbital evolution [see Eq. (5)], the orbital frequency,
forb, of the binary is approximately constant during the
observation period. Therefore, the waveform is character-
ized by repeated bursts with almost uniform separation (see
the middle panel). Additionally, as shown in the bottom
panel, a single GW burst roughly lasts hundreds of seconds,
which indicates that the burst frequency lies in the mHz
band. As shown in Fig. 1, the “bursting”waveform of highly
eccentric binaries has a unique signature compared with
other quasicircular waveforms. Thus, it can provide us with

valuable insight into the binary’s dynamical evolution, as
well as test the theory of gravity. In the following sections,
we will discuss how to practically extract the astro-
physical information of these sources from simulated
LISA data.

B. Waveform model

In this paper, we adopt the x model [119] to generate the
gravitational wave signal from eccentric binaries (assuming
that the binaries are not perturbed during observation and

FIG. 1. Bursting GW waveform from a wide, highly eccentric
BBH system. Here, we show the strain amplitude (hþ) of a BBH
system with m1 ¼ 15M⊙, m2 ¼ 10M⊙, a ¼ 0.100148 au,
e ¼ 0.99, Θ ¼ Φ ¼ π=4 placed at R ¼ 8 kpc and observed for
3 yr (see Sec. II B for detailed definitions of Θ, Φ). The time-
domain waveform is generated using the x model as described in
Sec. II B. The upper panel shows the entire 3-yr-long signal,
which is made up of ∼473 GW bursts (clustering in the black-
colored region). Furthermore, the amplitude modulation in the
upper panel is caused by general relativistic precession of the
binary’s orbit (precession period ∼11.8 yr). The middle panel is a
zoom-in of the signal for a∼10 days period, and the bottom panel
illustrates the details of waveform near a single GW burst. Note
that in this example we do not include the detector’s response;
otherwise, the LISA’s annual motion around the Sun will induce
another long-term modulation on the amplitude and phase of the
bursting signal.
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thus can be treated as isolated two-body systems). The
x model is a time-domain, post-Newtonian (pN-)based
waveform family that captures all the critical features
introduced by eccentricity in nonspinning binaries [120].
The binary orbit is parametrized using Keplerian para-
metrization to 3 pN order, with the conservative evolution
also given to 3 pN order. In the x model, the loss of
energy and angular momentum is mapped to changes in the
orbital eccentricity e and the pN expansion parameter
x≡ðωMÞ2=3, where ω is the mean Keplerian orbital
frequency. These two parameters are evolved according
to 2 pN equations. The x model has been validated against
numerical relativity for the case of equal mass BBHs with
e ¼ 0.1, 21 cycles before the merger. It also agrees with
well-studied template families in GW data analysis for the
zero-eccentricity case [121].
In particular, we use Eqs. (9) and (10) in the work by

Hinder et al. [119] to generate the time evolution of x and e
(note that in the pN formalism there are three different
definitions of eccentricity parameters (er; eϕ; et), and the
eccentricity here stands for et, see Refs. [60,119,122–124]),
then evolve the orbital phase φ and orbital radius r using
their Eqs. (5)–(7). The strain amplitude of two polar-
izations, hþ and h×, are given (to leading Newtonian
order) by

hþ ¼ −
Mη

R

�

ðcos2Θþ 1Þ
�

cos 2φ0
�

−ṙ2 þ r2φ̇2 þM

r

�

þ 2rṙ φ̇ sin 2φ0
�

þ
�

−ṙ2 − r2φ̇2 þM

r

�

sin2Θ

�

;

h× ¼ −
2Mη

R
cosΘ

��

−ṙ2 þ r2φ̇2 þM

r

�

sin 2φ0

−2r cos 2φ0ṙ φ̇

�

; ð6Þ

where η ¼ m1m2=ðm1 þm2Þ2, φ0 ¼ φðtÞ −Φ,Θ andΦ are
the spherical polar angles of the observer (i.e., the line of
sight direction viewed in the source’s frame), and a dot
denotes the time derivative (i.e., ṙ ¼ dr=dt; φ̇ ¼ dφ=dt).
Hereafter, for simplicity, we set φðt ¼ 0Þ ¼ 0,

eðt ¼ 0Þ ¼ e0, and start the waveform at the time when
the binary is undergoing the pericenter passage (ṙ ¼ 0, this
choice fixes the initial pericenter direction in the binary’s
comoving frame). Note that the semimajor axis a is not well
defined in the pN waveform. However, to better convey the
astrophysical interpretation, we define rðt¼0Þ¼a0ð1−e0Þ
and parametrize the initial condition using the approxi-
mated “initial semimajor axis,” a0, in the Newtonian limit.
To better understand eccentric GW signals, we can also

decompose the time-domainwaveform of an eccentric binary
into different harmonics (see, e.g., Refs. [7,125–127] for a
detailed explanation),

hðtÞ ∼
X

∞

n¼1

hn exp ð2πifntÞ; ð7Þ

where each harmonic is a sinusoidal signal with amplitude
hn and a frequency of fn ¼ nforbðn ¼ 1; 2; 3…Þ. This
property is useful when deriving the detector’s response to
eccentric signals, which we will discuss subsequently.
Furthermore, when GW sources evolve slowly (merger
timescale τ ∼ forb=ḟorb ≫ Tobs), the orbital frequency forb
almost keeps constant during observation. In this case,
the harmonics in Eq. (7) can be approximated as nearly
monochromatic.
We note that there have been many works studying the

analytic waveform models for eccentric binaries (see, e.g.,
Refs. [2,60,103,128] for a review). However, we still lack
sufficient validation of the pN waveform against numerical
relativity for the extreme eccentricity case (e.g., e > 0.999).
Despite this, the x model can still give an accurate
description of the highly eccentric waveform in the
parameter space we consider in this paper. This argument
is partly justified because we are focusing on the inspiral
stage of stellar-mass binaries (i.e., the millihertz band for
LISA detection) instead of the merger and ringdown stages
in the LIGO band. For the systems that dominate the stellar-
mass bursting source population in the local universe
[3,79], their pericenter distance is typically larger than

FIG. 2. The definition of Θ;Φ; θ;ϕ, and R (not to scale). Here,
we show an example compact object binary, which is emitting
GW signal and being detected by LISA, to illustrate the definition
of angular parameters in Sec. II B. The coordinate system
ðX; Y; ZÞ is the nonrotating, comoving frame of the compact
object binary, with the Z axis parallel to the orbital angular
momentum vector and the X axis pointing in the direction of the
(initial) pericenter. Θ, Φ represent the spherical polar angles of
the source’s orientation relative to the observer (i.e., the propa-
gation direction of the GW signal viewed in the source’s
nonrotating, comoving frame). The coordinate system ðx; y; zÞ
is the comoving frame of the Sun, with θ;ϕ representing the sky
location of the GW source. R is the distance between the compact
binary system and the Sun.
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að1 − eÞ ≳ 10−3 au (or in other words ∼104 Schwarzschild
radii). Therefore, even if the eccentricity is extreme, the
gravitational field at the closest approach is still much
weaker than the strength of the field for which the x model
has been validated against numerical relativity (21 cycles
before the merger [119]), and the expansion serves as a
plausible description of the GW signal for the systems we
discuss hereafter.
Furthermore, due to the orbit of LISA around the Sun,

GW signals in the detector’s output can have an annual
modulation (see, e.g., Fig. 1 in Ref. [3]). Thus, we further
include this effect by computing the LISA response function
[129]. [Note that, in general, LISA’s annual motion is
expected to enhance the angular resolution of sources’
sky location measurement (see, e.g., Refs. [130,131])],

s1ðtÞ ¼ FþðtÞAþ cosð2πf½tþ n̂ · x1ðtÞ�Þ
þ F×ðtÞA× sin ð2πf½tþ n̂ · x1ðtÞ�Þ; ð8Þ

where s1ðtÞ represents one independent channel in the
detector’s output (Michelson response), n̂ is the basis vector
representing the sky location of the source, x1ðtÞ is the
location of detector, Aþ;× represents the strain amplitude for
a monochromatic GW signal with frequency f, and Fþ;× is
the beam pattern factors:

FþðtÞ ¼ 1

2
ðcos 2ψDþðtÞ − sin 2ψD×ðtÞÞ

F×ðtÞ ¼ 1

2
ðsin 2ψDþðtÞ þ cos 2ψD×ðtÞÞ; ð9Þ

in which ψ is the polarization angle of the GW signal [see
Eq. (32) in Ref. [129] ], and Dþ;×ðt; θ;ϕÞ depends on the
spherical polar angles of the GW source in the sky, ðθ;ϕÞ, as
well as the detector’s motion as a function of time [see
Eqs. (54) and (55) in Ref. [129] ]. Note that the sky location
angles ðθ;ϕÞ are different from the intrinsic propagation
direction of GW radiation viewed in the GW source’s frame
ðΘ;ΦÞ, which we defined earlier in Eq. (6).
We note that the output of LISA can be considered like a

pair of two-arm detectors, with two linearly independent
signals (see, e.g., Sec. II B 2 in Ref. [130] for more details).
However, in this work, we only adopt the output of one
channel, s1ðtÞ, for simplicity (see, e.g., Eq. (46) in
Ref. [129]). This is due to the uncertainty of the realistic
noise correlation between two channels and the complexity
when considering multiple signals in data analysis. As a
result, the detectability estimates presented here should be
regarded as conservative, with the potential for improve-
ment if the contributions from both channels are included in
future studies.
In Fig. 2, we present an illustration of Θ;Φ; θ;ϕ, and R

definitions. In particular,Θ andΦ represent the propagation
direction of the GW signal as viewed in the comoving
frame of the compact object binary, with the binary’s orbit

lying in the X-Y plane; θ and ϕ are the sky location of the
GW source viewed in the comoving frame of the solar
system, where the LISA detector undergoes annual motion
around the Sun. We note that the GW signal’s polarization
angle, ψ , is not explicitly shown in Fig. 2, which contrib-
utes to one more degree of freedom. In the calculation, ψ
can be worked out using ψ ¼ − arctanðv̂ · p=û · pÞ, where
p is one of the principle polarization axes of GW beam, and
û; v̂ represent two basis vectors in the ðx; y; zÞ coordinate
system [see Eqs. (3), (31), and (32) in Ref. [129] ].
Additionally, since the annual motion of detectors

around the Sun has a frequency of fdetector ¼ 1 yr−1, which
is much lower than the frequency of GW signal in the
millihertz band, we can take the adiabatic approximation.
Under this approximation, the beam pattern factors, Fþ;×,
remain nearly constant throughout each gravitational wave
burst. Therefore, we can generalize Eq. (8) to the eccentric
case by summing over contributions from each near-
monochromatic harmonic [note that, for harmonic frequen-
cies fn that predominantly contribute to the detection
signal-to-noise ratio in the millihertz band, Fþ;× can be
treated as approximately constant and taken out of the
summation (see, e.g., Refs. [3,4,48])],

s1ðtÞ ¼ FþðtÞ
X

∞

n¼1

hn;þ cosð2πfn½tþ n̂ · x1ðtÞ�Þ

þ F×ðtÞ
X

∞

n¼1

hn;× sinð2πfn½tþ n̂ · x1ðtÞ�Þ

¼ FþðtÞhþðt0Þ þ F×ðtÞh×ðt0Þ; ð10Þ

where hn;þ; hn;× represent the amplitude of the nth har-
monic in the eccentric GW signal [see Eq. (7)] and t0 ¼
tþ n̂ · x1ðtÞ is the delayed arrival time of GW signals
caused by the motion of the detector.
As can be seen from Eqs. (6)–(10), for a given antenna

pattern of GW detector, the eccentric GW waveform in the
detector’s output can be parametrized using 10 parameters:
the initial orbital parameters of the binary (a0, e0) (which
enter the waveform via the initial condition), the total mass
M, the symmetric mass ratio η (or, equivalently, the mass
ratio q ¼ m1=m2), the line-of-sight (propagation) direction
of GW radiation in the source’s frame (Θ, Φ), the location
of GW source on the sky (θ;ϕ), the distance of GW source
R, and the polarization angle ψ .
Note that we set φðt ¼ 0Þ ¼ 0 when introducing Eq. (6);

otherwise, there will be 11 parameters that affect the
waveform, with the last one representing the initial orbital
phase of the binary. Since this work focuses on the repeated
burst sources, we assume that there is a significant number
of bursts during observation. Thus, the initial phase of the
first GW burst has little effect on the astrophysical
interpretation, and we fix it for simplicity.
In the following sections, we will parametrize the GW

templates using fforb;0;1−e0;M;q;cosΘ;Φ;cosθ;ϕ;R;ψg.
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Note that hereafter we use forb as an abbreviation for the
initial orbital frequency forb;0, which is related to a0

via forb;0 ¼ ð2πÞ−1M1=2a
−3=2
0 .

III. SOURCE IDENTIFICATION AND

PARAMETER EXTRACTION

A. Fisher matrix analysis

To evaluate the astrophysical information that can be
extracted from highly eccentric GW sources, we adopt the
Fisher matrix analysis [78,108]. This method is commonly
used as a linearized estimation for the parameter measure-
ment error in the high SNR limit.
We start by defining the noise-weighted inner product

between two gravitational waveforms, h1ðtÞ and h2ðtÞ,

hh1jh2i ¼ 2

Z

∞

0

h̃1ðfÞh̃�2ðfÞ þ h̃�1ðfÞh̃2ðfÞ
SnðfÞ

df; ð11Þ

in which h̃l (with l ¼ 1, 2) means a Fourier transform of the
waveform and the star indicates the complex conjugate.
Representing the parameters of a GW source as a vector

λ, the GW waveform h can be expressed as hðt; λÞ. The
Fisher matrix is defined as

Fij ¼
	

∂hðλÞ
∂λi













∂hðλÞ
∂λj

�

; ð12Þ

in which λi denotes the ith parameter of the waveform.
We define C as the inverse of the Fisher matrix,

C ¼ F−1. It approximates the sample covariance matrix
of the Bayesian posterior distribution for the GW source’s
parameters. In other words, we can use the following
equation to estimate the error of parameter measurement:

Δλi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðδλiÞ2i
q

¼
ffiffiffiffiffiffi

Cii

p

: ð13Þ

As shown in Eqs. (11)–(13), the Fisher matrix is
computed using the first-order derivatives of the waveform,
without including higher-order corrections or Bayesian
parameter estimation (see, e.g., Refs. [132,133]). This
makes the Fisher matrix a fast and accessible tool in
GW data analysis. However, as mentioned earlier in the
Introduction, recent studies have shown that the Fisher
matrix can give inaccurate results in certain regions of the
parameter space when compared with full Bayesian param-
eter estimation (see, e.g., the comparison in Ref. [110], for
testing General Relativity using stellar mass BBHs). Thus,
we remind the reader that the results presented in this work
are a preliminary estimate of the parameter measurement
accuracy for bursting stellar mass BBHs. These estimates
highlight the astrophysical potential of detecting bursting
GW sources from LISA’s data stream. A full Bayesian
analysis is left for future work.

1. Numerical verification

After getting Eqs. (11)–(13), we further combine them
with the waveform model introduced in Sec. II B and
estimate the parameter measurement error via numerical
calculation.
In particular, first, we generate the waveform template

using the x model (see Sec. II B) and parametrize the
waveform as hðtÞ ¼ hðt; λ ¼ fforb; 1 − e0;M; q; cosΘ;
Φ; cos θ;ϕ; R;ψgÞ (note that the detector’s response func-
tion has been included in this step).
Second, we compute the partial derivative of the

waveform relative to each parameter [see Eq. (12)]. For
example, to get ∂h=∂M, we vary the parameter M → M0 ¼
M þ dM, then generate a new waveform h0ðtÞ ¼ h0ðt; λ0 ¼
fforb; 1 − e0;M þ dM; q; cosΘ;Φ; cos θ;ϕ; R;ψgÞ. The
partial derivative is obtained by computing the difference
between h0 and h, then divided by dM.
We note that each partial derivative is a time series which

represents the difference in the waveform caused by
varying one of the parameters slightly around the central
value. Thus, after getting all the partial derivative wave-
forms, we can adopt Eqs. (11) and (12) to compute their
inner products, get the Fisher matrix, then take the inverse
of the matrix to estimate the parameter measurement error
[see Eq. (13)].
In this work, the parameter set, fforb; 1 − e0;M; q;

cosΘ;Φ; cos θ;ϕ; R;ψg, are intentionally chosen to avoid
intrinsic degeneracies in the waveform model. However,
since the aforementioned steps involve first-order-finite-
difference derivatives and the numerical inversion of the
Fisher matrix, they can still result in ill-conditioned outputs
if not handled carefully (see, e.g., Secs. IV and V in
Ref. [109]). To ensure numerical stability, we choose the
parameter variation dλi such that hdhjdhi ∼ 10−3hhjhi.
This choice keeps the change in the waveform small when
computing the numerical derivative, maintaining the accu-
racy of the Fisher matrix analysis. Furthermore, we rescale
the unit of source parameters to improve the condition
number and reduce the magnitude gap between the largest-
and smallest-modulus eigenvalues. When computing the
Fisher matrix for a given point, we design the code to
automatically try and adjust the aforementioned properties
(i.e., the finite variation in numerical derivative and the
rescaling of parameters), to keep the resultant Fisher matrix
nonsingular.
In Fig. 3, we show the Fisher matrix analysis results for

the GW signal from a BBH system with m1 ¼ 15M⊙,
m2 ¼ 10M⊙, placed at R ¼ 8 kpc, with the position of
Φ ¼ Θ ¼ θ ¼ ϕ ¼ π=4, and observed for Tobs ¼ 1 yr. In
particular, we generate different initial conditions of the
system by changing a0 and e0. For each configuration, we
compute the partial derivative of the waveform relative to
the aforementioned 10 parameters (forb; 1 − e0;M; q;
cosΘ;Φ; cos θ;ϕ; R;ψ), estimate their Fisher matrix, and
get the measurement error. We plot the relative error of each
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parameter in different colors and map the result as a
function of ða0; 1 − e0Þ. To better compare with observa-
tion, we convert the measurement accuracy of the source
orientation, fcosΘ;Φg, and sky location, fcos θ;ϕg, into
the major and minor axes of the sky error ellipsoids,
f2As; 2Bsg, f2as; 2bsg, respectively. See Appendix C for
more details.
Note that this system serves as a representative example

of the parameter measurement accuracy (see, e.g., the
characteristic parameters of bursting BBHs in the

population analysis of Ref. [3]). In realistic observations,
however, the GW sources can have different orientations
and sky locations, which can potentially affect the param-
eter measurement error [note that it is also straightforward
to analyze other systems with different values of
ðΦ;Θ; θ;ϕÞ]. We emphasize that there have been previous
works estimating the change in parameter measurement
errors as a function of different initial conditions of the
system (see, e.g., studies on supermassive black hole
binaries [68,131,134]). In our case, the width of the

FIG. 3. The dependence of a compact binary’s parameter measurement error on its semimajor axis and eccentricity, computed using
the Fisher matrix analysis (for 1 yr observation). Here, we show a BBH system with m1 ¼ 15M⊙, m2 ¼ 10M⊙, (i.e., M ¼ 25M⊙,
q ¼ 3=2), placed at R ¼ 8 kpc and observed for 1 yr with LISA. In this example, we setΦ ¼ Θ ¼ θ ¼ ϕ ¼ π=4 for simplicity and map
the compact binary’s relative parameter measurement error as a function of its initial semimajor axis a0 and eccentricity 1 − e0 (see
different colors in the figure). In each panel, the dashed lines represent equal signal-to-noise ratio contours (analytically calculated using
Eq. (17) in Ref. [3]), with SNR ¼ 8, 100, 1000 from right to left. We exclude the parameter space where the binary has an orbital period
Torb > 1 yr (since their GW signal is not repeated bursts during the observation) or has a short merger timescale τmerger < 100 yr (since
these short-living systems may have negligible number expectation in future detection). We note that the Fisher matrix analysis is
computed for ten parameters (forb; 1 − e0;M; q; cosΘ;Φ; cos θ;ϕ; R;ψ ), while here we only show nine of them. This is because the last
parameter ψ, which represents the polarization angle of the GW beam relative to the observer, is less relevant to the astrophysical
inference, and we put its estimation in the Fig. 8 to avoid clutter. Also, we convert the measurement accuracy of the source orientation,
fcosΘ;Φg, and sky location, fcos θ;ϕg, into the major and minor axes of the sky error ellipsoids, f2As; 2Bsg, f2as; 2bsg, respectively.
See Appendix C for more details. Additionally, the green dotted lines in panel (e) of this figure mark the parameter space that is later
presented in Fig. 4, for comparison.
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distribution of parameter estimation errors could be sig-
nificantly narrower, as the bursting BBHs are observed well
before their merger, with slower orbital evolution. This
provides a more stable signal, which allows for more
precise parameter extraction. Furthermore, this work
focuses on the stellar mass bursting BBHs in the local
universe, but a similar approach may be applied to other
cases, such as the parameter estimation of highly eccentric
extreme mass-ratio inspirals (EMRIs) at a cosmological
distance (see, e.g., Refs. [67,88,91,95,96,98,104,135]).
Furthermore, Fig. 3 covers the parameter space where

bursting stellar-mass BBHs are most likely to be detected in
the Milky Way with future millihertz GW detectors [3,79].
In particular, as discussed in Sec. I, many dynamical
channels can generate wide, highly eccentric BBH systems.
During the evolution, if these systems enter the parameter
space with an orbital period smaller than the observation
time (i.e., to the left of the gray-colored region with
Torb > 1 yr) and a signal-to-noise ratio larger than the
detection threshold (i.e., below the dashed line of
SNR ¼ 8), their GW signal will be identified as “repeated
bursts” and can be used for parameter extraction.
Additionally, we calculate the Fisher matrix only for
systems with τmerger > 100 yr (to the top right of the
gray-colored triangle). This is because the sources to the
top right of each panel will have a longer merger timescale
compared with those on the bottom left (see, e.g., Fig. 4 in
Ref. [3]) and thus are more likely to be detected due to their
extended detectable time in mHz band (note that this also
indicates the relative error estimation of sources with
moderate SNR is more representative of the accuracy we
will get in future observation of stellar-mass bursting
sources, since they have the longest lifetime and largest
number expectation among all the detectable systems). On
the other hand, the expected number of short-living systems
with τmerger< 100 yr is negligible (see, e.g., Sec. 3.2 in
Ref. [3]), and the computational expense of their Fisher
matrix is large, so we decide not to include them in this
example.
Additionally, to provide an optimistic estimation of the

measurement accuracy, we extend the observation time to
5 yr and repeat the analysis from Sec. III A 1. For our
analysis, we focus on the parameter space highlighted by
the green dotted line in panel (e) in Fig. 3. The results are
summarized in Fig. 4, where we consider the same systems
as in Fig. 3, but parametrized the x axis using the pericenter
distance of the binary system, rp ¼ a0ð1 − e0Þ. As shown
in Fig. 4, this choice of x axis (rp), along with a zoomed-in
view of the parameter space, highlights the region where a
bursting BBH system has a signal-to-noise ratio of SNR ∼

8–1000 and provides more detailed estimation results.
We emphasize that, Figs. 3 and 4 show the parameter

measurement accuracy for bursting sources in the
Milky Way (at a representative distance of 8 kpc).
However, these results can be generalized to bursting

sources in the local universe, provided the redshift is
negligible. In particular, if a compact binary is located
at a distance R different from 8 kpc, the overall ampli-
tude of its GW signal will scale inversely with the dis-
tance [h ∼ R−1; see Eq. (6)]. Furthermore, because the
Fisher matrix elements are proportional to the square of
the waveform amplitude [Fij ∼ h2 ∼ R−2; see Eq. (12)], the
parameter measurement error, Δλi, after inverting the
Fisher matrix and taking the square root, should scale

proportionally to the distance [Δλi ∼ C
1
2

ii ∼ R; see Eq. (13)].
In other words, the results of Figs. 3 and 4 can be rescaled
using the relation

Δλ0iðRÞ ∼ Δλið8 kpcÞ
�

R

8 kpc

�

; ð14Þ

where Δλ0iðRÞ represents the parameter measurement error
for highly eccentric systems at a distance R and Δλið8 kpcÞ
refers to the Fisher matrix analysis result (absolute error)
for systems at 8 kpc, which can be estimated using Figs. 3
and 4.

2. Astrophysical interpretation

In this section, we will discuss the astrophysical inter-
pretation of each panel (system’s parameter) in Fig. 3 and 4.
First, as shown in panel (a) of these two figures, the relative
error (Δforb=forb) of orbital frequency, forb, is smaller than
∼10−6 for most of the detectable cases. In other words,
considering the value of forb for a 10–15M⊙ BBH system
with semimajor axis a ∼ 10−2–1 au, the absolute error
of orbital frequency measurement is roughly Δforb ∼

10−12–10−10 Hz in the parameter space we consider.
Such high accuracy can be understood analytically. For

example, the measurement accuracy depends on the wave-
form’s sensitivity to changes in forb. Therefore, we can vary
forb by dforb, then identify the value of dforb at which the
new waveform significantly differs from the original one.
Thus, this critical value is used to estimate the measurement
accuracy, dforb ∼ Δforb. The concept here is similar to the
Fisher matrix analysis [see Eqs. (12) and (13). Note that Fij

in the Fisher matrix analysis is, in general, estimating the
waveform’s sensitivity to the changes of parameters].
Following the aforementioned method, we consider two

GW waveforms with slightly different orbital frequencies,
i.e., h1ðt; forbÞ and h2ðt; f0orb ¼ forb þ dforbÞ. Specifically,
for a highly eccentric binary, the GW waveform can be
approximated by a series of bursts, separated by Torb in
time. Because of the difference in orbital frequency, h2 will
have a different period of GW burst compared to h1, which
can be described using dTorb ¼ dð1=forbÞ ∼ dforb=f

2
orb

(note that we assume forb and f0orb are constants during
the observation; i.e., the sources chirp slowly). Therefore,
the position of each GW burst in h2 will shift in time
relative to the bursts in h1. During an observation time of
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Tobs, the accumulated difference (i.e., position shift of the
arrival time for the last GW burst of h2, compared with h1)
can be estimated by

dtlast burst ∼ N · dTorb ¼ Tobsforb ·
dforb

f2orb
; ð15Þ

where N represents the number of bursts detected during
the observation.
In realistic observation, two different GW waveforms

can be distinguished when their match is below a given
threshold [see, e.g., Eq. (28) in Ref. [76] ]. For our cases,
however, we simplify the condition and assume that h1 is
distinguishable from h2 when the position shift of the last
GW burst, dtlast burst, is greater than the width of that GW
burst, Tburst.

dtlast burst > Tburst: ð16Þ

This estimation is partly justified because the time-domain
overlap between twowaveforms,

R

h1ðtÞh2ðtÞdt, will drop to
≲1=2 of the fully matched value when Eq. (16) is satisfied,
which significantly reduces the match between h1 and h2 and
potentially makes them distinguishable in data analysis.
In Eq. (16), the width of a GW burst, Tburst, can be

estimated using the binary’s pericenter passage time, Tp

(see, e.g., Ref. [4])

Tburst ∼ Tp ∼ ð1 − eÞ3=2Torb: ð17Þ

Thus, we can plug in Eqs. (15) and (17) into Eq. (16) and
get a heuristic estimation of the measurement accuracy in
orbital frequency, Δforb:

FIG. 4. The dependence of a compact binary’s parameter measurement error on its initial pericenter distance, rp ¼ a0ð1 − e0Þ, and
eccentricity e0 (for 5 yr observation). Here, we consider the same systems as in Fig. 3 but reparametrize the x axis using rp ¼ a0ð1 − e0Þ
and zoom in to highlight the parameter space where we expect to detect most of the stellar mass bursting BBHs [3,79], i.e.,
SNR ∼ 8–1000. Additionally, we changed the observation time from 1 to 5 yr to show an optimistic estimation of measurement accuracy
(for the 1 yr case, see Fig. 7 in Appendix C) and mark the parameter space of this figure with green dotted lines in panel (e) of Fig. 3 for
comparison purposes.

ZEYUAN XUAN et al. PHYS. REV. D 111, 043018 (2025)

043018-10



Δforb ∼ dforb ¼
forb

Tobs
dtlast burst >

forb

Tobs
Tburst ∼

ð1 − eÞ32
Tobs

:

ð18Þ

In other words, our waveform analysis will be sensitive to
any change in forb greater than ∼ð1 − eÞ32=Tobs. For a 1 yr
observation of a BBH system with ð1 − eÞ ∼ 10−3–10−1,
Eq. (18) yieldsΔforb ∼ 10−12–10−9 Hz, which is consistent
with the numerical result we discussed at the beginning of
this section (see, e.g., Fig. 9 in Appendix C for more
details).
We note that Eq. (18) only serves as a heuristic

estimation of Δforb. It neglects the GW source’s orbital
frequency shift during observation, which limits the appli-
cation of this formula in the high SNR region, where the
binary quickly loses energy and shrinks. However, for the
majority of stellar-mass binaries we consider in this work,
especially those close to the dashed line of SNR ¼ 8 in
Fig. 3, the GW merger timescale is typically much longer
than the observation time (see, e.g., Fig. 4 in Ref. [3]). In
these cases, Eq. (18) yields a quick analytical estimation of
forb measurement error and can help with determining the
grid size of matched filtering, which we will introduce soon
in the next section.
Second, the eccentricity measurement accuracy reaches

Δð1 − e0Þ=ð1 − e0Þ ∼ 1% for most detectable cases [see
panel (b) of Fig. 3], allowing for precise constraints on the
binary’s dynamical origin (note that different dynamical
channels may yield different characteristic eccentricities in
the same frequency band; see, e.g., Fig. 4 of Ref. [15]).
Moreover, for 5 yr integration, the accuracy may reach
below 0.1% for a significant part of the parameter space, as
depicted in Fig. 4. This accuracy highlights the dominant
role of eccentricity in shaping the overall form of the
bursting GWwaveform, as the term 1 − e is directly related
to the width of each GW burst we observe [see Eq. (17)],
and the waveform fitting is thus very sensitive to
eccentricity.
Third, as illustrated in panels (c) and (d) of Fig. 3, mHz

GW detection may be less sensitive to the total massM and
mass ratio q of a bursting binary system. For example,
during a 1 yr observation, we can only constrain the total
mass of bursting stellar mass BBHs (ΔM=M < 10%) when
their SNR exceeds ∼100. Moreover, for determining mass
ratio q, the bursting sources need to have SNR greater
than ∼1000. This result is consistent with our analysis in
Sec. II A. In particular, bursting sources have small
radiation power compared to moderately eccentric sources
in the same frequency band. Therefore, their orbital
evolution is slow, and frequency shift rate dforb=dt is hard
to measure, which limits the accuracy of mass measurement
(see, e.g., Ref. [78]).

However, the measurement accuracy for M and q can
significantly improve with extended observation time. For
example, as shown in panel (c) of Figs. 4 and 7 (in the
Appendix), when increasing observation time from 1 to
5 yr, the total mass measurement accuracy is enhanced by a
factor of ∼10, which allows us to measure the mass of
bursting binary system in many of the detectable cases
(with moderate SNR). In other words, for the first ∼1 yr of
LISA observation, we may not get a good constraint on the
mass of stellar-mass bursting sources with SNR≲ 100, but
most of them will have a mass measurement by the end of
5 yr LISA mission (except for some marginal detectable
cases with SNR ∼ 8 for 5 yr), which enables us to
distinguish between different bursting sources, such as
highly eccentric BBHs, binary neutron stars, and double
white dwarfs.
Furthermore, as shown in panels (e)–(h) of Fig. 3 and 4,

the orientation (as the axes of error ellipsoid, f2AS; 2Bsg
[68,131,134,136]) of bursting binary systems can only be
constrained to an accuracy of ∼100–1000 arc min when
SNR exceeds ∼100 (similar for 1 yr or longer integration
times). However, our analysis suggests that the detection
will be more sensitive to the sky location of the sources. In
particular, for a 5 yr observation, the resulting sky error
ellipsoids exhibit comparable angular sizes for as and bs,
typically ranging from ∼5–500 arc min, depending on the
SNR. This sky localization can enable the identification
of specific host environments of GW sources in the
Milky Way, such as globular clusters, the Galactic
Center, and the Galactic field, which potentially helps us
to disentangle different formation channels of BBHs.
As shown in panel (i) of Figs. 3 and 4, the distance

of a bursting binary system is only marginally constrained
in many detectable cases. For example, during a 1 yr
observation, ΔR=R reaches ∼10% only when SNR
exceeds ∼100. This accuracy improves when we extend
the observation time to 5 yr, but the relative error of R
still remains ≳10% for most of the systems with
8 < SNR < 100. Such low accuracy of distance measure-
ment is also caused by the slow orbital evolution of the
bursting binary system [see, e.g., a similar discussion in the
explanation of panels (c) and (d)]. In particular, for bursting
sources at low redshift, R only affects the overall amplitude
of the GW signal [see the termMη=R in Eq. (6)]. Therefore,
if the GW source undergoes slow orbital evolution, the
effect of R will degenerate with other mass parameters
(such as the total mass M), thus adding to the difficulty of
parameter extraction. However, we may still get a heuristic
estimation of the binary’s formation environment using the
distance measurement, since an accuracy of ∼10% is good
enough to infer the binary’s location in the local universe.
Furthermore, with the potential for electromagnetic coun-
terparts (e.g., if the source resides in a known stellar
population like a globular cluster or contains a directly
observable white dwarf), we may be able to disentangle the
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distance from other orbital parameters, thereby improving
constraints on the location of the bursting sources.
We note that, in Figs. 3 and 4, there are some data points

with a relative error estimation inconsistent with the general
distribution in the surrounding region [see, e.g., some of the
bright-yellow points, to the bottom-left in panel (e) of
Fig. 4]. Such fluctuation is caused by numerical error
and degeneracy in the waveform model. In particular, for
some bursting binary systems, only a few to a few dozen
GW bursts will be detected during an observation
time of ∼1–5 yr, which limits the numerical accuracy
in the frequency-domain inner product of waveforms.
Furthermore, among all the 10 parameters we discuss
(see Sec. II B), many of them will have a similar
effect on the overall shape of the GW signal (e.g., the
aforementioned degeneracy between distance R and total
mass M). Therefore, with a certain combination of param-
eter values, the Fisher matrix may become singular in the
numerical analysis, which leads to inconsistent relative
error estimation.
Additionally, we emphasize that it is possible to ana-

lytically estimate the parameter measurement error, espe-
cially in the cases when the GW waveform model is simple
[see, e.g., Eqs. (27)–(29) in Ref. [137] ]. In our cases,
however, the complexity of the bursting system’s param-
eters makes it hard to simplify the cross-terms in the Fisher
matrix via an analytical approach. Therefore, although we
tried to develop an analytical estimation, the outcome did
not yield a well-performed constraint on the measurement
accuracy, as shown in the Appendix B. However, for the
parameters that play a dominant role in the overall shape of
bursting GW signal, such as the orbital frequency forb, the
analytical method can still be accurate even if we make
many approximations [see Eq. (18)]. Therefore, it can yield
an efficient estimation with no need to compute the
numerical GW waveform.

B. Matched filtering

In Sec. III A, we discussed the parameter measurement
accuracy of highly eccentric GW sources. However, to get
such astrophysical information in realistic observation, we
need to identify the bursting GW signals and extract them
from the data stream. Therefore, in this section, we will
briefly introduce the technique of matched filtering, which
is commonly adopted in GW data analysis to detect signals
from astrophysical sources (see, e.g., Refs. [78,138–141]
for more details).
In particular, the measured strain amplitude in the

detector’s output can be described using sðtÞ¼
hðtÞþnðtÞ, with the (possibly present) signal hðtÞ and
the detector noise nðtÞ. To extract the targeted GW signal,
we first generate the GW waveform template based on our
understanding of astrophysical sources, htemplateðtÞ, then
convolve sðtÞwith htemplateðtÞ in the frequency domain (see,
e.g., Eq. (4.1) in Ref. [138]),

xðt0Þ ¼ 2

Z

∞

−∞

s̃ðfÞh̃�templateðfÞ
SnðfÞ

df; ð19Þ

in which s̃ðfÞ and h̃templateðfÞ are the Fourier transform of
sðtÞ and htemplateðtÞ and the star stands for the complex
conjugate. We note that, for GW mergers, the parameter t0
represents the termination time (the time at the detector at
which the coalescence occurs). Furthermore, we can
change the termination time of the template htemplateðtÞ
and find the value of t0 when the norm of xðt0Þ is
maximized, i.e., jxðt0Þjmax ¼ jxmj. Thus, this t0 represents
the correct (or the most likely) location of the GW signal in
the detector’s output. In our cases, the bursting binary may
not merge for the entire observation. However, we can still
use t0 (with a modified definition) to describe the position
shift of htemplateðtÞ in the time domain. Hereafter, we define
t0 as the time at which the first GW burst of htemplateðtÞ
occurs.
As shown in Eq. (19), for a given template htemplate, we

can find the maximum norm of the convolution result, jxmj.
This quantity, with a proper normalization constant σm [see,
e.g., Eq. (4.3) in Ref. [138] ], represents the optimized
signal-to-noise ratio for the template we use in the search,

SNRm ¼ jxmj
σm

; ð20Þ

note that the amplitude of htemplateðtÞ will cancel in the
computation of SNRm ¼ jxmj=σm, and thus we can place
the GW source at an arbitrary distance Rwhen constructing
the template. In realistic detection, if this signal-to-noise
ratio SNRm exceeds a certain threshold, we will identify the
corresponding template htemplateðtÞ as existing in the detec-
tor’s output sðtÞ. In other words, we successfully identify
the GW source and measure its parameters using the
parameters of htemplate.
In Sec. IV, we use the aforementioned method to conduct

matched filtering and test the detectability of bursting
sources in an example mock LISA observation.
Additionally, in this work, we use the software package
PyCBC for the numerical realization [142] and acknowledge
the supporting materials provided by the Gravitational
Wave Open Science Center of the LIGO Scientific, the
Virgo, and the KAGRA Collaborations [140,141,143].

IV. EXAMPLE OF MOCK DATA ANALYSIS

A. Difference between a bursting

and nonbursting data analysis

As shown in Sec. III, highly eccentric compact binaries
can provide us with valuable information about their orbital
parameters and formation environment. However, since
their GW signals are made up of transient bursts in the time
domain, the frequency power spectrum of bursting GW
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waveform will thus have many (∼103–106) harmonics that
contribute significantly to the total signal-to-noise ratio
(see, e.g., Refs. [3,7]). Such a large number of harmonics
distributes the energy of the GW signal in a wide range of
frequencies, thus potentially adding to the difficulty of
realistic data analysis. In particular, many existing data
analysis methods, such as matched filtering, rely on
accurate template fitting in the frequency domain; however,
the bursting waveform could have many of the harmonics
out of the sensitive frequency band of LISA. Furthermore,
since there could be a large population of bursting sources,
their collective GW signal may form a confusion back-
ground, with many GW harmonics from various sources
overlapping with each other [3].
Therefore, in this section, we will explore whether these

bursting binaries could be efficiently distinguished when
multiple sources and instrumental noises are present simul-
taneously in the detector’s output. Specifically, we carry out
mock LISA observation, generating a population of wide,
highly eccentric BBHs based on our previous studies of the
Galactic Center [3]. We then compute the collective GW
signal from these bursting BBHs, combine the signal with
the detector’s instrumental noise and astrophysical fore-
ground caused by unresolved Galactic binaries [117,144],
and apply the matched filtering as described in Sec. III B to
extract the information of the bursting BBHs.

B. Population model and waveform generation

As a proof of concept, we consider the bursting BBHs
formed in the Galactic Center as a representative example for
the mock observation. In particular, the Milky Way’s
Galactic nucleus offers a promising environment for the
formation of wide, highly eccentric BBHs (see, e.g.,
Refs. [7,29,34,45,48,71,145,146]). For example, the orbital
eccentricity of BBHs can be excited by the supermassive
black hole in the Galactic nucleus because of the Eccentric
Kozai-Lidov mechanism [25,26,28], resulting in the bursting
signatures on their GW signal. In our previous works
[3,29,79], we have carried out detailed simulations of the
aforementioned systems, including the secular equations (for
the hierarchical triple system) up to the octupole level of
approximation [147], general relativity precession (see, e.g.,
Ref. [148]), and GW emission [65,149]. Thus, here, we
adopt the result of the simulation presented in Ref. [3] for the
bursting BBH population in the mock LISA data.
Figure 5 illustrates the intrinsic parameters of BBHs we

get from the simulation mentioned above, with each black
dot representing the orbital parameter ða; 1 − eÞ of a binary
system. As shown in the figure, there could be ∼50 highly
eccentric BBHs simultaneously in the nuclear star cluster at
the Milky Way Galactic Center (note that there are many
BBHs with moderate eccentricity as well, which are not
shown in Fig. 5). Furthermore, in this sample, we find four
BBHs with the expected signal-to-noise ratio exceeding the
detection threshold [i.e., analytical SNR > 8 for a 4 yr

observation, estimated using Eq. (4)]. These systems, if
properly identified, will become detectable GW sources.
The mass of these BBH systems is determined using the
stellar evolution model in Appendix A.3 of Ref. [3], with
most of the black holes having a mass ∼10M⊙.
Additionally, the BBHs’ orientation is generated randomly
following an isotropic distribution, and we set their distance
to the detector as R ¼ 8 kpc.
Based on the aforementioned population model, we

generate the time-domain GW signal for each BBH system
and compute the detector’s response correspondingly [see
Eqs. (6)–(10)]. We then calculate the mock LISA data by
combining all the BBHs’ signals and adding the detector
noise. For simplicity, we assume stationary Gaussian noise
and adopt the LISA noise spectrum from Ref. [117], which
includes the instrumental noise as well as the foreground
from unresolved galactic binaries (see, e.g., Ref. [144]).

C. Matched filtering and mock observation results

In the mock data analysis, we adopt the matched filtering
method described in Sec. III B. Specifically, we first

FIG. 5. An example of the intrinsic parameters of highly
eccentric BBHs used in our mock LISA observation. Here, we
adopt the simulation result of the compact binary population in
the Milky Way’s nuclear star cluster (see Sec. 3.5 in Ref. [3]) and
show the parameters of highly eccentric BBHs in black dots. The
x axis represents the binary’s semimajor axis a, and the y axis
represents one minus the binary’s eccentricity (1 − e). We
estimate the overall signal-to-noise ratio of the BBH system
during a 4 yr LISA observation, depicted in different colors. The
dashed lines represent equal signal-to-noise ratio contours for
SNR ¼ 1000, 100, 8, and 1, from left to right. Here, the SNR is
analytically calculated using Eq. (4), assuming m1 ¼ m2 ¼
10M⊙ and R ¼ 8 kpc for simplicity. However, we note that
the mass of BBHs in the mock data analysis is generated from the
stellar evolution model and may slightly differ from ∼10M⊙.
Therefore, the numerical SNR is expected to vary slightly from
the analytical calculation. For demonstration purposes, we
enlarge the size of dots for the detectable BBH systems based
on the SNR.
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generate a waveform template bank using Eqs. (6)–(10),
which include the effect of the detector’s response and
annual motion around the Sun. For simplicity, we fix
the mass of the template binaries as 10–10M⊙, with
θ ¼ ϕ ¼ Θ ¼ Φ ¼ ψ ¼ π=4, and change the initial orbital
frequency forb and eccentricity e0. We then convolve each
template signal with the mock LISA data and compute the
optimal signal-to-noise ratio, SNRm [see Sec. III B and
Eq. (20)]. We remind the reader that the PyCBC software
package is adopted for the numerical realization [142]. The
results of the Match filtering output are shown in Fig. 6.
We emphasize that, as discussed above, some parameters

of the waveform template are fixed to avoid high computa-
tional costs in the mock data analysis. Specifically, we only
scan the two-dimensional parameter space of ðforb; 1 − e0Þ,
while the template signals may not match the exact values of
ðM;q; cosΘ;Φ; cos θ;ϕ;ψÞ of the GW sources. (Note that
matched filtering is independent of the overall amplitude of
the waveform, so the distance R of the template binary will
not affect the fitting result, assuming redshift is negligible.)
Consequently, the SNRm we show in Fig. 6 does not
represent a global optimum for the entire 10-dimensional

parameter space (see Sec. II B). However, we expect such a
loss of signal-to-noise ratio will not significantly impact the
overall fitting result, as the bursting waveform is less
sensitive to ðM;q; cosΘ;Φ; cos θ;ϕ;ψÞ compared to
ðforb; 1 − e0Þ (see, e.g., the Fisher matrix analysis result
in Sec. III A 1; note that the parameters with larger meas-
urement error will have a weaker influence on the wave-
form). For example, the GW source with a ∼ 0.068 au,
ð1 − eÞ ∼ 0.032, has an analytical estimation of SNR ∼ 200

in Fig. 5 (see the biggest black dot). On the other hand, this
source is successfully identified in the mock data analysis,
numerically fitted with SNRm ¼ 96 and almost no bias in
the measured values of ðforb; 1 − e0Þ (see the black star in
the right panel of Fig. 6). Therefore, even without fitting the
global optimum across the 10-dimensional parameter space,
we can effectively apply the matched filtering to search for
ðforb; 1 − e0Þ, which are the dominant parameters that affect
the shape of bursting waveform, and still detect most of the
bursting sources with high SNR in future LISA observation.
In Fig. 6, we plot the fitted SNRm in different colors as a

function of the template’s forb and 1 − e0. As shown in the
left panel, we successfully identify multiple bursting

FIG. 6. The matched filtering output in the mock LISA data analysis of highly eccentric BBHs. Here, we fit the mock LISA data with
different bursting GW templates and plot the optimal signal-to-noise ratio, SNRm, in different colors, as a function of forb and 1 − e0 of
the template (see Secs. II B and IV for more details). Specifically, the optimal SNR is calculated numerically, using matched filtering as
described in Sec. IV [note that SNRm represents the realistic fitting result and is different from the analytical estimation of SNR in Eq. (4)
and Figs. 3–5]. The left panel shows the fitting results for all the potential GW sources with an orbital frequency of forb ∼ 4 ×
10−7–2 × 10−5 Hz and eccentricity e ∼ 0.9–0.997, while the right panel shows a zoom-in of the region near the parameters of a “real”
GW source that appears in the mock data (i.e., the detection case). For demonstration purposes, we mark, in stars, the intrinsic
parameters of the GW sources and highlight the region where we successfully fit these signals with high SNRm (see the rectangular
boxes in light blue). We note that, in some regions of the left panel, numerical artifacts cause the fitted SNRm to exceed the detection
threshold of 8, while there are no astrophysical sources (see Sec. IV for a more detailed discussion) [We applied a high-pass filter in the
data analysis before the matched filtering to suppress the loud instrumental noise and astrophysical foreground at frequencies below
10−4 Hz. Additionally, to reduce computational costs, we generated mock LISA data with a sample rate of 0.1 Hz. Note that the matched
filtering produces a SNR time series for each template [see, e.g., Eq. (19)]. To overcome numerical artifacts caused by the finite length of
the GW signal, we implemented a cutoff in the SNR time series at t0 < 5=forb and tend − t0 < 5=forb (in which tend ¼ 1 yr is the ending
time of the GW signal), before finding the SNRm and outputting the result. A similar approach can be found in LIGO data analysis; see,
e.g., Sec. VII in Ref. [138] ].
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sources in the mock data. In particular, the stars represent
the intrinsic parameters of four GW sources that have a
high analytical SNR in the mock data (note that these
sources, as well as other low SNR sources in Fig. 5, are
present simultaneously in the mock LISA signal). After
applying the matched filtering, we get the SNRm distribu-
tion as highlighted by the rectangular boxes in light blue,
which has a clear high SNRm peak that centers around the
intrinsic parameters of the binary (with the peak SNRm ¼
15; 96; 54; 47, from left to right, exceeding the detection
threshold of 8). This result verifies that matched filtering
can perform well in extracting the bursting GW signal from
LISA data, even when multiple sources are contributing to
a wide range of harmonics in the frequency domain (see
Sec. IVA) and when there are instrumental noises plus the
Galactic foreground.
Furthermore, the right panel illustrates a zoom-in of the

region near the intrinsic parameters of a detected source.
We emphasize that the matched filtering of bursting GW
signal is highly sensitive to the choice of the initial orbital
frequency, forb. For example, the high SNRm peak in the
left panel only spans a frequency range of ∼10−10 Hz. This
sensitivity implies that, for LISA data analysis, we need to
choose a grid size smaller than this value [or, more
precisely, as estimated in Eq. (18)] to avoid missing
any bursting sources in the search. Given the parameter
space scale of forb ∼ 10−7–10−4 Hz, this grid size requires
computing ∼106 grids in the dimension of forb, which
greatly increases the computational expense. However,
once the sources are identified, we can take advantage
of this high sensitivity to forb and accurately determine the
orbital parameters of bursting binaries. Moreover, because
of the small error in orbital frequency measurement, two
bursting sources with similar orbital frequencies are less
likely to be confused in the data analysis, which could help
suppress any potential confusion background.
We note that there are numerical artifacts in the left panel

of Fig. 6, which cause the fitted SNR to exceed the
detection threshold of 8 even when there are no astro-
physical sources. Specifically, in the region surrounded by
yellow dot-dashed lines, most of the high SNRm peaks do
not represent real parameters of astrophysical sources
(except for the four SNRm peaks highlighted by rectangular
boxes in light blue). Instead, these peaks are caused by the
higher-order harmonics of astrophysical bursting signals.
Specifically, for a given astrophysical signal with burst
period 1=forb, all the templates htemplateðtÞ with the follow-
ing orbital frequencies could have high SNRm in the
template fitting:

f0orb ¼
m

n
forb; ðm; n ¼ 1; 2; 3…Þ: ð21Þ

Equation (21) can be explained using the property of
bursting signals. In particular, most of the observed stellar

mass bursting systems are expected to have slow orbital
evolution (see Sec. II A), and their GW emission can
be characterized by repeated bursts, with a separation of
δτ ¼ 1=forb in the time domain. For example, when using a
template with a burst separation of 2δτ; 3δτ; 4δτ… or
1
2
δτ; 1

3
δτ; 1

4
δτ… to fit the signal, the GW bursts of the

template will also match (some of) the bursts from
astrophysical sources, thus yielding a high SNRm in the
matched filtering result. (Note that, in the frequency
domain, this effect can be described as the overlapping
of harmonics between two signals with different funda-
mental frequencies, with one fundamental frequency being
multiple integer times the other one. Also, a similar effect
has been found in the literature of EMRI data analysis; see,
e.g., Ref. [150]).
Additionally, to excite the highest SNRm peak at a given

harmonic frequency f0orb, the templates need to have most
of the GWenergy distributed in the same frequency band as
the astrophysical source. In other words, the template
should have a burst frequency that closely matches the
astrophysical GW signal [see Eq. (2)],

f0orbð1 − e0Þ−3
2 ∼ forbð1 − e0Þ−

3
2; ð22Þ

in which e0 is the eccentricity of the harmonic template.
Notably, Eq. (22) also suggests that the width of a GW burst
in the template coincides with the width of the burst in the
actual astrophysical signal.
Equations (21) and (22) provide a prediction for the

orbital frequency and eccentricity of the harmonic template
(see, e.g., the harmonic peak locations in Fig. 6), which can
significantly enhance source identification in future data
analysis. For example, the system with forb ¼ 7.60745 ×
10−6 Hz will excite multiply harmonics at the frequencies
such as 3.80372;2.53581;1.90186×10−6 Hz, and 1.52149;
2.28223; 3.04298 × 10−5 Hz (which represent the second,
third, and fourth harmonics; see the peaks in the left panel
of Fig. 6). Once we’ve found these high SNRm peaks, we
can try to fit their locations using Eqs. (21) and (22), thus
extracting the intrinsic parameters of the source. We note
that the fitted SNRm will be suppressed as the harmonic
numbers m, n increase, resulting in a finite number of
detectable harmonics. These harmonics can be efficiently
distinguished due to the high accuracy of forb measure-
ment. Furthermore, Fig. 6 shows the matched filtering
result for simultaneously fitting all bursting sources.
However, in practical data analysis, we can identify the
loudest bursting sources, remove them from the dataset,
and thereby prevent their harmonics from interfering with
the fitting of other astrophysical signals.
Here, we aim at a proof-of-concept example of a bursting

source search in LISA data analysis. Thus, this mock
observation does not include all the potential bursting
source populations. Furthermore, we assume a stationary
Gaussian instrumental noise in the mock LISA data, which
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may not capture all the influence of noise on the fitting results
of the bursting signals. For example, there have been many
studies highlighting the importance of instrumental glitches
(see, e.g., Refs. [151–153]). We expect this phenomenon to
appear in future detection, as shown recently by the LISA
Pathfinder (see, e.g., Refs. [154,155]). Therefore, it is
important to characterize whether these noise transients will
affect LISA’s performance in detecting highly eccentric
compact binaries, which we leave for future works.
Additionally, as discussed above, the matched filtering

of bursting GW signals is very sensitive to the
orbital frequency, with ∼106 grids required for a complete
search of forb in the parameter space that we focus on.
Moreover, there are nine more dimensions ð1 − e0;
M; q; cosΘ;Φ; cos θ;ϕ; R;ψÞ that contribute to the total
number of grids we need to compute. However, computing
bursting waveforms in the time domain is time consuming,
which leads to a high computational cost for the search of
these sources. Thus, we highlight the importance of
constructing accurate frequency-domain waveforms for
highly eccentric binaries, as they could greatly accelerate
realistic data analysis. Also, we may need to incorporate
other suboptimal time-frequency approaches to search for
the signal, such as power stacking [51], the TFCLUSTER
algorithm [156], wavelet decomposition [80], and the
Q-transform [81–84], which are more robust to different
kinds of transients and have lower computational costs.

V. DISCUSSION

Wide, highly eccentric compact binaries can naturally
arise as a progenitor stage of GW mergers, particularly in
dynamical channels where environmental perturbations
bring two compact objects into close encounters (see,
e.g., Refs. [3–12,15–19,29,39–41,43–49,76,79,157,158]).
These systems will undergo effective GW emission upon
each pericenter passage, which potentially creates a burst-
like pattern in the mHz GW detection, as demonstrated
in Fig. 1 (note that there could be ∼3–45 detectable
bursting BBHs in the Milky Way, which contribute to
∼102–104 GW bursts during the LISA mission [3]). This
work focuses on the source identification and parameter
extraction of stellar mass bursting binaries. Particularly, we
explored the astrophysical inference of these highly eccen-
tric systems, quantified their parameter measurement error,
and carried out mock LISA observation to test whether
these bursting binaries could be efficiently distinguished
when multiple sources and instrumental noises are present
simultaneously in the detector’s output.
Throughout this paper, we have adopted the x model to

generate GW signals for all of the bursting binaries (see
Sec. II A). This model includes the dynamics of eccentric
compact binaries to 3 pN order, and we further account
for the detector’s annual motion around the Sun [see
Eqs. (6)–(10)]. The definition of coordinates is illustrated
in Fig. 2.

To assess the detectability and parameter measurement
accuracy of burstingGWsources in theLISAband,we utilize
the Fisher matrix analysis (see Sec. III A) and the matched
filteringmethod (see Sec. III B). In particular, using theFisher
matrix analysis, we compute the relative measurement
error of fforb; 1 − e0;M; q; cosΘ;Φ; cos θ;ϕ; R;ψg, for
the bursting GW signals from a 10 − 15M⊙ BBH system
at a distance of 8 kpc, in a representative parameter space of
semimajor axis a0∼0.01–3 au, eccentricity e0∼0.9–0.9999.
The results are shown inFigs. 3 and4,with Fig. 3 representing
1 yr LISA observation and Fig. 4 representing 5 yr (which
yields a higher accuracy).
As illustrated in Figs. 3 and 4, for a highly eccentric

binary system, its orbital frequency, eccentricity (as
1 − e0), and the sky location can be retrieved with relatively
high accuracy. Notably, LISA could determine these
bursting sources’ orbital frequency to an accuracy of
Δforb ∼ 10−12–10−10 Hz, with the relative error of 1 − e0
measurement smaller than ∼1% in the detected cases,
which could greatly help with the understanding of these
binaries’ formation channels. Furthermore, the sky location
of bursting sources could be measured to an accuracy of
∼0.1–10 deg (depending on the signal-to-noise ratio),
while the bursting waveform detection may be less sensi-
tive to other parameters, including the binary’s intrinsic
orientation fΘ;Φg, the distance R, and the polarization
angle ψ of GW signal. Additionally, the mass ratio q is
poorly constrained, but we could estimate the total massM
with an accuracy ofΔM ≲ 10% in a 5 yr observation, when
the SNR exceeds ∼100. We discussed the astrophysical
interpretation of the aforementioned results in Sec. III A 2
and give an analytical estimation of forb measurement error
in Eq. (18).
We note that, due to the limitation of the Fisher matrix

analysis, the aforementioned parameter measurement accu-
racy only serves as a heuristic estimation for this new
source class. In particular, the resultant measurement error
of our work can become unreliable when compared with
full Bayesian analyses (see, e.g., the discussion in
Ref. [109]), especially for those parameters with weak
influence on the waveform (i.e., mass ratio q; intrinsic
orientation Θ, Φ; and distance R). Thus, we emphasize the
need for full Bayesian analyses in future work. While
computationally expensive, these methods can consistently
include sophisticated priors and explore the secondary
maxima of the posterior. Nonetheless, our results provide
compelling evidence that bursting GW sources are prom-
ising candidates for inferring astrophysical properties.
Moreover, to measure the source parameters in realistic

observation, the bursting GW signals need to be properly
identified and extracted from the data stream. Thus, we
further test the detectability of the highly eccentric compact
binaries via the mock LISA data analysis. Specifically, we
construct an example of mock LISA data (see Sec. IV B),
which includes a representative population of bursting
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BBHs in the MilkyWay Galactic Center nuclear star cluster
(see Fig. 5), the instrumental noise of detector, and the
astrophysical GW noise foreground caused by unresolved
Galactic binaries. We then adopt the matched filtering
method as described in Sec. III B, to compute the optimal
signal-to-noise ratio in the search of bursting GW sources.
The mock data analysis results are summarized in Fig. 6.

Interestingly, even without fitting the global optimum
in the 10-dimensional parameter space, the matched filter-
ing search of bursting GW templates in the plane of
ðforb; 1 − e0Þ still identifies most of the bursting sources
with high SNR in the mock observation (which is mostly
because ðforb; 1 − e0Þ are the dominant parameters that
characterize the bursting GW signals). Furthermore, the
matched filtering results show a high sensitivity to orbital
frequency (see the left panel), which indicates a small grid
size requirement, Δforb ∼ 10−10 Hz, for future data analy-
sis. On the other hand, this phenomenon also means there
could be less confusion between bursting binaries with
different values of forb. Thus, multiple sources can be
distinguished simultaneously in the detector’s output. We
also explore the potential artifacts in burst data analysis,
such as the nonastrophysical signals caused by the higher-
order harmonics of highly eccentric GW sources, as
described in Eq. (21).
We emphasize that the mock data analysis in this work

does not include all the potential GW source populations
and the non-Gaussian instrumental noise (such as glitches).
However, it serves as a proof-of-concept example of
bursting source search in LISA data analysis, which verifies
the detectability of highly eccentric compact binaries with
the current LISA design and data analysis methods. Also,
our analysis provides a guideline for the future bursting
GW signal search, including an estimation of parameter
space, computational expense, and potential artifacts.
To conclude, wide, highly eccentric compact binaries

can provide us with valuable information about their
formation channels and the surrounding environment. In
particular, we show that these sources could be properly
identified and extracted from the LISA detector’s output,
with high accuracy in the measurement of orbital fre-
quency, eccentricity, and sky location. However, the com-
putational expense may be large for the search of bursting
signals. Therefore, it is important to develop ready-to-use
frequency-domain templates for bursting GW sources or
incorporate other efficient time-frequency approaches in
future detection.
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APPENDIX A: TIME-DOMAIN ESTIMATION

OF THE INNER PRODUCT

For quasiperiodic gravitational waves h1, h2 with fre-
quency close to f0, the GW signal is a nearly monochro-
matic, sinusoidal waveform. In this case, the frequency-
domain expression of inner product [see Eq. (11)] can be
simplified. In particular, the noise curve SnðfÞ can be taken
out of the integration because of the small variation of f:

hh1jh2i≈
2

Snðf0Þ

Z

∞

0

½h̃�1ðfÞh̃2ðfÞþ h̃1ðfÞh̃�2ðfÞ�df: ðA1Þ

Furthermore, using Parseval’s theorem, we can compute the
integral in Eq. (A1) using time-domain waveforms:

hh1jh2i ≈
4

Snðf0Þ

Z

∞

0

h1ðtÞh2ðtÞdt: ðA2Þ

Equation (A2) is commonly adopted when analyzing the
gravitational waves from circular binaries when the evolu-
tionary timescale is much longer than the observational
period of LISA (see, e.g., Refs. [70,159,160]).

APPENDIX B: ANALYTICAL ESTIMATION

OF THE FISHER MATRIX

In this section, we develop an analytical method to
estimate the Fisher matrix for eccentric GW sources in the
LISA band. In particular, we first adopt a simplified
waveform model for eccentric sources from Ref. [161]
(see also Refs. [9,68,85]), in which h×; hþ denote two
polarizations of the gravitational wave and n ¼ 1; 2; 3…
denotes the number of harmonics,

h×ðtÞ ¼ −h cosΘ
X

n

½Bn− sinΦt
nþ þ Bnþ sinΦt

n−�; ðB1Þ

hþðtÞ ¼ −
h

2

X

n

½sin2ΘAn cosΦt
n þ ð1þ cos2ΘÞ

× ðBnþ cosΦt
n− − Bn− cosΦ

t
nþÞ�; ðB2Þ

where h ¼ 4m1m2=ðaRÞ is the strain amplitude of gravi-
tational wave. For a detailed description of orbital param-
eters, see Fig. 1 in Ref. [68].
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In Eq. (B2), Bn� ¼ ðSn � CnÞ=2 and An are linear
combinations of the Bessel functions of the first kind,
JnðneÞ, and their derivatives,

Sn ¼ −
2ð1 − e2Þ1=2

e
n−1J0nðneÞ þ

2ð1 − e2Þ3=2
e2

nJnðneÞ;

Cn ¼ −
2 − e2

e2
JnðneÞ þ

2ð1 − e2Þ
e

J0nðneÞ;

An ¼ JnðneÞ; ðB3Þ

where a prime denotes the derivative, i.e., J0nðneÞ≡
dJnðneÞ=de ¼ n½Jn−1ðneÞ − Jnþ1ðneÞ�=2.
The frequency component of an eccentric GWwaveform

is made up of a series of harmonics, with the power of
each harmonic concentrate near fn ¼ nforb (see, e.g.,
Refs. [3,65,77,79,85]. Furthermore, the pericenter preces-
sion makes the orbital phase of each harmonic split into a
triplet, Φn;Φn�. Therefore, in Eq. (B2), the time evolution
of orbital phases can be expressed as [85]

Φ
t
n ¼ 2πnforbðt − t0Þ;

Φ
t
n� ¼ 2πnforbðt − t0Þ � 2πδft� 2γ0; ðB4Þ

in which forb ¼ T−1
orb is the Keplerian orbital frequency

(here, Torb ¼ 2πM−1=2a3=2 is the Newtonian radial orbital
period), t0 is the time of pericenter passage (hereafter, we
set t0 ¼ 0), γ0 is the initial angle of the pericenter, and here
we define δf as twice of the (general relativistic) pericenter
precession frequency [85]:

δf ¼ 2 ×
1

2π

dγ

dt
¼ 3M

3
2

πa
5
2ð1 − e2Þ

¼ 6ð2πÞ23M2
3f

5
3

orb

ð1 − e2Þ : ðB5Þ

After setting up the waveform, we can take its deriva-
tive of different orbital parameters and get an analytical
estimation of the Fisher matrix using Eq. (12). In the
most general case, all the six parameters could affect
the waveform in Eq. (B2), i.e., ðh;Θ; forb; δf; e; γ0Þ.
However, for simplicity, here we will only focus on three
parameters, i.e., ðforb; δf; eÞ. This simplification is partly
justified because ðforb; δf; eÞ dominates the long-term
phase evolution of the GW waveform, thus mostly
affecting the overlap in the computation of Fisher matrix
[see Eq. (12)]. Also, we are interested in these three
parameters because they represent the accuracy of meas-
urement for the (redshifted) intrinsic parameters of the
binary system,

∂h×

∂forb
¼ −h cosΘ

X

n

½Bn− cosΦt
nþ · ð2πntÞ

þ Bnþ cosΦt
n− · ð2πntÞ� ðB6Þ

∂h×

∂δf
¼ −h cosΘ

X

n

½Bn− cosΦ
t
nþ · ð2πtÞ

þBnþ cosΦt
n− · ð−2πtÞ� ðB7Þ

∂h×

∂e
¼ −h cosΘ

X

n

½B0
n− sinΦt

nt þ B0
nþ sinΦt

n−�; ðB8Þ

in which B0
n�ðn; eÞ ¼ dBn�=de is the derivative as a

function of the binary’s eccentricity. Note that, in
Eqs. (B6) and (B7), the factor of 2πnt (2πt) is because
of taking the derivative of Φ

t
n� over forb (δf)

[see Eq. (B4)].
We note that, on the other hand, h represents the overall

amplitude of the waveform, while Θ and γ0 describe the
inclination and orientation of the binary relative to the
observer. Since there are degeneracies between some of
these parameters [e.g., h and cosΘ in Eq. (B1)] and the
highly eccentric GW waveform is less sensitive to these
parameters (see, e.g., that they are weakly constrained in
Fig. 3), we neglect their contribution for simplicity.
However, in realistic observation, these parameters may
still interfere with the measurement of ðforb; δf; eÞ. In other
words, our result in the following discussion only considers
the submatrix of ðforb; δf; eÞ, and the corresponding
estimation serves as a lower bound of parameter measure-
ment error.
Here, we assume the GW source evolves slowly. Thus,

the signal does not undergo a significant frequency shift
during the observation, and each harmonic is a near-
monochromatic signal with the power concentrates
near fn ¼ nforb. We expect that most sources will be
consistent with this assumption for the harmonics that
contribute most to the detection signal-to-noise ratio (see,
e.g., Refs. [3,4,48]); however, in some cases, the signal may
shift in a short timescale, or the precession of orbit is
fast [47,71], which is beyond the scope of this study.
In particular, we make the assumptions

8

>

>

>

<

>

>

>

:

forb
ḟorb

≫ Tobs

Tobs ≫
1

forb

forb ≫ δf

; ðB9Þ

where ḟorb represents the time derivative of orbital fre-
quency, which can be estimated using Eq. (B10) [65,76]:

ḟorb ¼
1

2
×
96π8=3

5
M

5=3
c ð2forbÞ11=3FðeÞ; ðB10Þ

in which Mc is the chirp mass of the binary,
Mc ≡ ðm1m2Þ3=5=ðm1 þm2Þ1=5, and FðeÞ is a function
of the compact binary’s eccentricity (the enhancement
function) [125]:
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FðeÞ≡ 1þ 73
24
e2 þ 37

96
e4

ð1 − e2Þ7=2 : ðB11Þ

In Eq. (B9), the first assumption ensures that the source
evolves slowly (merger timescale τ ∼ forb=ḟorb ≫ Tobs),
the second assumption ensures that there is a significant
number of bursts detected during the observation, and the
third assumption ensures that pericenter precession is small
during each orbit [i.e., every single harmonic and its
corresponding triplet frequencies will only overlap with
itself in the frequency domain; see Eq. (B4)].
Therefore, under the assumption that forb evolves slowly

and δf is much smaller than forb, each single harmonic (and
its corresponding triplet frequencies) can be taken as a near-
monochromatic signal, which does not overlap with other
harmonics. This property allows us to compute the inner
product of each individual harmonic using Eq. (A2), then
sum over all the harmonics’ contributions to get the total
inner product.
For example, combining Eqs. (A2) and (B6), we have

	

∂h×

∂forb













∂h×

∂forb

�

¼h2cos2Θ ·
X

n

4

SnðnforbÞ
·ð2πnÞ2

×
Z

Tobs

0

½B2
n−cos2Φ

t
nþþB2

nþcosΦ
2
n−

þ 2BnþBn−cosΦ
t
nþcosΦ

t
n−�t2dt; ðB12Þ

in which

Z

Tobs

0

cos2Φt
n�t

2dt

¼ 1

2

Z

Tobs

0

ð1þ cos 2Φt
n�Þt2dt

¼ 1

6
T3
obs þ

1

2

Z

tobs

0

cos ½4πðnforb � δfÞt� 4γ0�t2dt

≃
1

6
T3
obsð1þOð1ÞÞ; ðB13Þ

and:

Z

tobs

0

cosΦt
nþ cosΦt

n−t
2dt

¼ 1

2

Z

Tobs

0

½cos ð4πnforbtÞ þ cos ð4πδftþ 4γ0Þ�t2dt:

ðB14Þ

We note that, the integration of cos ð4πδftþ 4γ0Þt2dt in
Eq. (B14) may yield a significant contribution to the inner
product. This is because many highly eccentric systems
have their precession timescale 1=δf comparable to or
longer than the observation time, Tobs. Therefore, Eq. (B14)
can be on the same order of ∼T3

obs. [Note that we did not

assume Tobs ≫ 1=δf in Eq. (B9); otherwise, all the terms in
Eq. (B14) can be neglected compared with T3

obs.]
In other words, the initial angle of the pericenter, γ0, can

affect the parameter extraction, providing that the eccentric
GW source has slow precession during the observation.
However, since here we are focusing on a heuristic
estimation of the parameter extraction accuracy, we further
average over different orientations of the source, i.e., the
angle of γ0, to get the general order of magnitude for the
matrix element. The average over γ0 makes the term of
cos ð4πδftþ 4γ0Þt2dt vanish. Therefore, after taking this
average, the terms in Eq. (B14) can be neglected because
they are much smaller than T3

obs [the leading-order con-
tribution; see, e.g., Eq. (B13)].
Plugging the result of Eqs. (B13) and (B14) into

Eq. (B12), we can get

hΓ×
forbforb

i
γ0
¼

	

∂h×

∂forb













∂h×

∂forb

�

γ0

∼
8π2

3
h2cos2ΘT3

obs

X

n

n2

SnðnforbÞ
ðB2

nþ þ B2
n−Þ;

ðB15Þ

in which h·iγ0 represents taking the average over γ0.
Similarly, we can adopt this method for the other two

parameters, δf and e and get

hΓ×
δfδfiγ0 ¼

	

∂h×

∂δf













∂h×

∂δf

�

γ0

∼
8π2

3
h2cos2ΘT3

obs

X

n

1

SnðnforbÞ
ðB2

nþ þ B2
n−Þ

ðB16Þ

hΓ×
eeiγ0 ¼

	

∂h×

∂e













∂h×

∂e

�

γ0

∼ 2h2 cos2ΘTobs

X

n

1

SnðnforbÞ
ðB02

nþ þ B02
n−Þ;

ðB17Þ

where a prime denotes the derivative, i.e., B0
n� ≡ dBn�=de.

We apply the same analysis to the plus polarization [see
Eq. (B2)] and get

hΓþ
forbforb

i
γ0
¼

	

∂hþ
∂forb













∂hþ
∂forb

�

γ0

∼
2π2

3
h2T3

obs

X

n

n2

SnðnforbÞ
× ½sin4ΘA2

n þ ð1þ cos2ΘÞ2ðB2
nþ þ B2

n−Þ�;
ðB18Þ
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hΓþ
δfδfiγ0 ¼

	

∂hþ
∂δf













∂hþ
∂δf

�

γ0

∼
2π2

3
h2T3

obs

X

n

ð1þ cos2ΘÞ2
SnðnforbÞ

ðB2
nþ þ B2

n−Þ:

ðB19Þ

hΓþ
eeiγ0 ¼

	

∂hþ
∂e













∂hþ
∂e

�

γ0

∼
1

2
h2Tobs

X

n

1

SnðnforbÞ
× ½sin4ΘA02

n þð1þcos2ΘÞ2ðB02
nþþB02

n−Þ� ðB20Þ

In realistic observation, the detector’s output is a linear
combination of two polarizations of the gravitational wave,
and the coefficients depend on the sources’ sky location and
detector’s orientation (see the discussions in Sec. III A 1).
Here, for simplicity, we combine the matrix elements for
h×; hþ using

Γ ¼ Γ
× þ Γ

þ: ðB21Þ

We note that, after taking the approximations in Eq. (B9)
and averaging the matrix elements over γ0, the cross-terms
between different parameters will vanish because of the
same reason as discussed below Eqs. (B13) and (B14), i.e.,

hΓ×þ
forbδf

i
γ0
∼0; hΓ×þ

forbe
i
γ0
∼0; hΓ×þ

δfeiγ0 ∼0; ðB22Þ

therefore, the diagonal terms in the inverse of the Fisher
matrix, Cii, can be simplified as Cii ∼ hΓiii−1γ0 , which gives
the following relation [see Eq. (13)]:

Δλi ¼ C
1
2

ii ∼ hΓiii
−
1
2

γ0 : ðB23Þ

We can plug Eqs. (B15)–(B20) into Eq. (B21), then
use Eq. (B23) to calculate the parameter measurement
error:

Δforb ∼ ðhΓ×
forbforb

i
γ0
þ hΓþ

forbforb
i
γ0
Þ−1

2

¼ h−1T
−
3
2

obs

�

2π2

3

X

n

n2

SnðnforbÞ
× ½sin4ΘA2

n þ ð1þ 6cos2Θþ cos4ΘÞ

×ðB2
nþ þ B2

n−Þ�
�

−
1
2

; ðB24Þ

ΔðδfÞ ∼ ðhΓ×
δfδfiγ0 þ hΓþ

δfδfiγ0Þ
−
1
2

¼ h−1T
−
3
2

obs

�

2π2

3

X

n

ð1þ 6cos2Θþ cos4ΘÞ
SnðnforbÞ

× ðB2
nþ þ B2

n−Þ
�

−
1
2

; ðB25Þ

Δe∼ðhΓ×
eeiγ0 þhΓþ

eeiγ0Þ−
1
2

¼h−1T
−
1
2

obs

�

1

2

X

n

1

SnðnforbÞ

× ½sin4ΘA02
n þð1þ6cos2Θþcos4ΘÞðB02

nþþB02
n−Þ�

�

−
1
2

:

ðB26Þ

We emphasize that Eqs. (B24)–(B26) serve as a lower
bound of the measurement error since we exclude ðh;Θ; γ0Þ
when analyzing the elements of the Fisher matrix. In fact, it
turns out that this estimation may differ from the numerical
results by orders of magnitude (see, e.g., Fig. 3). However,
we expect it to show the correct dependence of Δforb,
ΔðδfÞ, and Δe on the observational time as well as the
orbital parameters of the binary.

APPENDIX C: COMPUTING THE MAJOR

AND MINOR AXES

OF SKY ERROR ELLIPSOIDS

To estimate the parameter measurement errors for GW
sources, we computed their Fisher matrix using the partial
derivatives of the waveform with respect to 10 parameters:
forb; 1 − e0;M; q; cosΘ;Φ; cos θ;ϕ; R;ψ (see Sec. III A 1).
On the other hand, instead of directly estimating the errors
in the spherical polar angles fcosΘ;Φ; cos θ;ϕg, the
source orientation and sky location measurement accuracy
can be better described using sky error ellipsoids (see, e.g.,
Refs. [68,131,134,136]). Therefore, this section will briefly
summarize how to convert the Fisher matrix analysis results
of fcosΘ;Φ; cos θ;ϕg into the major and minor axes of the
corresponding sky error ellipsoids, f2As; 2Bsg,f2as; 2bsg.
In particular, we follow the method described in Sec. VI

C of Ref. [136]. For example, to estimate the error ellipsoid
of sky location, f2as; 2bsg, we first consider the relevant
terms in the covariance matrix, C ¼ F−1 [see Eqs. (12)
and (13)],

8

>

<

>

:

Σcos θ;cos θ ¼ C77;

Σcos θ;ϕ ¼ Σϕ;cos θ ¼ C78;

Σϕ;ϕ ¼ C88;

ðC1Þ

where indices 7 and 8 correspond to the parameters cos θ;ϕ
in the Fisher matrix Fij and covariance matrix Cij.
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FIG. 7. The dependence of a compact binary’s parameter measurement error on its initial pericenter distance, rp ¼ a0ð1 − e0Þ, and
eccentricity e0. (1 yr observation) Here, we consider the same systems as in Fig. 3, but reparametrize the x axis using rp ¼ a0ð1 − e0Þ.
We exclude the gray-colored region at the bottom of each panel since here the binary’s orbital period is longer than the observation
time (1 yr).

FIG. 8. The dependence of a compact binary’s polarization angle measurement error on its semimajor axis and eccentricity, computed
using the Fisher matrix analysis. (1 yr observation) Here, we consider the same systems as in Fig. 3 but show the result according to
parameter ψ for completeness.
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Defining the error ellipse such that the probability of the source lying outside the ellipse is e−1 [130], the major axis 2as
and minor axis 2bs of the ellipse are given by

2

h

csc2θΣcos θ;cos θ þ sin2θΣϕ;ϕ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcsc2θΣcos θ;cos θ − sin2θΣϕ;ϕÞ2 þ 4ðΣcos θ;ϕÞ2
q

i

1=2
: ðC2Þ

Similarly, this method can be applied to the parameters fcosΘ;Φg, by substituting cos θ → cosΘ, ϕ → Φ in Eqs. (C1)
and (C2), yielding the major and minor axes of error ellipse for source orientation, f2As; 2Bsg.
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