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(Regular Article)

ABSTRACT  This article introduces the first publicly accessible labeled multimodal perception dataset for
autonomous maritime navigation, focusing on in-water obstacles within the aquatic environment to enhance
situational awareness for autonomous surface vehicles (ASVs). This dataset, collected over four years and
consisting of diverse objects encountered under varying environmental conditions, aims to bridge the research
gap in ASVs by providing a multimodal, annotated, and ego-centric perception dataset, for object detection
and classification. We also show the applicability of the proposed dataset by training and testing current
deep learning-based open-source perception algorithms that have shown success in the autonomous ground
vehicle domain. With the training and testing results, we discuss open challenges for existing datasets and
methods, identifying future research directions. We expect that our dataset will contribute to the development
of future marine autonomy pipelines and marine (field) robotics. This dataset is open source and found at
https://seepersea.github.io/

INDEX TERMS  Autonomous surface vehicle (ASV), maritime perception, multimodal dataset, obstacle
classification, obstacle detection, situational awareness.

Special Issue on ICRA 2024 Workshop on Field Robotics

. INTRODUCTION

EARNING-BASED, multimodal algorithms have
L shown terrestrial domain success for self-driving cars
on the road to autonomy. The precondition(s) to this suc-
cess fundamentally rest on the availability of relevant,
labeled datasets [1], [2], [3]. Equivalent success in marine
autonomous surface vehicles (ASVs) is, unsurprisingly, ham-
pered by the lack of relevant multimodal perception datasets.
Thus, the goal of this article is to create the first publicly

available labeled, multimodal 3-D perception dataset for
autonomous maritime navigation (see Fig. 1). This dataset,
consisting of in-water obstacles, aims to enhance ASVs’
situational awareness. Situational awareness is a founda-
tional task that undergirds autonomy, which is increasing
in importance given the focus on ASVs for tasks such
as environmental monitoring and automated transportation.
This importance will only grow as marine trade increases
to 90% of the share of world trade [4] and, accordingly,
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the expected size of the ASV market will grow to 2.7B
USD by 2032 [5].

Understanding the locations of static and dynamic objects
in the aquatic domain (object detection) and determining the
types of these objects (object classification) are crucial tasks
for data association—to understand the speed and heading
of approaching objects. Such processes are integral for navi-
gational decision-making, i.e., collision avoidance. However,
aquatic domain challenges, including 1) unstructured navi-
gational environments and 2) the limited maneuverability of
marine vehicles, raise the importance of early and accurate
state estimation of in-water obstacles for safe and efficient
navigation that minimizes detection errors (e.g., false neg-
atives). Among human error-driven marine accidents, over
70% are attributed to improper situational awareness [6].
Consequently, marine vehicles, even human-driven vessels,
naturally rely on multimodal data for situational awareness,
which aligns with the regulations (e.g., rule 5 look-out)
explicitly covered by the maritime rules of the road [7].

The scarcity of multimodal labeled 3-D perception datasets
for ASVs is attributed to the high operational costs and
the extensive labeling effort required [8]. Among the few
existing datasets in the aquatic domain, the open-source ones
primarily consist of either 1) single-modality data that is typ-
ically image-based [9], [10], [11], [12], [13], [14], [15], [16],
or 2) multiple modalities but lacking object labels across
modalities [17], [18], which are essential for ground-truth
evaluation [19]. This absence of multimodal and ground-truth
annotations significantly hinders the development of crucial
ASV capabilities, as noted in [16] and [19].

Accordingly, we release the first multimodal labeled mar-
itime dataset. Our dataset includes expeditions from 2021 to
2024 using our ASV platform Catabot and a human-
driven vessel in different locations (USA, Barbados, and
South Korea) covering various environments (both sea and
fresh water), conditions (e.g., dusk and daylight), and encoun-
ters (e.g., head-on and crossing) with various objects. The
proposed dataset includes navigation-oriented three class
(ship, buoy, and other) labeled objects for detection and
classification. We selected these labels according to the inter-
national traffic rule [7] and buoyage system [20]. In summary,
the dataset is composed of 11561 frames of LiDAR point
clouds and RGB images. We also demonstrate the utility of
the proposed dataset using deep learning-based open-source
perception algorithms — both single-modality and multimodal
fusion—that have shown success in the terrestrial domain,
with both quantitative and qualitative evaluations: highlight-
ing success in some scenarios, but also current gaps.

We release our dataset publicly (https://seepersea.github.io/)
for the community and expect it will have the following
contributions.

1) SeePerSea, the first LIDAR-camera dataset in aquatic
environments with object labels across two modalities,
will foster the development of robust fusion perception
pipelines for ASV autonomy.
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Real-world Data Collection

Multi-modal Annotated Dataset

FIGURE 1. Real-world data collection of in-water objects by ASV
and a human-driven boat in operation at different geographic
locations and conditions. We provide a multimodal annotated
dataset (LiDAR and RGB camera) for marine autonomy.

2) SeePerSea, covering various environments and day
conditions, will help ensure that developed perception
pipelines are increasingly generalizable.

Overall, the SeePerSea dataset will contribute to the devel-
opment of state-of-the-art marine autonomy pipelines and
accelerate the future of marine (field) robotics.

The structure of this article is as follows. Section II dis-
cusses datasets both in the ground and maritime domains.
Section III describes how the data was collected, annotated,
and structured. Section IV provides an analysis of the dataset
characteristics. Section V presents the results from current
deep learning pipelines trained on the provided dataset,
and Section VI discusses lessons learned and current gaps.
Finally, Section VII summarizes the article and highlights
future work.

Il. RELATED WORK

Self-driving car datasets focused on 3-D perception, includ-
ing [1], [2], and [3], have been crucial for progress in
terrestrial robotic perception, especially for tasks like object
detection, classification, segmentation, and tracking. These
collections frequently feature a range of sensors, employing

VOLUME 2, 2025

Authorized licensed use limited to: Dartmouth College Library. Downloaded on November 10,2025 at 14:52:00 UTC from IEEE Xplore. Restrictions apply.



JEONG ET AL.: SEEPERSEA: MULTIMODAL PERCEPTION DATASET OF IN-WATER OBJECTS FOR ASVS

TABLE 1. Comparison of the state-of-the-art dataset in the maritime domain.

Object | On-board
Dataset Modality ) Area Application Sensors
Label Data
Image | Range Coastal | Fresh
MassMIND [8] Y Y Y Y Y Object Segmentation IR cam
MaSTr1325, . .
Y Y Y Y Object Segmentation RGB cam, IMU
MODD [14]-[16], [21]
VAIS [9] Y Y Y Object Classification IR cam, RGB cam
MARVEL [10] Y Y N/A* N/A Object Classification RGB cam
X Object Detection,
SeaShips [11] Y Y Y . . . RGB cam
Object Classification
Object Detecti
WSODD [12] % Y % Y ject etection, RGB cam
Object Classification
SLAM, .
. LiDAR, Stereo cam,
USVInland [22] Y Y Y Y Water segmentation,
. RADAR, IMU
Stereo matching
NTNU [23] Y Y Y Y Object Tracking** LiDAR, RADAR, EO and IR cam
LiDAR, Stereo cam,
Pohang [24] Y Y Y Y SLAM AHRS, GPS,
IR cam, RADAR
Ours v Y Y Y Y Y O.bject Det?ctiot.l, LiDAR, RGB cam,
Object Classification IMU, GPS

* The images contain ships but collected by data mining from web sources.

** The public data contains trajectories of detected vehicles, not the raw data of sensors.

either individual or combined data from cameras, LIDAR, and
RADAR. Given the importance of these datasets, there is a
push to develop specialized datasets for the marine domain
to support the advancement of marine autonomy.

Maritime object detection and classification datasets
mainly consist of a single sensor modality, i.e., camera
sensors, used for different purposes. Key datasets include
the first visible and infrared (IR) ship image dataset for
autonomous navigation compliance [9], a large-scale mar-
itime dataset with over 2 million images detailing vessel
information from a community site [10], and a dataset of
common ship types from coastal surveillance [11]. Zhou et
al. [12] introduced more variety with different water surface
objects. However, most datasets were from stationary plat-
forms, not from an ego-centric perspective. A significant
onboard camera dataset exists [13] but is not public. Public
datasets [14], [15], [16], [21] consist of several annotated
videos collected by a real ASV platform, but these primarily
focus on object segmentation with four classes—sea (water),
sky, environment, and obstacle—Ilacking differentiation of
in-water objects like buoys and ships. Nirgudkar et al. [§]
presents a long wave IR (LWIR) dataset with categories
including sky, water, obstacle, but still limited to a single
modality.

Several multimodal datasets [22], [23], [24] are avail-
able, targeting different aspects of marine perception but
not directly focusing on object detection and classification.
Cheng et al. [22] covered inland waterway scenes using
LiDAR, stereo cameras, RADAR, GPS, and IMUs, for water
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segmentation, SLAM, and stereo matching. Helgesen et al.
[23] combined data from ten cameras, RADAR, and LiDAR
for object tracking. Chung et al. [24] collected data from
a diverse set of sensors over a 7.5-km route, aiming at
SLAM and docking. Table 1 provides an overview of the
discussed datasets compared to ours. This lack of datasets in
the marine domain, specifically missing the key situational
awareness tasks previously described, hampers progress in
marine autonomy.

lll. DATASET GENERATION
A. SENSOR CONFIGURATIONS
As shown in Fig. 2, we used our custom ASV Catabot (in
three different configurations) and a human-driven boat
installed with a sensor platform. The different configurations
allow us to collect diverse data that includes different vehi-
cle dynamics. The Catabot dimensions range from 1.08 to
2.68 mlong, and from 1.40 to 1.67 m wide. The human-driven
boat is 8.27 m long, 2.34 m wide. Both include a global
positioning system (GPS)/compass and inertial measurement
unit (IMU) with a flight controller unit, installed at the center
line of the vehicle, to record proprioceptive data. We used
a low-cost u-blox M8N GPS/Compass module. The flight
controller hardware we used was a Pixhawk 4 coupled with
a 32-Bit Arm Cortex-M7 microcontroller with a 216-MHz
clock speed and 2 MB of flash memory and 512 kB of RAM.
For exteroceptive data, we installed an RGB camera (Full-
HD 1080P with CMOS OV2710 image sensor that can
support IR during the nighttime) and a 64 channel LiDAR
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FIGURE 2. Data collection platform (top left): our custom ASV Catabot2, (top right): human-driven ship equipped with sensors,
(bottom left): our custom ASV Catabot1, and (bottom right): our custom ASV Catabot5.

(@ (b)

FIGURE 3. Sensor suite calibration and annotation checking
tool. (a) LiDAR and camera extrinsic calibration; and (b) point
cloud (white) overlaid on the corresponding RGB image to
check consistency over labels (green: image label, red: point
cloud label, and blue: intersection).

(Ouster OS1-64 gen2). The two exteroceptive sensors were
located at the center line of the vehicles to ensure a sufficient
horizontal field of view (FoV, camera—91.8°; LiDAR—
360° except for the blind sector due to occlusion caused
by the vehicle structure) and vertical FoV (camera—75.5°;
LiDAR—45°). The LiDAR has a range of 120 m with a
horizontal resolution of 0.35° and vertical resolution of 0.7°,
while the camera sensor has a 640 x 480 pixel resolution.

We performed intrinsic calibration of each sensor and
an extrinsic calibration between camera and LiDAR based
on [25] and [26]. We provide a custom tool for checking the
extrinsic calibration parameters and overlay of multimodal
data as shown in Fig. 3(a). We report the result of the cali-
bration parameters for each sequence of the dataset.

B. DATA COLLECTION AND PROCESSING

We used a companion computer system (Intel NUC) and
recorded proprioceptive (GPS, compass, and IMU) and exte-
roceptive (RGB camera and LiDAR) data via the robot
operating system (ROS). Our Intel NUC computer with
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Ubuntu 18.04 installed has an Intel Core 17-8559U Processor
(8M Cache, up to 4.50 GHz) with 1 TB of storage. The
heterogeneous sensors operate at different time frequencies:
we used a camera with a frequency of 30 Hz and LiDAR with
a frequency of 10 Hz.

We collected relevant data in {sea, fresh} waters with vary-
ing environmental conditions {dusk, day, night}. We con-
trolled the ASV via either 1) autonomous waypoint following
or 2) manual driving, while we manually navigated the
human-driven boat. Fig. 4 shows the trajectories during
data collection. Our dataset covers collections conducted
between 2021 to 2024 in different geographic locations: Lake
Sunapee, NH, USA; Lake Mascoma, NH, USA; Busan Port,
South Korea; and Holetown, Barbados.

We postprocess the camera and LiDAR data by extracting
raw images and point clouds under time synchronization
using the MessageF1ilter package [27].

C. GROUNDTRUTH GENERATION

We provide annotations of three in-water object classes based
on the domain knowledge and navigation-oriented catego-
rization: ship, buoy, and other, within the camera’s FoV as
well as the LIDAR’s FoV. More specifically, 1) the ship class
represents all marine vehicles defined according to the inter-
national traffic rule [7] as “every description of watercraft
used or capable of being used as a means of transportation
on water,” including examples such as power-driven vessels,
fishing boats, kayaks, yachts, and sailboats; 2) the buoy class
represents floating objects as defined by the International
Maritime Buoyage System [20] and includes any artificial
objects serving as ‘“‘aids to navigation,” like cardinal, lateral,
safe water, isolated danger, and special buoys with varying
colors and shapes, such as ball and pillar types; and 3) the
other class represents any in-water objects that can be risky
to maritime navigation, for example, floating docks, and
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Busan
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(€3] ()

FIGURE 4. Data collection trajectories in different locations, navigating from red to blue. White points are key frames with objects
encountered and corresponding annotations in the dataset, defined as “sequences.” (a) Geographic locations. (b) Sea—Barbados 1.
(c) Lake—Mascoma 1. (d) Lake—Sunapee 1. (e) Sea—Busan. (f) Sea—Barbados 2. (g) Lake—Mascoma 2. (h) Lake—Sunapee 2.

fishing nets. We provide ontology documentation for labeling
annotation consistency and dataset usage.

For the images, we used the third party Amazon AWS
Mechanical Turk annotation service in addition to the
annotation by team members using the open-source Any-
labeling [28] tool and model-assisted labeling using Meta
Research’s Segment Anything Model (SAM) [29]. For the
LiDAR point clouds, we adapted an open-source labeling
tool [30] for our purpose. We first conducted manual anno-
tations and then resized them to bounding boxes that tightly
contains the point cloud within it, while maintaining the
yaw of the manually annotated bounding boxes. For both,
we ran three rounds of annotation review by the expert team
members for quality control.

We provide the label format in a standardized way along
with converter implementations, such as You Only Look
Once (YOLO) format, KITTI format, and unified normative,
so that users can apply the dataset to different applications.
The point cloud label contains {x, y, z, dx, dy, dz, yaw, class}
information. We only provide the yaw angle, assuming the
roll and pitch remain approximately zero. Even if in rough
water conditions, this assumption might not hold, roll and
pitch information is typically not necessary for ASV 2-D
navigation. For consistency of labeling in one frame of an
image and a point cloud with its quality, we used a custom tool
to extract the same object across the modalities [see Fig. 3(b)].
For the KITTI label format, we consider the annotation of
an object as valid, only if they are located within the FoV
of both camera and LiDAR, following the KITTI benchmark
guideline [1].

D. DATASET STRUCTURE

Fig. 5 shows the overall structure of our dataset, divided
into three subsets: train, validation, and test. We define a
sequence as a 60-s event involving object encounters at a spe-
cific geographical location, including Barbados, Busan, Lake
Sunapee, and Lake Mascoma. For each sequence, we estab-
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FIGURE 5. Overall dataset structure.

lish subdirectories based on annotations, information, and
sensor modalities. In addition, we categorize sequences into
closed-set (used for training and evaluation) and open-set
(excluded from training and used only for evaluation).

Given the geographical coverage of the dataset—
{sea: Barbados, Busan, fresh: Sunapee, Mascoma}—we first
construct the open-set by selecting one sequence from
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FIGURE 6. In-water objects under varying environmental conditions in our dataset. Top: images. Bottom: point clouds. Note that the
view angle of the point clouds is adjusted for the best visualization, regardless of the corresponding image of the object. (a) Class
buoy—pillar. (b) Class ship—Ilarge vessel. (c) Class ship—yacht. (d) Class buoy—cardinal. (e) Class buoy—ball. (f) Class
other—floating dock. (g) Class ship—raft with people. (h) Class ship—boat by IR.

TABLE 2. Labeled objects by class present in the dataset in the
RGB image modality and the LiDAR modality.

Class Name Ship Buoy Other
Image Obj. Count 22874 | 11337 | 1833
LiDAR Obj. Count | 22251 | 15692 | 1636

each location, resulting in a total of four sequences and
1376 frames total. Each selected sequence was chosen to
reflect a challenging condition specific to its environment:
Sunapee features multiple kayaks at far distances; Mas-
coma includes many boats and buoys (more than ten) under
water surface glare; Barbados captures a sunset scenario;
and Busan contains both a buoy and a boat approaching
from a distance to close proximity. For the remaining 10 185
frames, which form the closed-set, at the sequence level,
we randomly shuffle and split into train, validation, and test
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subsets using a 0.70, 0.15, and 0.15 ratio. This partitioning
strategy enables fair quantifiable evaluation of both model
performance and generalization capabilities for learning-
based algorithms [31].

IV. DATASET CHARACTERISTICS
A. DATASET COMPOSITION
As shown in Fig. 6, our maritime perception dataset consists
of various objects in water under varying conditions collected
by the sensor platforms onboard ASVs or onboard a human-
driven ship. This annotated, ego-perspective dataset is the
first in the maritime domain, to the best of our knowledge
with sufficiently large number of annotated frames (total
11561). We believe it will be useful for training, validating,
and benchmarking maritime perception.

Table 2 shows the annotated class breakdown in the RGB
camera data and LiDAR data, where the predominant class
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FIGURE 7. Distribution of labeled object pixel area in the RGB
camera modality (top) and of LiDAR points (bottom) by class.
Both pixel area and number of LiDAR points exhibit similar
distributions.

in both modalities is “‘ship,” followed by ““buoy,” and then
“other.” While both modalities of the dataset exhibit a class
imbalance between the “‘ship” annotations and the other two
classes, this imbalance naturally reflects the characteristics
of coastal navigation environments represented in the dataset.
Training performant learning-based models using this dataset
may require strategies to address this natural imbalance—
see Section VI. We characterize the annotation resolution,
made via 2-D and 3-D bounding boxes, based on its pixel
area [see Fig. 7(top)] and the number of LiDAR points [see
Fig. 7(bottom)], respectively. This resolution is inherently
limited by the underlying sensor resolution as well as other
confounders related to the modality (e.g., illumination for
RGB cameras) and others related to the maritime domain
(e.g., in-water dynamics). Still, this approach gives insight
into the amount of available sensor information upon which
to detect and classify objects.

For the majority of objects, the annotation resolution is in
the lowest bin, where the ship class has the highest average
pixel area (mean: 4197.1, standard deviation: 10 194.2, and
median: 794.0), followed by other (mean: 157.4, standard
deviation: 551.7, and median: 28.0), and finally buoy (mean:
218.3, standard deviation: 301.2, and median: 38.0). Gener-
ally, the point cloud data follows the same trend where ships
have the highest average point-cloud points (mean: 360.1,
standard deviation: 1477.2, and median: 37.0), followed by
other (mean: 15.8, standard deviation: 17.8, and median:
8.0), and then buoy (mean: 11.0, standard deviation: 35.6,
and median: 2.0). Of note is the long-tailed nature of the
distributions in Fig. 7, meaning that there is a large amount
of heterogeneity within the same class.

In terms of environmental conditions, the data is composed
0f 79.9% for “day,” 14.9% for “dusk,” and 5.2% for “night.”
Dusk and night are imbalanced given the challenges in col-
lecting data during that time. While we envision future work
expanding the dataset to include a broader range of lighting
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FIGURE 8. RGB image complexity comparisons between our
dataset (light blue) and four other maritime perception image
datasets Pohang [24], MaSTr1325 [21], MODD2 [15], and
USVinland [22].

conditions, we provide suggestions in Section VI to address
this challenge together with the class imbalance challenge.

B. DATASET COMPLEXITY

As described in detail below, we propose novel metrics [e.g.,
birds-eye-view entropy with pillars (BEVE-Ps) and voxels
(BEVE-V), and distance variability entropy (DVE)] in addi-
tion to existing metrics (e.g., image entropy and occlusion
percentage) in the literature that quantitatively evaluate the
dataset’s characteristics with respect to the maritime domain
to help analyze future benchmark algorithms.

1) IMAGE COMPLEXITY

Image entropy indicates the variation or complexity of an
image at the grayscale distribution. In general, a low value
corresponds to less edges and corners and possibly fewer
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dataset (light blue) and KITTI [1] (red-orange). Across DVE,
birds-eye-view (BEV) entropy voxel, and BEV entropy pillar, our
dataset shows a greater range of point cloud complexities.

interesting features, while a high value corresponds to an
image with a significant amount of texture.

We evaluate image complexity with three entropy metrics:
delentropy, object-level entropy, and texture-level entropy.
For delentropy metric, we first applied the Sobel operator to
approximate the gradients along the vertical and horizontal
directions, and afterward calculated the Shannon entropy.
We take inspiration from the evaluation criterion in the work
by [32], an underwater dataset—where image-based object
detection algorithms typically implement some preliminary
edge detection processing. Note, instead of the Sobel filter,
another edge detection algorithm, such as the Canny Edge
detector, can work as well. The traditional object entropy and
texture entropy metrics are similar in that they are directly
calculating the Shannon entropy, but with different-sized tem-
plate disks—object-level with a disk of 10 pixel radius and
feature-level with a disk of 5 pixel radius. Here, there is no
prior applied edge-detection-based filter.

Fig. 8 depicts the results of image complexity, accord-
ing to the above three entropy metrics, for our dataset as
well as for four other comparison datasets: Pohang [24],
MaSTR1325 [21], MODD?2 [15], and USVInland [22]. Com-
pared to the Pohang dataset, our dataset includes more diverse
imagery scenes. On the other hand, the image complexity
of the USVInland dataset is comparable to our dataset—not
surprising, given the various textures of nearby trees, rocks,
tunnels, and houses in inland waters. While the MaSTR 1325
and MODD?2 datasets (both from the same authors) have a
greater range of complexity compared to our dataset—much
of their images have small objects (relative to image size)
and due to observable off white-balancing, the pixel intensity
values are within a smaller range—leading to many images
corresponding to low entropy values. Our dataset shows a
wide diversity of images, and with better on-camera white-
balancing, our images have greater pixel intensity variations.

2) LIDAR COMPLEXITY

We introduce three entropy-based metrics to evaluate the
spatial complexity of LiDAR-derived point clouds: BEVE-
Ps, BEVE-Vs, and DVE. These metrics gauge how the point
distribution spans discretized bins (pillars, voxels, or dis-
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tance intervals), offering a detailed view of spatial variability
in LiDAR data. Lower entropy values indicate that scene
objects are more concentrated and clustered within a certain
region. Conversely, higher entropy values indicate that there
are objects more widely distributed or densely spread across
the sensor range. A dataset with variation in entropy values
represents its richness and complexity of the data.

BEVE-P and BEVE-V: These metrics measure point cloud
complexity based on a discretized representation (pillar or
voxel bins) of the LiDAR data. Formally, we define the metric
as

BEV K o 1
()] o
where i indexes each pillar or voxel, M is the total number of
pillars or voxels, K represents the total number of points in
the frame, and k; is the count of points in each respective pillar
or voxel. A lower BEV indicates that there is a concentration
of objects in fewer bins; while a higher BEV suggests that
there is a broader distribution of objects across multiple bins,
reflecting a richer spatial arrangement.

DVE: This metric evaluates point cloud complexity based
on radial distance from the LiDAR sensor, measuring how
points are distributed across predefined radial distance inter-
vals. We define the metric as

DVE = — i [1”—\; log (]"—V’)] )

where i indexes each predefined radial distance interval, R is
the total number of distance intervals, N is the total number of
points within the frame, and »; is the number of points in each
respective radial distance ring. A lower DVE suggests that
points lie within fewer radial bands (indicating a simpler or
more concentrated layout), whereas a higher DVE indicates
that points are spread more extensively across different dis-
tances (denoting a more complex and broad-ranging scene).

Fig. 9 shows the proposed complexity metrics of the dataset
within the collected point clouds, indicating that we have
varying spatial distributions of in-water objects.

V. PERCEPTION BENCHMARKS

We ran the perception benchmark on our proposed datasets on
detection tasks, i.e., object detection and object classifica-
tion and developed the necessary conversion tools. We used
a computer equipped with an Intel i7-7820X 8-core 3.6-GHz
processor, 32-GB RAM, and NVIDIA GPU RTX 3090 Ti
with 24-GB VRAM. We evaluated benchmark algorithms,
offering insights into the applicability and adaptability of
these benchmarks in the maritime domain.

A. IMAGE-BASED BENCHMARKS

While many real-time (RT) RGB image object detection
approaches exist, we selected two representative models to
provide a benchmarking of this dataset upon: YOLOV9 [33]
and RT-DETR [34]. We specifically benchmark using RT
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TABLE 3. Performance breakdown of 2 benchmark 2-D image object detectors by class. mAP is reported via the aggregated loU

threshold from (0.5 to 0.95) per class.

Model Aggregated mAP (0.5:0.95) | “ship” mAP (0.5:0.95) | “buoy” mAP (0.5:0.95) | “other” mAP (0.5:0.95)
ode

Val Test Val Test Val Test Val Test
YOLOV9 [33] 0.54 0.42 0.83 0.65 0.42 0.34 0.36 0.27
RT-DETR [34] 0.21 0.16 0.45 0.36 0.13 0.10 0.04 0.01

TABLE 4. Comparison of validation and test results for LiDAR-based benchmarks (loU thresholds of 0.7 and 0.5) for ship class
objects. Green highlights the best performance across fusion methods, while yellow indicates the best performance among

LiDAR-only methods.

. BEV AP (0.7) | BEV AP (0.5) 3D AP (0.7) 3D AP (0.5)

Model Modality
Val Test Val Test Val Test Val Test
PointPillars [35] LiDAR-only | 28.01 17.32 | 5722 50.77 4.23 3.14 30.30  30.07
SECOND [36] LiDAR-only | 3429 27.68 | 5695 52.36 8.93 10.17 | 40.70  40.67
PointRCNN [37] LiDAR-only 3.24 3.11 2393 2148 0.32 0.43 291 2.66
PV-RCNN [38] LiDAR-only | 19.11 9.99 4240  38.65 3.79 9.09 23.64 16.54
Voxel-RCNN [39] | LiDAR-only | 33.36 27.50 | 54.55 50.69 | 1290 13.46 | 4196 43.03
TED-S [40] LiDAR-only | 49.64 37.36 | 70.56 55.09 | 36.88 26.99 | 60.82 46.10
PointPainting [41] | Fusion 30.51 2542 | 5792 46.10 | 10.05 1295 | 4254 37.67
CLOCs [42] Fusion 32.02 21.76 | 56.68 49.47 9.69 8.28 4538  41.10
Focal Conv-F [43] | Fusion 37.48 3636 | 61.69 54.55 | 19.83 15.58 | 47.79 4545
TED-M [40] Fusion 50.32 3240 | 54.05 43.64 | 30.24 27.69 | 53.87 42091

detectors as the ego-centric ASV perspective of this dataset
lends itself to use in RT, on-board object detection use
cases. Based on that criteria, we selected a model from the
popular YOLO object detector lineage, which uses a con-
volutional neural network (CNN) backbone approach and a
newer transformer-backbone approach based on the detection
transformer [44] (DETR), that was adapted for RT use.

We trained both models for 300 epochs and used the default
hyperparameters from the YOLOV9 [45] and RT-DETR with
HGNetv2 backbone [46] open-source implementations. From
their reference implementation, we applied a confidence
threshold of 0.25 and an intersection over union (IoU) thresh-
old of 0.45 for nonmaximum suppression to postprocess
outputs before compiling results. For consistent comparison
across 2-D object detection methods, we used the mean aver-
age precision (mAP) metric. Validation and test set results
are in Table 3 and example detections are in Fig. 10. The
qualitative examples are from 3 of the dataset’s locations:
Barbados, Lake Mascoma, and Busan Port, to show several
multiobject encounters with ship, buoy, and other labeled
objects.

From the results of both models, qualitative and quantita-
tive, out-of-the-box models have room for improvement—
especially on the buoy and other classes. It is clear that (a)
there are relevant image-only features to train object detection
models and (b) that this dataset represents a challenging
detection task, characteristic of the maritime ASV environ-
ment.

The heterogeneity of maritime objects, variable envi-
ronmental conditions, and in-water dynamics make this a
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difficult RGB-camera-only robotic vision problem—one that
the addition of LiDAR data can help address.

B. LiDAR-BASED DEEP LEARNING BENCHMARKS

We analyzed the performance of LiDAR-based methods
on 3-D and BEV detection in the maritime domain.
We selected six state-of-the-art LiDAR-only 3-D object
detection models—based on the following categorizations.

1) Voxel-Based: PointPillars [35], SECOND [36], Voxel-
RCNN [39], and TED-S [40].

2) Point-Based: PointRCNN [37].

3) Point-Voxel-Based: PV-RCNN [38].

We adapted open-source libraries, including OpenPCDet [47],
as well as implementations from other repositories [36],
[40], [42], to enable benchmark comparisons tailored to our
maritime dataset.

We followed each paper’s guideline on setting the hyper-
parameters and used the suggested values when possible.
We increased the point cloud range and the voxel size to
account for the longer distances between the ASV and obsta-
cles. We trained each method for 200 epochs with early
stopping once the model stopped improving.

For consistent comparisons across LiDAR-only and fusion
methods, we evaluated and reported performance for objects
within both the camera and LiDAR FoV, consistent with
KITTI benchmarks [1]. Note that our ground truth labeling
provides a 360° FoV from the LiDAR used on our platforms.
We compared performance based on average precision (AP)
at IoU thresholds of 0.7 and 0.5, evaluated for both BEV
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FIGURE 10. Detection examples from the benchmark image models trained on the RGB image portion of the dataset, where the left
column is groundtruth (red), the middle column is RT-DETR (blue), and the right column is YOLOV9 (green). While the models did
learn to predict many of the classes, there is still much room for improvement that robotic perception methods adapted to the ASV

domain could begin to address using this dataset.

and 3-D detection. We focused on the ship class for perfor-
mance comparison due to the sparsity and challenges posed
by features associated with small objects in the buoy and
other classes, which LiDAR typically returns as 1-2 points,
as shown in Fig. 7(bottom).

The evaluation results (see Table 4) for BEV detec-
tion are comparable to those of previous work [17], which

746

used simulation results tested on 2-D. Instead, our bench-
mark comparison extends applicability to the 3-D domain
with real-world data. Among LiDAR-only methods, TED-
S achieved the highest performance across both BEV AP
and 3-D AP metrics, outperforming other state-of-the-
art approaches. These strong results may be attributed to
its transformation-equivariant sparse convolution pooling
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FIGURE 11. Qualitative comparison of LiDAR-based and fusion object detection benchmarks tested on our dataset, shown from a
bird’s-eye view. The evaluated objects belong to the ship class within the FoV of both the camera and LiDAR, with ground truth
bounding boxes depicted in red and predicted bounding boxes in green. (a) PointPillars. (b) SECOND. (c) PointRCNN. (d) PV-RCNN.
(e) Voxel-RCNN. (f) TED-S. (g) PointPainting. (h) CLOCs. (i) Focals Conv-F. (j) TED-M. (k) Image of evaluated objects.

and transformation-invariant voxel pooling modules, which
enable learning of robust, transformation-equivariant voxel
features. In addition, its distance-aware data augmentation
strategy enhances detection of distant objects—an important
characteristic for in-water maritime scenarios. Aside from
TED-S, SECOND consistently demonstrated strong BEV AP
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performance. This may be attributed to its voxel-based repre-
sentation and efficient sparse convolution, which effectively
captures large-scale geometric features. These characteristics
make SECOND particularly robust for BEV representations,
where preserving spatial structure is critical. In contrast,
Voxel-RCNN performed relatively well in 3-D AP metrics.
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Its performance stems from leveraging high-resolution voxel
grids combined with an accurate region proposal network,
enabling more precise object localization in 3-D space.
On the other hand, PointRCNN, which relies solely on
raw point clouds and bypasses voxelization, is limited in
its ability to efficiently extract global features, making it
less effective in sparse maritime environments. Meanwhile,
PV-RCNN, employing a hybrid approach that combines
voxel-based feature extraction (for global context) with raw
point-cloud features (for local precision), was better than
PointRCNN by balancing global and local feature extraction.
PointPillars showed relatively lower performance, particu-
larly in 3-D AP. This is likely due to its reliance on a
pillar-based pseudo-image representation that flattens verti-
cal structure early in the pipeline.

C. FUSION-BASED DEEP LEARNING BENCHMARKS

We evaluated the following three state-of-the-art 3-D object
detection fusion methods.

1) Sequential Fusion: PointPainting [41] based on
DeepLabV3 [48] and PointPillars.

2) Decision-Level Fusion: CLOCs [42] based on the
detection of YOLOV9 [33] and SECOND.

3) Feature-Level Fusion: Focal Conv-F [43] and TED-
M [40].

As shown in Table 4, Focal Conv-F and TED-M achieved
the best overall results among fusion-based methods across
both BEV AP and 3-D AP metrics. Focal Conv-F’s effective-
ness may be attributed to the integration of complementary
sensor modalities through focal sparse convolutions, enabling
robust spatial reasoning and precise object localization. TED-
M builds upon TED-S by incorporating appearance features
from RGB images, offering further improvements in some
cases. However, as noted in [40] and [49], our results indicate
that incorporating camera data does not uniformly enhance
detection performance. Notably, TED-M’s marginal gains
come at the cost of increased system complexity, as it requires
generating pseudo-LiDAR points from camera images. These
image-derived points depend on depth estimation [50], which
can be particularly noisy for distant objects. This noise partly
explains why distant or hard-to-detect targets sometimes see
minimal benefit—or even slight performance degradation—
with fusion. Such drops can also be attributed to sensor
misalignment [51], [52], a challenge observed in the mar-
itime domain and further discussed in Section VI. Other
fusion methods such as CLOCs and PointPainting performed
competitively but their performance lagged at stricter loU
thresholds for 3-D AP. CLOCs, which integrates predictions
from multiple backbones, showed reduced performance in
scenarios requiring high precision, likely due to a weaker
emphasis on fine-grained feature alignment. Similarly, Point-
Painting’s reliance on segmentation quality and alignment
resulted in lower performance in 3-D AP metrics compared
to Focal Conv-F.
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FIGURE 12. Challenging sparsity example from Barbados
sequence in our dataset—(yellow) buoys and (orange) floating
dock. Although there are many objects in the image (left), the
LiDAR measurement has only 3 objects while each of them has
1 point inside the bounding box (right).

We also provide a qualitative analysis across the 3-D object
detection benchmarks. Fig. 11 illustrates the results of a
sequence (Mascoma Lake) on our open-set test split, which
were excluded from all training steps. Consistent with the
quantitative evaluation, TED-S and Focal Conv-F exhibited
strong performance for ship detection.

VI. DISCUSSION

Based on our contribution of the first multimodal dataset
in the maritime domain and its utility for deep learning-
based approaches, we identify and provide insights into
the challenges and open problems for future tasks aimed
at enhancing robust perception systems in maritime envi-
ronments. Furthermore, we hope this dataset will provide
the research community with a starting point to develop
robust, novel methods for ASV perception. Given this work,
it is our continuing hypothesis that multimodal method-
ologies are essential for the development of robust ASV
situational awareness given in-water dynamics, environment
heterogeneity, and failures being inadmissible. In the fol-
lowing paragraphs, we will discuss open challenges to the
development of these methods, which include: sparsity, gen-
eralizability, and misalignment.

Maritime environments often feature sparse point clouds
due to objects located at long distances and unstable mea-
surements affected by the motions of both ego and target
vehicles, as noted by Jeong and Li [53]. Current detection
methods struggle to learn features from such minimal data,
particularly for buoys and small objects. This highlights the
need for models capable of accurately detecting and clas-
sifying objects even under sparse conditions. For example,
as shown in Fig. 12, even a single LiDAR-detected point
representing an object such as a buoy could lead to a collision
if ignored. This differs from other domains where they often
use thresholds for a minimum number of points.

Generalizability remains another significant open chal-
lenge. For instance, LiDAR-based deep learning models (and
many RT image-based deep learning models) use anchors,
which represent the predefined dimensions of bounding
boxes, to enhance the accuracy and efficiency of object
predictions. However, as shown by the range of the length
(0.1-123.5 m), width (0.1-81.1 m), and height (0.1-35.7 m)
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FIGURE 13. Comparison of LiDAR-camera alignment and
motion-induced effects during the same deployment date.

(a) Sensor misalignment occurs in water due to motion, despite
the same calibration. (b) Stable alignment is preserved on
shore, and (c) quantitative analysis of motions (roll and pitch)
during 60 s as a sequence time. Note that the point clouds are
colored for the best visibility.

of the LiDAR annotations, object sizes in the maritime
domain vary greatly—from small fishing boats to large com-
mercial ships—all defined as ‘“‘ships” under international
maritime traffic rules [7]. Therefore, if one does not carefully
choose hyperparameter values, such as anchor dimensions,
it may degrade the performance of detection benchmarks.
Furthermore, all the point cloud detection benchmarks we
utilized in our study relied on preset point cloud ranges.
However, we observed cases where detected point clouds lay
beyond the sensor’s nominal range (e.g., exceeding 120 m),
particularly in open sea conditions. Aligned with maritime
navigation principles on focusing on early detection and
taking large actions in ample time, one must thoughtfully
select predefined ranges and sizes. These parameters strictly
constrain current learning-based methods, underscoring the
need for models, such as anchor-free approaches, which can
adapt to varying detection ranges and object dimensions.
Another challenge for generalization is class imbalance,
as noted in Section IV-A. This imbalance naturally reflects
real-world coastal navigation environments. To mitigate its
effects during model development, we recommend incorpo-
rating class-aware strategies such as targeted data augmen-
tation (e.g., oversampling of rare object classes, copy-paste
methods, or simulation-based generation) and loss reweight-
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ing approaches (e.g., focal loss or class-balanced loss func-
tions). These methods can enhance detection performance
on minority classes without compromising the dataset’s rep-
resentativeness. Furthermore, although the current version
represents an initial contribution to the community, there are
strategies to address the limited number of samples collected
under low-light conditions. It is possible to supplement the
dataset with style-transfer methods or domain adaptation
techniques to simulate nighttime environments and improve
model robustness across varying illumination scenarios.

Robustness against misalignment presents additional open
challenges in the maritime domain. As observed in ground-
based applications [51], [52], spatial and temporal mis-
alignment is also prevalent in maritime environments. This
misalignment arises from factors such as noisy extrinsic
parameters and the relative motion between ego and tar-
get vehicles on the water surface, as illustrated in Fig. 13.
We compared ASV behavior in in-water versus on-shore
conditions. As shown in Fig. 13(c), during the same deploy-
ment operation, the in-water scenario exhibited significantly
higher motion variability than the on-shore case (Levene’s
test: p-value < 0.01 for both roll and pitch), leading to
misalignments. Furthermore, mechanical misalignments are
particularly difficult to correct onboard due to the lack
of fixed environmental features and the continuous motion
caused by hydrodynamic forces. These challenges underscore
the need for online, in-water calibration methods to improve
system robustness.

In addition, annotations in the maritime domain naturally
suffer from misalignment. Our dataset primarily considers
z-axis orientation (i.e., yaw) during the labeling process.
However, pitch and roll can significantly impact object detec-
tion and state estimation—especially in maritime settings,
where dynamic and nonstationary conditions differ greatly
from those in other domains (e.g., flat road surfaces). Gen-
erating accurate ground truth for pitch and roll remains a
major challenge but is essential for improving detection and
tracking performance in such environments. Addressing this
open problem is likely to be a key prerequisite for developing
robust multimodal fusion methods in maritime surface appli-
cations.

VIl. CONCLUSION

This article introduces the first publicly accessible multi-
modal perception dataset for autonomous maritime navi-
gation, focusing on in-water obstacles within aquatic envi-
ronments to enhance situational awareness for ASVs. Our
dataset, which includes a diverse range of in-water objects
encountered under varying environmental conditions, aims
to bridge the research gap in marine robotics by providing
a multimodal, annotated, and ego-centric perception dataset
for object detection and classification. We also demonstrate
the applicability of the proposed dataset using open-source
deep learning-based perception algorithms that have proven
successful in other domains. In addition, the development
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and analysis of this dataset offer foundational insights for
advancing perception tasks in the maritime domain.

Future work will focus on designing adaptable and robust
deep learning models and systems capable of addressing
domain-specific complexities while aligning with maritime
best practices. Alongside this, we also plan to integrate
additional sensor configurations under diverse weather con-
ditions (e.g., rain and snow), such as marine RADAR and
wide-field-of-view cameras for supplementary data collec-
tion. Furthermore, we plan to extend this work to the object
tracking task and continue to explore multimodal modeling
for ASV perception using this dataset. These advancements
will be crucial for enhancing situational awareness, safety,
and efficiency in real-world autonomous maritime systems,
addressing high-impact societal needs such as search and
rescue, environmental monitoring, and transportation.
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