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keeps the antibiotic profile of lincomycin (1b), albeit with
reduced activity.11 With this understanding, we set out to
develop a novel de novo asymmetric synthesis of the
benzodioxin fused lincomycin analogue 2 for further S-SAR
studies.12 Presumably the iterative use of a Buchwald−Hartwig
type Ullmann etherification could be used to install a
benzodioxin ring fusion at the C-1/2 of a galacto-sugar;
however, issues associated with regio- and anomeric stereo-
chemistry led us to consider an alternative approach.
Retrosynthetically, we envisioned the benzodioxin lincomy-

cin analogue 2 arising from an amide coupling of the 6-
aminogalactose 4 and trans-L-proline 3 (Scheme 2). The

known substituted trans-L-proline 3 can be prepared from L-
hydroxyproline.13 The 6-benzodioxin fused 6-amino-galacto-
sugar 4 could result from a Pd−π-allyl coupling and
concomitant 1,4-addition between pyranone 7a/b and catechol
6. We previously disclosed a de novo asymmetric synthesis of
pyranones 7a/b with either α- or β-stereochemistry from
achiral furans 8a/b.14
As a proof of concept for this approach, we first executed the

synthesis of the carbohydrate portion of the molecule with no
C-6 substitution (Scheme 3). The synthesis began by
subjecting α-D-aculo-pyranone donor 7a to a Pd(0) coupling
with catechol 6,15,16 which resulted in a stereoretentive
glycosylation at C-1 along with a tandem oxa-Michael addition

to avord tricyclic compound 5a, with the required cis-C-1/2
stereochemistry.17 The facial selectivity of the oxa-Michael
addition is governed by the tether length enforcing cis-ring
fusion. Ketone 5a was then stereoselectively reduced with
sodium borohydride (at −78 °C) to avord equatorial alcohol 9
as a single diastereomer. This alcohol was then eliminated to
alkene 10 using PPh3/DIAD.18 This newly formed double
bond was diastereoselectively dihydroxylated under the
Upjohn conditions (OsO4/NMO)19 to form diol 11 as the
major diastereomer (9:1), with the desired galacto-stereo-
chemistry stemming from the installation of the hydroxyl
groups in an anti-relationship to the C-1/2 benzodioxin ring.20
We decided to further explore the potential for this

annulation chemistry in the β-stereochemical series (Scheme
4). This would allow for the synthesis of alternative

carbohydrate stereoisomers by application of the same
sequence on β-D-pyranone 12. When the Pd-glycosylation
was performed between β-pyranone 12 and catechol the β-
benzodioxin fused ketone 13 was produced with the opposite
C-1/2 cis-stereochemistry as α-benzodioxin fused ketone 5a.
The NaBH4 reduction of ketone 13 resulted in C-4 axial
alcohol 14 as the major isomer. While the stereoselectivity in
the reduction of 13 with a β-benzodioxin fusion was excellent,
it was slightly diminished when compared to the α-series (i.e.,
5a to 9). The switch in the selectivity of reduction of 13 to
axial alcohol 14 (compared to 5a) results from the twist boat
confirmation of 13 where the neighboring methyl group
controls the stereochemistry. For the subsequent elimination

Figure 2. Docking pose of lincomycin analogue 2. Analogue 2
(carbon black, oxygen red, and nitrogen blue) in the active site of the
ribosome, using cryo-EM structure (PDB 8CGK). The benzodioxin
moiety is highlighted in pink. Analogue 2 fits within the binding
pocket and forms hydrogen bond interactions with a conserved water
molecule, U2506 and G2505.

Scheme 2. Retrosynthetic Approach to Lincomycin
Analogues

Scheme 3. Catechol Coupling and Synthesis of galacto-
Sugars

aPd2(dba)3 (0.015 equiv), DPPB (0.03 equiv), CH2Cl2, 12 h.
bNaBH4 (2 equiv), MeOH/CH2Cl2 (1:1), −78 °C, 1 h. cPPh3 (2.4
equiv), DIAD (2.4 equiv), CH2Cl2, 16 h. dNMO (1.5 equiv), OsO4
(0.05 equiv), t-BuOH/acetone (1:1), 16 h.

Scheme 4. Applications to β-Pyranone to β-altro-Sugars

aPd2(dba)3 (0.015 equiv), DPPB (0.03 equiv), CH2Cl2, 12 h.
bNaBH4 (2 equiv), MeOH/CH2Cl2 (1:1), −78 °C, 1 h. cPPh3 (2
equiv), DIAD (2 equiv), p-NO2-BzOH (2 equiv), CH2Cl2, 16 h.
dNMO (1.5 equiv), OsO4 (0.05 equiv), t-BuOH/acetone (1:1), 16 h.
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reaction of alcohol 14 to alkene 15, it was determined that it
worked most optimally using the Mitsunobu conditions (i.e.,
PPh3/DIAD and 4-nitrobenzoic acid).18 This was followed by
an Upjohn dihydroxylation to avord diol 16, with altro-
stereochemistry.20 The stereoselectivity in the dihydroxylation
of alkene 15 was even greater than that found in the α-series
(10 to 11), which can be attributed to the cis relationship of
the substituent at C-1/2/5 in 15.
To further explore the potential of this chemistry to install

diverent aromatic groups, we wanted to assess the applicability
to other aryl diols (Scheme 5). As a test case, we decided to try

the glycosylation of α-pyranone 7a with 2,3-dihydroxynaph-
thalene 17 to form the C-1/2 napthodioxin fused product 18.
The resulting annulation reaction with 2,3-dihydroxynaph-
thalene to form 18 proceeded in poor to moderate yields when
compared to the analogous reaction with catechol 6. To
further optimize this process, we explored the Pd-glycosylation
between pyranone 7a and the known 2-OTBS-3-hydroxynaph-
thalene 19,21 which resulted in aryl glycoside 20. This
glycosylation product 20 was then subjected to TBS-
deprotection-mediated cyclization to avord 18 in a moderate
55% yield over two steps. While the overall yield to 18 was
similar, we found the 2-step procedure was more reliable. The
subsequent reduction of ketone 18 to alcohol 21 followed by
dehydration to alkene 22 proceeded with good yields and
selectivities. Dihydroxylation of the alkene 22 to diol 23 also
proceeded in good yield. The dihydroxylation occurred with
the same facial preference as 10 to 11, to give galacto-
stereochemistry, albeit with diminished selectivity.
We sought to apply this methodology to C-6 aminated

pyranone 7b to achieve des-(1-hydroxyethyl)-lincomycin
analogue 2 (Scheme 6 and 7). Previously, we demonstrated
the enantioselective synthesis of C-6 N-Cbz-protected
pyranone 7b from achiral N-Cbz-protected α-aminoacetylfuran
8b.14b The de novo asymmetric approach involved a Noyori
reduction of ketone 8b provided amino alcohol 24. An
Achmatowicz rearrangement followed by pivalate protection
was used to diastereoselectively convert 24 to pyranone 7b.
Pd-glycosylation of pyranone 7b with catechol 6 avorded
ketone 5b with diminished e6ciency but equivalent diaster-
eoselectivity to the C-6 methyl series (enone 7a to ketone 5a).

Ketone 5b was then reduced with sodium borohydride at 0 °C
to obtain a major diastereomer 25 without the need for
cryogenic conditions. Next, Mitsunobu conditions transformed
alcohol 25 to alkene 26. The double bond was dihydroxylated
using Sharpless asymmetric dihydroxylation conditions22 to
avord 27 with increased facial selectivity for the galacto-
stereochemisry compared to the Upjohn conditions previously
employed.14 Diol 27 was subsequently protected as an
acetonide to give the fully protected sugar 28.
Next, the N-Cbz-group in 28 was cleanly deprotected under

hydrogenolysis conditions using a combination of Pd/C and
Pd(OH)2, avording the primary amine 29 (Scheme 7). An
EDCI promoted amide bond coupling of the known 4-propyl
L-proline carboxylic acid13 3 with amine 29 gave an acetonide
protected form of the target molecule 30, which was
deprotected with TsOH in methanol to provide the desired
des-(1-hydroxyethyl)-lincomycin analogue 2.
The newly designed lincomycin analogue 2 was screened for

antibiotic activity against S. aureus, and either a wild-type E. coli
K-12 strain or E. coli strains with increased permeability

Scheme 5. Synthesis of a Naphthodioxin Fused galacto-
Sugar

aPd2(dba)3 (0.02 equiv), DPPB (0.04 equiv), CH2Cl2, 12 h. bEt3N·
3HF (3 equiv), THF, 12 h. cNaBH4 (2 equiv), CH2Cl2/MeOH (2:1),
−78 °C, 1 h. dPPh3 (2.4 equiv), DIAD (2.4 equiv), CH2Cl2, 16 h.
eNMO (1.5 equiv), OsO4 (0.1 equiv), t-BuOH/acetone (1:1), 16 h.

Scheme 6. Application to C-6 Amino galacto-Sugars

a(R,R)-Noyori catalyst (0.005 equiv), CTAB (0.1 equiv), NaOOCH
(5 equiv). bNBS (1.1 equiv), NaOAc (2 equiv). cPlvCl (1.1 equiv),
DMAP (1.2 equiv). dPd2(dba)3 (0.05 equiv), PPh3 (0.1 equiv),
CH2Cl2, 30 min. eNaBH4 (2 equiv), MeOH/CH2Cl2 (1:1), 0 °C to
RT, 5 h. fPPh3 (2 equiv), DIAD (2 equiv), THF, 16 h. gNMO (1.5
equiv), OsO4 (0.02 equiv), (DHQD)2PHAL (0.08 equiv), t-BuOH/
acetone (1:1), 16 h. h2,2-Dimethoxypropane (10 equiv), TsOH (0.1
equiv), acetone, 5 h.

Scheme 7. Synthesis of a Benzodioxin Fused Analogue

aPd/C (10% w.r.t. 28), Pd(OH)2/C (10% w.r.t. 28), H2, EtOH, 16 h.
bEDCl (1.5 equiv), DMAP (1.5 equiv), DMF, 16 h. cTsOH (1.2
equiv), MeOH, 60 °C, 4 h.
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characteristics (ΔtolC and lptD4213 mutants).23 Unfortu-
nately, no activity was found (minimal inhibitory concen-
tration, MIC > 128 μM) compared with the potent activity of
clindamycin for S. aureus (MIC = 0.25 μM) and E. coli tolC
and lptD mutant strains (MIC = 4 μM) (see SI). This
disappointing result made us reevaluate our interpretation of
the reported activity for des-hydroxyethyl analogue 1d.12
Bannister had previously reported that analogue 1d retained
weak activity but with the same spectrum of activity as
lincomycin, whereas we were unable to detect any activity
against clinically relevant pathogens.
In conclusion, we have developed a de novo asymmetric

synthesis of a novel benzodioxin fused analogue of a des-(1-
hydroxyethyl)-lincomycin 2 from achiral acylfuran 25. The
synthesis of 2 occurred in 10 steps and 7% overall yield. In
support of this synthetic evort, a new one-pot, two-step Pd−-
π-allyl coupling and concomitant 1,4-addition between
pyranones and catechols was developed. The initial annulation
products can be diastereoselectively converted into galacto-
sugars via a three-step reduction, elimination and dihydrox-
ylation sequence. The resulting annulation reaction occurred in
good overall yields and stereoselectivity for both α- and β-
pyranones. In the β-series, sugars with altro-stereochemistry
are selectively formed. Analogue 2 was designed in silico based
on Schrödinger Glide XP docking to a cryo-EM lincosamide-
ribosome structure. Unfortunately, no antibacterial activity was
found for lincomycin, analogue 2. In our analogue design, we
underestimated the importance of the C-7/8 hydroxy-ethyl
portion of lincomycin to its overall activity. In retrospect, we
could have been more cognizant of the qualitative nature of the
reported activity for lincomycin analogue 1d. Consequently,
we underestimated the impact of the removal of the
hydroxyethyl group on lincomycin (i.e., 1a to 1d). However,
it should be noted that this new Pd-annulation reaction
expands the asymmetric Achmatowicz approach to unnatural
carbohydrate motifs. The further application of this approach
in synthesis will be reported in due course.
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