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Abstract: The ability to recognize hidden symmetry in a highly asymmetric world is a key
factor in how we view and understand the world around us. Despite the fact that it is an
intrinsic property of the natural world, we have an innate ability to find hidden symmetry
in asymmetric objects. The inherent asymmetry of the natural world is a fundamental
property built into its chemical building blocks (e.g., proteins, carbohydrates, etc.). This
review highlights the role of asymmetry in the structure of the carbohydrates and how
these stereochemical complexities present synthetic challenges. This survey starts with
an overview of the role synthetic chemistry plays in the discovery of carbohydrates and
their 3D structure. This review then introduces various de novo asymmetric synthetic
approaches that have been developed for the synthesis of carbohydrates and, in particular,
oligosaccharides. The two most successful strategies for oligosaccharide synthesis rely on
diastereoselective palladium-catalyzed glycosylation. The first uses an Achmatowicz reac-
tion to asymmetrically prepare pyranose building blocks along with a substrate-controlled
Pd-glycosylation. The other strategy couples a ligand-controlled Pd-glycosylation with a
ring-closing metathesis for oligosaccharide assembly.

Keywords: carbohydrates; hexoses; pyranoses; oligosaccharides; de novo asymmetric synthesis

1. Introduction
There appears to be an innate attraction to symmetry. This attraction is evident in

how we explain and apply mathematical concepts, especially in geometry, where seeing
potential symmetry helps simplify and better understand concepts. In fact, an appreciation
for symmetry likely underlies aphorisms such as “symmetrical faces are more beautiful” [1].
The natural tendency to notice hidden symmetry in the physical objects we see and the
mathematical formulas we derive is probably best viewed as a generalization of how we
view and understand nature rather than a perfect model of nature [2]. This simplification
is necessary, as a hallmark of all living organisms is inherent asymmetry. In fact, it has
been suggested that the overuse of symmetry is behind our ability to recognize very lifelike
robot faces as being artificial (also known as the uncanny valley) [3]. In contrast to humans’
preference for seeing symmetry, asymmetry is a hallmark of the natural world.

Young artists often encounter nature’s asymmetry when taught to break with symme-
try in drawing [4], for example, when they lower a branch on one side of a tree to create a
more natural appearance. This is a process called desymmetrization. When viewed in this
way, inherent asymmetry in natural systems allows for access to more states or the more
efficient filling of space. This phenomenon of asymmetrically filling three-dimensional
space can also be seen in organic chemistry. Asymmetry arises when four different atoms
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A final element of structural complexity can be introduced when a sugar is connected
via the anomeric position to another sugar (i.e., disaccharide). In the disaccharide case,
when both hexoses are in their pyranose forms, there are ten possible isomers. This re-
sults from a combination of the five possible connections (regioisomers) with two possible
stereochemistries (ω/ε). The structural complexity increases quickly when progressing
from disaccharides and trisaccharides to oligosaccharides. In mammalian cells, the most
common oligosaccharide connections are limited due to enzymatic specificity and biosyn-
thetic constraints. For example, cellulose is usually a 1,4-linked oligomer of glucose with
the anomeric position in the ε-configuration, whereas amylose (starch) contains 1,4- and
1,6-linked oligomers of glucose with the anomeric position in the ω-configuration. A greater
degree of structural complexity in terms of sugars and connectivities exists in the various
mammalian glycoprotein and glycolipid structures. This complexity is used by cells and
proteins to communicate identity via the immune system. The situation becomes even more
complex in the non-mammalian systems, as a significantly larger range of carbohydrate
structures and oligosaccharide connectivity can be found therein.

In mammalian cells, there are at least nine common monosaccharides, as defined by
sugars that function as enzyme substrates. In addition to the three main monosaccharides
in mammalian cells (glucose, mannose, and galactose), there are six other monosaccharides.
These include four hexoses (N-acetylglucosamine, N-acetylgalactosamine, glucuronic acid,
and fucose), a pentose (xylose) and, a nonose (sialic acid). Of these mammalian sugars, the
hexose fucose is unique in that it is an L-sugar (6-deoxy-L-galactose). Other non-mammalian
rare sugars that are commonly contained in natural products are the six-deoxy sugars D-
quinovose (6-deoxy-D-glucose) and L-rhamnose (6-deoxy-L-mannose), the 2,6-dideoxy
sugars D-olivose (2,6-dideoxy-D-glucose) and D-digitoxose (2,6-dideoxy-D-allose), and the
2,3,6-trideoxy sugars, L-amicetose (2,3,6-trideoxy-L-glucose) and rhodinose (2,3,6-trideoxy-
L-galactose).

Historically, organic synthesis has played a critical role in the development of carbo-
hydrate chemistry. This began in the 1800s with the formose synthesis of sugars as part of
an effort to prove their molecular formulae (CH2O)n [6]. Then, in the 1890s, carbohydrate
synthesis evolved into the use of stereodivergent synthesis to assign the stereochemistry
of the hexoses. This was followed by the development of glycosylation reaction methods
for forming the glycosidic bond stereoselectively. This glycosylation chemistry was devel-
oped in combination with protecting group strategies for the regioselective construction
of oligosaccharides. As the need for greater structural diversity and complexity grew,
synthetic chemistry evolved from diastereoselective synthesis to enantioselective chemistry.
This growth in synthetic capability ultimately led to the use of asymmetric catalysis for the
synthesis of hexoses, which is called “de novo asymmetric synthesis” [7–10]. Herein, this
review will explore the historical development of these asymmetric synthetic methods.

2. Formose Synthesis
The structure and synthesis of sugars was an early topic of discovery during the

emergence of organic chemistry in the 19th century. This research effort began with the
realization that simple sugars shared the empirical formula CH2O with formaldehyde 11,
one of the simplest organic molecules (O=CH2). Thus, the hexose glucose (CH2O)6 and
the related shorter sugars (CH2O)n can be viewed as oligomers of formaldehyde (CH2O)1.
Importantly, this oligomerization mechanism for formose synthesis is significantly different
than for the oligomerization process that converts formaldehyde to paraformaldehyde
(O–CH2)n (Scheme 3). The initial attempts to oligomerize formaldehyde into sugars using
Ca(OH)2 bases were met with limited success. Better results were found when the base
catalyst was switched to cyanide salts. The use of NaCN enabled iterative benzoin-type
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condensation for carbohydrate chain growth (e.g., 11 to 16 to 3 + 18) [11]. Further improve-
ments were achieved when the cyanide was replaced with N-heterocyclic carbene (NHC)
catalysts like thiazolium salts [12]. However, it should be noted that these processes lack
the ability to control stereochemistry or the number of carbons in sugar products. When
aqueous formaldehyde 11 is treated with NaCN as a catalyst, stereochemically complex
mixtures of the two-carbon sugar (glycolaldehyde 16), trioses (racemic glyceraldehyde
2), and tetroses (racemic threose 3 and erythrose 18) are formed. Once sugars capable
of forming stable hemiacetals are produced, the oligomerization process begins to slow
down, as this hemiacetal formation removes a significant amount of the reactive aldehydes.
However, longer-chain sugars like the pentoses (rac-19) and the hexoses (rac-20) can also
be detected.
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Scheme 3. The formose synthesis of sugars and reaction mechanism.

The mechanism of chain propagation in the formose synthesis begins with the cyanide
attack on formaldehyde 11 to form oxyanion 12, which equilibrates to carbanion 13. The
insight gained from the understanding of this mechanism underlying this equilibrium
process was fundamental in the development of many related Stetter-type processes and
our understanding of thiamine biochemistry [13–15]. The nucleophilic carbanion 13 can be
added to another molecule of formaldehyde 11 to form alkoxide 14, which can equilibrate
further to alkoxide 15. Because of the proximity of the alkoxide anion in 15 to the cyano
group, 15 can eliminate an equivalent of sodium cyanide, forming the simplest of the sugars,
glycolaldehyde 16. Under the same reaction conditions, the aldehyde in 16 can further react
with 13 via an analogous addition and proton migration to form 17, which can similarly
eliminate cyanide to form glyceraldehyde 2 as a racemic mixture. After another round of
addition/isomerization/elimination between rac-glyceraldehyde 2 and 13, a mixture of
the racemic cis-triol threose 3 and trans-triol erythrose 18 is produced. Further extension
by one or two carbons (via carbanion 13) leads to eight possible pentose diastereomers
19 or 16 possible hexose diastereomers 20, both as racemates. A full appreciation of the
extent of the product mixture formed, including stereochemical diversity and chain lengths,
only became possible with the development of modern analytical methods, although it
should be noted that this work inspired the synthetically practical stepwise approach of
Dondoni [16].

3. Fischer Synthesis of the Hexoses
The full stereochemical complexity of hexoses was not completely understood until the

late 19th century. This insight was gained from synthetic and structural chemistry studies
by Emil Fischer. The Fischer synthesis and structural proof of hexoses were accomplished
through a combination of a stepwise one-carbon homologation (chain growth) and a
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stepwise one-carbon degradative (chain reduction) reaction sequence. The homologation
chemistry involved cyanohydrin formation (HCN addition to the aldehyde carbon of the
sugar), followed by reduction and hydrolysis to form the aldehyde carbon of the new sugar.
This process builds a two-carbon sugar into the trioses and onward (e.g., glyceraldehyde 2,
to erythrose/threose 23, etc.).

In contrast to the stereo-randomness of the formose process, the Fischer approach
is stepwise and, as a result, introduces only one stereocenter at a time (Scheme 4). This
allows for the separation of the diastereomers, which can then be subjected again to
the cyanohydrin formation, reduction, and hydrolysis to exclusively prepare two new
homologated stereoisomers (Scheme 5). Thus, glyceraldehyde 2 is converted into a mixture
of tetrose sugars 23, which can be separated into erythrose 8 and threose 3. In turn, the
mixture of tetroses can be converted into a mixture of pentoses 22, and finally to a mixture of
hexoses 21 (Scheme 4). Alternatively, the purified erythrose 18 can be selectively converted
into arabinose 27 and ribose 26. Similarly, threose 3 can be selectively converted into xylose
4 and lyxose 31 (Scheme 6).
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homologation).

The basic three-step process developed by Fischer is outlined in Scheme 5. This
process involved cyanohydrin formation, reduction/hydrolysis, and separation. The
process began with the addition of HCN to D- or L-glyceraldehyde 2 with the addition
to the D-enantiomer shown. The nucleophilic addition of cyanide to either face of the
aldehyde in glyceraldehyde (D)-2 (via 24) affords triol 25 as a diastereomeric mixture. The
carbon/nitrogen triple bond in nitrile 25 was reduced to form a diastereomeric mixture
of aldehydes. At this point, the two aldehydes, (D)-3 and (D)-18, can be separated into
optically pure forms. Importantly, the optical purity of (D)-3 and (D)-18 is determined by
the configuration of the starting D-glyceraldehyde (D)-2. Thus, if L-glyceraldehyde (L)-2
was used as the starting material, the products would be L-erythrose (L)-18 and L-threose
(L)-3. Conversely, using racemic glyceraldehyde (rac)-2 would yield racemic erythrose
(rac)-18 and threose (rac)-3.

This same synthetic sequence of one-carbon chain extension and diastereomer sep-
aration can be further utilized to construct all the hexoses. Repeating the cyanohydrin
formation, reduction/hydrolysis, and separation on the tetrose aldehydes, threose 3 yields
the five-carbon sugars xylose 4 and lyxose 31, featuring C-2/3 syn-stereochemistry derived
from threose 3. A similar three-step transformation was used to convert erythrose 18 into
arabinose 27 and ribose 26. In an analogous fashion, the four pentose sugars ribose 26,
arabinose 27, xylose 4, and lyxose 31 can be converted into the eight hexose sugars allose
28, altrose 29, glucose 1, mannose 30, gulose 32, idose 33, galactose 34, and talose 35.
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9. De Novo Approaches to Higher Order Sugars
As demonstrated in the synthesis of the landomycin oligosaccharides, these de novo

asymmetric approaches have the greatest utility when they allow for access to rare sugars.
The most common de novo asymmetric approaches are to the hexoses with uncommon
stereochemistry or deoxy-substitutions. In addition to hexoses, de novo asymmetric routes
have also been developed to the C-7 and C-9 sugars (Scheme 23). The Lowary group,
in collaboration with the O’Doherty group, developed a de novo asymmetric approach
to the C-7 monosaccharide 6-O-methyl-heoropyranose 156 [87]. The approach used the
Achmatowicz approach via pyranone 157, which could be prepared from achiral vinylfuran
158. The route derived its asymmetry by means of a Sharpless asymmetric dihydroxylation
of vinylfurans. Another notable example is the de novo synthesis of the C-8 sugar KDO
159, by Danishefsky [88]. The Danishefshy route utilizes a hetereo-Diels–Alder reaction to
make the key pyran building block 160 from a diene derived from achiral furan 161. More
recently, Burke and Voight developed an asymmetric synthesis of the related C-9 sugar KDN
162 [89]. Their approach asymmetrically builds 162 from the spiro-ketal 163, which can
be prepared enantioselectively from achiral alkene 164, via the use of a diastereoselective
RCM reaction. More recently a de novo asymmetric synthesis was developed for the C-10
monosaccharide bradyrhizose 165. The Lowary group first developed an enantio-divergent
approach to racemic 165 from achiral inositol 167 [90]. Additionally, in collaboration with
the O’Doherty group, Lowary and coworkers developed a de novo asymmetric approach
to several diastereomers of bradyrhizose, like the C-9 epimer, 168. This de novo approach
used an Achmatowicz reaction to create a bicyclic pyran 169. The de novo approach derived
its asymmetry from a double Noyori reduction in achiral furan 170 [91]. Several of these de
novo asymmetric carbohydrate approaches have also been applied to other sugars with
additional carbons at C-1 [92–95].
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10. Conclusions
In summary, this review introduces the concept of de novo asymmetric synthesis

in the context of carbohydrate synthesis, particularly for the synthesis of oligosaccha-
rides. This was accomplished by introducing the role asymmetry plays in nature and
natural substances and describing how asymmetry is particularly prevalent in the chem-
istry of biomolecules, especially carbohydrates with their many chiral carbon centers.
As asymmetry plays an important role in the structure of carbohydrates, it also plays a
similarly critical role in their syntheses. As our ability to synthesize carbohydrate motifs
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advances, the complexity of the targets that can be accessed synthetically has also pro-
gressed. This can be seen in the progression of the early diastereoselective syntheses to
enantioselective syntheses, and finally, to de novo asymmetric syntheses. This advance-
ment culminated in the development of two de novo asymmetric synthetic methods for
oligosaccharides, with application to oligosaccharide medicinal chemistry [96–102]. The
first approach was the Achmatowicz approach, which relies on the asymmetric synthe-
sis of furan alcohols, a Pd-glycosylation reaction, and post-glycosylation reactions. The
Achmatowicz approach synthesizes stereochemically simplified D- and L-pyranones with
ω- and ε-stereochemistry. The Achmatowicz approach reduces the 32 possible hexose
monosaccharides to just 4 stereoisomers. The second approach developed by the Rhee
group led to an alternative method for pyran construction with similar applications to
oligosaccharides like the landomycins. Of particular note to the Rhee method is its ability
to allow for more convergent approaches with a late-stage control of a single anomeric
stereocenter. In addition, the approach showed an excellent degree of compatibility with
more traditional carbohydrate approaches. The results covered herein bode well for a future
where the application of these and other de novo approaches to carbohydrate synthesis
and medicinal chemistry are prevalent.
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