
Selecta Mathematica (2024) 30:105
https://doi.org/10.1007/s00029-024-00989-5

SelectaMathematica
New Series

Colored line ensembles for stochastic vertex models

Amol Aggarwal1,2 · Alexei Borodin3

Accepted: 12 August 2024 / Published online: 7 November 2024
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract
In this paper we assign a family of n coupled line ensembles to any Uq(̂sln+1) colored
stochastic fused vertex model, which satisfies two properties. First, the joint law of
their top curves coincideswith that of the colored height functions for the vertexmodel.
Second, the n line ensembles satisfy an explicit Gibbs property prescribing their laws if
all but a few of their curves are conditioned upon.We further describe several examples
of such families of line ensembles, including the ones for the colored stochastic six-
vertex and q-boson models. The appendices (which may be of independent interest)
include an explanation of how the Uq(̂sln+1) colored stochastic fused vertex model
degenerates to the log-gamma polymer, and an effective rate of convergence of the
colored stochastic six-vertex model to the colored ASEP.
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1 Introduction

1.1 Preface

Over the past 25years, a striking interplay has materialized between equilibrium ran-
dom surfacemodels and out-of-equilibrium stochastic growth systems. One of the first
such correspondences is due to Jockusch et al. [57] in 1998, who showed an equality
in law between the facet edge for a uniformly random domino tiling of the Aztec
diamond, and the height function of a certain discrete-time totally asymmetric simple
exclusion process (TASEP). Using ideas of Rost [79], they proved a hydrodynamical
limit theorem for the latter TASEP, which together with their matching result implied
that the limiting trajectory for the domino tiling facet boundary is a circle.

Such correspondences have also been fruitful in reverse (namely, to study stochas-
tic growth models through random surfaces), starting with the work of Prähofer and
Spohn [77]. They analyzed the polynuclear growth (PNG) model by introducing an
associated line ensemble, which is a sequence of random curves (that may be viewed as
level lines of a surface model), whose top curve coincides in law with the PNG height
function. Using the solvability of this line ensemble through the framework of deter-
minantal point processes, they (and also subsequently Johansson [58]) showed that
its fluctuations converge to a scaling limit called the Airy line ensemble (which they
introduced in [77] as a determinantal point process with the extended Airy correlation
kernel), now known to be a universal object in the Kardar–Parisi–Zhang (KPZ) univer-
sality class [60]. From this, they deduced that the PNG height fluctuations converge
to its top curve, the Airy2 process.

The combinatorial underpinnings behind the two matchings described above were
originally quite different. The first was based on the shuffling algorithm introduced by
Elkies et al. [42], to sample random domino tilings of the Aztec diamond. The second
was based on the Robinson–Schensted–Knuth (RSK) correspondence, which was also
used by Baryshnikov [12], O’Connell and Yor [72, 75], and Warren [82] to produce
line ensembles associated with various models of last passage percolation. Borodin
and Petrov [21] later explained that both can be viewed as special cases of a natural
family of (2+1)-dimensional Markov chains (whose first forms date back to Borodin
and Ferrari [19]) on the Schur processes of Okounkov and Reshetikhin [76].

Line ensembles have also been introduced for certain random polymers at positive
temperature, based on a geometric lift of the RSK correspondence due to Kirillov [61]
and Noumi and Yamada [71] (which, due to work ofMatveev and Petrov [68], can also
be thought of as a special case of certain (2 + 1)-dimensional Markov chains on the
q-Whittaker procesess of Borodin andCorwin [16]). These include for theO’Connell–
Yor polymer and KPZ equation through works of O’Connell and Warren [73, 74],
Corwin and Hammond [36], and Nica [70], as well as for the log-gamma polymer
through works of Corwin et al. [38], Johnston and O’Connell [59], and Wu [85]. For
the (single-species) asymmetric simple exclusion process (ASEP) and stochastic six-
vertex model, line ensembles were produced in a different way (which will be closer
to the direction of this paper) by Borodin et al. [15], Corwin and Dimitrov [33], and
Bufetov and Petrov [28]. They first used the Yang–Baxter equation to match the height
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functions of these systems with specific marginals of the Hall–Littlewood measure,
and then interpreted the latter measure as a line ensemble.

All of the above line ensembles admit explicit Gibbs properties describing their
laws if all but a few of their curves are conditioned upon. Starting with the paper [35]
of Corwin–Hammond, such Gibbsian line ensembles have emerged as fundamental
instruments for probabilistically analyzing the associated stochastic growth models.
For example, work of Hammond [48–51] used them to study the on-scale polymer
geometry of Brownian last passage percolation in detail. Later, Matetski et al. [67]
and Dauvergne et al. [41] provided the full space-time scaling limit for TASEPs and
last passage percolation models under arbitrary initial data, and the latter [41] showed
that this limit can be described entirely through the Airy line ensemble.

Gibbsian line ensembles have also been used to understand the fine probabilis-
tic structure of non-determinantal models in the KPZ universality class, such as the
KPZ equation, (single-species)ASEP and stochastic six-vertexmodel, and log-gamma
polymer. Results in this direction include proofs of tightness and correlation bounds by
Corwin et al. [34, 36], Wu [85], and Barraquand et al. [11, 33], as well as polymer path
properties (possibly under large deviation events) by Das and Zhu [32], Wu [83, 84],
and Ganguly et al. [43, 44]. More recent work of Aggarwal and Huang [7] established
that the Airy line ensemble is the unique line ensemble satisfying the Gibbs property
for non-intersecting Brownian bridges, whose top curve is approximately parabolic.
This (together with the above-mentioned tightness frameworks) could potentially lead
to a systematic way of proving that discrete stochastic growthmodels converge to their
scaling limit, whenever such models can be associated with a Gibbsian line ensemble.

This activity leads to the (closely related) questions of, (a) in what generality can
Gibbsian line ensembles be associated with a stochastic growth model, and (b) what
is the mechanism that enables their appearance? The purpose of this paper is to work
towards these questions.

We consider the colored stochastic fused vertex models, associated with the affine
quantum group Uq(̂sln+1), introduced by Kuniba et al. [63] and studied in detail by
Borodin and Wheeler [25]. Our main result is that any such model can be associated
with a family of line ensembles satisfying two properties. The first is that their top
curves coincide in lawwith the colored height functions of the stochastic vertex model
(Theorems 4.7 and 7.7); the second is that they satisfy an explicit Gibbs property
(Theorem 4.8 and Theorem 7.8). Our arguments generalize those in [15, 28, 33], by
using the Yang–Baxter equation underlying these vertexmodels to match their colored
height functions to marginals of certain measures on compositions (Propositions 3.7
and 6.23); by their definitions, the latter can be interpreted as families of line ensembles
with explicit Gibbs properties (Definitions 4.1 and 7.1). In a sense, this pinpoints the
Yang–Baxter equation as the algebraic source for Gibbsian line ensembles associated
with the integrable stochastic vertex models studied here.1

1 There also exist stochastic systems satisfying the Yang–Baxter equation, which are not special cases of
our Uq (̂sln+1) stochastic fused vertex model. These include ones considered by Cantini [31] and Chen et
al. [32], as well as ones with boundary conditions, studied for example by Barraquand et al. [9], He [54, 55],
and Yang [86]. It would be interesting to investigate whether Gibbsian line ensembles can be associated
with these models, too. For the half-space log-gamma polymer, this has been done by Barraquand et al. [10]
(using the geometric RSK correspondence).
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Fig. 1 Depicted above are various degenerations of the Uq (̂sln+1) colored fused stochastic vertex model

We have several reasons for operating at the level of the Uq(̂sln+1) stochastic fused
vertex models. The first is their scope; they are fairly general objects that degen-
erate to most systems proven to be in the KPZ universality class (though not all of
them, such as the non-nearest neighbor exclusion processes considered by Quastel and
Sarkar [78]). See Fig. 1 for a (not entirely complete) list of degenerations to known
models,2 all of them should be associated with Gibbsian line ensembles, obtained
by taking the appropriate specializations or limits of our most general ones for the
stochastic fused vertex model. While we will not describe these line ensembles in
detail for all of the models depicted in Fig. 1, we will do so for a few examples (such
as the colored stochastic six-vertex and discrete-time q-boson models) in Sects. 5 and
8 below.

The second is that for n > 1 these models enable us to access colored, also called
multi-species, systems (inwhich someparticlesmayhave a higher priority than others).
Prior to this work, we were unaware of Gibbsian line ensembles associated with
any example of a multispecies model. A new effect arises here; when the model
comprisesn > 1 species,we associate not one but a family ofn coupled line ensembles,
called a colored line ensemble, with the multi-species system. The top curve in the
c-th ensemble, jointly over all c ∈ [1, n], of the family coincides in law with the
height function tracking particles in the model of color at least c. The full colored line
ensemble further satisfies an explicit Gibbs property that prescribes the joint law of
all n ensembles in the family, upon conditioning on all but a few of their curves. This
provides a potential way of asymptotically analyzing colored systems.We refrain from
pursuing such probabilistic studies in this paper and instead point to the forthcoming
work of Aggarwal et al. [6] that will use the colored line ensembles introduced here to
analyze the scaling limit of the multi-species ASEP and stochastic six-vertex model.

2 Many of these degenerations were previously discussed by Borodin et al. [20, Figure 2] but that work
does not explain how to degenerate the colored vertex model to the log-gamma polymer. We address this
point in Appendix A below.
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Before continuing, let us briefly comment on (2+1)-dimensionalMarkov chains.As
mentioned previously, they have been prevalent inmanyprior studies on line ensembles
but at first may not seem to make a direct presence here. However, such dynamics do
implicitly underly the proofs behind our matching statements (Propositions 3.7 and
6.23), which involve several sequences of applications of the Yang–Baxter equation
to move every vertex of an M × N rectangle across a lattice. Starting from a frozen
(or “empty”) configuration, this lattice gets randomly transformed every time a vertex
is moved through it. The process of moving one vertex at time induces a (2 + 1)-
dimensional Markovian evolution on the lattice, which in the uncolored (n = 1) case
was studied in works of Bufetov et al. [27, 28, 69] under the name Yang–Baxter
bijectivization. The resulting dynamics are quite general and encapsulate the RSK
correspondence as a special case [69, Section 5]. An interesting question is to introduce
colors (n > 1) in these bijectivization dynamics, and to investigate whether different
(possibly nonsymmetric3) RSK-type correspondences arise.

We now proceed to give a more detailed sense of our results. To keep the notation
as light as possible in this introductory section, we will not state them in fullest
generality here. Instead, we only describe a fairly special case of our results that is still
new, namely, for the q = 0 colored stochastic six-vertex model. For the most general
versions of our results, we refer to Theorems 4.7 and 4.8 (for the colored stochastic
six-vertex model), and to Theorems 7.7 and 7.8 (for the colored stochastic fused
vertex model). For further examples and degenerations, we refer to Sect. 5 (for other
special cases of the stochastic six-vertex model) and Sect. 8 (for the colored discrete
time q-boson model).

Throughout this work, for any real numbers a, b ∈ R with a ≤ b, we write
�a, b� = [a, b] ∩ Z.

1.2 Colored stochastic six-vertex model

The colored stochastic six-vertex model is a certain probability measure on colored
six-vertex ensembles onZ2

>0; we begin by defining the latter. To that end, a colored six-
vertex arrow configuration is a quadruple (a, b; c, d) ∈ Z

4≥0 of nonnegative integers,
which we view as an assignment of directed up-right arrows to a vertex v ∈ Z

2
>0, as

follows. We assume that each of the four edges incident to v accomodates one arrow,
and that each arrow is labeled by a nonnegative integer, called a color; edges occupied
by an arrow of color 0 are typically viewed as unoccupied (so arrows of color 0 are
ignored). We then interpret the integers a, b, c, and d of the arrow configuration as the
colors of the arrows vertically entering v, horizontally entering v, vertically exiting v,
and horizontally exiting v, respectively; see the left side of Fig. 2 for an example. We
will typically impose that {a, b} = {c, d} as multi-sets, a restriction known as arrow
conservation; it indicates that an arrow of any color entering v must also exit v.

A domain is a subset D ⊆ Z
2, and a colored six-vertex ensemble on a domain

D ⊂ Z
2 is an assignment of an arrow configuration to each vertex of D in such a way

that neighboring arrow configurations are consistent; this means that, if v1, v2 ∈ D are
two adjacent vertices, then there is an arrow of color c ∈ Z≥0 to v2 in the configuration

3 One nonsymmetric RSK algorithm was introduced by Mason [66] and studied by Haglund et al. [47].
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Fig. 2 Shown to the left is a vertex with arrow configuration (a, b; c, d) = (2, 1; 1, 2), where red and blue
are colors 1 and 2, respectively. Shown to the right is a colored model on the quadrant

at v1 if and only if there is an arrowof color c from v1 in the configuration at v2. Observe
in particular that the arrows in a colored six-vertex ensemble form colored up-right
directed paths connecting vertices of D.

Boundary data for a colored six-vertex ensemble is prescribed by dictating which
points on the boundary of a domain are entrance (or exit) sites for a path of a given
color. If the domain D is a rectangle or quadrant, we will typically restrict to the case
when paths only enter horizontally through the west boundary of D; see the right
side of Fig. 2 for a depiction. Given a function σ : �1, N� → Z≥0, we say that a
colored six-vertex ensemble on the rectangle domain DM;N = �1, M� × �1, N� has
σ -entrance data if the following holds. For each j ∈ �1, N�, one path of color σ( j)
horizontally enters DM;N from the site (0, j) on the y-axis, and no path vertically
enters DM;N from any site on the x-axis.

Associatedwith any six-vertex ensembleE on a domainD ⊆ Z
2 are height functions

h←≥c : Z2 → Z, which for any integer c ≥ 1 are defined as follows. For any vertex
v = (i, j) ∈ Z

2, let h←≥c(v) denote the number of paths of color at least c in E that
do not pass below v, namely, that do not intersect the vertical ray (pointing south)
connecting (i + 1/2, j + 1/2) to (i + 1/2,−∞).

The colored stochastic six-vertex model is a probability measure on colored six-
vertex ensembles on Z

2
>0 that depends on two infinite sequences of real parameters

x = (x1, x2, . . .) and y = (y1, y2, . . .).We view x j as associatedwith the j-th row and
yi as associated with the i-th column, so x and y are called row rapidities and column
rapidities, respectively. The specific forms of these probabilitymeasures are expressed
through weights Ryi /x j (a, b, c, d) associated with each vertex v = (i, j) ∈ Z

2
>0. In

addition to depending on the arrow configuration (a, b, c, d) at v, this vertex weight
will also be governed by several parameters. The first is the quantization parameter q,
which is fixed throughout the model. The second is the spectral variable z = zi, j =
x−1

j yi , which is given by the ratio of the column and row rapidities at the vertex
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Fig. 3 The Rz weights are depicted above

v = (i, j). Given this notation, we define the following vertex weights originally
introduced in [13, 56].

Definition 1.1 For any complex number z ∈ C and integers a, b, c, d ≥ 0, define the
vertex weight Rz(a, b, c, d) as follows. For i < j , set (see Fig. 3)

Rz(i, i; i, i) = 1; Rz( j, i; j, i) = q(1 − z)

1 − qz
; Rz(i, j; i, j) = 1 − z

1 − qz
;

Rz( j, i; i, j) = 1 − q

1 − qz
; Rz(i, j; j, i) = z(1 − q)

1 − qz
.

(1.1)

If (a, b, c, d) is not of the above form for some 0 ≤ i < j , then set Rz(a, b; c, d) = 0.

Remark 1.2 These Rz weights are stochastic in that the sum of all weights with a fixed
pair of incoming arrows is equal to 1, namely,

∑

c,d≥0 Rz(a, b; c, d) = 1 for each
z ∈ C and a, b ≥ 0.

Now let us describe how to sample a random colored six-vertex ensemble on Z2
>0,

using the Rz weights from (1.1). We will first define probability measures Pn on the
set of colored six-vertex ensembles whose vertices are all contained in triangles of
the form Tn = {(x, y) ∈ Z

2
>0 : x + y ≤ n}, and then we will take a limit as n

tends to infinity to obtain the vertex models in infinite volume. The first measure P0
is supported by the empty ensemble (that has no paths).

For each integer n ≥ 1, we will define Pn+1 from Pn through the following Marko-
vian update rules.UsePn to sample a colored six-vertex ensembleEn onTn . This yields
arrow configurations for all vertices in the triangleTn−1. To extend this to a colored six-
vertex ensemble onTn+1, wemust prescribe arrow configurations to all vertices (x, y)

on the complementTn\Tn−1, which is the diagonalDn = {(x, y) ∈ Z
2
>0 : x+y = n

}

.
Since any incoming arrow to Dn is an outgoing arrow from Dn−1, En and the initial
data prescribe the first two coordinates (a, b) of the arrow configuration to each vertex
in Dn . Thus, it remains to explain how to assign the second two coordinates (c, d) of
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the arrow configuration at any vertex (i, j) ∈ Dn , given its first two coordinates (a, b).
This is done by producing (c, d) from (a, b) according to the transition probability

Pn
[

(c, d)
∣

∣(a, b)
] = Ryi /x j (a, b; c, d). (1.2)

We assume that the parameters (x; y; q) are chosen so that the probabilities (1.2) are
all nonnegative; the stochasticity of the Rz weights (Remark 1.2) then ensures that
(1.2) indeed defines a probability measure.

Choosing (c, d) according to the above transition probabilities yields a random
colored six-vertex ensemble En+1, now defined on Tn+1; the probability distribution
of En+1 is then denoted by Pn+1. Taking the limit as n tends to ∞ yields a probability
measure on colored six-vertex ensemblesE on the quadrant.We refer to it as the colored
stochastic six-vertex model; observe that it may also be sampled on any rectangle
D ⊂ Z

2 in the same way as it was above on the quadrant.

1.3 Colored line ensembles

In this section we introduce terminology for colored families of line ensembles. We
first define the notion of a line ensemble. Those that we consider here will be discrete,
and their paths will be non-increasing, which is related to the fact that the associated
stochastic models we analyze are discrete. By taking certain limit degenerations, one
can obtain continuous line ensembles associated with non-discrete stochastic systems,
but we will not pursue that in this work.

Definition 1.3 Fix an interval I ⊆ Z. A (discrete, down-right) line ensemble (on I ) is
an infinite sequence (L1, L2, . . .) of functions Lk : I → Z such that

Lk(i) ≥ Lk+1(i); Lk(i) ≥ Lk(i + 1), (1.3)

for each (k, i) ∈ Z>0 × I (where we must have i + 1 ∈ I in the second inequality
of (1.3)). We call this line ensemble simple if Lk(i) − Lk(i + 1) ∈ {0, 1} for all
(k, i) ∈ Z>0 × I with i + 1 ∈ I .

We next define colored families of line ensembles, which are sequences of line
ensembles whose differences are also line ensembles.

Definition 1.4 Fix an integer n ≥ 1 and an interval I ⊆ Z. A colored family of line
ensembles, which we often abbreviate to a colored line ensemble, on I is a sequence
L = (L(1), L(2), . . . , L(n)

)

of line ensembles L(c) = (L(c)
1 , L(c)

2 , . . .
)

, such that �(c) =
(

�
(c)
1 ,�

(c)
2 , . . .

)

is a line ensemble for each c ∈ �1, n�, where

�
(c)
k (i) = L(c)

k (i) − L(c+1)
k (i), for each (k, i) ∈ Z>0 × I .

Here, we have for convenience defined the constant function L(n+1)
k : I → Z by setting

L(n+1)
k (i) = 0 for any (k, i) ∈ Z>0 × I . We further call L simple if L(c) is simple for
each c ∈ �1, n�.
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Fig. 4 Shown above are two colored line ensembles. To the left, L is simple; to the right,̂L is not simple
and is �1, 2� × �5, 6�-compatible with L

See Fig. 4 for examples. Before proceeding, we require the notion of compatibility
for colored line ensembles.

Definition 1.5 Fix colored line ensembles L = (

L(1), L(2), . . . , L(n)
)

and l =
(

l(1), l(2), . . . , l(n)
)

on an interval I ⊆ Z, and integers j ≥ i ≥ 1 and u, v ∈ I

with u ≤ v. We say that l is �i, j� × �u, v�-compatible with L if L(c)
k (m) = l(c)k (m) for

each c ∈ �1, n� and (k, m) ∈ (Z>0 × I )\(�i, j� × �u, v�
)

.

Observe under the notation ofDefinition 1.5 that there are only finitelymany colored
line ensembles that are �i, j� × �u, v�-compatible with a given one.

1.4 Colored line ensembles for the q = 0 stochastic six-vertex model

In this section we state a special case of our main results (see Sects. 4 and 7 below
for the more general ones), by associating a colored family of line ensembles to the
colored stochastic six-vertex model at q = 0. This is provided by the following
theorem, which is proven in Sect. 5.2. Its first part indicates that the top curves of the
line ensembles in the colored family have the same joint law as the colored height
functions for the stochastic six-vertex model. Its third part provides a Gibbs property
(which is well posed by its second part) for the colored line ensemble. In what follows,
we fix integers M, N , n ≥ 1; real numbers x, y ∈ (0, 1) with y < x ; and a function
σ : �1, N� → �1, n�. We also define the rectangle DM;N = �1, M� × �1, N� ⊂ Z

2.

Theorem 1.6 Sample a colored six-vertex ensemble E on DM;N according to the
stochastic six-vertex model with q = 0; all parameters of x equal to x and of y
equal to y; and σ -entrance data. For each c ∈ �1, n� define Hc : �0, M + N� → Z

by setting
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Hc(k) = h←≥c(M, k), if k ∈ �0, N�;
Hc(k) = h←≥c(M + N − k, N ), if k ∈ �N , M + N�,

where h←≥c is the colored height function with respect to E. There exists a random
simple colored line ensemble L = (L(1), L(2), . . . , L(n)

)

on �0, M + N� satisfying the
following properties.

(1) The joint law of the functions
(

L(1)
1 , L(2)

1 , . . . , L(n)
1

)

is the same as that of
(H1, H2, . . . , Hn).

(2) For any integers c ∈ �1, n�; k ≥ 1; and m ∈ �1, M + N� such that L(c+1)
k (m) >

L(c+1)
k+1 (m), we almost surely have

L(c)
k (m − 1) − L(c)

k (m) = L(c+1)
k (m − 1) − L(c+1)

k (m). (1.4)

(3) Fix integers j ≥ i ≥ 0 and u, v ∈ �0, M + N� such that v ≥ u and N /∈ �u, v�.
Condition on the curves L(c)

k (m) for all c ∈ �1, n� and (k, m) /∈ �i, j� × �u, v�.
Then the law of L is uniform over all simple colored line ensembles l that are
�i, j� × �u, v�-compatible with L such that the following holds. For any integers
c ∈ �1, n�; k ≥ 1; and m ∈ �1, M + N� such that l(c+1)

k (m) > l(c+1)
k+1 (m), we have

l(c)k (m − 1) − l(c)k (m) = l(c+1)
k (m − 1) − l(c+1)

k (m).

Let us make several comments on this theorem. First, the Gibbs property for the
line ensemble L (Item (3) of Theorem 1.6) does not depend on the initial data σ for
the stochastic six-vertex model; σ instead will eventually appear as a sort of boundary
condition for L. One cannot directly use this fact to obtain line ensembles for the single-
color (n = 1 case of the) stochastic six-vertexmodel under general initial data. Indeed,
since 0 is not in the range ofσ , each site on thewest boundary ∂weDM;N = {0}×�1, N�
ofDM;N is an entrance site for a path of some positive color. Thus, σ necessarily gives
rise to step (wedge) initial data if n = 1. However, one can instead pass to a n = 2 color
stochastic six-vertex model; use σ to prescribe an arbitrary boundary condition for
where the color 2 arrows enter along ∂weDM;N (having the color 1 arrows enter at all
other sites of ∂weDM;N ); and then project to the color 2 arrows4 to yield a single-color
stochastic six-vertex model with general boundary conditions along ∂weDM;N .

Second, if n = 1, the constraint that (1.4) holds whenever L(c+1)
k (m) > L(c+1)

k+1 (m)

is irrelevant, since L(2)
k (m) = 0 for all k ≥ 1 and m ∈ �0, M + N�. The Gibbs prop-

erty for L then becomes that of non-intersecting, down-right, discrete random paths
conditioned to remain ordered. For n ≥ 2 colors, this constraint is present and must be
taken into account. Similar constraints have implicitly (in the language of vertex mod-
els) appeared previously in the context of stationary measures for colored interacting

4 We emphasize, however, that the Gibbs property for L does not seem to persist under this projection, that
is, L(2) alone does not satisfy a Gibbs property (though L(1) does; see Propositions 4.11 and 7.9 below).
From this perspective, to treat general initial data (even only for stochastic vertex models with a single
color), one must pass to a n ≥ 2 colored line ensemble.
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particle systems (see the q = 0 case of [8, Section 4.2]). Their presence in our colored
line ensembles therefore suggests that the latter may be useful in proving convergence
to local stationarity [8] or the stationary horizon [29, 30] for colored stochastic vertex
models. An alternative explanation for the constraint (1.4) (by examining the law of the
line ensembles

(

L(2), L(3), . . . , L(c)
)

upon conditioning on the first one L(1)) is found
in forthcoming work [6], where it will be used to prove scaling limit results for the
multi-species asymmetric simple exclusion process and colored stochastic six-vertex
model.

1.5 Outline

The remainder of thiswork is organized as follows. InSect. 2we recall theYang–Baxter
equation and certain families of (non)symmetric functions similar to those in [25]. We
use them inSect. 3 to produceprobabilitymeasures related to the colored stochastic six-
vertexmodel. In Sect. 4 we reinterpret these results to associate colored line ensembles
with the stochastic six-vertexmodel, special cases of which are analyzed in Sect. 5.We
then generalize this framework to the fused setting in Sect. 6, producing the associated
colored line ensembles for stochastic fused vertexmodels in Sect. 7. Finally,we explain
these colored line ensembles in the example of the multi-species discrete time q-boson
model in Sect. 8. The appendices are not directly related to line ensembles and instead
include results about degenerating colored vertex models to other systems (along the
lines of Fig. 1). Specifically, in Appendix A we explain how to degenerate the colored
stochastic fused vertexmodel to the log-gamma polymer. InAppendixBwe provide an
effective rate of convergence to the colored stochastic six-vertex model to the colored
ASEP.

1.6 Notation

For any integers n ≥ 1 and i ∈ �1, n�, we let ei = e(n)
i ∈ R

n denote the coordinate
vector whose i-th entry is equal to 1 and whose remaining entries are 0; we also let
e0 = e(n)

0 ∈ R
n denote the vector with all entries equal to 0. We denote the entries

of any vector X ∈ R
n by X = (X1, X2, . . . , Xn), and we set |X| = ∑n

k=1 Xk .

For any integers 1 ≤ i ≤ j ≤ n, we also denote X[i, j] = ∑ j
k=i Xk . We further

write X ≥ Y for any X,Y ∈ R
n if Xi ≥ Yi for each i ∈ �1, n�. For any k-tuple

w = (w1, w2, . . . , wk), let
←−w = (wk, wk−1, . . . , w1) denote the order reversal of w.

Throughout this work, we fix a real number q ∈ R. For any complex number a ∈ C,
we also denote the q-Pochhammer symbol (a; q)k =∏k−1

j=0(1−aq j ) for each integer

k ≥ 0 and (a; q)k =∏−k
j=1(1 − aq− j ) for each integer k < 0.

A signature is a sequence λ = (λ1, λ2, . . . , λ�) of integers such that λ1 ≥ λ2 ≥
· · · ≥ λ� ≥ 0. A composition μ = (μ1, μ2, . . . , μ�) ∈ Z

�≥0 of some integer K ≥ 0 is

an �-tuple of nonnegative integers such that
∑�

j=1 μ j = K (in particular, any signature
is a composition). The integer � = �(μ) is called the length of μ, and K = |μ| is
its size. Given a composition μ, we let mk(μ) = #

{

j ∈ �1, �� : μ j = k
}

denote the
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Fig. 5 Depicted above are the Lx;s weights

multiplicity of k in μ, for any integer k ≥ 0; we also let m≤k(μ) = ∑k
j=0 m j (μ)

denote the number of entries in μ that are at most equal to k.

2 Yang–Baxter equation and partition functions

In this section we collect (largely from [25]) several results on the Yang–Baxter equa-
tion and certain families of (non)symmetric functions. In Sect. 2.1 we recall a certain
family of weights and the Yang–Baxter equation they satisfy. In Sect. 2.2 we provide
notation for partition functions and height functions. This will be used to define certain
(non)symmetric functions f and G in Sect. 2.3, whose properties we recall in Sect. 2.4.
Throughout this section, we fix an integer n ≥ 1.

2.1 Yang–Baxter equation

In this section we introduce further classes of weights (in addition to the Rz ones given
by Definition 1.1), denoted by Lz;s and ̂Lz;s , and state the Yang–Baxter equation that
they satisfy.

Associated with an L-weight is a colored higher spin arrow configuration, which
is a quadruple (A, b;C, d) with b, d ∈ �0, n� and A,C ∈ Z

n≥0. We view this as an
assignment of directed up-right colored arrows to a vertex v ∈ Z

2; the horizontal edges
incident to v again accommodate one arrow,5 but now the vertical edges incident to v

can accommodate arbitrarily many arrows. In particular, b and d denote the colors of
the arrows horizontally entering and exiting v, respectively, and Ak and Ck denote the
number of arrows of color k vertically entering and exiting v, respectively, for each
k ∈ �1, n�. In what follows, for any i, j ∈ �1, n� and X ∈ R

n , we set

X+
i = X + ei ; X−

j = X − e j ; X+−
i j = X + ei − e j .

5 We will remove this restriction in Sect. 6.1 below, through fusion.
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Definition 2.1 Fix complex numbers x, s ∈ C; define the Lx;s = L(n)
x;s vertex weight

as follows. For any i ∈ �1, n� and A ∈ Z
n≥0, set

Lx;s(A, 0; A, 0) = 1 − sxq A[1,n]

1 − sx
; Lx;s(A, 0; A−

i , i) = x(1 − q Ai )q A[i+1,n]

1 − sx
;

Lx;s(A, i; A+
i , 0) = 1 − s2q A[1,n]

1 − sx
; Lx;s(A, i; A, i) = (x − sq Ai )q A[i+1,n]

1 − sx
.

(2.1)

Moreover, for any 1 ≤ i < j ≤ n, set

Lx;s(A, i; A+−
i j , j) = x(1 − q A j )q A[ j+1,n]

1 − sx
;

Lx;s(A, j; A+−
j i , i) = s(1 − q Ai )q A[i+1,n]

1 − sx
. (2.2)

We also set Lx;s(A, b;C, d) = 0 if (A, b;C, d) is not of the above form (with
A,C ∈ Z

n≥0); see Fig. 5 for a depiction. Also define a normalization ̂Lx;s = ̂L(n)
x;s of

the Lx;s weights, by setting

̂Lx;s(A, b;C, d) = 1 − sx

x − s
· Lx;s(A, b;C, d), (2.3)

for any b, d ∈ �0, n� and A,C ∈ Z
n≥0. In particular, we have ̂Lx (e0, i; e0, i) = 1, for

any i ∈ �1, n�.

The following proposition indicates that the R-weights and L-weights from Defi-
nitions 1.1 and 2.1 satisfy the Yang–Baxter equation.6 It was originally due to [13,
56, 62] (though we adopt the notation of [25]), but it can also be verified directly from
the explicit forms of these weights.

Lemma 2.2 ([25, Proposition 2.3.1]). Fix any complex numbers s, x, y, z ∈ C with
x, y �= 0, and indices i1, j1, k1, i3, j3, k3 ∈ �0, n�. We have

∑

0≤i2, j2,k2≤n

Ry/x (i1, j1; i2, j2)Rz/x (k1, j2; k2, j3)Rz/y(k2, i2; k3, i3)

=
∑

0≤i2, j2,k2≤n

Rz/y(k1, i1; k2, i2)Rz/x (k2, j1; k3, j2)Ry/x (i2, j2; i3, j3).

(2.4)

6 The L-weights can equivalently be described as obtained by applying the fusion procedure [62] to the
R-weights. This, given the Yang–Baxter equation for the R-weights (2.4), can be seen to directly imply the
Yang–Baxter equations between the L and R weights, provided by (2.5) and (2.6) below; see [25, Appendix
B] for further details.
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Further fixing integer sequences K 1, K 3 ∈ Z
n≥0, we have

∑

i2, j2,K2

Ry/x (i1, j1; i2, j2)Lx;s(K 1, j2; K 2, j3)L y;s(K 2, i2; K 3, i3)

=
∑

i2, j2,K2

L y;s(K 1, i1; K 2, i2)Lx;s(K 2, j1; K 3, j2)Ry/x (i2, j2; i3, j3),

(2.5)

and
∑

i2, j2,K2

Ry/x (i1, j1; i2, j2)̂Lx;s(K 1, j2; K 2, j3)L y;s(K 2, i2; K 3, i3)

=
∑

i2, j2,K2

L y;s(K 1, i1; K 2, i2)̂Lx;s(K 2, j1; K 3, j2)Ry/x (i2, j2; i3, j3),

(2.6)

where in both equations i2, j2 are ranged over �0, n�, and K 2 is ranged over Zn≥0.

It will often be useful to interpret such equations diagrammatically. The diagram-
matic interpretation of (2.4) is given by

x

y

z

x

y

z

=
i1

i2
i3

j1

j2
j3

k1

k2

k3

i1 i2

i3
j1

j2

j3

k1

k2

k3

where on each side of the equation is a family of vertices, and we view the weight of
each family as the product of the weights of its constituent vertices. A rapidity param-
eter (x , y, or z in the above) is assigned at the beginning of each line, and it remains
fixed along this line. Along the solid edges the colors are fixed, and along the dashed
ones they are summed over. The Eqs. (2.5) and (2.6) similarly have diagrammatic
interpretations (which we do not depict here).

2.2 Height functions and partition functions

In this section we introduce several partition functions (that is, sums of weights of
colored path ensembles), which will be of use to us. Similarly to the notion of a
colored six-vertex ensemble from Sect. 1.2, a colored higher spin path ensemble on a
domainD ⊆ Z

2 is a consistent assignment of a colored higher spin arrow configuration
(

A(v), b(v);C(v), d(v)
)

to each vertex v ∈ D.
Associated with a colored higher spin path ensemble are height functions, which

count how many paths of specified colors are to the right of (equivalently, below) or
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to the left of (equivalently, above) a given location. More specifically, given a colored
higher spin path ensemble E on a domain D ⊆ Z

2, for any integer c ≥ 0, define
h→

c : Z2 → Z and h←
c : Z2 → Z as follows. For any (i, j) ∈ Z

2, set h→
c (i, j) to be

the number of arrows of color c inE that intersect the vertical ray from (i+1/2, j+1/2)
to (i + 1/2,−∞); similarly set h←

c (i, j) to be the number of arrows of color c in E
that do not intersect the vertical ray from (i +1/2, j +1/2) to (i +1/2,−∞). Further
define h→≥c : Z2 → Z≥0 and h←≥c : Z2 → Z≥0 by setting h→≥c(i, j) =∑∞

k=c h
→
k (i, j)

and h←≥c(i, j) = ∑∞
k=c h

←
k (i, j), for each (i, j) ∈ Z

2. Since the colored stochastic
six-vertex model gives rise to a random colored six-vertex ensemble onD, it also gives
rise to a family of random height functions.

We next introduce notation for weights of path ensembles on negative half-strips of
the form Z≤0 × �1, N� (which will frequently be the domain for our models). Observe
in what follows that, in the “bulk” Z<0 × �1, N� of the half-strip, we take the spin s
to be generic and use the weights Lx;s (or ̂Lx;s). However, on the y-axis boundary of
the half-strip, we take s = 0 and use the weights Lx;0. This will later be relevant for
producing stochastic matchings, such as Proposition 3.7 below.

Definition 2.3 Fix an integer N ≥ 1; a complex number s ∈ C; a sequence of com-
plex numbers x = (x1, x2, . . . , xN ); and a colored higher spin path ensemble E on
DN = Z≤0 × �1, N�, whose arrow configuration at any vertex v ∈ DN is denoted by
(

A(v), b(v);C(v), d(v)
)

. Set

Lx;s(E) =
∞
∏

k=1

N
∏

j=1

Lz j ;s
(

A(−k, j), b(−k, j);C(−k, j), d(−k, j)
)

×
N
∏

j=1

Lx j ;0
(

A(0, j), b(0, j);C(0, j), d(0, j)
);

̂Lx;s(E) =
∞
∏

k=1

N
∏

j=1

̂Lx j ;s
(

A(−k, j), b(−k, j);C(−k, j), d(−k, j)
)

×
N
∏

j=1

Lx j ;0
(

A(0, j), b(0, j);C(0, j), d(0, j)
)

. (2.7)

The above notation implicitly assumes that, in each infinite product, all but finitely
many factors are equal to 1; this will always be the case below.

We next have the following definition for certain types of compositions; below,
we recall from Sect. 1.6 the notation mk(μ) = #

{

j ∈ �1, �(μ)� : μ j = k
}

and

X[i, j] =∑ j
k=i Xk for any X ∈ R

n .

Definition 2.4 Let N ≥ 0 be an integer and � = (�1, �2, . . . , �n) ∈ Z
n≥0 be a com-

position of N . A composition μ = (μ1, μ2, . . . , μN ) is called �-colored if μi ≥ μ j

whenever �[1,c−1] + 1 ≤ i ≤ j ≤ �[1,c], for each c ∈ �1, n�; we then denote the
signature μ(c) = (μ�[1,c−1]+1, μ�[1,c−1]+2, . . . , μ�[1,c]

)

.
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If μ is �-colored for some � ∈ Z
n≥0, then we call μ an n-composition, and we

write μ = (μ(1) | μ(2) | · · · | μ(n)
)

. Let Compn denote the set of n-compositions,
and let Compn(N ) ⊆ Compn denote the set of n-compositions of length N . For any
n-composition μ ∈ Compn , and integers k ≥ 0 and c ∈ �1, n�, define the (sums of)
multiplicities m≥c

k (μ) =∑n
i=c mk

(

μ(i)
)

and m≥c
≤k(μ) =∑n

i=c m≤k
(

μ(i)
)

.

Remark 2.5 Any n-compositionμ ∈ Compn(N ) indexes a family of N colored arrows
vertically exiting the row Z≤0, in which mk

(

μ(c)
)

arrows of color c exit through site
−k, for all integers c ∈ �1, n� and k ≥ 0.

2.3 Nonsymmetric functions

In this section we define a family of nonsymmetric functions f , and of symmetric
ones G, as partition functions for the vertex model with weights given by Defini-
tion 2.1. They are similar to those from [25, Definition 3.5.1] and [25, Definition
4.4.1], respectively.

Definition 2.6 Fix an integer N ≥ 0; two n-compositionsμ=(μ(1) | μ(2) | · · · | μ(n)
)

and ν = (ν(1) | ν(2) | · · · | ν(n)
)

; and a function σ : �1, N� → �1, n�.
If �(μ) = �(ν)+ N , then letP f (μ/ν; σ) denote the set of colored higher spin path

ensembles on DN = Z≤0 × �1, N� with the following boundary data.

(1) For each j ∈ �1, N�, an arrow of color σ( j) horizontally enters DN through7

(−∞, j).
(2) For each k ≥ 0 and c ∈ �1, n�, mk

(

ν(c)
)

arrows of color c vertically enter DN

through (−k, 1).
(3) For each k ≥ 0 and c ∈ �1, n�, mk

(

μ(c)
)

arrows of color c vertically exit DN

through (−k, N ).

See the left side of Fig. 6 for a depiction when μ = (7, 5 | 5, 4, 1 | 3, 2, 2);
ν = (∅ | 6 | 6, 5); and (σ(1), σ (2), σ (3), σ (4), σ (5)

) = (1, 3, 2, 1, 2). There, red,
green, and blue are colors 1, 2, and 3, respectively.

Similarly, if �(μ) = �(ν), then let PG(μ/ν) denote the set of colored higher spin
path ensembles on DN = Z≤0 × �1, N�, with the following boundary data.

(1) For each integer j ∈ �1, N�, no arrow horizontally enters or exitsDN through the
j-th row.

(2) For each k ≥ 0 and c ∈ �1, n�, mk
(

μ(c)
)

arrows of color c vertically enter DN

through (−k, 1).
(3) For each k ≥ 0 and c ∈ �1, n�, mk

(

ν(c)
)

arrows of color c vertically exit DN

through (−k, N ).

See the right side of Fig. 6 for a depiction when μ = (7, 5 | 7, 6 | 6, 4) and
ν = (5, 2 | 5, 1 | 3, 2).
7 This means that, for sufficiently large i , each edge between (−i − 1, j) and (−i, j) contains an arrow of
color σ( j).
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Fig. 6 Depicted to the left and right are vertex models for f σ
μ/ν;s and Gμ/ν;s , respectively

For any complex number s ∈ C and sequence of complex numbers x =
(x1, x2, . . . , xN ), let

f σ
μ/ν;s(x) =

∑

P f (μ/ν;σ)

̂Lx;s(E); Gμ/ν;s(x) =
∑

PG (μ/ν)

Lx;s(E). (2.8)

If ν = ∅ is empty, we write f σ
μ;s(x) = f σ

μ/∅;s(x) and Gμ;s(x) = Gμ/0N ;s(x). If

N = 1, we may write f σ(1)
μ/ν;s in place of f σ

μ/ν;s .

Observe that the quantitŷLx;s(E) appearing as the summand in (2.8) defining f σ
μ/ν;s

is bounded, since all but finitelymany of the vertices in any ensemble E ∈ P f (μ/ν; σ)

have arrow configurations of the form (e0, i; e0, i) for some integer i ∈ �1, n�, and
we have ̂Lx j (e0, i; e0, i) = 1 by (2.3) and (2.1). Similarly, Lx;s(E) appearing as the
summand in (2.8) defining Gμ/ν;s is bounded, since all but finitely many vertices in
any E ∈ PG(μ/ν) have arrow configurations of the form (e0, 0; e0, 0), and we have
Lx (e0, 0; e0, 0) = 1 by (2.1).

2.4 Properties of f and G

In this section we provide properties (that are minor variants of those in [25]) of the f
and G functions from Definition 2.6. The first is the symmetry of G in its arguments;
we omit its proof, which follows quickly from the Yang–Baxter Eq. (2.5) (see also [25,
Definition 4.4.1] or [22, Proposition 4.7]).

Lemma 2.7 Adopt the notation of Definition 2.6, and let ς : �1, M� → �1, M�
denote a permutation. We have Gμ/ν;s( y) = Gμ/ν;s

(

ς( y)
)

, where ς( y) =
(yς(1), yς(2), . . . , yς(M)

)

.
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The second is a branching identity; we omit its proof, which is very similar to
that of [25, Proposition 4.2.1] (and quickly follows from “cutting” the vertex models
shown in Fig. 6 at the line {y = k}).
Lemma 2.8 Adopt the notation of Definition 2.6; let � = �(ν); and fix k ∈ �1, N�. We
have

f σ
μ/ν;s(x) =

∑

κ∈Compn(�+k)

f
σ |�1,k�

κ/ν;s
(

x[1,k]
)

f
σ |�k+1,N�

μ/κ;s
(

x[k+1,N ]
);

Gμ/ν;s(x) =
∑

κ∈Compn(�)

Gμ/κ;s
(

x[1,k]
)

Gκ/ν;s
(

x[k+1,N ]
)

.

Here, we have defined the variable sets x[1,k] = (x1, x2, . . . , xk) and x[k+1,N ] =
(xk+1, xk+2, . . . , xN ). For any interval I = �i0 + 1, i0 + |I |� ⊂ �1, N�, we have also
defined the function σ |I : �1, |I |� → �1, n� by setting σ |I (i) = σ(i + i0) for each
i ∈ �1, |I |�.

The third is a Cauchy identity. Its proof is similar to [25, Proposition 4.5.1], follow-
ing as a consequence of the Yang–Baxter Eq. (2.6), though we include it here (since
some results below, such as Proposition 3.7, will amount to mild modifications of it).

Lemma 2.9 Fix integers n, M, N ≥ 1; a complex number s ∈ C; sequences of
complex numbers x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yM ); and a function
σ : �1, N� → �1, n�. If

max
1≤i≤M
1≤ j≤N

∣

∣

∣

∣

1 − sx j

x j − s

∣

∣

∣

∣

·
∣

∣

∣

∣

yi − s

1 − syi

∣

∣

∣

∣

< 1, (2.9)

then

∑

μ∈Compn(N )

f σ
μ;s(x)Gμ;s( y) =

M
∏

i=1

N
∏

j=1

x j − qyi

x j − yi
.

Proof For each integer i ∈ �1, n�, let �i = #
{

σ−1(i)
}

denote the number of preimages
of i under σ , and set e� = (�1, �2, . . . , �n). We begin by considering the partition
function Z for the vertex model shown in Fig. 7.

This model consists of three regions that we denote by R1, R2, and R3. The first
regionR1 = Z≤0 × �1, M� constitutes the bottom M rows (weakly) to the left of the
y-axis. The second region R2 = Z≤0 × �M + 1, M + N� constitutes the remaining
N rows (weakly) to the left of the y-axis. The third region R3 is the M × N “cross”
to the right of the y-axis. Different vertex weights (recall Definitions 1.1 and 2.1) are
used in these regions. In R1, for each i ∈ �1, M�, we use the weight L yi ;s at (−k, i)
if k ≥ 1 and L yi ;0 at (0, i); in R2, for each j ∈ �1, N�, we use the weight ̂Lx j ;s at
(−k, M + j) if k ≥ 1 and Lx j ;0 at (0, M + j); and inR3 we use the weight Ryi /x j at
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Fig. 7 Shown above is a vertex model used in the proof of Lemma 2.9

the intersection of i-th column (from the left) and j-th row (from the bottom) of the
cross.

The boundary conditions for the model in Fig. 7 are prescribed as follows. The
entrance data is defined by having no arrows vertically enter any column of the model;
having no arrow horizontally enter through the bottom M rows of the model; and
having an arrow of color σ( j) enter through the (M + j)-th row of the model, for each
j ∈ �1, N�. The exit data is defined by having �i arrows of color i exit the y-axis, for
each index i ∈ �1, n�; having no arrows exit through any other column to the left of
the y-axis; and having no arrows exit the cross to the right of the y-axis.

Observe that this vertex model is frozen, that is, there is only one colored higher
spin path ensemble with this boundary data with nonzero weight. It is the one in which,
for each j ∈ �1, N�, the path of color σ( j) in the (M + j)-th row travels horizontally
until it reaches the y-axis, and then proceeds vertically until it exits y-axis. Recalling
from (1.1), (2.1), and (2.3) that

L yi ;s(e0, 0; e0, 0) = 1; ̂Lx j ;s
(

e0, σ ( j); e0, σ ( j)
) = 1;

Lx j ;0
( j−1
∑

k=1

eσ(k), σ ( j);
j
∑

k=1

eσ(k), 0

)

= 1; Ryi /x j (0, 0; 0, 0) = 1,

it follows that the partition function for the vertex model from Figure 7 is given by

Z = 1. (2.10)

Next, by M N sequences of applications of the Yang–Baxter equation (2.6), the
partition function Z of this vertex model is unchanged if the cross originally in region
R3 is moved to the left ofR1 ∪R2 = Z≤0 × �1, M + N�. In particular, Z is also the
partition function of the vertex model in Fig. 8.
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Fig. 8 Shown above is the vertex model from Fig. 7 after using the Yang–Baxter equation to move the cross
to the left of Z≤0 × �1, M + N�

Thismodel also consists of three regionsR′
1,R′

2, andR′
3. The thirdR′

3 is an M ×N
cross, that is now to the left of Z≤0 × �1, M + N�. The second R′

2 = Z≤0 × �1, N�
consists of the bottom N rows to the right of the cross. The first R′

1 consists of the
remaining M rows to the right of the cross. Again different vertex weights are used
in these regions. In R′

1, for each i ∈ �1, M�, we use the weight L yi ;s at (−k, i + N )

for k ≥ 1 and L yi ;0 at (0, i + N ). In R′
2, for j ∈ �1, N�, we use the weight ̂Lx j ;s at

(−k, j) if k ≥ 1 and Lx j ;0 at (0, j). InR′
3, we use the weight Ryi /x j at the intersection

of the i-th column and j-th row of the cross.
The boundary data for the model in Fig. 8 is prescribed as follows (it must match

that of Fig. 7). The entrance data is defined by having no arrows vertically enter any
column in the model, either in or to the right of the cross, and having an arrow of color
σ( j) enter through the j-th row (from the bottom) of the cross, for each j ∈ �1, N�.
The exit data is defined by having no arrows horizontally exit through any row of the
model; having �i arrows of color i exit through the y-axis, for each i ∈ �1, n�; and
having no arrows exit through any other column to the left of the y-axis.

Let us now analyze this vertex model. Using the fact from (2.9) (and (2.1) and
(2.3)) that, for any k ∈ �1, n�,

max
1≤i≤M
1≤ j≤N

∣

∣

∣

∣

̂Lx j ;s
(

e0, 0; e0, 0
) · L yi ;s(e0, k; e0, k)

̂Lx j ;s(e0, k; e0, k) · L yi ;s(e0, 0; e0, 0)
∣

∣

∣

∣

= max
1≤i≤M
1≤ j≤N

∣

∣

∣

∣

1 − sx j

x j − s
· yi − s

1 − syi

∣

∣

∣

∣

< 1,

it is quickly verified (see the proof of [25, Theorem 3.2.3]) that a colored higher
spin path ensemble on Z≤0 × �1, M + N� has nonzero weight only if all but finitely
many vertices in R′

1 have arrow configurations of the form (e0, 0; e0, 0), and all
but finitely many vertices in R′

2 have arrow configurations of the form (e0, k; e0, k)

for some k ∈ �1, n� (which may depend on the vertex). This means that an arrow
must horizontally enter R′

2 through (−∞, j) for each j ∈ �1, N�, and no arrow can
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horizontally enterR′
1. Since each edge of the crossR′

3 can accommodate at most one
arrow, it follows that this cross is frozen; the vertex in its i-th column and j-th row
must have arrow configuration

(

0, σ ( j); 0, σ ( j)
)

. The weight ofR′
3 is therefore

M
∏

i=1

N
∏

j=1

Ryi /x j

(

0, σ ( j); 0, σ ( j)
) =

M
∏

i=1

N
∏

j=1

x j − yi

x j − qyi
, (2.11)

where in the last equality we used (1.1).
The colored higher spin path ensembles inR′

1 andR′
2 can be arbitrary elements of

PG(μ/0N ) and P f (μ/∅; σ) for any μ ∈ Compn(N ) that is shared between R′
1 and

R′
2 (this n-composition μ prescribes the x-coordinates where paths in the ensemble

vertically exit R′
2 and enter R′

1). Hence, the weight ofR′
1 ∪ R′

2 is

∑

μ∈Compn(N )

f σ
μ;s(x)Gμ;s(←−y ),

where we recall the notation ←−y = (yM , yM−1, . . . , y1) from Sect. 1.6. Together with
the weight (2.11) ofR′

3 (and the symmetry of G from Lemma 2.7), it follows that the
weight of the vertex model in Fig. 8 is

Z =
M
∏

i=1

N
∏

j=1

x j − yi

x j − qyi
·

∑

μ∈Compn(N )

f σ
μ;s(x)Gμ;s( y). (2.12)

The lemma then follows from (2.10) and (2.12). ��

3 Probability measures andmatchings

In this section we use the functions f and G fromDefinition 2.6 to produce probability
measures on sequences of compositions, and explain how such measures are related
to the stochastic six-vertex model. The former is done in Sect. 3.1, and the latter is
done in Sects. 3.2 and 3.3. Throughout this section, we fix integers n, M, N ≥ 1; a
composition � = (�1, �2, . . . , �n) of N ; a function σ : �1, N� → �1, n�, such that for
each i ∈ �1, n� we have �i = #

{

σ−1(i)
}

; a complex number s ∈ C; and sequences
of complex numbers x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yM ), such that (2.9)
holds.

3.1 Ascending fGmeasures

In this section we introduce probability measures that arise from the branching and
Cauchy identities (Lemmas 2.8 and 2.9), which are similar to those appearing in [25,
Equation (10.3.1)]. We begin with the following definition for certain families of
compositions.
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Definition 3.1 A sequence μ = (μ(0), μ(1), . . . , μ(M + N )
)

of n-compositions is
called (M; σ)-ascending if the following hold, using the notation
μ(i) = (μ(1)(i) | · · · | μ(n)(i)

)

below.

(1) We have μ(0) = (∅ | · · · | ∅) and μ(M + N ) = (0�1 | · · · | 0�n ).
(2) (a) For all j ∈ �0, N� and c ∈ �1, n�, we have �

(

μ(c)( j)
) = ∑ j

k=1 1σ(k)=c.
Thus, �

(

μ( j)
) = j .

(b) For all i ∈ �N , M + N� and c ∈ �1, n�, we have �
(

μ(c)(i)
) = �c. Thus,

�
(

μ(i)
) = N .

(3) For any i ∈ �1, M + N� and k ∈ Z≥0, there is at most one index q = qμ(k, i) ∈
�1, n� so that

m≤k−1
(

μ(q)(i)
) = m≤k−1

(

μ(q)(i − 1)
)+ 1. (3.1)

We set qμ(k, i) = 0 if no index in q ∈ �1, n� satisfying (3.1) exists. Moreover, for
all c ∈ �1, n� with c �= qμ(k, i), we havem≤k−1

(

μ(c)(i)
) = m≤k−1

(

μ(c)(i − 1)
)

.

Let us also define the (M + N )-tuple q(μ) = (qμ(1, 1), qμ(1, 2), . . . , qμ(1, M + N )
)

.

Remark 3.2 Given an (M; σ)-ascending sequence of compositions μ as in Defini-
tion 3.1, we will often view the n-composition μ(i) as indexing the positions (in the
sense of Remark 2.5) of the colored arrows exiting the row {y = i}, in a vertex model
on Z≤0 × �1, M + N� (of the form arising in the dashed part of Fig. 8; see also Fig. 9).
This gives rise to a colored higher spin path ensemble on Z≤0 × �1, M + N�, that we
will denote by Eμ. In this way, qμ(k, i) denotes the color of the arrow in Eμ along the
edge connecting (−k, i) to (1− k, i). Therefore, the (M + N )-tuple q(μ) records the
colors of the arrows (from bottom to top) along the horizontal edges in Eμ joining the
(−1)-st column to the 0-th one.

The boundary data for this ensemble is described as follows. For each j ∈ �1, N�,
it has an arrow of color σ( j) horizontally entering the row {y = j}, and it has
no other arrows horizontally entering or exiting any other row of the model. For
each c ∈ �1, n�, it has �c arrows of color c vertically exiting the y-axis {x = 0},
and it has no other arrows horizontally entering or exiting any other column of the
model. We denote by PfG(M; σ) the set of colored higher spin path ensembles on
Z≤0 × �1, M + N� with these boundary conditions, as any Eμ ∈ PfG(M; σ) can be
thought of an ensemble fromPG(μ/∅) that is juxtaposed above one fromP f (μ/∅; σ)

(recall Definition 2.6), for some n-composition μ ∈ Compn(N ). It is quickly verified
that the above procedure is a bijection between PfG(M; σ) and (M; σ)-ascending
sequences μ of n-compositions.

See Fig. 9 for a depiction, where (n, M, N ) = (2, 3, 4) and

σ(1) = 1, σ (2) = 2, σ (3) = 2, σ (4) = 1; μ(1) = (2 | ∅), μ(2) = (0 | 3),
μ(3) = (0 | 3, 1), μ(4) = (3, 0 | 3, 0), μ(5) = (2, 0 | 3, 0), μ(6) = (0, 0 | 2, 0).

Next we define the following probability measure on sequences of ascending com-
positions.
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Fig. 9 Depicted above is the colored higher spin path ensemble associated with the sequence μ in the
example at the end of Remark 3.2. Here, red and blue are colors 1 and 2, respectively

Definition 3.3 Define the probabilitymeasurePσ
fG = P

σ
fG;n;s;x; y on (M; σ)-ascending

sequences of n-compositions, by setting

P
σ
fG[μ] = Z−1

x; y ·
N
∏

j=1

f σ( j)
μ( j)/μ( j−1);s(x j )

M+N
∏

i=N+1

Gμ(i−1)/μ(i);s(yi−N ), (3.2)

for each (M; σ)-ascending sequence μ = (μ(0), μ(1), . . . , μ(M + N )
)

, where

Zx; y =
M
∏

i=1

N
∏

j=1

x j − qyi

x j − yi
. (3.3)

Here, we implicitly assume that s, x, and y are such that the right side of (3.2) is
nonnegative (as is guaranteed by for example setting q ∈ [0, 1), setting s sufficiently
close to 0, and setting 0 < yi < x j < 1 for each (i, j) ∈ �1, M� × �1, N�). The fact
that these probabilities sum to one follows from the following lemma.

Lemma 3.4 Under the notation and assumptions of Definition 3.3, we have

∑

μ

N
∏

j=1

f σ( j)
μ( j)/μ( j−1);s(x j ) ·

M+N
∏

i=N+1

Gμ(i−1)/μ(i);s(yi−N ) = Zx; y,

where the sum on the left side is over all (M; σ)-ascending sequences of n-
compositions μ = (μ(0), μ(1), . . . , μ(M + N )

)

.
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Proof By the branching identity Lemma 2.8, we have for any μ(N ) ∈ Compn(N ) that

∑

μ[0,N−1]

N
∏

j=1

f σ( j)
μ( j)/μ( j−1);s(x j ) = f σ

μ(N );s(x);

∑

μ[N+1,M+N ]

M+N
∏

i=N+1

Gμ(i−1)/μ(i);s(yi−N ) = Gμ(N );s( y).

Here, the sums are over all sequences of n-compositionsμ[0,N−1] = (μ(0), μ(1), . . . ,
μ(N − 1)

)

and μ[N+1,M+N ] = (μ(N + 1), μ(N + 2), . . . , μ(M + N )
)

satisfying the
constraints of Definition 3.1. Hence,

∑

μ

N
∏

j=1

f σ( j)
μ( j)/μ( j−1);s(x j ) ·

M+N
∏

i=N+1

Gμ(i−1)/μ(i);s(yi−N )

=
∑

μ(N )∈Compn(N )

f σ
μ(N );s(x)Gμ(N );s( y).

This, together with the Cauchy identity Lemma 2.9, yields the lemma. ��

3.2 Matching between colored stochastic six-vertex models and P�
fG

In this section we establish a matching between the law of the (M + N )-tuple q(μ)

(recall Definition 3.1) associated with a sequence of compositions sampled from P
σ
fG

(from Definition 3.3), with a certain random variable associated with the stochastic
six-vertex model (from Sect. 1.2). We begin by defining the latter.

Definition 3.5 Let E denote a six-vertex ensemble on the rectangular domainDM;N =
�1, M� × �1, N�. For each integer i ∈ �1, M�, let ci = ci (E) ∈ �0, n� denote the
color of the path in E vertically exiting DM;N through (i, N ); for each integer j ∈
�1, N�, let d j = d j (E) ∈ �0, n� denote the color of the path in E horizontally exiting
DM;N through (M, j). Then set C(E) = (c1, c2, . . . , cM ) ∈ �1, n�M and D(E) =
(d1, d2, . . . , dN ) ∈ �1, n�N .

We next require notation for the colored stochastic six-vertex model (defined at the
end of Sect. 1.2) with σ -entrance data introduced in Sect. 1.2.

Definition 3.6 LetPσ
SV = P

σ
SV;x; y denote themeasure on colored six-vertex ensembles

onDM;N obtained by running the colored stochastic six-vertex model onDM;N under
σ -entrance data,withweight Ryi /x j (recallDefinition 1.1) at any vertex (i, j) ∈ DM;N .

We refer to Fig. 10 for depictions of Definitions 3.5 and 3.6. The following propo-
sition now provides a matching between the (M + N )-tuple q(μ) sampled under Pσ

fG
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Fig. 10 Shown above is the entrance and exit data for a colored six-vertex ensemble on D4;3 = �1, 4� ×
�1, 3�, under σ -entrance data for

(

σ(1), σ (2), σ (3)
) = (1, 2, 1) (with red being color 1 and blue being

color 2)

of Definition 3.3 and the (M + N )-tuple D(E) ∪ ←−
C (E) sampled under Pσ

SV of Def-
inition 3.6,8 It is a colored generalization of [15, Theorem 5.5], though its proof is
similar. We establish it in Sect. 3.3 below.

Proposition 3.7 Fix an index sequence q = (q1, q2, . . . , qM+N ) ∈ �0, n�M+N ;
and define the M-tuple C = (qM+N , qM+N−1, . . . , qN+1) and N-tuple D =
(q1, q2, . . . , qN ). Then,

P
σ
SV

[

{C(E) = C
} ∩ {D(E) = D

}

]

= P
σ
fG

[

q(μ) = q
]

. (3.4)

Here, on the left side of (3.4), the colored six-vertex ensemble E is sampled under
the colored stochastic six-vertex measure P

σ
SV;x; y. On the right side of (3.4), the

(M; σ)-ascending sequence μ of colored compositions is sampled under the measure
P

σ
fG;n;s;x; y.

Before establishing Proposition 3.7, we deduce the following corollary. It equates
the joint law of the height functions (recall Sect. 2.2) evaluated along the exit sites
of an M × N rectangle, sampled under the colored stochastic six-vertex model, with
the joint law of the number of zero entries in a family μ of n-compositions, sampled
under the Pσ

fG measure.

8 Observe that the left side of (3.4) is independent of s, while the right side seems to involve s; such a
phenomenon had already been observed in the uncolored case in [27, Proposition 7.14] and in the different
setting of colored stationary measures [8, Remark 4.6]. In our context, this fact will later enable us to freely
choose s as we see fit, which will be useful in producing the simplest looking line ensembles.
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Corollary 3.8 The joint law of all the height functions

n
⋃

c=1

(

h→≥c(M, 1), h→≥c(M, 2), . . . , h→≥c(M, N ), h→≥c(M − 1, N ), . . . , h→≥c(0, N )
)

,

(3.5)

is equal to the joint law of all zero-entry counts

n
⋃

c=1

(

m≥c
0

(

μ(1)
)

,m≥c
0

(

μ(2)
)

,m≥c
0

(

μ(N )
)

, . . . ,

m≥c
0

(

μ(N + 1)
)

, . . . ,m≥c
0

(

μ(M + N )
)

)

. (3.6)

Here, the height functions in (3.5) are associated with a colored six-vertex ensem-
ble sampled under Pσ

SV;x; y, and the zero-entry counts in (3.6) are associated with a

(M; σ)-ascending sequence of n-compositions μ = (μ(0), μ(1), . . . , μ(M + N )
)

sampled under Pσ
fG;n;s;x; y.

Proof Adopt the notation of Proposition 3.7, and denote the M-tuple C(E) =
(c1, c2, . . . , cM ) and N -tuple D(E) = (d1, d2, . . . , dN ). Then for each c ∈ �1, n�,
i ∈ �1, M − 1�, and j ∈ �1, N�, we have (from the definition of the height function)
that

h→≥c(M, j) =
j
∑

a=1

1da≥c; h→≥c(M − i, N ) =
N
∑

a=1

1da≥c +
i
∑

b=1

1cM−b+1≥c. (3.7)

Furthermore, we have

m≥c
0

(

μ( j)
) =

j
∑

a=1

1qa≥c;

m≥c
0

(

μ(N + i)
) =

N+i
∑

a=1

1qa≥c =
N
∑

a=1

1qa≥c +
i
∑

b=1

1qN+b≥c. (3.8)

Since Proposition 3.7 implies that the (M + N )-tuple (d1, d2, . . . , dN ; cM , cM−1, . . . ,

c1) has the same law as (q1, q2, . . . , qN ; qN+1, qN+2, . . . , qM+N ), the lemma follows
from (3.7) and (3.8). ��

3.3 Proof of thematching

In this section we establish Proposition 3.7. Before proceeding, it will be useful to
set some notation. For any sequences A = (a1, a2, . . . , aM ), B = (b1, b2, . . . , bN ),
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Fig. 11 Shown above is a diagrammatic interpretation for Rx; y(A,B;C,D)

C = (c1, c2, . . . , cM ), and D = (d1, d2, . . . , dN ) of indices in �0, n�, define

Rx; y(A,B;C,D) =
∑

M
∏

i=1

N
∏

j=1

Ryi /x j (vi, j , ui, j ; vi+1, j , ui, j+1),

where the sum is over all sequences (ui, j ) and (vi, j ) of indices in �0, n�, with
(vk,1, vk,N+1) = (ak, ck) for each k ∈ �1, M� and (u1,k, uM+1,k) = (bk, dk) for
each k ∈ �1, N�. See Fig. 11 for a depiction.

Setting S(σ ) = (

σ(1), σ (2), . . . , σ (N )
)

and 0M = (0, 0, . . . , 0) ∈ Z
M≥0, and

recalling the notation of Definitions 3.5 and 3.6, observe for any C ∈ �0, n�M and
D ∈ �0, n�N that

P
σ
SV;x; y

[

{

C(E) = C
} ∩ {D(E) = D

}

]

= Rx; y
(

0M ,S(σ );C,D
)

. (3.9)

Now we can establish Proposition 3.7.

Proof of Proposition 3.7 The proof of this proposition will be close to that of
Lemma 2.9. We begin by considering the partition function Z(q) for the vertex model
depicted in Fig. 12.

This model consists of three regions, denoted byR1,R2, andR3. The first region
R1 is the M × N “cross” to the left of Z<0 × �1, M + N�. The second R2 =
Z<0 × �1, N� constitutes the bottom N rows to the right of the cross. The third
R3 = Z<0 × �N + 1, M + N� constitutes the remaining M rows to the right of
the cross. Different vertex weights (recall Definitions 1.1 and 2.1) are used in these
regions. InR1, we use Ryi /x j at the intersection of the i-th column (from the left) and
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Fig. 12 Shown above is the vertex model used in the proof of Proposition 3.7

j-th row (from the bottom) of the cross; in R2, for each j ∈ �1, N�, we use ̂Lx j ;s at
each (−k, j); and inR3, for each i ∈ �1, M�, we use L yi ;s at each (−k, i + M).

The boundary conditions for the model in Fig. 12 are prescribed as follows. The
entrance data is defined in the same way as for Fig. 8 in the proof of Lemma 2.9.
Specifically, we have no arrows vertically enter any column of the model, either in or
to the right of the cross, and we have an arrow of color σ( j) enter through the j-th row
(from the bottom) of the cross, for each j ∈ �1, N�. The exit data is defined differently,
by having an arrow of color qi horizontally exit through (−1, i) (the i-th row of the
model) for each i ∈ �1, M + N�, and having no arrow vertically exit through any
column of the model.

Let us now analyze the partition function for this vertexmodel. Under the constraint
(2.9), it is quickly verified (as in the proof of Lemma 2.9) that a colored higher spin
path ensemble in Z<0 × �1, M + N� has nonzero weight only if all but finitely many
vertices in R2 have arrow configurations of the form (e0, i; e0, i) for some integer
i ∈ �1, n�, and all but finitely many vertices in R3 have arrow configurations of the
form (e0, 0; e0, 0). This forces the cross R1 to freeze, with the arrow configuration
(

0, σ ( j); 0, σ ( j)
)

at the intersection of its i-th column and j-th row, for each (i, j) ∈
�1, M� × �1, N�. By (1.1), this means that the weight of R1 is

M
∏

i=1

N
∏

j=1

Ryi /x j

(

0, σ ( j); 0, σ ( j)
) =

M
∏

i=1

N
∏

j=1

x j − yi

x j − qyi
. (3.10)

We next evaluate the partition function Z̆(q) of R2 ∪ R3. To that end, we modify
this part of the vertex model shown in Fig. 12, by having all of the colored paths exit
vertically through the y-axis; see Fig. 13 for a depiction. Here, the weights used for
the y-axis are Lx j ;0 at (0, j) for j ∈ �1, N� and L yi ;0 at (0, i + N ) for i ∈ �1, M�.
Since by Definition 2.1 we have for each i ∈ �1, M�, j ∈ �1, N�, and A ∈ Z

n≥0 that
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Fig. 13 Shown above is a modification of the R2 ∪ R3 region of the vertex model from Fig. 12, in which
all paths exit through the y-axis

L yi ;0(A, qi+N ; A+
qi+N

, 0) = 1; Lx j ;0(A, q j ; A+
q j

, 0) = 1, (3.11)

the weight of the y-axis in Fig. 13 is 1. Hence, denoting the partition function of the
vertex model depicted in Fig. 13 by Z′(q), we have Z̆(q) = Z′(q). Together with
(3.10), this yields

Z(q) = Z̆(q) ·
M
∏

i=1

N
∏

j=1

x j − yi

x j − qyi
= Z′(q) ·

M
∏

i=1

N
∏

j=1

x j − yi

x j − qyi
. (3.12)

To evaluateZ′(q), observe that any colored higher spin path ensemble with bound-
arydata as depicted inFig. 13 is determinedbya sequenceμ = (μ(0), μ(1), . . . , μ(M+
N )
)

of n-compositions, where μ(i) indexes the locations of the colored arrows exit-
ing the i-th row {y = i} of the model, for each i ∈ �0, M + N� (in the sense of
Remark 2.5). It is quickly verified that any such sequence μ is (M; σ)-ascending (as
in Definition 3.1) and satisfies q(μ) = q. Moreover Definition 2.6 implies that, for
any j ∈ �1, N�, the j-th row of the model in Fig. 13 has weight f σ( j)

μ( j)/μ( j−1)(x j ).
Similarly, for any i ∈ �N + 1, M + N�, its i-th row has weight Gμ(i−1)/μ(i)(yi−N ).
Thus,

Z′(q) =
∑

μ

1q(μ)=q ·
N
∏

j=1

f σ( j)
μ( j)/μ( j−1);s(x j )

M+N
∏

i=N+1

Gμ(i−1)/μ(i);s(yi−N ),
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Fig. 14 Shown above is the vertex model from Fig. 12 after using the Yang–Baxter equation to move the
cross to the right of Z<0 × �1, M + N�

where the sum is over all (M; σ)-ascending sequences μ of n-compositions. Together
with (3.12) and Definition 3.3, this gives

Z(q) =
M
∏

i=1

N
∏

j=1

x j − yi

x j − qyi
·
∑

μ

1q(μ)=q ·
N
∏

j=1

f σ( j)
μ( j)/μ( j−1);s(x j )

×
M+N
∏

i=N+1

Gμ(i−1)/μ(i);s(yi−N )

= P
σ
fG

[

q(μ) = q
]

. (3.13)

Next, by M N sequences of applications of the Yang–Baxter equation (2.6), the
partition function Z(q) of the model from Fig. 12 is unchanged if the cross originally
in region R1 is moved to the right of R2 ∪ R3 = Z<0 × �1, M + N�. In particular,
Z(q) is also the partition function of the vertex model in Fig. 14.

This model also consists of three regionsR′
1,R′

2, andR′
3. The firstR′

1 is an M × N
cross, that is now to the right of Z<0 × �1, M + N�. The third R′

3 = Z≤0 × �1, M�
consists of the bottom M rows to the left of the cross. The second R′

2 consists of the
remaining N rows to the left of the cross. Again different vertex weights are used in
these regions. InR′

1, we use theweight Ryi /x j at the intersection of the i-th column and
j-th row of the cross, for each (i, j) ∈ �1, M� × �1, N�; in R′

2, for each j ∈ �1, N�,
we use the weight ̂Lx j ;s at every (−k, M + j); and in R′

3, for each i ∈ �1, M�, we
use the weight L yi ;s at every (−k, i).

The boundary data for the model in Fig. 14 is prescribed as follows (it must match
that of Fig. 12). The entrance data is defined by having no arrows vertically enter any
column of the model; no arrow horizontally enter through the bottom M rows of the
model; and having an arrow of color σ( j) enter through the (M + j)-th row of the
model, for each j ∈ �1, N�. The exit data is defined by having no arrows horizontally
exit through any column of the model; having an arrow of color q j exit through the
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j-th row of the cross, for each j ∈ �1, N�; and having an arrow of color qi+N exit
through the (M − i + 1)-th column of the cross, for each j ∈ �1, M�.

Observe that theR′
2 ∪R′

3 = Z<0 × �1, M + N� part of this vertex model is frozen.
The one colored higher spin path ensemble there (with that boundary data) that has
nonzero weight is the one in which, for each j ∈ �1, N�, the path of color σ( j) in the
(M + j)-th row travels horizontally until it reaches the cross. Recalling from (1.1),
(2.1), and (2.3) that

L yi ;s(e0, 0; e0, 0) = 1, ̂Lx j ;s
(

e0, σ ( j); e0, σ ( j)
) = 1,

it follows that the weight of R′
2 ∪ R′

3 in Fig. 14 is equal to 1. The partition function
of R′

1 is given by Rx; y
(

0M ,S(σ );C,D). Together with (3.9), this gives

Z(q) = P
σ
SV

[

{

C(E) = C
} ∩ {D(E) = D

}

]

,

which together with (3.13) yields the proposition. ��
Remark 3.9 Observe that the proof of Proposition 3.7 used (3.9), which required that
the R-weights from Definition 1.1 were stochastic. It is also possible to formulate
a version of Proposition 3.7 for non-stochastic R-weights, in which the stochastic
weights of the vertexmodel describing the left side of (3.4) (equivalently, the stochastic
weights of the cross in the proof of Proposition 3.7) would be determined by the R-
weights through the stochasticization procedure of [4].

Remark 3.10 Our reason for using the domain Z<0 × �1, M + N� above is to avoid
having to “reflect” the stochastic cross (to direct its paths up-left instead of up-right)
in the proof of Proposition 3.7, which would have been necessary had we instead used
the more standard domain Z>0 × �1, M + N� from previous works [15, 22, 25, 27].

Remark 3.11 It is possible to formulate a generalization of Proposition 3.7 when its
domain DM;N is not necessarily rectangular but instead “jagged,” that is, bounded by
an up-left directed path P. In this case, the associated measures PfG would no longer
necessarily be ascending, but would rather have ascents and descents (depending on
whether a corresponding step of P is directed north or west); see [15, Theorem 5.6]
for such a statement in the colorless (n = 1) case.

4 Colored line ensembles for colored six-vertexmodels

In this section we explain how the results of Sect. 3 can be reformulated in terms
of colored line ensembles. We first associate colored line ensembles with ascending
sequences of compositions in Sect. 4.1 and then discuss properties of random colored
line ensembles (associatedwith randomascending sequences of compositions sampled
according to P

σ
fG) in Sect. 4.2. We then describe color merging properties for these

random colored line ensembles in Sect. 4.3. Throughout this section, we fix integers
n, M, N ≥ 1; a composition � = (�1, �2, . . . , �n) of N ; a function σ : �1, N� →
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�1, n�, such that for each i ∈ �1, n�wehave �i = #
{

σ−1(i)
}

; a complex number s ∈ C;
and sequences of complex numbers x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yM ),
such that (2.9) holds.

4.1 Colored line ensembles and ascending sequences

In this section we associate a colored line ensemble (see Definition 1.4) with a given
(M; σ)-ascending sequence μ of n-compositions. This is done through the following
definition.

Definition 4.1 Let μ = (μ(0), μ(1), . . . , μ(M + N )
)

denote an (M; σ)-ascending
sequence of n-compositions. The associated simple colored line ensemble L = Lμ =
(

L(1), L(2), . . . , L(n)
)

on �0, M + N� is defined as follows. For each c ∈ �1, n� let

L(c) = L(c)
μ = (

L(c)
1 , L(c)

2 , . . .
)

, where for each k ≥ 1 the function L(c)
k = L(c)

k;μ :
�0, M + N� → Z is prescribed by setting

L(c)
k (i) = �[c,n] − m≥c

≤k−1

(

μ(i)
)

, for each i ∈ �0, M + N�. (4.1)

The fact that this defines a simple colored line ensemble follows from Lemma 4.3
below. We moreover set the differences �(c) = (�(c)

1 ,�
(c)
2 , . . .

)

of L by

�
(c)
k (i) = L(c)

k (i) − L(c+1)
k (i), for each (k, i) ∈ Z>0 × �0, M + N�,

where L(n+1)
k : �0, M + N� → Z is defined by setting L(n+1)

k (i) = 0 for each (k, i) ∈
Z>0 × �0, M + N�.

Remark 4.2 As in Remark 3.2, we may interpret μ as associated with a colored higher
spin path ensembleEμ ∈ PfG(M; σ)onZ≤0×�1, M+N�. Then L(c)

k (i) = h←≥c(−k, i),

where the height function h←≥c is with respect to Eμ; stated alternatively, L
(c)
k (i) denotes

the number of arrows with color at least c that horizontally exit the column {x =
−k} strictly above the vertex (−k, i). See Fig. 15 for a depiction when (n, M, N ) =
(2, 3, 4).

Lemma 4.3 Adopting the notation and assumptions of Definition 4.1, L is a simple col-
ored line ensemble (recall Definition 1.4), which satisfies the following three properties
for any c ∈ �1, n�, k ∈ Z>0, and i ∈ �0, M + N�.

(1) We have L(c)
1 (i) ≥ L(c)

2 (i) ≥ · · · and L(1)
k (i) ≥ L(2)

k (i) ≥ · · · .

(2) We have �
(c)
k (i) − �

(c)
k+1(i) = (L(c)

k (i) − L(c+1)
k (i)

) − (L(c)
k+1(i) − L(c+1)

k+1 (i)
) =

mk
(

μ(c)(i)
)

.

(3) If i ≥ 1, we have L(c)
k (i − 1) − L(c)

k (i) = 1qμ(k,i)≥c.

Proof Let us first confirm that the three properties in the lemma hold for L. The first
follows from the facts that

L(c)
k (i) − L(c)

k+1(i) = m≥c
≤k

(

μ(i)
)− m≥c

≤k−1

(

μ(i)
) = m≥c

k

(

μ(i)
)
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Fig. 15 Shown to the left is a depiction for an ascending sequence μ of 2-compositions through a colored
higher spin path ensemble (where color 1 is red and color 2 is blue). Shown to the right are the two associated
simple line ensembles L(1) (in purple, as it counts both red and blue paths) and L(2) (in blue)

=
n
∑

c′=c

mk
(

μ(c′)(i)
) ≥ 0;

L(c)
k (i) − L(c+1)

k (i) = �[c,n] − �[c+1,n] + m≥c+1
≤k−1

(

μ(i)
)− m≥c

≤k−1

(

μ(i)
)

= �c − m≤k−1
(

μ(c)(i)
) ≥ 0, (4.2)

where in the last bound we used the inequality �c ≥ �
(

μ(c)(i)
) ≥ m≤k−1

(

μ(c)(i)
)

(by
the second property in Definition 3.1). The second property follows from the fact that

�
(c)
k (i) − �

(c)
k+1(i) = (L(c)

k (i) − L(c+1)
k (i)

)− (L(c)
k+1(i) − L(c+1)

k+1 (i)
)

=
(

�c − m≤k−1
(

μ(c)(i)
)

)

−
(

�c − m≤k
(

μ(c)(i)
)

)

= mk
(

μ(c)(i)
) ≥ 0,

where in the second equality we used the second statement in (4.2). The third holds
by the equality

L(c)
k (i − 1) − L(c)

k (i) = m≥c
≤k−1

(

μ(i)
)− m≥c

≤k−1

(

μ(i − 1)
)

, (4.3)

and the fact that (by arrow conservation) the right side of (4.3) counts the number
of arrows with color at least c in Eμ that horizontally enter the vertex (k − 1, i), or
equivalently that horizontally exit the vertex (k, i); this is 1qμ(k,i)≥c, by Remark 3.2.

The first and third properties of the lemma verify that each L(c) is a simple line
ensemble. Moreover, each �(c) is also a line ensemble, since �

(c)
k ≥ �

(c)
k+1 by the

second property in the lemma, and



105 Page 34 of 111 A. Aggarwal, A. Borodin

�
(c)
k (i − 1) − �

(c)
k (i) = L(c)

k (i − 1) − L(c)
k (i) − (L(c+1)

k (i − 1) − L(c+1)
k (i)

)

= 1qμ(k,i)≥c−1 − 1qμ(k,i)≥c ≥ 0,

by the third. This means that L is a simple colored line ensemble. ��
By Lemma 4.3, Definition 4.1 associates a simple colored line ensemble to a given

(M; σ)-ascending sequence of n-compositions. Since the latter are in bijection with
colored higher spin path ensembles in PfG(M; σ) by Remark 3.2, this associates a
simple colored line ensemblewith any element ofPfG(M; σ). The followingdefinition
is towards the reverse direction; it associates a colored higher spin path ensemble with
a simple colored line ensemble L.

Definition 4.4 Adopt the notation from Definition 1.4 and assume that L is sim-
ple. For any v = (−k, i) ∈ Z≤0 × �1, M + N�, define the arrow configuration
(

AL(v), bL(v);CL(v), dL(v)
)

as follows. The n-tuples AL(v) = (AL
1(v), AL

2(v), . . . ,

AL
n(v)
) ∈ Z

n≥0 and CL = (CL
1(v), CL

2(v), . . . , CL
n(v)
) ∈ Z

n≥0 are prescribed by setting

AL
c(v) = �

(c)
k (i − 1) − �

(c)
k+1(i − 1)

= L(c)
k (i − 1) − L(c)

k+1(i − 1) − (L(c+1)
k (i − 1) − L(c+1)

k+1 (i − 1)
);

CL
c (v) = �

(c)
k (i) − �

(c)
k+1(i) = L(c)

k (i) − L(c)
k+1(i) − (L(c+1)

k (i) − L(c+1)
k+1 (i)

)

,

for each c ∈ �1, n� (observe that both are nonnegative since �(c) is a line ensemble),
and the indices bL(v), dL(v) ∈ �0, n� are prescribed by setting

bL(v) = max
{

c ∈ �1, n� : L(c)
k+1(i − 1) − L(c)

k+1(i) = 1
};

dL(v) = max
{

c ∈ �1, n� : L(c)
k (i − 1) − L(c)

k (i) = 1
}

,

where the maxima are by definition set to 0 if such an index c ∈ �1, n� does not exist.
This assignment of arrow configurations is consistent and satisfies arrow conservation;
therefore, it defines a colored higher spin path ensemble EL associated with the simple
colored line ensemble L.

The following lemma indicates that the associations from Definitions 4.1 and 4.4
are compatible; we omit its proof, which is a quick verification using the second and
third statements of Lemma 4.3.

Lemma 4.5 If EL = Eμ for some (M; σ)-ascending sequence μ of n-compositions,
then L is associated with μ in the sense of Definition 4.1.

4.2 Properties of random colored line ensembles

In this section we discuss some properties of colored line ensembles Lμ associated
with an (M; σ)-ascending sequence μ of n-compositions sampled from the measure
P

σ
fG (recall Definition 3.3). Let us first assign notation to this law on colored line

ensembles.
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Fig. 16 To the left is a simple colored line ensemble L. To the right, we have conditioned on L(c)k (m) for
(k, m) /∈ �1, 2� × �4, 6� and resampled the first two curves on �4, 6� (shown as dashed)

Definition 4.6 LetPσ
scL = P

σ
scL;n;s;x; y denote the lawof a simple colored line ensemble

Lμ associated with a random (M; σ)-ascending sequence μ of n-compositions (as in
Definition 4.1) sampled from the measure Pσ

fG;n;s;x; y.

The following result, which is a quick consequence of Corollary 3.8, provides under
this setup a matching in law between the top curves of L (under Pσ

scL) and the height
functions for a colored stochastic six-vertex model (recall Definition 3.6).

Theorem 4.7 Sample a simple colored line ensemble L on �0, M+N� from the measure
P

σ
scL;n;s;x; y, and sample a random colored six-vertex ensemble E under Pσ

SV;x; y. For
each c ∈ �1, n�, define the function Hc : �0, M + N� → Z by setting

Hc(k) = h←≥c(M, k), if k ∈ �0, N�;
Hc(k) = h←≥c(M + N − k, N ), if k ∈ �N , M + N�,

where h←≥c is the height function associated with E. Then, the joint law of
(

L(1)
1 , L(2)

1 , . . . , L(n)
1

)

is the same as that of (H1, H2, . . . , Hn).

Proof Since h←≥c(i, j) = �[c,n] − h→≥c(i, j) holds for any integer c ∈ �1, n� and vertex
(i, j) ∈ {(M, 0), (M, 1), . . . , (M, N ), (M, N − 1), . . . , (0, N )

}

along the northeast
boundary of �0, M� × �0, N�, this theorem follows from (4.1) and Corollary 3.8. ��

The next theorem explains the effect of conditioning on some of the curves in L,
if μ is sampled under the Pσ

scL measure; see Fig. 16 for a depiction. We will use this
as a Gibbs property for the line ensemble L. In the below, we recall the notion of
compatibility for line ensembles from Definition 1.5; the vertex weights Lx;s from
Definition 2.1; the association of a colored line ensemble with an ascending sequence
of n-compositions from Definition 4.1; and the notation from Definition 4.4.



105 Page 36 of 111 A. Aggarwal, A. Borodin

Theorem 4.8 Sample L = Lμ under P
σ
scL;n;s;x; y. Fix integers j > i ≥ 0 and u, v ∈

�0, M + N� with u < v; set i0 = max{i, 1}; and condition on the curves L(c)
k (m) for

all c ∈ �1, n� and (k, m) ∈ (Z>0 × �0, M + N�
)\(�i + 1, j� × �u, v − 1�

)

. For any
simple colored line ensemble l that is �i + 1, j� × �u, v − 1�-compatible with L, we
have

P[L = l] = Z−1 ·
j
∏

k=i0

∏

m∈�u,v�
m≤N

Lxm ;s
(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
)

×
j
∏

k=i0

∏

m∈�u,v�
m>N

L ym−N ;s
(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
)

.

(4.4)

Here, the probability on the left side of (4.4) is with respect to the conditional law of L.
Moreover,Z is a normalizing constant defined so that the sum of the right side of (4.4),
over all simple colored line ensembles l that are �i + 1, j� × �u, v − 1�-compatible
with Lμ, is equal to 1.

Proof Letting μ be distributed according to Pσ
fG;n;s;x; y, (2.7), (2.8), and (3.2) together

imply that

P[μ] = Z−1
x; y ·

∞
∏

k=1

N
∏

m=1

̂Lxm ;s
(

AEμ(−k, m), bEμ(−k, m);CEμ(−k, m), dEμ(−k, m)
)

×
∞
∏

k=1

M+N
∏

m=N+1

L ym−N ;s
(

AEμ(−k, m), bEμ(−k, m);CEμ(−k, m), dEμ(−k, m)
)

,

(4.5)

where
(

AEμ(−k, m), bEμ(−k, m);CEμ(−k, m), dEμ(−k, m)
)

denotes the arrow con-
figuration in the colored higher spin path ensembleEμ (recallRemark 3.2) at (−k, m) ∈
Z≤0×�1, M+N�, andwe recall the normalization constantZ(x; y) from (3.3).9 Next,
by Lemma 4.5, each arrow configuration

(

AEμ(−k, m), bEμ(−k, m);CEμ(−k, m),

dEμ(−k, m)
)

appearing in (4.5) coincides with
(

AL(−k, m), bL(−k, m);CL(−k, m),

dL(−k, m)
)

. Together with (4.5) and the fact that̂Lx;s = (1− sx)(x − s)−1 · Lx;s (by
Definition 2.1), this yields

9 Here, to restrict the products on the right side of (4.5) to terms with k �= 0, we implicitly used the facts
that the s-parameter in the 0-th column is equal to 0; that Lz;0(A, b; A+

b , 0) = 1 for any A ∈ Z
n≥0 and

b ∈ �0, n� (see (3.11)); and that dEμ (0, m) = 0 for all m ∈ �1, M + N�.
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P[L=l]

=Z−1
x; y ·

∞
∏

k=1

N
∏

m=1

1−sxm

xm−s
· Lxm ;s

(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
)

×
∞
∏

k=1

M+N
∏

m=N+1

L ym−N ;s
(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
)

,

(4.6)

where on the left side L is sampled under the measure Pσ
fG;n;s;x; y, without any condi-

tioning yet.
Now, as in the statement of the theorem, we condition on the curves L(c)

k (m) for
c ∈ �1, n� and (k, m) /∈ �i + 1, j� × �u, v − 1�. By Definition 4.4, this amounts to
conditioning on the restriction of EL to the complement of �− j,−i� × �u, v�. Hence,
the factors on the right side of (4.6) corresponding to (k, m) /∈ �i, j� × �u, v� are
deterministic and can thus be incorporated into the normalization constant, which
gives (recalling i0 = max{i, 1})

P
[

L = l
] = ˜Z−1 ·

j
∏

k=i0

∏

m ∈ �u, v�
m ≤ N

1 − sxm

xm − s

· Lxm ;s
(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
)

×
j
∏

k=i0

∏

m ∈ �u, v�
m > N

L ym−N ;s
(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
)

,

for some normalization constant ˜Z. Similarly incorporating the product
∏N

m=1(1 −
sxm)(xm − s)−1 into the normalization constant gives (4.4). ��

4.3 Color merging

In this section we describe several color merging properties, which enable us to obtain
a system with n − 1 colors by merging two colors (say 1 and 2) in a corresponding
system with n colors. Some of the proofs in this section will only be outlined, since
analogous color merging phenomena have been discussed extensively in the literature
already; see, for example, [25, Section 2.4], [20, Proposition 4.11], and [5, Sections
2.3 and 5.2]. Throughout this section, we will define several functions that all have
the effect of merging colors 1 and 2. They will each be denoted by ϑ , which should
not cause confusion since they act on different spaces.

First define ϑ : �0, n� → �0, n − 1� by setting
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ϑ(0) = 0, ϑ(1) = 1, ϑ(2) = 1, and ϑ(i) = i − 1, for each i ∈ �3, n�.
(4.7)

Also define its action on n-tuples of integers ϑ : Zn≥0 → Z
n−1
≥0 by setting

ϑ(I) = (I1 + I2, I3, . . . , In), for any I = (I1, I2, . . . , In) ∈ Z
n≥0. (4.8)

With this notation, it is quickly verified10 that theweights fromDefinition 2.1 satisfy
the following color-merging property for n ≥ 2. Fix integers b̆, d̆ ∈ �0, n − 1� and
(n − 1)-tuples Ă, C̆ ∈ Z

n−1
≥0 , as well as an integer b ∈ �0, n� and an n-tuple A ∈ Z

n≥0,

such that ϑ(b) = b̆ and ϑ(A) = Ă. Then,

∑

C∈Zn≥0

ϑ(C)=C̆

∑

d∈�0,n�

ϑ(d)=d̆

L(n)
x;s(A, b;C, d) = L(n−1)

x;s ( Ă, b̆; C̆, d̆); (4.9)

the analogous statement also holds for thêL-weights. The equality (4.9) indicates that
identifying colors 1 and 2 in an n-color L-weight yields an (n − 1)-color one.

The next lemma states that merging colors 1 and 2 in either the n-color f or G
yields the same function, but on n − 1 colors. In the below, we define the action of
ϑ on n-compositions ϑ : Compn → Compn−1 by for any μ = (μ(1) | μ(2) | · · · |
μ(n)
) ∈ Compn , setting

ϑ(μ) = (μ(1) ∪ μ(2) | μ(3) | · · · | μ(n)
)

, (4.10)

where μ(1) ∪ μ(2) is the signature obtained by taking the disjoint union of μ(1) and
μ(2), and sorting its parts in non-increasing order. Moreover, given any function ς :
�1, N� → �1, n� further define the function ϑ(ς) : �1, N� → �1, n − 1� by setting

ϑ(ς)(i) = ϑ
(

ς(i)
)

, for each i ∈ �1, N�, and set σ̆ = ϑ(σ), (4.11)

where we recall σ : �1, N� → �1, n� that was fixed in the beginning of Sect. 4.

Lemma 4.9 Fix an integer k ≥ 1; (n − 1)-compositions μ̆, ν̆, κ̆ ∈ Compn−1; and an
n-composition ν ∈ Compn, such that ϑ(ν) = ν̆. We have

∑

μ∈Compn
ϑ(μ)=μ̆

f σ
μ/ν;s(x) = f σ̆

μ̆/ν̆;s(x);
∑

κ∈Compn
ϑ(κ)=κ̆

Gν/κ;s( y) = G ν̆/κ̆;s( y).

Proof (Outline) Recalling the definitions (2.8) of f and G as partition functions (under
the ̂L-weights and L-weights, respectively), this follows quickly from inductively
applying the color merging (4.9) of vertex weights. See also [20, Proposition 4.11]

10 This also follows from applying fusion (see Sect. 6) below to [20, Proposition 4.3].
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(which can in fact be seen to directly imply Lemma4.9 using fusion, defined in Sect. 6),
for a very similar argument; we omit further details. ��

The next lemma describes the effect of merging colors 1 and 2 in a random n-
composition sampled from the measure P

σ
fG;n;s;x; y (recall Definition 3.3). In the

following, given a sequence of n-compositions μ = (μ(0), μ(1), . . . , μ(M + N )
)

,
we set

ϑ(μ) =
(

ϑ
(

μ(0)
)

, ϑ
(

μ(1)
)

, . . . , ϑ
(

μ(M + N )
)

)

, (4.12)

which is an (M; σ̆ )-ascending sequence of (n − 1)-compositions.

Lemma 4.10 If an (M; σ)-ascending sequence of n-compositions μ is sampled from
P

σ
fG;n;s;x; y, then the (M; σ̆ )-ascending sequence ϑ(μ) of (n − 1)-compositions has

law P
σ̆
fG;n−1;s;x; y.

Proof Fix an (M; σ̆ )-ascending sequence μ̆ = (μ̆(0), μ̆(1), . . . , μ̆(M + N )
)

of (n −
1)-compositions. For any integers j ∈ �1, N� and i ∈ �N + 1, M + N�, and n-
compositions μ( j − 1), μ(i − 1) ∈ Compn such that ϑ

(

μ( j − 1)
) = μ̆( j − 1) and

ϑ
(

μ(i − 1)
) = μ̆(i − 1), we have by Lemma 4.9 that

∑

μ( j)∈Compn
ϑ(μ( j))=μ̆( j)

f σ( j)
μ( j)/μ( j−1);s(x j ) = f σ̆ ( j)

μ̆( j)/μ̆( j−1);s(x j );

∑

μ(i)∈Compn
ϑ(μ(i))=μ̆(i)

Gμ(i−1)/μ(i);s(yi−N ) = Gμ̆(i−1)/μ̆(i);s(yi−N ).

Inductively applying these equalities, and using Definition 3.3, it follows that

P
σ
fG ;n;s;x; y

[

ϑ(μ) = μ̆
]

= Z−1
x; y ·

∑

ϑ(μ)=μ̆

N
∏

j=1

f σ( j)
μ( j)/μ( j−1);s(x j )

M+N
∏

i=N+1

Gμ(i−1)/μ(i);s(yi−N )

= Z−1
x; y ·

N
∏

j=1

f σ̆ ( j)
μ̆( j)/μ̆( j−1);s(x j )

M+N
∏

i=N+1

Gμ̆(i−1)/μ̆(i);s(yi−N )

= P
σ̆
fG ;n−1;s;x; y[μ̆],

which yields the lemma. ��
Weconclude this sectionwith the following proposition indicating that themarginal

joint law of all line ensembles but the second11 in a colored line ensemble L sampled
under Pσ

scL;n;x; y (recall Definition 4.6) is equal to that of a colored line ensemble (with

n − 1 colors) sampled under Pσ̆
scL;n−1;x; y (where we recall σ̆ = ϑ(σ) from (4.11)).

11 This could be replaced by the k-th, for any k ∈ �2, n�, through a similar proof.
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Fig. 17 The Lx;0 weights are depicted above

Proposition 4.11 Sample L = (L(1), L(2), . . . , L(n)
)

under Pσ
scL;n;s;x; y. Then the joint

law of the colored line ensemble L̆ = (L(1), L(3), L(4), . . . , L(n)
)

(with n − 1 colors) is
given by P

σ̆
scL;n−1;s;x; y.

Proof Sample μ under Pσ
fG;n;s;x; y (recall Definition 3.3). By Definition 4.6, we may

identify L as the colored line ensemble Lμ associatedwithμ. ByDefinition 4.1, the n−1
line ensembles L̆ = (L(1), L(3), L(4), . . . , L(n)

)

in L = Lμ constitute the colored line
ensemble associated with ϑ(μ), which has law P

σ̆
fG;n−1;s;x; y by Lemma 4.10. Hence,

again by Definition 4.6, L̆ has law P
σ̆
scL;n−1;s;x; y, thereby establishing the proposition.��

Remark 4.12 Throughout this section, we have merged the colors 1 and 2. It is more
generally possible to merge several (disjoint) intervals of colors; see [20, Sections 4.4
and 4.9] and [5, Sections 2.3 and 5.2] for similar setups. This would correspond in
Proposition 4.11 to omitting line ensembles L(i), for i ∈ �2, n� arbitrary (depending
on the corresponding merged color intervals), in L.

5 Examples

In this section we examine the colored line ensembles introduced in Sect. 4 under two
specializations; in both, we take s = 0 and refer to Fig. 17 for a depiction of the Lx;0
weights. We investigate the case n = 1 in Sect. 5.1 and the case q = 0 in Sect. 5.2
(where we also prove Theorem 1.6); we also restrict to the homogeneous cases of both,
when the entries in x (and in y) are all equal. Throughout this section, we fix integers
n, M, N ≥ 1; a composition � = (�1, �2, . . . , �n) of N ; a function σ : �1, N� →
�1, n�, such that for each i ∈ �1, n� we have �i = #

{

σ−1(i)
}

; and real numbers
x, y ∈ (0, 1) with y < x . We also assume that q ∈ (0, 1) and define the sequences
x = (x, x, . . . , x) and y = (y, y, . . . , y), where x and y appear with multiplicities N
and M , respectively. We also recall the notation from Sect. 4.1 throughout.
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5.1 The Case n = 1

Throughout this section, we set n = 1, s = 0, and sample L = L(1) under the
probability measure Pσ

scL;1 = P
σ
scL;1;0;x; y. We will analyze how L, and in particular

its Gibbs property, behaves. Since n = 1, we omit the superscripts indexing the color
1 from the notation in what follows, writing L = (L1, L2, . . .). Define for any integers
(k, i) ∈ Z>0 × �0, M + N� and line ensemble l = (l1, l2, . . .) on �0, M + N� the
quantity

�k;l(i) = lk(i) − lk+1(i), (5.1)

where by definition L0(i) = l0(i) = ∞ for each i ∈ �1, M + N�.
Given this notation, we have the following proposition explaining the Gibbs prop-

erty (Theorem 4.8) in this setting when we resample one curve (say that i-th one Li )
of L.

Proposition 5.1 Adopt the above notation and assumptions. Let j ≥ i ≥ 1 and u, v ∈
�0, M + N� be integers with v ≥ u, and condition on the curves Lk(m) for (k, m) /∈
�i, j�× �u, v�; set u0 = max{u − 1, N } and v0 = min{v + 1, N }. For any simple line
ensemble l = (l1, l2, . . .) that is {i} × �u, v�-compatible with L, we have

P[L = l] = Z−1 ·
j
∏

k=i

x−lk (v0)ylk (u0)
j
∏

k=i−1

v+1
∏

m=u

(

1 − q�k (m−1) · 1�k m−1)−�k (m)=1
)

,

(5.2)

for some normalization constant Z > 0, where we have abbreviated �k = �k;l.

Proof To make use of Theorem 4.8, we must first understand how the quantities on
the right side of (4.4) behave. By Definition 4.4 (and the fact that n = 1), we have for
any vertex (−k, m) ∈ Z≤−1 × �1, M + N� that

Al(−k, m) = lk (m − 1) − lk+1(m − 1) = �k (m − 1); bl(−k, m) = lk+1(m − 1) − lk+1(m);
C l(−k, m) = lk (m) − lk+1(m) = �k (m); d l(−k, m) = lk (m − 1) − lk (m), (5.3)

where we omit the subscript indexing the color 1 (as n = 1). Further observe (see
Fig. 17) that, if A + b = C + d, then

Lx;0(A, b; C, d) = xd · L1;0(A, b; C, d); L1;0(A, b; C, d) = 1 − q A · 1d−b=1,

and (by (5.3) and (5.1)) that

d l(−k, m) − bl(−k, m) = lk(m − 1) − lk(m) − (lk+1(m − 1) − lk+1(m)
)

= �k(m − 1) − �k(m).
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Inserting these into Theorem 4.8 (with the (i, j; u, v) there equal to (i −1, j; u, v+1)
here), yields

P[L = l] = Z−1 ·
j
∏

k=i−1

∏

m∈�u,v+1�
m≤N

x lk (m−1)−lk (m)
∏

m∈�u,v+1�
m>N

ylk (m−1)−lk (m)

×
j
∏

k=i−1

v+1
∏

m=u

(

1 − q�k (m−1) · 1�k (m−1)−�k (m)=1
)

, (5.4)

for some normalization constant Z > 0.
Next observe since u0 = max{u − 1, N } and v0 = min{v + 1, N } that

min{v+1,N }
∑

m=u

(

lk(m − 1) − lk(m)
) = (lk(u − 1) − lk(v0)

) · 1u≤N ;
v+1
∑

m=max{N+1,u}

(

lk(m − 1) − lk(m)
) = (lk(u0) − lk(v + 1)

) · 1v≥N .

As we conditioned on Li−1(m) = li−1(m) for all m, and on Lk(m) = lk(m)

and Lk(m) = lk(m) for all k and m /∈ �u, v�, we may incorporate the fac-
tors x (li−1(u−1)−li−1(v0))·1u≤N · y(li−1(u0)−li−1(v+1))·1v≥N and x lk (u−1)·1u≤N +lk (v0)·1u>N ·
y−li (v+1)·1v≥N −li (u0)·1v<N for k ∈ �i, j� appearing in the right side of (5.4) into the
normalization constant Z (where we used the facts that if u > N then v > N and so
v0 = N ≤ u − 1, and that if v < N then u < N and so u0 = N ≥ v + 1). This gives

P[L = l] = Z−1 ·
j
∏

k=i

x−lk (v0)ylk (u0)
j
∏

k=i−1

v+1
∏

m=u

(

1 − q�k (m−1) · 1�k (m−1)−�k (m)=1
)

,

after altering Z if necessary, which yields the proposition. ��
The Gibbs property described by Proposition 5.1 coincides the Hall–Littlewood

Gibbs property introduced in [33, Definition 3.4].12 Moreover, setting n = 1 in The-
orem 4.7 yields that the law of L1 has the same law as the height function of the
(uncolored) stochastic six-vertex model introduced in [46]; this had been shown ear-
lier in [15, Theorem 5.5]. More generally, it can be shown (although we do not do
so here) that the n = 1 case of L coincides (up to an affine transformation) with the
Hall–Littlewood Gibbsian line ensemble introduced in [33, Section 3.2]. This is to
be expected, since taking the n = 1 case of our arguments in the preceding sections
would essentially yield the content described in [15, Section 5.7] and [33, Proposition
3.9].

12 To properly observe the match, one must read first our line ensemble in reverse (from right to left), and
then apply a gauge transformation to its weights that does not affect its Gibbs property (namely, multiply
them by (q; q)−1

�i (m−1)(q; q)−1
�i−1(m−1)(q; q)�i (m)(q; q)�i−1(m)).
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Remark 5.2 Observe that (5.2) only depends on x and y through their ratio x−1y.
Indeed, if u−1 ≥ N or N ≥ v+1, then the factor x−li (v0)yli (u0) = x−li (v+1)yli (u−1) on
the right side of (5.2) is fixed by the conditioning and can therefore be incorporated into
the normalization constant. Otherwise, N ∈ �u, v�, and so the factor x−li (v0)yli (u0) =
(x−1y)li (N ) only depends on x−1y.

5.2 The case q = 0

Throughout this section,we setq = 0, s = 0, and sample the colored line ensembleL =
(

L(1), L(2), . . . , L(n)
)

from the measure Pσ
scL = P

σ
scL;n;0;x; y. The following proposition

explains the Gibbs property (Theorem 4.8) for L. Below, we restrict to the scenario
when �u, v� does not contain N , since the Gibbs property will be simplest to state in
this situation (as, analogously to Remark 5.2, it will not depend on x or y).

Proposition 5.3 Adopt the above notation and assumptions, and let j ≥ i ≥ 1 and
u, v ∈ �0, M + N� be integers such that u ≤ v and N /∈ �u, v�. Then, the following
two statements hold.

(1) For any (c, k, m) ∈ �1, n�×Z>0 × �1, M + N� such that L(c+1)
k (m) > L(c+1)

k+1 (m),
we almost surely have

L(c)
k (m − 1) − L(c)

k (m) = L(c+1)
k (m − 1) − L(c+1)

k (m), (5.5)

(2) Condition on the curves L(c)
k (m) for all c ∈ �1, n� and (k, m) /∈ �i, j� × �u, v�.

Then the law of L is uniform over all simple colored line ensembles l =
(

l(1), l(2), . . . , l(n)
)

that are �i, j� × �u, v�-compatible with L such that, for any

(c, k, m) ∈ �1, n� × Z>0 × �1, M + N� with l(c+1)
k (m) > l(c+1)

k+1 (m), we have

l(c)k (m − 1) − l(c)k (m) = l(c+1)
k (m − 1) − l(c+1)

k (m). (5.6)

To prove Proposition 5.3, we require the next lemma that explains why l(c+1)
k (m) >

l(c+1)
k+1 (m) should imply (5.6).

Lemma 5.4 Let l = (

l(1), l(2), . . . , l(n)
)

denote a simple colored line ensem-

ble on �0, M + N�; El denote the associated higher spin path ensemble; and
(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
)

denote the arrow configuration in El
at any (−k, m) ∈ Z≥0 × �1, M + N�. Then, for any (−k, m) ∈ Z≥0 × �1, M + N�,
we have that L1;0

(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
) = 1 if and only if,

for any c ∈ �1, n� with l(c+1)
k (m) > l(c+1)

k+1 (m), (5.6) holds. Otherwise, we have that

the weight L1;0
(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
) = 0.

Proof By Definition 4.4, we have for any c ∈ �1, n� that

C l
c(−k, m) = l(c)k (m) − l(c)k+1(m) − (l(c+1)

k (m) − l(c+1)
k+1 (m)

);
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d l = max
{

d ∈ �1, n� : l(d)
k (m − 1) − l(d)

k (m) = 1
}

, (5.7)

with d l = 0 if no such d ∈ �1, n� exists. Further observe (see Figure 17) that for
q = 0, if A + eb = C + ed , then

L1;0(A, b;C, d) = 1 − 1d>0 · 1C[d+1,n]>0.

By (5.7), we have for any d ∈ �1, n� that

C l[d+1,n](−k, m) = l(d+1)
k (m) − l(d+1)

k+1 (m).

Also by (5.7), we have d l(−k, m) = d ≥ 1 if and only if l(d)
k (m − 1) − l(d)

k (m) −
(

l(d+1)
k (m − 1) − l(d+1)

k (m)
)

> 0, that is, if and only if (5.6) does not hold.
Hence, L1;0

(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
) = 1 if and only if, for

any c ∈ �1, n� such that l(c+1)
k (m) > l(c+1)

k+1 (m), (5.6) holds. Otherwise, this weight is
equal to 0. ��

Now we can establish Proposition 5.3.

Proof of Proposition 5.3 Observe (see Fig. 17) for any A,C ∈ Z
n≥0 and b, d ∈ �0, n�

with A + eb = C + ed that

Lx;0(A, b;C, d) = x1d>0 · L1;0(A, b;C, d);
L1;0(A, b;C, d) = 1 − 1d>0 · 1C[d+1,n]>0. (5.8)

Thus, since L was sampled according to the measure P
σ
scL, (2.7), (2.8), (3.2), and

Lemma 4.5 together imply that

P
σ
scL[L] = Z−1

x; y ·
∞
∏

k=1

N
∏

m=1

̂Lxm ;0
(

AL(−k, m), bL(−k, m);CL(−k, m), dL(−k, m)
)

×
∞
∏

k=1

M+N
∏

m=N+1

L ym−N ;0
(

AL(−k, m), bL(−k, m);CL(−k, m), dL(−k, m)
)

,

which by the first statement of (5.8) (and the fact that x, y �= 0) is nonzero if and
only if L1;0(AL(−k, m), bL(−k, m);CL(−k, m), dL(−k, m)

) �= 0 for all (−k, m) ∈
Z≤0 × �1, M + N�. By Lemma 5.4, this is true if and only if, for any (c, k, m) ∈
�1, n� × Z>0 × �1, M + N� such that L(c+1)

k (m) > L(c+1)
k+1 (m), (5.5) holds. This

confirms the first statement of the proposition.
To verify the second, we first apply Theorem 4.8 (with the (i, j; u, v) there equal to

(i − 1, j; u, v + 1) here) and (5.8) to deduce for some normalization constant Z > 0
that

P
σ
scL[L = l]
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= Z−1 ·
j
∏

k=i−1

∏

m∈�u,v+1�m≤N

x
1

d l(−k,m)>0 · L1;0
(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
)

×
j
∏

k=i−1

∏

m∈�u,v+1�
m>N

y
1

d l(−k,m)>0 · L1;0
(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
)

, (5.9)

where in the probability on the left side of (5.9) we have conditioned on the curves
L(c)

k (m) for c ∈ �1, n� and (k, m) /∈ �i, j� × �u, v�. Moreover, by Definition 4.4 (with

the fact that l(c) is simple), we have 1d l(−k,m)>0 = l(1)k+1(m − 1) − l(1)k+1(m). Hence,
setting u0 = max{u − 1, N } and v0 = min{v + 1, N }, we have

∏

m∈�u,v+1�
m≤N

x1d l(−k,m)>0 = x (l(1)k (u−1)−l(1)k (v0))·1u≤N ;

∏

m∈�u,v+1�
m>N

y1d l(−k,m)>0 = y(l(1)k (u0)−l(1)k (v+1))·1v≥N .

Since u − 1, u0, v0, v + 1 /∈ �u, v� (as N /∈ �u, v�), the above factors are fixed by
the conditioning. Thus, on the right side of (5.9), we may incorporate them into the
normalization constant Z to obtain (after altering Z if necessary)

P
σ
scL[L = l] = Z−1 ·

j
∏

k=i−1

∏

m∈�u,v+1�
m≤N

L1;0
(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
)

×
j
∏

k=i−1

∏

m∈�u,v+1�
m>N

L1;0
(

Al(−k, m), bl(−k, m);C l(−k, m), d l(−k, m)
)

.

By Lemma 5.4, the above product is equal to 1 if and only if, for any (c, k, m) ∈
�1, n� × Z>0 × �1, M + N� with l(c+1)

k (m) > l(c+1)
k+1 (m), (5.6) holds; otherwise it is

equal to 0. This confirms the second part of the proposition. ��
Now we can quickly establish Theorem 1.6.

Proof of Theorem 1.6 The first part of this theorem follows from the q = 0 case of
Theorem 4.7; the second and third follow from Proposition 5.3. ��

6 Fusion

Until now, we have used colored six-vertex or higher spin path ensembles; they only
allowed atmost one arrow to occupy any horizontal edge. In this sectionwe remove that
restriction using the fusion procedure originally introduced in [62], and describe the
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counterparts to the statements from Sects. 2 and 3 when horizontal edges may accom-
modate more than one arrow. Since such ideas have been used repeatedly throughout
the literature, and since many statements in this section are similar to those in Sects. 2
and 3, we will sometimes only outline (or omit) the proofs of the below results.
Throughout this section, we fix an integer n ≥ 1.

6.1 Stochastic fused vertex models

A colored fused arrow configuration is a quadruple (A, B;C, D) of elements in Zn≥0.
We view this as an assignment of directed up-right colored arrows to a vertex v ∈ Z

2,
in which a (horizontal or vertical) edge can accommodate arbitrarily many arrows. In
particular, for each k ∈ �1, n�, the numbers Ak , Bk , Ck , and Dk denote the numbers
of arrows of color k vertically entering, horizontally entering, vertically exiting, and
horizontally exiting v, respectively.

As in Sects. 1.2 and 2.2, a colored fused path ensemble on a domainD ⊆ Z
2 is a con-

sistent assignment of a colored fused arrow configuration
(

A(v), B(v);C(v), D(v)
)

to each vertex v ∈ D. Observe that the arrows in a colored fused path ensemble on
D form colored up-right directed paths (that can share horizontal and vertical edges)
connecting vertices of D. Associated with a colored fused path ensemble E on some
domainD ⊆ Z

2 are height functions h→
c , h←

c , h→≥c, h
←≥c : Z2 → Z, which are defined

in the same way as in Sect. 2.2.
The probability measure on random colored fused path ensembles on Z2

>0 that we
next define depends on four sequences of complex parameters x = (x1, x2, . . .); r =
(r1, r2, . . .); y = (y1, y2, . . .); and s = (s1, s2, . . .). We view x j and r j as associated
with the j-th row, so they are called row rapidity and spin parameters, respectively; we
view yi and si as associated with the i-th column, so they are called column rapidity
and fusion parameters, respectively. The specific forms of these probability measures
are expressed through certain weights Ux j /yi ;r j ,si (A, B;C, D) associated with each
vertex v = (i, j) ∈ Z

2
>0 (analogously to Definition 1.1). We use the following ones,

due to [26, Equation (7.10)] (though our notation is closer to [25]13), that satisfy the
Yang–Baxter equation (see Lemma6.6 below). In the following,we define the function
ϕ : Rn × R

n → R by setting

ϕ(X,Y) =
∑

1≤i< j≤n

Xi Y j , for any X,Y ∈ R
n .

Definition 6.1 ([25, Equation (C.1.4)]). Fix r , s, z ∈ C and A, B,C, D ∈ Z
n≥0, and

let t = |T | for each index T ∈ {A, B, C, D}. Define the vertex weight

Uz;r ,s(A, B;C, D) =zd−br2(c−a)s2dqϕ(D,C) (r
2; q)d

(r2; q)b
· 1A+B=C+D

×
min{b,c}
∑

p=0

(r−2z)p (r−2s2z; q)c−p(r2z−1; q)p(z; q)b−p

(s2z; q)c+d−p

13 The (r , s) in Definition 6.1 are the (q−L/2, q−M/2) from [25].
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×
∑

P ≤ B,C
|P | = p

qϕ(B−D−P,P) ·
n
∏

i=1

(q; q)Bi

(q; q)Pi (q; q)Bi −Pi

×
n
∏

i=1

(q; q)Ci +Di −Pi

(q; q)Di (q; q)Ci −Pi

, (6.1)

where the sum is over all P = (P1, . . . , Pn) ∈ Z
n≥0 such that |P | = p and 0 ≤ Pi ≤

min{Bi , Ci } for each i ∈ �1, n�.

Remark 6.2 As in Remark 1.2, the U -weights from Definition 6.1 are stochastic in the
sense that

∑

C,D∈Zn≥0
Uz;r ,s(A, B;C, D) = 1, for each r , s, z ∈ C and A, B ∈ Z

n≥0;

see [25, Proposition C.1.2].

We can now use these U -weights to describe (similarly to Sect. 1.2) how to sample
a random colored fused path ensemble on Z

2
>0. We first define probability measures

P
n
FV on the set of colored fused ensembles whose vertices are all contained in the

triangles TN = {(x, y) ∈ Z
2
>0 : x + y ≤ N

}

. The initial measure P0
FV is supported

by the empty ensemble.
For each integer N ≥ 1, we will define P

N+1
FV from P

N
FV by first using P

N
FV to

sample a colored fused path ensemble EN on TN . This yields arrow configurations for
all vertices in the triangle TN−1. To extend this to a colored six-vertex ensemble on
TN+1, we must prescribe arrow configurations to all vertices on the diagonal DN =
{

(x, y) ∈ Z
2
>0 : x + y = N

}

. Since EN and the initial data prescribe the first two
coordinates (A, B) of the arrow configuration to each vertex in DN , it remains to
explain how to assign the second two coordinates (C, D) of the arrow configuration at
any vertex (i, j) ∈ DN , given its first two coordinates (A, B). This is done according
to the transition probability P

N
FV

[

(C, D)
∣

∣(A, B)
] = Uyi /x j ;r j ,si (A, B;C, D). We

assume that the parameters (x; y; r; s; q) are chosen so that these probabilities are
all nonnegative (see Sect. 8 below for one example, although there are also numerous
other choices of parameters satisfying this property); the stochasticity of theU -weights
(Remark 6.2) then ensures that PN

FV indeed defines a probability measure.
Choosing (C, D) according to the above transition probabilities yields a random

colored fused path ensemble EN+1, now defined on TN+1; the probability distribution
of EN+1 is then denoted byP

N+1
FV . Taking the limit as N tends to∞ yields a probability

measure on colored fused path ensembles on the quadrant. We refer to it as the colored
stochastic fused vertex model; observe that it may also be sampled on any rectangle
D ⊂ Z

2 in the same way as it was above on the quadrant.

6.2 Yang–Baxter equation for fused weights

In this section we state the Yang–Baxter equation for the U -weights from Defini-
tion 6.1, with another family of weights given by the W and ̂W ones below. The latter
two weights serve as analogs of the L and ̂L ones from Definition 2.1, respectively;
indeed, it is quickly verified fromDefinitions 2.1 and 6.3 below that the (L,̂L)weights
are the r = q−1/2 special cases of the (W , ̂W ) ones.
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Definition 6.3 Adopting the notation of Definition 6.1, define the weight

Wx;r ,s(A, B;C, D) = (−s)−d · Ux/s;r ,s(A, B;C, D),

so that

Wx;r ,s(A, B;C, D)

= (−1)d xd−br2(c−a)sbqϕ(D,C) (r2; q)d

(r2; q)b
· 1A+B=C+D

×
min{b,c}
∑

p=0

(r2s)−px p (r−2sx; q)c−p(r2sx−1; q)p(s−1x; q)b−p

(sx; q)c+d−p

×
∑

P ≤ B,C
|P | = p

qϕ(B−D−P,P)
n
∏

i=1

(q; q)Ci +Di −Pi

(q; q)Di (q; q)Ci −Pi

(q; q)Bi

(q; q)Pi (q; q)Bi −Pi

. (6.2)

We also set Wx;r ,0(A, B;C, D) = lims→0 Wx;r ,s(A, B,C, D), where the existence
(and an explicit form) of this limit follows from Lemma 6.7 below. Additionally, if
there exists an integer R ≥ 1 for which r = q−R/2, then set

̂Wx;r ,s(A, B;C, D) = Wx;r ,s(A, B;C, D) · (−s)−R (sx; q)R

(s−1x; q)R
. (6.3)

Remark 6.4 Observe for any r , s, z ∈ C and B ∈ Z
n≥0 that

Uz;r ,s(e0, B; e0, B) = s2b · (z; q)b

(s2z; q)b
; Wz;r ,s(e0, B; e0, B) = (−s)b · (s−1z; q)b

(sz; q)b
,

which quickly follow from the fact that the sums in (6.1) and (6.2) are supported on
the term P = e0 (as C = e0).

Remark 6.5 Let us explain the sense in which the ̂W -weight from Definition 6.3 is
analogous to thêL one from (2.3). The latter was chosen to be the (unique) normaliza-
tion of Lx such that ̂Lx (e0, k; e0, k) = 1 for each k ∈ �1, n�; the arrow configuration
(e0, k; e0, k) could be viewed as “horizontally saturated,” since horizontal edges could
accommodate at most one arrow under the L-weights. The analog of this constraint
would be to make ̂Wz;r ,s a normalization of Wz;r ,s such that ̂Wz;r ,s = 1 at a fused
arrow configuration that is “horizontally saturated” in one color. One way to make
sense of “horizontal saturation” for fused arrow configurations is to impose a thresh-
old R ∈ Z>0 for the number of arrows that can occupy a horizontal edge; this is done
by setting r = q−R/2 (as then the factor of (r2; q)d in the W -weight (6.2) is equal to
0 if d > R). In this case, the normalization condition would be for

̂Wz;r ,s(e0,Rek; e0,Rek) = 1, for each k ∈ �1, n�, (6.4)
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so that ̂Wz;r ,s(A, B;C, D) = Wz;r ,s(A, B;C, D)·Wz;r ,s(e0,Rek; e0,Rek)
−1,which

by Remark 6.4 yields (6.3).
Let us also briefly mention that another way of imposing “horizontal saturation”

would be to have infinitely many arrows of some color k ∈ �1, n� travel along rows of
the model. One should then track how many arrows of color k leave a row (as well as
how many arrows of the other colors enter it), that is, one “complements” the arrow
configuration in the color k. This should enable one to remove the restriction that
r = q−R/2 for some integer R ≥ 1; similar ideas were also used in [2, Section 3.1.3]
and [5, Section 17.7.3]. However, we will not pursue this direction here,14 and keep
ourselves constrained to the case when r2 ∈ qZ<0 whenever using the ̂W -weights.

The following proposition states that the U and W weights (of Definition 6.1
and Remark 6.5) satisfy the Yang-Baxter equation; it is due to [26, Equation (3.20)]
(though, as statedbelow, it appears in [25],15); it is a fusedgeneralizationofLemma2.2.

Lemma 6.6 ([25,TheoremC.1.1]).Fix x, y, z, r , s, t ∈ Cand I1, J1, K 1, I3, J3, K 3
∈ Z≥0. Then,

∑

I2,J2,K2∈Zn≥0

Ux/y;r ,s(I1, J1; I2, J2)Ux/z;r ,t (K 1, J2; K 2, J3)Uy/z;s,t (K 2, I2; K 3, I3)

=
∑

I2,J2,K2∈Zn≥0

Uy/z;s,t (K 1, I1; K 2, I2)Ux/z;r ,t (K 2, J1; K 3, J2)

× Ux/y;r ,s(I2, J2; I3, J3).

Therefore, if there exists an integer R > 0 such that r = q−R/2, then

∑

I2,J2,K2∈Zn≥0

Ux/y;r ,s(I1, J1; I2, J2)̂Wx/z;r ,t (K 1, J2; K 2, J3)Wy/z;s(K 2, I2; K 3, I3)

=
∑

I2,J2,K2∈Zn≥0

Uy/z;s,t (K 1, I1; K 2, I2)̂Wx/z;r ,t (K 2, J1; K 3, J2)

× Wx/y;r (I2, J2; I3, J3).

Before proceeding, we record the following results that evaluate the Wx;r ,0 weights.

14 See, however, Appendix A below, which implements a version of this complementation to degenerate
the colored stochastic fused vertex model to the log-gamma polymer.
15 In [25, Theorem C.1.1] it was assumed that r2, s2, t2 ∈ qZ<0 , but this assumption can be removed by
using analytic continuation (with the fact that the U -weights are rational in r , s, and t).
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Lemma 6.7 Adopting the notation of Definition 6.3, we have

Wz;r ,0(A, B;C, D) = (−1)b−d zdr2(c−a)qϕ(D,C)+(b
2)

(r2; q)d

(r2; q)b
· 1A+B=C+D

×
n
∏

i=1

(min{Bi ,Ci }
∑

p=0

(−r−2)pq(p+1
2 )−p(B[i,n]+D[1,i−1])

× (q; q)Ci +Di −p

(q; q)Ci −p(q; q)Di

(q; q)Bi

(q; q)Bi −p(q; q)p

)

.

Proof Throughout this proof, we assume that A + B = C + D, as otherwise
Wz;r ,0(A, B;C, D) = 0 (as Uz;r ,s(A, B;C, D) = 0 for any s ∈ C, by Defini-
tion 6.1). Inserting the equalities

lim
s→0

sb−p(s−1z; q)b−p = (−1)b−pq(b−p
2 )zb−p;

lim
s→0

(r−2sz; q)c−p(r2sz−1; q)p

(sz; q)c+d−p
= 1,

into (6.1), we obtain

Wz;r ,0(A, B;C, D) = (−1)b−d zdr2(c−a)qϕ(D,C) (r
2; q)d

(r2; q)b

×
min{b,c}
∑

p=0

(−r−2)pq

(

b − p
2

)

∑

P ≤ B,C
|P | = p

qϕ(B−D−P,P)

×
n
∏

i=1

(q; q)Ci +Di −Pi

(q; q)Di (q; q)Ci −Pi

(q; q)Bi

(q; q)Pi (q; q)Bi −Pi

.

Also since

(

b − p

2

)

=
(

b

2

)

− bp +
(

p + 1

2

)

;
(

p + 1

2

)

− ϕ(P, P) =
n
∑

i=1

(

Pi + 1

2

)

;

ϕ(B, P) − bp = −
∑

1≤i≤ j≤n

Pi B j = −
n
∑

i=1

Bi Pi − ϕ(P, B);

and since ϕ(B − D− P, P) = ϕ(B, P) − ϕ(D, P) − ϕ(P, P) (by the bilinearity of
ϕ), we have
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Wz;r ,0(A, B;C, D)

= (−1)b−d zdr2(c−a)q
ϕ(D,C)+

(

b
2

)

(r2; q)d

(r2; q)b

n
∏

i=1

(q; q)Bi

(q; q)Di

×
min{b,c}
∑

p=0

(−r−2)p
∑

P ≤ B,C
|P | = p

q−ϕ(P,B)−ϕ(D,P)

×
n
∏

i=1

q

(

Pi + 1
2

)

−Bi Pi (q; q)Ci +Di −Pi

(q; q)Ci −Pi (q; q)Pi (q; q)Bi −Pi

. (6.5)

Now observe for any complex number w ∈ C; n-tuples X,Y , Z ∈ Z
n ; and functions

f1, f2, . . . , fn : Z≥0 → C we have

∑

P∈Zn≥0
P≤Z

w|P |qϕ(P,X)+ϕ(Y ,P)
n
∏

i=1

fi (Pi ) =
n
∏

i=1

( Zi
∑

p=0

q p(X[i+1,n]+Y[1,i−1])w p fi (p)

)

,

by expanding the product on the right side. Applying this in (6.5) with

w = −r−2; X = −B; Y = −D; Z = min{B,C};
fi (k) = q(k+1

2 )−Bi k (q; q)Ci +Di −k

(q; q)Ci −k(q; q)k(q; q)Bi −k
,

yields the lemma (where min{B,C} denotes the entry-wise minimum of B and C). ��

Corollary 6.8 Adopting the notation of Definition 6.3, we have Wz;r ,0(A, B; A +
B, e0) = 1.

Proof By Lemma 6.7 and the facts that (q; q)Bi (q; q)−1
Bi −p = (−1)pq Bi p−(p

2)(q−Bi ;
q)p; that Bi − B[i,n] = −B[i+1,n]; and that

(p+1
2

)− (p
2

) = p, we have

Wz;r ,0(A, B; A + B, e0) =(−1)br2bq

(

b
2

)

(r2; q)−1
b

×
n
∏

i=1

( Bi
∑

p=0

(r−2q1−B[i+1,n])p (q−Bi ; q)p

(q; q)p

)

. (6.6)
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From the q-binomial theorem, we have for each i ∈ �1, n� that

Bi
∑

p=0

(r−2q1−B[i+1,n])p (q−Bi ; q)p

(q; q)p
= (r−2q1−B[i,n] ; q)Bi ,

and hence

n
∏

i=1

( Bi
∑

p=0

(r−2q1−B[i+1,n])p (q−Bi ; q)p

(q; q)p

)

=
n
∏

i=1

(r−2q1−B[i,n] ; q)Bi

= (r−2; q−1)b = (−1)br−2bq−(b
2)(r2; q)b.

Inserting this into (6.6) yields the corollary. ��

Remark 6.9 An alternative (and perhaps more conceptual) way of proving Corol-
lary 6.8 would be through fusion, using the fact that it holds at R = 1 by (3.11);
we will not provide further details on that route here.

6.3 Fused nonsymmetric functions

In this section we formulate the fused analogs of the functions f and G (from Defini-
tion 2.6), as well as some of their properties. We begin with the following definition,
which is parallel to Definition 2.3.

Definition 6.10 Fix an integer N ≥ 1; a complex number s ∈ C; sequences of complex
numbers r = (r1, r2, . . . , rN ) and x = (x1, x2, . . . , xN ); and a colored fused path
ensemble E on DN = Z≤0 × �1, N�, whose arrow configuration at any v ∈ DN is
denoted by

(

A(v), B(v);C(v), D(v)
)

. Set

Wx;r;s(E) =
∞
∏

k=1

N
∏

j=1

Wx j ;r j ,s
(

A(−k, j), B(−k, j);C(−k, j), D(−k, j)
)

×
N
∏

j=1

Wx j ;r j ,0
(

A(0, j), B(0, j);C(0, j), D(0, j)
);

̂Wx;r;s(E) =
∞
∏

k=1

N
∏

j=1

̂Wx j ;r j ,s
(

A(−k, j), B(−k, j);C(−k, j), D(−k, j)
)

×
N
∏

j=1

Wx j ;r j ,0
(

A(0, j), B(0, j);C(0, j), D(0, j)
)

,

where in the second equality it is assumed that r2j ∈ qZ<0 , for each j ∈ �1, N�.



Colored line ensembles for stochastic vertex models Page 53 of 111 105

Now we can define the following (non)symmetric functions, in a way parallel to
Definition 2.6, but with three differences. First, the vertex models are fused path
ensembles, instead of higher spin ones. Second, they have weights the W and ̂W ,
instead of the L and ̂L . Third, in defining f below, we have multiple arrows entering
all rows, instead of only one, with the purpose of fully saturating them (see Fig. 18).

Definition 6.11 Fix an integer N ≥ 1; a sequence of positive integers R =
(R1,R2, . . . ,RN ); two n-compositions μ, ν ∈ Compn ; and a function σ : �1, N� →
�1, n�.

If �(μ) = �(ν) + R[1,N ], then let Pf(μ/ν; σ ;R) denote the set of colored fused
path ensembles on DN = Z≤0 × �1, N� with the following boundary data.

(1) For each j ∈ �1, N�, R j arrows of color σ( j) horizontally enters DN through
(−∞, j).

(2) For each k ≥ 0 and c ∈ �1, n�, mk
(

ν(c)
)

arrows of color c vertically enter DN

through (−k, 1).
(3) For each k ≥ 0 and c ∈ �1, n�, mk

(

μ(c)
)

arrows of color c vertically exit DN

through (−k, N ).

See the left side of Fig. 18 for a depiction when μ = (7, 2, 0 | 5, 5, 4, 1, 1, 0 |
5, 2, 2); ν = (∅ | 6 | 6, 5);

(

σ(1), σ (2), σ (3), σ (4), σ (5)
) = (1, 3, 2, 1, 2); and

R = (2, 1, 3, 1, 2). There, red, green, and blue are colors 1, 2, and 3, respectively.
Similarly, if �(μ) = �(ν), then let PG(μ/ν) denote the set of colored fused path

ensembles on DN = Z≤0 × �1, N�, with the following boundary data.

(1) For each j ∈ �1, N�, no arrow horizontally enters or exits DN through the j-th
row.

(2) For each k ≥ 0 and c ∈ �1, n�, mk
(

μ(c)
)

arrows of color c vertically enter DN

through (−k, 1).
(3) For each k ≥ 0 and c ∈ �1, n�, mk

(

ν(c)
)

arrows of color c vertically exit DN

through (−k, N ).

See the right side of Fig. 18 for a depiction when μ = (7, 5 | 7, 6 | 6, 4) and ν =
(5, 2 | 5, 1 | 3, 2).

For any complex number s ∈ C, and sequences of complex numbers r =
(r1, r2, . . . , rN ) and x = (x1, x2, . . . , xN ), let

fσμ/ν;s(x; r) =
∑

P f (μ/ν;σ ;R)

̂Wx;r;s(E); Gμ/ν;s(x; r) =
∑

PG (μ/ν)

Wx;r;s(E), (6.7)

where in the first equality it is assumed that r−2
j = qR j for each j ∈ �1, N� (and r

can be arbitrary in the second). If ν = ∅ is empty, we write fσμ;s(x; r) = fσμ/∅;s(x; r)
and Gμ;s(x; r) = Gμ/0N ;s(x; r). If N = 1, we may write fσ(1)

μ/ν;s in place of f
σ
μ/ν;s .

Observe that the quantity ̂Wx;r;s(E) appearing as the summand in (6.7) defining fσμ/ν

is bounded, since all but finitely many vertices in any ensemble E ∈ Pf(μ/ν; σ ;R)

have arrow configurations of the form (e0,R j eσ( j); e0,R j eσ( j)) for some j ∈ �1, N�,
and ̂Wx j ;r j ,s(e0,R j eσ( j); e0,R j eσ( j)) = 1 for r j = q−R j /2, by (6.4). Similarly,
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Fig. 18 Depicted to the left and right are vertex models for fσ
μ/ν;s and Gμ/ν;s , respectively

Wx;r;s(E) appearing as the summand in (6.7) defining Gμ/ν;s is bounded, since all
but finitely many vertices in any E ∈ PG(μ/ν) have arrow configurations of the form
(e0, e0; e0, e0), and we have Wx;r ,s(e0, 0; e0, 0) = 1 by Remark 6.4.

Remark 6.12 It may be possible to analytically continue the f functions in the param-
eters r (so as to avoid imposing the assumption that each r j ∈ qZ<0 ), by following the
complementation procedure outlined at the end of Remark 6.5. However, we will not
pursue this here.

6.4 Properties of f andG

In this section we provide properties of the f and G functions from Definition 6.11.
The first is the fusion property that relates these to the f and G functions from Def-
inition 2.6, when the parameters of the latter are specialized to unions of geometric
progressions. We omit its proof, as very similar statements have appeared repeatedly
throughout the literature; see [23, Section 6E], [20, Theorem 6.2], and [5, Proposition
7.2.3] for references in the colored case and [22, Proposition 5.5] in the uncolored
one.

Lemma 6.13 Adopt the notation of Definition 6.11, and assume r j = q−R j /2 for each
j ∈ �1, N�. Define ω : �1, R[1,N ]� → �1, n� by for each j ∈ �1, R[1,N ]� setting
ω( j) = σ( j ′), where j ′ ∈ �1, N� is the unique index satisfying R[1, j ′−1] + 1 ≤ j ≤
R[1, j ′]; also define the R[1,N ]-tuple of complex numbers

z = (x1, qx1, . . . , qR1−1x1, x2, qx2, . . . , qR2−1x2, . . . , xN , qxN , . . . , qRN −1xn).

Then, we have fσμ/ν;s(x; r) = f ω
μ/ν;s(z) and Gμ/ν;s(x; r) = Gμ/ν;s(z).

We next provide symmetry properties, branching statements, and Cauchy identi-
ties for the f and G functions, which are parallel to their counterparts (Lemma 2.7,
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Lemma 2.8, and Lemma 2.9, respectively) for the f and g functions. They are quick
consequences of the latter, together with Lemma 6.13 and analytic continuation.

Lemma 6.14 Adopt the notation of Definition 6.11, and let ς : �1, M� → �1, M�
denote a permutation. We have Gμ/ν;s( y; r) = Gμ/ν;s

(

ς( y); ς(r)
)

, where ς( y) =
(yς(1), yς(2), . . . , yς(M)

)

and ς(r) = (rς(1), rς(2), . . . , rς(N )).

Proof If there exist positive integers (R1,R2, . . . ,RN ) such that r j = q−R j /2 for each
j ∈ �1, N�, then this follows fromLemmas 6.13 and 2.7. The fact that the lemma holds
for an arbitrary set r of complex numbers then follows from uniqueness of analytic
continuation, asG is a rational function in r (since the W -weights from Definition 6.3
are). ��
Lemma 6.15 Adopting the notation of Definition 6.11; letting � = �(ν); and fixing an
integer k ∈ �1, N�, we have

fσμ/ν;s(x; r) =
∑

κ∈Compn(�+k)

f
σ |�1,k�

κ/ν;s
(

x[1,k]; r [1,k]
)

f
σ |�k+1,N�

μ/κ;s
(

x[k+1,N ]; r [k+1,N ]
);

Gμ/ν;s(x; r) =
∑

κ∈Compn(�)

Gμ/κ;s
(

x[1,k]; r [1,k]
)

Gκ/ν;s
(

x[k+1,N ]; r [k+1,N ]
)

.

where in the first equality we assume that r j = q−R j /2 for each j ∈ �1, N�
(and r can be arbitrary in the second). Here, we have defined the variable sets
x[1,k] = (x1, x2, . . . , xk), x[k+1,N ] = (xk+1, xk+2, . . . , xN ), r [1,k] = (r1, r2, . . . , rk),
and r [k+1,N ] = (rk+1, rk+2, . . . , rN ). For any interval I = �i0+1, i0+|I |� ⊂ �1, N�,
we have also defined the function σ |I : �1, |I |� → �1, n� by setting σ |I (i) = σ(i + i0)
for each i ∈ �1, |I |�.

Proof The first equality in the lemma follows from Lemmas 2.8 and 6.13. If r j =
q−R j /2 for each j ∈ �1, N�, the second follows from the same two statements; for
general r , it then follows from uniqueness of analytic continuation, asG is rational in
r . ��
Lemma 6.16 Fix integers n, M, N ≥ 1; a sequence of positive integers R =
(R1, R2, . . . , RN ); sequences of complex variables r = (r1, r2, . . . , rN ), t =
(t1, t2, . . . , tM ), x = (x1, x2, . . . , xN ), and y = (y1, y2, . . . , yM ); and a function
σ : �1, N� → �1, n�. Assume for each j ∈ �1, N� that r j = q−R j /2 and that

max
1≤i≤M
1≤ j≤N

sup
(b,b′)∈Z≥0×�0,R j �

(b,b′) �=(0,R j )

∣

∣

∣

∣

(−s)b (s−1y j ; q)b

(sy j ; q)b
· (−s)b′−R j

(s−1xi ; q)b′
(sxi ; q)b′

(sxi ; q)R j

(s−1xi ; q)R j

∣

∣

∣

∣

< 1.

(6.8)

Then,

∑

μ∈Compn(R[1,N ])
fσμ;s(x; r)Gμ;s( y; t) =

M
∏

i=1

N
∏

j=1

(t2i x j y−1
i ; q)R j

t
2R j
i (x j y−1

i ; q)R j

.
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Proof (Outline) The proof is analogous to that of Lemma 2.9, so we only briefly outline
it. We will use the equality of partition functions depicted in Fig. 19 (which is similar
to the equality of the partition functions depicted in Figs. 7 and 8). On both sides of that
figure, R j arrows of color σ( j) enter horizontally through the (M + j)-th row (from
the bottom) for each j ∈ �1, N�, and all arrows exit vertically through the y-axis. The
weights on both sides are assigned as follows. In the crosses, we use Ux j /yi ;r j ,ti at the
intersection of the j-th row (from the bottom) and i-th column (from the left). Along
the y-axis, we use Wx j ;r j ,0 or Wyi ;ti ,0, depending on whether the row is marked by
(x j , t j ) or (yi , si ) in Fig. 19. In Z<0 × �1, M + N�, we use ̂Wx j ;r j ,s or Wyi ;ti ,s , again
depending on the marking of the row. The equality of partition functions depicted in
Fig. 19 is then a consequence of the Yang–Baxter equation Lemma 6.6; denote this
partition function by Z.

The vertex model on the left side of Fig. 19 is frozen; it is quickly verified that it
has weight

Z = 1, (6.9)

using Remark 6.4 (at b = 0), (6.4), and Corollary 6.8. To analyze the right side of
Fig. 19, first observe by (6.8), Remark 6.4, and (6.3) that, for any (i, j) ∈ �1, M� ×
�1, N�, we have

sup
(b,b′)∈Z≥0×�0,R j �

(b,b′) �=(0,R j )

max
B,B′∈Zn≥0

|B|=b,|B′ |=b′

∣

∣

∣

∣

̂Wx j ;r j ,s(e0, B
′; e0, B′)

̂Wx j ;r j ,s(e0,R j eσ( j); e0,R j eσ( j))
· Wyi ;ti ,s(e0, B; e0, B)

Wyi ;ti ,s(e0, e0; e0, e0)
∣

∣

∣

∣

< 1.

Using this bound, one can verify (see, for example, the proof of [5, Proposition 6.2.2]
for a very similar argument) that the vertex model on the right side of Fig. 19 has
nonzeroweight only if all but finitelymany vertices in rowsmarked by (yi , ti ) for some
i ∈ �1, M� have arrow configuration (e0, e0; e0, e0). This implies that the cross on the
right side of Fig. 19 is frozen to have arrow configuration (e0,R j eσ( j); e0,R j eσ( j)

)

at each vertex in its j-th row.
Hence, the weight of the cross is

M
∏

i=1

N
∏

j=1

Ux j /yi ;r j ,ti (e0,R j eσ( j); e0,R j eσ( j)) =
M
∑

i=1

N
∏

j=1

t
2R j
i (x j y−1

i ; q)R j

(t2i x j y−1
i ; q)R j

.

Moreover, by (6.7), the weight of the part of the right side of Fig. 19 onZ≤0×�1, M +
N� is given by

∑

μ∈Compn(R[1,N ]) f
σ
μ(x; r)Gμ( y; t). Hence,

Z =
M
∏

i=1

N
∏

j=1

t
2R j
i (x j y−1

i ; q)R j

(t2i x j y−1
i ; q)R j

·
∑

μ∈Compn(R[1,N ])
fσμ(x; r)Gμ( y; t).

This, together with (6.9), yields the lemma. ��
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Fig. 19 Depicted above is the equality of partition functions used in the proof of Lemma 6.16

6.5 Ascending fGmeasures

In this section we introduce the fused variants of the probability measures from Def-
inition 3.3. Throughout, we fix integers M, N ≥ 1; a sequence of positive integers
R = (R1,R2, . . . ,RN ); a composition � = (�1, �2, . . . , �n) of R[1,N ]; and a function
σ : �1, N� → �1, n� such that �i = ∑ j∈σ−1(i) R j for each i ∈ �1, n�. We must first
introduce the relevant family of n-compositions.

Definition 6.17 A sequence μ = (μ(0), μ(1), . . . , μ(M + N )
)

of n-compositions is
called (M; σ ;R)-ascending if the following hold.

(1) We have μ(0) = (∅ | · · · | ∅) and μ(M + N ) = (0�1 | · · · | 0�n ).
(2) (a) For all j ∈ �0, N� and c ∈ �1, n�, we have �

(

μ(c)( j)
) =∑ j

k=1 Rk · 1σ(k)=c.
Thus, �

(

μ( j)
) = R[1, j].

(b) For all i ∈ �N , M + N� and c ∈ �1, n�, we have �
(

μ(c)(i)
) = �c. Thus,

�
(

μ(i)
) = R[1,N ].

(3) For each (c, k, i) ∈ �1, n� × Z>0 × �1, M + N�, we have

Qμ
c (k, i) = m≤k−1

(

μ(c)(i)
)− m≤k−1

(

μ(c)(i − 1)
) ≥ 0. (6.10)

For each (k, i) ∈ Z>0�1, M + N�, we set Qμ(k, i) = (

Q
μ
1 (k, i),Qμ

2 (k, i),
. . . ,Q

μ
n (k, i)

) ∈ Z
n≥0.

Let us also define the sequence Q(μ) = (Qμ(1, 1),Qμ(1, 2), . . . ,Qμ(1, M + N )
)

.

Remark 6.18 Given an (M; σ ;R)-ascending sequence of compositions μ as in Defi-
nition 6.17, we will often view the n-composition μ(i) as indexing the positions (as
in Remark 2.5) of the colored arrows exiting the row {y = i}, in a vertex model on
Z≤0 × �1, M + N�. This yields a colored fused path ensemble on Z≤0 × �1, M + N�,
that we will denote by Eμ. In this way, the c-th entry in Qμ(k, i) denotes the number
of color c arrows in Eμ along the edge connecting (−k, i) to (1 − k, i). Therefore,
Q(μ) records the colors of the arrows (from bottom to top) along the horizontal edges
in Eμ joining the (−1)-st column to the 0-th one.

The boundary data for this ensemble is described as follows. For each j ∈ �1, N�, it
has R j arrows of color σ( j) horizontally entering the row {y = j}, and it has no other
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Fig. 20 Depicted above is the colored fused path ensemble associated with the sequence μ in the example
at the end of Remark 6.18. Here, red and blue are colors 1 and 2, respectively

arrows horizontally entering or exiting any other row of themodel. For each c ∈ �1, n�,
it has �c arrows of color c vertically exiting the y-axis {x = 0}, and it has no other
arrows horizontally entering or exiting any other column of the model. We denote by
PfG(M; σ ;R) the set of colored fused path ensembles onZ≤0×�1, M+N�with these
boundary conditions, as any Eμ ∈ PfG(M; σ ;R) can be thought of an ensemble from
PG(μ/∅) that is juxtaposed above one from Pf(μ/∅; σ ;R) (recall Definition 6.11),
for some n-composition μ ∈ Compn(R[1,N ]). It is quickly verified that the above
procedure is a bijection between PfG(M; σ ;R) and (M; σ ;R)-ascending sequences
μ of n-compositions.

See Fig. 20 for a depiction, where (n, M, N ) = (2, 3, 4), (R1,R2,R3,R4) =
(3, 1, 2, 2), (�1, �2) = (5, 3),

(

σ(1), σ (2), σ (3), σ (4)
) = (1, 2, 2, 1), and

μ(1) = (2, 2, 0 | ∅), μ(2) = (2, 0, 0 | 3), μ(3) = (2, 0, 0 | 4, 1, 0),
μ(4) = (5, 3, 0, 0, 0 | 3, 0, 0), μ(5) = (2, 1, 0, 0, 0 | 3, 0, 0),
μ(6) = (1, 0, 0, 0, 0 | 1, 0, 0).

Next we define the following probability measure on sequences of ascending com-
positions.

Definition 6.19 Fix a complex number s ∈ C and four sequences r = (r1, r2, . . . , rN );
t = (t1, t2, . . . , tM ); x = (x1, x2, . . . , xN ); and y = (y1, y2, . . . , yM ) of complex
numbers, with r j = q−R j /2 for each j ∈ �1, n�. Define the probability measurePσ

fG =
P

σ
fG;n;s;x; y;r;t on (M; σ ;R)-ascending sequences of n-compositions, by setting

P
σ
fG[μ] = Z−1

x; y;r;t ·
N
∏

j=1

f
σ( j)
μ( j)/μ( j−1);s(x j ; r j )

M+N
∏

i=N+1

Gμ(i−1)/μ(i);s(yi−N ; ti−N ).

(6.11)
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for each (M; σ ;R)-ascending sequence μ = (μ(0), μ(1), . . . , μ(M + N )
)

, where

Zx; y;r;t =
M
∏

i=1

N
∏

j=1

(t2i x j y−1
i ; q)R j

t
2R j
i (x j y−1

i ; q)R j

. (6.12)

Here, we implicitly assume that s, x, y, R, and t are such that the right side of (6.11)
is nonnegative and (6.8) holds. The fact that these probabilities sum to one follows
from Lemma 6.20 below.

The proof of the below lemma, given Lemma 6.15 and Lemma 6.16, is entirely
analogous to that of Lemma 3.4, given Lemma 2.8 and Lemma 2.9; it is therefore
omitted.

Lemma 6.20 Under the notation and assumptions of Definition 6.19, we have

∑

μ

N
∏

j=1

f
σ( j)
μ( j)/μ( j−1);s(x j ; r j ) ·

M+N
∏

i=N+1

Gμ(i−1)/μ(i);s(yi−N ; ti−N ) = Zx; y;r;s,

where the sum on the left side is over all (M; σ ; R)-ascending sequences of n-
compositions μ.

6.6 Matching between colored stochastic six-vertex models and P�
fG

In this section we provide a matching between the law of the (M + N )-tuple Q(μ)

of elements in Z
n≥0 (recall Definition 6.17) associated with a sequence of compo-

sitions sampled from P
σ
fG (from Definition 6.19), with a certain random variable

associated with the colored fused vertex model (from Sect. 6.1). We begin by defin-
ing the latter, which is analogous to Definition 3.5. Throughout this section, we
fix integers M, N ≥ 1; a complex number s ∈ C; sequence of positive inte-
gers R = (R1,R2, . . . ,RN ); sequences of complex numbers r = (r1, r2, . . . , rN ),
t = (t1, t2, . . . , tM ), x = (x1, x2, . . . , xN ), and y = (y1, y2, . . . , yM ), satisfying
(6.8) and r j = q−R j /2 for each j ∈ �1, N�; and a function σ : �1, N� → �1, n�.

Definition 6.21 Let E denote a colored fused path ensemble on the rectangle domain
DM;N = �1, M� × �1, N�. For each integer i ∈ �1, M�, let C(i) = CE(i) ∈ Z

n≥0
be such that the k-th entry Ck(i) of C(i) denotes the number of color k arrows
in E vertically exiting DM;N through (i, N ), for each k ∈ �1, n�. For each inte-
ger j ∈ �1, N�, let D( j) = DE( j) ∈ Z

n≥0 be such that the k-th entry Dk( j)
of D( j) denotes the number of color k arrows in E horizontally exiting DM;N
through (M, j). Then set C(E) = (C(1),C(2), . . . ,C(M)

) ∈ (Zn≥0)
M and D(E) =

(

D(1), D(2), . . . , D(N )
) ∈ (Zn≥0)

N .

We next require notation for the colored stochastic fused vertex model (defined at
the end of Sect. 6.1) with specific boundary data.



105 Page 60 of 111 A. Aggarwal, A. Borodin

Definition 6.22 We say that a colored fused path ensemble on the rectangle domain
DM;N = �1, M� × �1, N� has (σ ;R)-entrance data if the following holds. For each
j ∈ �1, N�, R j paths of color σ( j) horizontally enters DM;N from the site ( j, 0) on
the y-axis, and no path vertically entersDM;N from any site on the x-axis. Let Pσ

FV =
P

σ
FV;x; y;r;t denote the measure on colored fused path ensembles onDM;N obtained by

running the colored stochastic fused vertex model on DM;N under (σ ;R)-boundary
data, with weight Uyi /x j ;r j ,ti (recall Definition 6.1) at any vertex (i, j) ∈ DM;N .

The following proposition now provides a matching between the (M + N )-tuple
Q(μ) (recall Definition 6.17) sampled under Pσ

fG of Definition 6.19 and the (M + N )-

tupleD(E)∪←−
C (E) sampled under Pσ

FV of Definition 6.22. We omit its proof, which is
very similar to that of Proposition 3.7 (with the few necessary modifications already
explained in the proof outline of Lemma 6.16).

Proposition 6.23 Let Q = (Q(1),Q(2), . . . ,Q(M + N )
)

denote an (M + N )-tuple of
elements inZn≥0, and define the M-tupleC = (Q(M+N ),Q(M+N −1), . . . ,Q(N +
1)
)

and N-tuple D = (Q(1),Q(2), . . . ,Q(N )
)

. Then,

P
σ
FV

[

{C(E) = C
} ∩ {D(E) = D

}

]

= P
σ
fG

[

Q(μ) = Q
]

. (6.13)

Here, on the left side of (6.13), the colored fused path ensemble E is sampled under
the colored stochastic fused vertex measure P

σ
FV;x; y;r;t . On the right side of (6.13),

the (M; σ ; R)-ascending sequence μ of colored compositions is sampled under the
measure P

σ
fG;n;s;x; y;r;t .

The following corollary of Proposition 6.23 equates the joint law of the height
functions (recall Sect. 2.2) evaluated along the exit sites of an M×N rectangle, sampled
under the colored stochastic fused vertex model, with the joint law of the number of
zero entries in a familyμ of n-compositions, sampled under thePσ

fG measure.We omit
its proof, which given Proposition 6.23 is entirely analogous to that of Corollary 3.8
given Proposition 3.7.

Corollary 6.24 The joint law of all the height functions

n
⋃

c=1

(

h→≥c(M, 1), h→≥c(M, 2), . . . , h→≥c(M, N ), h→≥c(M − 1, N ), . . . , h→≥c(0, N )
)

,

(6.14)

is equal to the joint law of all zero-entry counts

n
⋃

c=1

(

m≥c
0

(

μ(1)
)

,m≥c
0

(

μ(2)
)

, . . . ,m≥c
0

(

μ(N )
)

,m≥c
0

(

μ(N + 1)
)

, . . . ,m≥c
0

(

μ(M + N )
)

)

.

(6.15)

Here, the height functions in (6.14) are associated with a colored fused path ensemble
sampled under Pσ

FV;x; y;r;t , and the zero-entry counts in (6.15) are associated with a
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(M; σ ; R)-ascending sequence of n-compositions μ = (μ(0), μ(1), . . . , μ(M + N )
)

sampled under Pσ
fG;n;s;x; y;r;t .

7 Colored line ensembles for fused vertexmodels

This section may be viewed as the fused counterpart of Sect. 4, in which we describe
the colored line ensembles associated with fused stochastic vertex models. Unlike in
Sect. 4.1, the line ensembles we obtain will no longer be simple, which is a man-
ifestation of the fact that horizontal edges in the associated stochastic fused vertex
model can accommodate more than one arrow. Outside of this difference, the con-
tent in this section will closely follow that in Sect. 4. Throughout this section, we
fix integers n, M, N ≥ 1; a complex number s ∈ C; a sequence of positive inte-
gers R = (R1,R2, . . . ,RN ); sequences of complex numbers r = (r1, r2, . . . , rN ),
t = (t1, t2, . . . , tM ), x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yM ), satisfying (6.8)
and r j = q−R j /2 for each j ∈ �1, N�; a composition � = (�1, �2, . . . , �n) of R[1,N ];
and a function σ : �1, N� → �1, n�, such that �i =∑ j∈σ−1(i) R j for each i ∈ �1, n�.

7.1 Fused colored line ensembles and ascending sequences

In this section, given an (M; σ ;R)-ascending sequenceμ of n-compositions, we asso-
ciate a colored line ensemble (which, unlike in Definition 4.1 and Lemma 4.3, need
not be simple). This is done through the following definition (where in the below we
recall the notion of a colored line ensemble from Definition 1.4).

Definition 7.1 Letμ = (μ(0), μ(1), . . . , μ(M + N )
)

denote an (M; σ ;R)-ascending
sequence of n-compositions. The associated colored line ensemble L = Lμ =
(

L(1),L(2), . . . ,L(n)
)

on �0, M + N� is defined as follows. For each c ∈ �1, n� let

L(c) = L
(c)
μ = (L(c)

1 ,L
(c)
2 , . . .

)

, where for each k ≥ 1 the function L
(c)
k = L

(c)
k;μ :

�0, M + N� → Z is prescribed by setting

L
(c)
k (i) = �[c,n] − m≥c

≤k−1

(

μ(i)
)

, for each i ∈ �0, M + N�. (7.1)

The fact that this defines a colored line ensemble follows from Lemma 7.2 below. We
moreover set the differences �(c) = (�(c)

1 ,�
(c)
2 , . . .

)

of L by �
(c)
k (i) = L

(c)
k (i) −

L
(c+1)
k (i), for each (c, k, i) ∈ �1, n�×Z>0×�0, M+N�,whereL(n+1)

k : �0, M+N� →
Z is defined by setting L

(n+1)
k (i) = 0 for each (k, i) ∈ Z>0 × �0, M + N�.

Lemma 7.2 Adopting the notation and assumptions of Definition 7.1, Lμ is a colored
line ensemble, which satisfies the following three properties for any c ∈ �1, n�, k ∈
Z>0, and i ∈ �0, M + N�.

(1) We have L
(c)
1 (i) ≥ L

(c)
2 (i) ≥ · · · and L

(1)
k (i) ≥ L

(2)
k (i) ≥ · · · .

(2) We have �
(c)
k (i) − �

(c)
k+1(i) = mk

(

μ(c)(i)
)

.

(3) If i ≥ 1, we have �
(c)
k (i − 1) − �

(c)
k (i) = Q

μ
c (k, i).



105 Page 62 of 111 A. Aggarwal, A. Borodin

Fig. 21 Depicted above are the top five lines (of each color) of the colored line ensemble associated with
the fused path ensemble in Fig. 20

Proof The proofs of the first two parts of the lemma are very similar to those of
Lemma 4.3 and are therefore omitted. The third follows from the fact that

�
(c)
k (i − 1) − �

(c)
k (i) = (L(c)

k (i − 1) − L
(c)
k (i)

)− (L(c+1)
k (i − 1) − L

(c+1)
k (i)

)

= m≥c
≤k−1

(

μ(i)
)− m≥c

≤k−1

(

μ(i − 1)
)

−
(

m≥c+1
≤k−1

(

μ(i)
)− m≥c+1

≤k−1

(

μ(i − 1)
)

)

= m≤k−1
(

μ(c)(i)
)− m≤k−1

(

μ(c)(i − 1)
)

= Q
μ
[c,n](k, i) − Q

μ
[c+1,n](k, i) = Qμ

c (k, i) ≥ 0,

where in the first statement we used the definition of �(c) from Definition 7.1; in the
second we used (7.1); in the third we used the definition of m; and in the fourth we
used (6.10). The second and third statements of the lemma together imply that each
�(c) is a line ensemble, and thus Lμ is a colored line ensemble by Definition 1.4. ��
Remark 7.3 As in Remark 6.18, we may interpretμ as associated with a colored fused
path ensemble Eμ ∈ PfG(M; σ ;R) onZ≤0×�1, M +N�. ThenL(c)

k (i) = h←≥c(−k, i),

where the height function h←≥c is with respect to Eμ; stated alternatively,L
(c)
k (i) denotes

the number of arrows with color at least c that horizontally exit the column {x = −k}
strictly above the vertex (−k, i). SeeFig. 21 for a depiction of the colored line ensemble
in the example at the end of Remark 6.18 (and shown in Fig. 20).

By Lemma 7.2, Definition 7.1 associates a colored line ensemble to a given
(M; σ ;R)-ascending sequence of n-compositions. Since the former are in bijection
with colored higher spin path ensembles inPfG(M; σ ;R) by Remark 6.18, this asso-
ciates a colored line ensemble with any element of PfG(M; σ ;R). The following
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definition is towards the reverse direction; it associates a colored fused path ensemble
with a colored line ensemble L.

Definition 7.4 Fix a colored line ensemble L = (L(1),L(2), . . . ,L(n)
)

, and for each

c ∈ �1, n� denote L(c) = (L(c)
1 ,L

(c)
2 , . . .

)

. For any v = (−k, i) ∈ Z≤0 × �1, M + N�,
define the arrow configuration

(

AL(v), BL(v);CL(v), DL(v)
)

as follows. For each
c ∈ �1, n� and set

AL
c (v) = �

(c)
k (i − 1) − �

(c)
k+1(i − 1) = L

(c)
k (i − 1) − L

(c)
k+1(i − 1)

− (L(c+1)
k (i − 1) − L

(c+1)
k+1 (i − 1)

);
BL

c (v) = �
(c)
k+1(i − 1) − �

(c)
k+1(i)

= L
(c)
k+1(i − 1) − L

(c)
k+1(i) − (L(c+1)

k+1 (i − 1) − L
(c+1)
k+1 (i)

);
CL

c (v) = �
(c)
k (i) − �

(c)
k+1(i) = L

(c)
k (i) − L

(c)
k+1(i) − (L(c+1)

k (i) − L
(c+1)
k+1 (i)

);
DL

c (v) = �
(c)
k (i − 1) − �

(c)
k (i) = L

(c)
k (i − 1) − L

(c)
k (i) − (L(c+1)

k (i − 1) − L
(c+1)
k (i)

)

,

where we observe that all four quantities are nonnegative since�(c) is a line ensemble.
This assignment of arrow configurations is consistent and therefore defines a colored
fused path ensemble EL associated with the colored line ensemble L.

The following lemma indicates that the assocations from Definitions 7.1 and 7.4
are compatible; we omit its proof, which is a quick verification using the second and
third properties of Lemma 7.2.

Lemma 7.5 If EL = Eμ for some (M; σ ; R)-ascending sequence μ of n-compositions,
then L is associated with μ in the sense of Definition 7.1.

7.2 Properties of random fused colored line ensembles

In this section we discuss some properties of colored line ensembles Lμ associated
(recall Definition 7.1) with an (M; σ ;R)-ascending sequence μ of n-compositions
sampled from the measure P

σ
fG (recall Definition 6.19). Let us first give notation to

this law on colored line ensembles.

Definition 7.6 Let Pσ
cL = P

σ
cL;n;s;x; y;r;t denote the law of a colored line ensemble Lμ

associated with a random (M; σ ;R)-ascending sequence μ of n-compositions (as in
Definition 7.1) sampled from the measure Pσ

fG;n;s;x; y;r;t .
The following result, which is a quick consequence of Corollary 6.24, provides

under this setup a matching in law between the top curves of L (under Pσ
cL) and the

height functions for a colored stochastic fused vertex model (recall Definition 6.22).

Theorem 7.7 Sample a colored line ensemble L on �0, M + N� from the measure
P

σ
cL;n;s;x; y;r;t , and sample a random colored fused path ensemble E under Pσ

FV;x; y;r;t .
For each c ∈ �1, n�, define the function Hc : �0, M + N� → Z by setting

Hc(k) = h←≥c(M, k), if k ∈ �0, N�;
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Hc(k) = h←≥c(M + N − k, N ), if k ∈ �N , M + N�,

where h←≥c is the height function associated with E. Then, the joint law of
(

L
(1)
1 ,L

(2)
1 , . . . ,L

(n)
1

)

is the same as that of (H1, H2, . . . , Hn).

Proof Since h←≥c(i, j) = �[c,n] − h→≥c(i, j) holds for any integer c ∈ �1, n� and vertex
(i, j) ∈ {(M, 0), (M, 1), . . . , (M, N ), (M, N − 1), . . . , (0, N )

}

along the northeast
boundary of �0, M� × �0, N�, this theorem follows from Definition 7.1 and Corol-
lary 6.24. ��

The next theorem explains the effect of conditioning on some of the curves in L (the
Gibbs property), ifμ is sampled under thePσ

cL measure,which is given by the following
theorem; its proof is omitted, as it is very similar to that of Theorem 4.8. Below, we
recall the vertex weights Wx;r ,s from Definition 6.3; the association of a colored line
ensemble with an ascending sequence of n-compositions from Definition 7.1; and the
notation from Definition 7.4.

Theorem 7.8 Sample L = Lμ under P
σ
cL;n;s;x; y;r;t . Fix integers j > i ≥ 0 and

u, v ∈ �0, M + N� with u < v; set i0 = max{i, 1}; and condition on the curves
L

(c)
k (m) for all c ∈ �1, n� and (k, m) ∈ (Z>0×�0, M + N�

)\(�i +1, j�×�u, v−1�
)

.
For any colored line ensemble l that is �i + 1, j� × �u, v − 1�-compatible with L, we
have

P[L = l] = Z−1 ·
j
∏

k=i0

∏

m∈�u,v�
m≤N

Wxm ;rm ,s
(

Al(−k, m), Bl(−k, m);C l(−k, m), Dl(−k, m)
)

×
j
∏

k=i0

∏

m∈�u,v�
m>N

Wym−N ;tm−N ,s
(

Al(−k, m), Bl(−k, m);C l(−k, m), Dl(−k, m)
)

.

(7.2)

Here, the probability on the left side of (7.2) is with respect to the conditional law of
L. Moreover, Z is a normalizing constant defined so that the sum of the right side of
(7.2), over all colored line ensembles l that are �i + 1, j� × �u, v − 1�-compatible
with Lμ, is equal to 1.

Let us also describe color merging properties for line ensembles sampled according
to P

σ
cL, which will be parallel to those discussed in Sect. 4.3. To that end, we have

the following proposition generalizing Proposition 4.11, where below we recall the
definition of ϑ from (4.10) (as a function on Compn), (4.11) (as a functional on the
set of functions ς : �1, N� → �1, n�), and (4.12) (as a function on sequences of
n-compositions); we also recall that σ̆ = ϑ(σ) from (4.11).

Proposition 7.9 SampleL = (L(1),L(2), . . . ,L(n)
)

underPσ
cL;n;s;x; y;r;t . Then the joint

law of the colored line ensemble L̆ = (L(1),L(3),L(4), . . . ,L(n)
)

(with n − 1 colors)
is given by P

σ̆
cL;n−1;s;x; y;r;t .
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To establish Proposition 7.9, we require the following lemma that is parallel to
Lemma 4.9.

Lemma 7.10 Fix an integer k ≥ 1; (n − 1)-compositions μ̆, ν̆, κ̆ ∈ Compn−1; and
n-compositions κ, μ ∈ Compn, such that ϑ(κ) = κ̆ and ϑ(μ) = μ̆. We have

∑

ς :�1,N�→�1,n�
ϑ(ς)=σ̆

∑

ν∈Compn
ϑ(ν)=ν̆

f
ς

μ/ν;s(x; r) = fσ̆μ̆/ν̆;s(x; r);

∑

ν∈Compn
ϑ(ν)=ν̆

Gν/κ;s( y; t) = Gν̆/κ̆;s( y; t). (7.3)

Proof Combining Lemma 4.9 with Lemma 6.13 yields the first statement of (7.3),
as well as the second one if t2i ∈ qZ<0 for each i ∈ �1, M�. The fact that the sec-
ond statement in (7.3) holds for arbitrary t then follows from uniqueness of analytic
continuation, as G is rational in t (since the W -weights of Definition 6.3 are). ��

The next lemma is parallel to Lemma 4.10. Its proof given Lemma 7.10 is entirely
analogous to that of Lemma 4.10 given Lemma 4.9 and is therefore omitted.

Lemma 7.11 If an (M; σ ; R)-ascending sequence of n-compositions μ is sampled
from P

σ
fG;n;s;x; y, then the (M; σ̆ )-ascending sequence ϑ(μ) of (n − 1)-compositions

has law P
σ̆
fG;n−1;s;x; y.

Now we can establish Proposition 7.9.

Proof of Proposition 7.9 Sample μ under Pσ
fG;n;s;x; y;r;t (recall Definition 6.19). By

Definition 7.6,wemay identifyL as the colored line ensembleLμ associatedwithμ. By
Definition 7.1, the n−1 line ensembles L̆ = (L(1),L(3), . . . ,L(n)

)

inL = Lμ constitute
the colored line ensemble associated with ϑ(μ), which has law P

σ̆
fG;n−1;s;x; y;r;t by

Lemma 7.11. Hence, again by Definition 7.6, L̆ has law P
σ̆
cL;n−1;s;x; y;r;t , thereby

establishing the proposition. ��
Remark 7.12 The above discussion describes the merging of colors 1 and 2. As in
Remark 4.12, it is more generally possible to merge several (disjoint) intervals of
colors, which would correspond in Proposition 7.9 to omitting line ensembles L(i), for
i ∈ �2, n� arbitrary (depending on the corresponding merged color intervals), in L.

8 Line ensembles for discrete time q-Bosonmodels

In this section we specialize the results of Sect. 7 to the discrete time q-boson model,
which involves setting each R j there equal to 1. Throughout this section, we adopt the
notation of Sect. 7 (where here we do not necessarily assume that (6.8) holds), and set
R j = 1 for all j ∈ �1, n�, so that each r j = q−1/2.
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Fig. 22 Depicted in the second to last row are the weights for the colored stochastic higher spin vertex
model, and depicted in the last row are those for the discrete time q-boson model

8.1 Colored stochastic higher spin vertex and q-Bosonmodels

In this section we describe the R = 1 case of the stochastic fused vertex models from
Sect. 6.1. Recall that we have set each R j = 1, and thus each r j = q−1/2.

Under this specialization, it is quickly verified that the Uz;q−1/2,s-weights (recall
Definition 6.1) permit at most one arrow along any horizontal edge, that is,
Uz;q−1/2,s(A, B;C, D) = 0 unless there exist indices b, d ∈ �0, n� such that B = eb

and D = ed . Therefore, the associated colored stochastic fused vertex model (recall
Sect. 6.1) is called the colored stochastic higher spin vertex model; it originally
appeared in [63, Appendix A]. For any A,C ∈ Z

n≥0 and b, d ∈ �0, n�, we denote
these specialized stochastic weights by

U hs
z;s(A, b;C, d) = Uz;q−1/2,s(A, eb;C, ed).

These weights are depicted in the second to last row of Fig. 22. We also denote
the associated probability measure on path ensembles (recall Definition 6.22) by
P

σ
hs;x; y;t = P

σ
hs;x; y;q−1/2;t .

Given an M-tuple of positive parameters ν = (ν1, ν2, . . . , νM ), the (Bernoulli)
discrete time q-boson model is the special case of the colored stochastic higher spin
vertex model when

x j y−1
i = 1, and νi = −t2i , for each (i, j) ∈ �1, M� × �1, N�. (8.1)

We denote the associated stochastic weights

U dqb
ν (A, b;C, d) = U hs

1;√−ν
(A, b;C, d),

which satisfy

U dqb
ν (A, i; A+

i , 0) = 1 + νq A[1,n]

1 + ν
, and
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U dqb
ν (A, i; A+−

i j , j) = ν

1 + ν
· (1 − q Ai )q A[i+1,n] ,

for any i, j ∈ �0, n� and A ∈ Z
n≥0; see the last row of Fig. 22. The colorless (n = 1)

case of this model was introduced in [17, Definition 1.6]. We denote the associated
probability measure by P

σ
dqb;ν (which is the specialization of Pσ

hs;x; y;t under (8.1)).

Remark 8.1 Fix positive parameters α = (α1, α2, . . .). Suppose we consider the dis-
crete time q-boson model, set ν j = εα j for each j ∈ �1, M�, scale N by ε−1, let
M tend to ∞, and let ε tend to 0. This gives rise to a continuous-time Markov pro-
cess on Z>0, in which a particle of color c ∈ �1, n� at site k ∈ Z>0 jumps to the
right according to an exponential clock of rate αkq A[i+1,n](k)(1− q Ai (k)), where A j (k)

denotes the number of particles of color j at site k; see [25, Proposition 12.4.1]. This
model is called the colored q-boson model or the colored q-deformed totally asym-
metric zero range process (TAZRP). The colorless (n = 1) case of this model was
introduced in [80, Equation (2.6)], which under a change of variables is equivalent to
the q-TASEP introduced in [16, Definition 3.3.7].

8.2 q-Hahn weights

Weeventually seek to degenerate Theorem 7.8 to the (R = 1) colored stochastic higher
spin vertex model case. Recall that this result involves the W -weights from (6.2) with
an arbitrary choice of the parameter s, which are in general a bit intricate. So, in this
section we discuss a specific choice for s that simplifies these weights considerably,16

This corresponds to setting s = x , a special case that has appeared numerous times in
the prior literature [14, 24, 63] and is sometimes known as the q-Hann specialization;
it is given as the below lemma.

Lemma 8.2 Adopting the notation of Definition 6.3, we have for any s, t ∈ C that

Ws;t,s(A, B;C, D) = (−st−2)dqϕ(D,A−D) · (t−2s2; q)a−d(t2; q)d

(s2; q)a

×
n
∏

i=1

(q; q)Ai

(q; q)Ai −Di (q; q)Di

· 1A+B=C+D · 1A≥D.

Proof We assume throughout this proof that A + B = C + D, as otherwise
Ws;t,s(A, B;C, D) = 0 by Definition 6.3. Due to the factor of (s−1x; q)b−p in (6.2),
any nonzero summand on the right side of (6.2) must at x = s satisfy p = b. Together
with the fact that P ≤ B in this sum, it follows that the only nonzero summand is given
by P = B; in particular (since P ≤ C), we must have B ≤ C for Ws;t,s(A, B;C, D)

to be nonzero. We assume this in what follows, meaning (as A + B = C + D) that

16 This is a colored generalization of what was done in [27, Section 7.3] where a similar idea was imple-
mented to match the height function of the uncolored stochastic higher spin vertex model with the length
of a partition sampled under the spin Hall-Littlewood / spin Whittaker measure.
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A ≥ D. Then, (6.2) yields

Ws;t,s(A, B;C, D) = (−1)dsd t2(c−a)qϕ(D,C) (t
2; q)d

(t2; q)b
· t−2b (t−2s2; q)c−b(t2; q)b

(s2; q)c+d−b

× q−ϕ(D,B)
n
∏

i=1

(q; q)Ci +Di −Bi

(q; q)Di (q; q)Ci −Bi

.

This, together with the fact that A + B = C + D (and hence a + b = c + d) yields
the lemma. ��
Remark 8.3 Observe for any μ, κ ∈ Compn that, if yi = s for each i ∈ �1, n�, then
Gμ/κ;s( y; t) (from Definition 6.11) is nonzero only if maxμ −max κ ≤ n. Indeed, if
maxμ ≥ max κ + n + 1, then any fused path ensemble E ∈ PG(μ/κ) must have at
least one arrow configuration (A, B;C, D) that does not satisfy B ≤ C (equivalently,
that does not satisfy D ≥ A). Hence, Lemma 8.2 implies that W y;t,s(E) = 0 for each
E ∈ PG(μ/κ), meaning by (6.7) that Gμ/κ;s( y; t) = 0.

Remark 8.4 By Remark 8.3, if yi = s for each i ∈ �1, M�, then the probability
measure Pσ

hs;x; y;t from Sect. 8.1 (see also (6.11)) is supported on (M; σ ;R)-

ascending sequences of n-compositionsμ = (μ(0), μ(1), . . . , μ(M + N )
)

satisfying
maxμ(N ) ≤ M . It follows that this measure is supported on only finitely many such
sequences μ, and so by analytic continuation (6.11) defines a probability measure for
any17 choice of the parameters x and t , even if (6.8) is not satisfied. In particular, the
results from Sects. 6.6 and 7 continue to hold when all yi = s, without assuming (6.8).

8.3 Colored line ensembles

In this section we establish the following proposition describing a colored line ensem-
ble for the discrete time q-Boson model (from Sect. 8.1).18 In the below, we recall the
notation from Definition 7.4, and we define the vertex weights (see Lemma 8.2)

Wν(A, B;C, D) =q(D,A−D)ν−d(−ν; q)d

×
n
∏

i=1

(q; q)Ai

(q; q)Ai −Di (q; q)Di

· 1A+B=C+D · 1A≥D, (8.2)

Proposition 8.5 Fix ν = (ν1, ν2, . . . , νM ) ∈ R
M
>0; sample a colored path ensemble E

on �1, M�× �1, N� according to the discrete time q-boson model Pσ
dqb;ν; and for each

17 It can be verified that the quantity
∏N

j=1 f
σ( j)
μ( j)/μ( j−1);s (x j ; q−1/2)·∏M

i=1
∏N

j=1(1−x j s−1) appearing

in the R j = 1 case of (6.11) is a polynomial in x whenever maxμ(N ) ≤ M (using the fact that (1− xs−1) ·
̂Wx;q−1/2,s is a polynomial in x), and so this measure has no singularities in x.
18 Proposition 8.5 below examines this line ensemble on the interval �N , M + N�, which corresponds to
the behavior of the discrete time q-boson model along the north boundary of the rectangle �1, M�×�1, N�.
One can also formulate more general statements about this line ensemble on its full domain �0, M + N�,
but we will not do so here.



Colored line ensembles for stochastic vertex models Page 69 of 111 105

c ∈ �1, n� define Hc : �N , M + N� → Z by setting Hc(k) = h←≥c(M + N − k, N ) for
each k ∈ �N , M + N�, where h←≥c is the height function with respect to E. There exists
a random colored line ensemble L = (L(1),L(2), . . . ,L(n)

)

on �0, M + N� satisfying
the following properties.

(1) The joint law of the functions
(

L
(1)
1 |�N ,M+N�,L

(2)
1 |�N ,M+N�, . . . ,L

(n)
1 |�N ,M+N�

)

is the same as that of (H1, H2, . . . , Hn).
(2) We almost surely have AL(−k, i) ≥ DL(−k, i) for each (−k, i) ∈ Z≤0×�N , M+

N�.
(3) Fix integers j > i ≥ 0 and u, v ∈ �N +1, M +N� with u < v; set i0 = max{i, 1};

and condition on the curves L(c)
k (m) for all c ∈ �1, n� and (k, m) /∈ �i + 1, j� ×

�u, v−1�. For any colored line ensemble l that is �i +1, j�×�u, v−1�-compatible
with L, we have

P[L = l] = Z−1 ·
j
∏

k=i0

v
∏

m=u
Wνm−N

(

Al(−k, m), Bl(−k, m);C l(−k, m), Dl(−k, m)
)

.

(8.3)

Here, the probability on the left side of (8.3) is with respect to the conditional law
ofL. Moreover,Z is a normalizing constant defined so that the sum of the right side
of (8.3), over all colored line ensembles l that are �i +1, j�×�u, v−1�-compatible
with L, is equal to 1.

Proof Let s > 0 be a small real number; set x j = s = yi for each (i, j) ∈ �1, M� ×
�1, N� (recalling that r j = q−1/2 for each j ∈ �1, N�); and set t2i = −νi for each
i ∈ �1, M�. Observe from (8.1) that this specialization sends the stochastic fused
vertex model to the discrete time q-boson model. Sample a colored line ensemble
L = (L(1),L(2), . . . ,L(n)

)

from the measure Pσ
cL;n;s;x; y;r;t (recall Definition 7.6); we

will show that the proposition holds for the limit19 of L, as s tends to 0.
The fact that L (for any s ≥ 0) satisfies the first statement of the proposition follows

from Theorem 7.7 (and Remark 8.4, so that we need not assume that (6.8) holds). That
it satisfies the second (also for any s ≥ 0) follows from (7.2) (andRemark 8.4), together
with the fact by Lemma 8.2 that for m > N and ym−N = s we have

Wym−N ;tm−N ,s
(

Al(−k, m), Bl(−k, m);C l(−k, m), Dl(−k, m)
) = 0,

unless Al(−k, m) ≥ Dl(−k, m).

19 This limit exists since that of Pσ
fG;n;s;x; y;r;t does as s tends to 0, as it can be quickly verified that the

products s|μ(N )| ·∏N
j=1 f

σ( j)
μ( j)/μ( j−1);s (x j ; q−1/2) and s−|μ(N )| ·∏N

i=1Gμ(i−1)/μ(i);s (s; ti−N ) appear-

ing in (6.11) remain nonsingular as s tends to 0 (since the weights s1 j>0 · ̂Wx;q−1/2,s (A, i; A+−
i j , j) and

s|D| · Ws;t,s (A, B;C, D) do).
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To verify the third, observe by Theorem 7.8 (and Remark 8.4) that, for any s ≥ 0,

P[L = l] = Z−1
0 ·

j
∏

k=i0

v
∏

m=u

s|Dl(−k,m)| ·
j
∏

k=i0

v
∏

m=u

s−|Dl(−k,m)|

×
j
∏

k=i0

v
∏

m=u

Ws;tm−N ;s
(

Al(−k, m), Bl(−k, m);C l(−k, m), Dl(−k, m)
)

,

(8.4)

for some normalization constant Z0 > 0. Next, we have

v
∑

m=u

∣

∣Dl(−k, m)
∣

∣ =
v
∑

m=u

(

l(1)k (m − 1) − l(1)k (m)
)

= l(1)k (u − 1) − l(1)k (v) = L
(1)
k (u − 1) − L

(1)
k (v),

where the first equality holds by Definition 7.4, the second by performing the sum,
and the third by the fact that l is �u, v − 1� × �i + 1, j�-compatible with L. This
quantity is fixed by the conditioning, so the first product on the right side of (8.4) can
be incorporated into the normalization constant Z0. This gives

P[L = l] = Z−1
1 ·

j
∏

k=i0

v
∏

m=u

s−|Dl(−k,m)|

×
j
∏

k=i0

v
∏

m=u

Ws;tm−N ;s
(

Al(−k, m), Bl(−k, m);C l(−k, m), Dl(−k, m)
)

,

for some normalization constant Z1 > 0. Letting s tend to 0, together with the fact by
Lemma 8.2 and (8.2) (and as t2i = −νi ) that

lim
s→0

s−|D| · Ws;ti ,s(A, B;C, D) = Wνi (A, B;C, D),

yields the third part of the proposition. ��

Appendix A Degeneration to the log-gamma polymer

In this section we explain how to recover the log-gamma polymer (introduced in [81])
from the colored stochastic fused vertex model (recall Sect. 6.1); this involves a
complementation procedure (of the type alluded to inRemark 6.5), an analytic continu-
ation, and limit degeneration. We begin by describing the complementation procedure
and evaluating the associated complemented weights in Sect.A.1. We then analyze
(limits of) analytic continuations of these weights in Sects.A.2 and A.3, and analyze



Colored line ensembles for stochastic vertex models Page 71 of 111 105

the behavior of them as q tends to 1 in Sect.A.4, Sects.A.5, and A.6. We conclude
in Sect.A.7 by explaining convergence of the vertex model with these degenerated
weights to the log-gamma polymer (and also describing the reason for choosing this
specialization in Remark A.25). In what follows, given a real number θ > 0, we say
that X is a Gamma(θ) random variable if P[x ≤ X ≤ x +dx] = �(θ)−1 · xθ−1e−x dx
for any x ∈ R. Throughout this section, n ≥ 1 is an integer, and we assume that
q ∈ (0, 1).

A.1 Complemented fused weights

In this section we implement (a case of) the complementation procedure mentioned in
Remark 6.5, whichwill be necessary to degenerate the fused stochastic vertexmodel of
Sect. 6.1 to the log-gamma polymer. To that end, we require some additional notation.
Let L ∈ Z≥0 be an integer, and let

X = (X1, X2, . . . , Xn−1) ∈ Z
n−1
≥0 , for any X ∈ Z

n≥0, and set x = |X|. (A.1)

For any B, D ∈ Z
n≥0 such that |B| ≤ L and D ≤ L, we set

Bn = L − Bn; b = L − |B|; Dn = L − Dn; d = L − |D|. (A.2)

In this way, we have B = (B,L − Bn) and D = (D,L − Dn), so that

b = Bn − b; d = Dn − d. (A.3)

We will evaluate the weight Uz;r ,s(A, B;C, D) when r2 = q−L (which is the
reason we imposed the conditions |B|, |D| ≤ L above), s2 = q−M, and z = qN−L+1

(for some complex numbersM,N ∈ C). This weight will happen to be rational in qL,
so let us define it when the integer L is replaced by an arbitrary complex number L. In
what follows, for any integersm, k ≥ 0, and complex numbers z ∈ C, a1, a2, . . . , ak ∈
C, and b1, b2, . . . , bk ∈ C, we denote the terminating basic hypergeometric series by

k+1ϕk

(

q−m; a1, a2, . . . , ak

b1, b2, . . . , bk

∣

∣

∣

∣

q, z

)

=
m
∑

i=0

zi (q
−m; q)i

(q; q)i
·

k
∏

j=1

(a j ; q)i

(b j ; q)i
. (A.4)

Definition A.1 Let L,M,N ∈ C be complex numbers; Bn,Dn ∈ Z≥0 be integers;
B, D ∈ Z

n≥0 be (n − 1)-tuples, such that b = |B| ≤ Bn and d = |D| ≤ Dn ; and
A,C ∈ Z

n≥0 be n-tuples. Setting a = |A| and c = |C|; letting b,d ∈ Z≥0 be as in
(A.3), and recalling (A.1), define the weight

UqL;qM;qN

(

A, (B, Bn);C, (D,Dn)
)

= (−1)Cn q
ϕ(D,C)+

(

Cn + 1
2

)

+cd+LCn

· 1A+B=C+D · 1b−a=d−c
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× (q; q)b

(q; q)d

(qM−N−c; q)d

(q; q)Cn

(qDn−Cn−L; q)Cn

(q−N; q)b

(q−N; q)∞
(qL−N; q)∞

× (qL+M−N; q)∞
(qM−N; q)∞

·
n−1
∏

j=1

(q; q)B j

(q; q)D j

×
∑

P≤B,C

(−1)pqϕ(B−D−P,P) (q
−N−1; q)p(qM−N+d−c; q)p

(qM−N−c; q)p(qb−N; q)p

×
n−1
∏

j=1

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)Pj (q; q)B j −Pj

× q
p(b−d+1)+

(

p
2

)

· 4ϕ3

(

q−Cn ; qBn−L, q p−N−1, qM−N+d−c+p

qM−N−c+p, qb−N+p, qDn−Cn−L

∣

∣

∣

∣

q, q

)

.

Remark A.2 The appearance of the 4ϕ3 basic hypergeometric series in the U-weights
defined above is a common phenomenon for fused vertex weights in the colorless
n = 1 case; see, for example, [65, Equation (1.1)] and [39, Theorem 3.15].

The following lemma provides an expression for the Uz-weight at z = qN−L+1 in
terms of U.
Lemma A.3 Fix an integer L ≥ 1 and complex number M,N ∈ C. Let A, B,C, D ∈
Z

n≥0, let a = |A| and c = |C|, and adopt the notation in (A.1) and (A.2). For any
N ∈ C, we have

UqN−L+1;q−L/2,q−M/2(A, B;C, D) = UqL;qM;qN

(

A, (B, Bn);C, (D,Dn)
)

.

Proof Let us assume throughout this proof that A + B = C + D, or equivalently
that A + B = C + D and b − a = L − |A| − |B| = L − |C| − |D| = d − c;
otherwise, (6.1) implies that UqN−L+1;q−L/2,q−M/2(A, B;C, D) = 0, which matches
with UqL;qM;qN(A, B;C, D), by Definition A.1. Next, inserting (A.2) into (6.1) (and

using the facts thata−c = |A|−|C| = |D|−|B| = b−d and thatϕ(B, X) = ϕ(B, X)

and ϕ(D, X) = ϕ(D, X) for any X ∈ Z
n≥0), we obtain

UqN−L+1;q−L/2,q−M/2(A, B;C, D)

= q(N+1)(b−d)−(L−d)M+ϕ(D,C) (q
−L; q)L−d

(q−L; q)L−b

(q; q)L−Bn

(q; q)L−Dn

n−1
∏

j=1

(q; q)B j

(q; q)D j

×
min{L−b,c}
∑

p=0

q(N+1)p (qN−M+1; q)c−p

(qN−L−M+1; q)L+c−d−p
(q−N−1; q)p(q

N−L+1; q)L−b−p

×
∑

P ≤ B,C
|P | = p

qϕ(B−D−P,P) (q; q)L+Cn−Dn−Pn

(q; q)Cn−Pn (q; q)Pn (q; q)L−Bn−Pn
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×
n−1
∏

j=1

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)Pj (q; q)B j −Pj

. (A.5)

We will next separate the parameter L (as well as p and Pn) from the other ones in the
subscripts of the q-Pochhammer symbols. To that end, observe that

(q; q)L−Bn

(q; q)L−Dn

(q−L; q)L−d

(q−L; q)L−b
=(−1)b+Bn−d−Dn q

(

Bn
2

)

−
(

Dn
2

)

+L(Dn−Bn)+
(

d + 1
2

)

−
(

b + 1
2

)

× (q−L; q)Dn

(q−L; q)Bn

(q; q)b
(q; q)d

, (A.6)

due to the identities

(q; q)L−Bn

(q; q)L−Dn

= (qL; q−1)Dn

(qL; q−1)Bn

= (−1)Bn−Dn q(Bn
2 )−(Dn

2 )+L(Dn−Bn) (q
−L; q)Dn

(q−L; q)Bn

;
(q−L; q)L−d

(q−L; q)L−b
= (q−b; q)b

(q−d; q)d
= (−1)b−dq(d+1

2 )−(b+1
2 ) (q; q)b

(q; q)d
,

where in the first we used the fact that (u; q−1)k = (−u)kq−(k
2)(u−1; q)k for any

k ∈ Z≥0 and u ∈ C. We further have that

(qN−M+1; q)c−p

(qN−L−M+1; q)L+c−d−p
(qN−L+1; q)L−b−p

= (qN−M+1; q)c

(qN−M+c; q−1)p

(qN−L+1; q)L

(qN; q−1)b+p

(qN−M; q−1)d−c−p

(qN−M−L+1; q)L
;

(q; q)L+Cn−Dn−Pn

(q; q)Cn−Pn (q; q)L−Bn−Pn

= (qL; q−1)Bn+Pn (q
Cn ; q−1)Pn

(q; q)Cn (q
L; q−1)Dn−Cn+Pn

, (A.7)

due the identities

(qN−L+1; q)L−b−p = (qN−L+1; q)L

(qN; q−1)b+p
; (qN−M+1; q)c−p = (qN−M+1; q)c

(qN−M+c; q−1)p
;

(qN−M−L+1; q)L+c−d−p = (qN−M−L+1; q)L

(qN−M; q−1)d−c+p
; (q; q)L−Bn−Pn = (q; q)L

(qL; q−1)Bn+Pn

;

(q; q)L+Cn−Dn−Pn = (q; q)L

(qL; q−1)Dn−Cn+Pn

; (q; q)Cn−Pn = (q; q)Cn

(qCn ; q−1)Pn

.

Inserting (A.6) and (A.7) into (A.5), we obtain

UqN−L+1;q−L/2,q−M/2(A, B;C, D)

= (−1)b+Bn−d−Dn q(N+1)(b−d)−(L−d)M+ϕ(D,C)



105 Page 74 of 111 A. Aggarwal, A. Borodin

× q

(

Bn

2

)

−
(

Dn

2

)

+L(Dn−Bn)

q

(

d + 1
2

)

−
(

b + 1
2

)

× (q; q)b

(q; q)d

(qN−M+1; q)c

(q; q)Cn

(q−L; q)Dn

(q−L; q)Bn

(qN−L+1; q)L

(qN−M−L+1; q)L

n−1
∏

j=1

(q; q)B j

(q; q)D j

×
min{b,c}
∑

p=0

q(N+1)p (q−N−1; q)p(qN−M; q−1)d−c+p

(qN−M+c; q−1)p(qN; q−1)b+p

×
∑

P ≤ B,C
|P | = p

qϕ(B−D−P,P) (q
L; q−1)Bn+Pn (q

Cn ; q−1)Pn

(q; q)Pn (q
L; q−1)Dn−Cn+Pn

×
n−1
∏

j=1

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)Pj (q; q)B j −Pj

. (A.8)

Next observe, as (u; q)k = (−u)kq(k
2)(q1−ku−1; q)k for any k ∈ Z≥0 and u ∈ C,

that

(qN−L+1; q)L

(qN−L−M+1; q)L
= qLM (q−N; q)L

(qM−N; q)L
;

(qN−M+1; q)c = (−1)cq(N−M)c+(c+1
2 )(qM−N−c; q)c. (A.9)

We further convert the quantities of the form (u; q−1)k on the right side of (A.8)
into ones of the form (u′; q)k . To do so, we repeatedly use the identity (u; q−1)k =
(−u)kq−(k

2)(u−1; q)k for any k ∈ Z≥0 and u ∈ C, which gives

(qN−M; q−1)d−c+p

(qL; q−1)Dn−Cn+Pn

= (−1)d−c+p−Dn+Cn−Pn q(N−M)(d−c+p)−L(Dn−Cn+Pn)

× q

(

Dn − Cn + Pn

2

)

−
(

d − c + p
2

)

· (qM−N; q)d−c+p

(q−L; q)Dn−Cn+Pn

;
(A.10)

and

(qL; q−1)Bn+Pn

(qN; q−1)b+p
= (−1)Bn+Pn−b−pqL(Bn+Pn)−N(b+p)q(b+p

2 )−(Bn+Pn
2 ) (q−L; q)Bn+Pn

(q−N; q)b+p
;

(qCn ; q−1)Pn

(qN−M+c; q−1)p
= (−1)p+Pn q PnCn+(M−N−c)pq(p

2)−(Pn
2 ) (q−Cn ; q)Pn

(qM−N−c; q)p
. (A.11)
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Inserting (A.9), (A.10), and (A.11) into (A.8) gives

UqN−L+1;q−L/2,q−M/2 (A, B;C, D)

= (−1)b+Bn−d−Dn+cq(N+1)(b−d)+dM+ϕ(D,C)

× q

(

Bn
2

)

−
(

Dn
2

)

+L(Dn−Bn )

q

(

d + 1
2

)

−
(

b + 1
2

)

+c(N−M)+
(

c + 1
2

)

× (q; q)b
(q; q)d

(qM−N−c; q)c

(q; q)Cn

(q−L; q)Dn

(q−L; q)Bn

(q−N; q)L

(qM−N; q)L

n−1
∏

j=1

(q; q)B j

(q; q)D j

×
min{L−b,c}
∑

p=0

∑

P≤B,C

(−1)d−c+p−Dn−Cn+Pn q(N+1)pq(N−M)(d−c+p)−L(Dn−Cn+Pn )

× q

(

Dn−Cn+Pn
2

)

−
(

d−c+p
2

)

(−1)Bn+Pn−b−pqL(Bn+Pn )−N(b+p)q

(

b+p
2

)

−
(

Bn + Pn
2

)

× (q−N−1; q)p(qM−N; q)d−c+p

(qM−N−c; q)p(q−N; q)b+p
(−1)p+Pn q PnCn+p(M−N−c)q

(

p
2

)

−
(

Pn
2

)

qϕ(B−D−P,P)

× (q−L; q)Bn+Pn (q−Cn ; q)Pn

(q; q)Pn (q−L; q)Dn−Cn+Pn

n−1
∏

j=1

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)Pj (q; q)B j −Pj

.

Before proceeding, we next simplify the powers of −1 and q appearing on the right
side. Doing so directly yields

UqN−L+1;q−L/2,q−M/2 (A, B;C, D)

= (−1)Cn qϕ(D,C)qLCn+(
Bn
2 )−(

Dn
2 )q(d+1

2 )−(b+1
2 )+b−d+(c+1

2 )

× (q; q)b
(q; q)d

(qM−N−c; q)c

(q; q)Cn

(q−L; q)Dn

(q−L; q)Bn

(q−N; q)L

(qM−N; q)L

n−1
∏

j=1

(q; q)B j

(q; q)D j

×
min{L−b,c}
∑

p=0

∑

P≤B,C

(−1)p+Pn q(
Dn−Cn+Pn

2 )+PnCn−(
Pn
2 )−(

d−c+p
2 )+(

p
2)+p−pcq(

b+p
2 )−(

Bn+Pn
2 )

× qϕ(B−D−P,P)
(q−N−1; q)p(qM−N; q)d−c+p

(qM−N−c; q)p(q−N; q)b+p

(q−L; q)Bn+Pn (q−Cn ; q)Pn

(q; q)Pn (q−L; q)Dn−Cn+Pn

×
n−1
∏

j=1

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)Pj (q; q)B j −Pj

.

Let us continue to simplify the power of q above. Since

(

Dn − Cn + Pn

2

)

+ PnCn −
(

Pn

2

)

=
(

Dn − Cn

2

)

+ PnDn;
(

Bn + Pn

2

)

=
(

Bn

2

)

+
(

Pn

2

)

+ Bn Pn;
(

d − c + p

2

)

−
(

p

2

)

+ pc =
(

d − c

2

)

+ pd;



105 Page 76 of 111 A. Aggarwal, A. Borodin

(

b + p

2

)

=
(

b + 1

2

)

− b +
(

p

2

)

+ bp,

it follows that

UqN−L+1;q−L/2,q−M/2(A, B;C, D)

= (−1)Cn qϕ(D,C)q(Dn−Cn
2 )−(d−c

2 )+LCn−(Dn
2 )q(d+1

2 )−d+(c+1
2 )

× (q; q)b

(q; q)d

(qM−N−c; q)c

(q; q)Cn

(q−L; q)Dn

(q−L; q)Bn

(q−N; q)L

(qM−N; q)L

n−1
∏

j=1

(q; q)B j

(q; q)D j

×
min{L−b,c}
∑

p=0

∑

P≤B,C

(−1)p+Pn q Pn(Dn−Bn)+p(b−d+1)+(p
2)−(Pn

2 )

× qϕ(B−D−P,P) (q
−N−1; q)p(qM−N; q)d−c+p

(qM−N−c; q)p(q−N; q)b+p

(q−L; q)Bn+Pn (q
−Cn ; q)Pn

(q; q)Pn (q
−L; q)Dn−Cn+Pn

×
n−1
∏

j=1

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)Pj (q; q)B j −Pj

. (A.12)

We additionally have by (A.3) and the equality p = p + Pn that

(

d + 1

2

)

− d =
(

d
2

)

;
ϕ(B − D − P, P) = ϕ(B + D − P, P) + (b − d − p)Pn;

(

p

2

)

−
(

Pn

2

)

− pPn =
(

p

2

)

;
p(b − d + 1) = p(b − d + 1) + Pn(b − d) + Pn;

Pn(b − d + Dn − Bn + b − d) = 0;
(

Dn − Cn

2

)

−
(

Dn

2

)

=
(

Cn + 1

2

)

− CnDn;
ϕ(D,C) = ϕ(D,C) + Cnd;
(

c + 1

2

)

+
(

d
2

)

−
(

d − c

2

)

= cd = cd + Cn(Dn − d).

Together with (A.3) and (A.12), these give

UqN−L+1;q−L/2,q−M/2(A, B;C, D) = (−1)Cn qϕ(D,C)+(Cn+1
2 )+cd+LCn

× (q; q)b

(q; q)d

(qM−N−c; q)c

(q; q)Cn

(q−L; q)Dn

(q−L; q)Bn

(q−N; q)L

(qM−N; q)L

n−1
∏

j=1

(q; q)B j

(q; q)D j
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×
min{L−b,c}
∑

p=0

∑

P≤B,C

(−1)pq p(b−d+1)+Pn+(p
2)qϕ(B−D−P,P)

× (qM−N; q)d−c+p

(qM−N−c; q)p

(q−L; q)Bn+Pn (q
−Cn ; q)Pn

(q; q)Pn (q
−L; q)Dn−Cn+Pn

× (q−N−1; q)p

(q−N; q)b+p

n−1
∏

j=1

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)Pj (q; q)B j −Pj

.

Next, observe by (A.3) and the equality p = p + Pn that

(qM−N−c; q)c(q
M−N; q)d−c+p

= (qM−N−c; q)d(q
M−N+d−c; q)p(q

M−N+d−c+p; q)Pn ;
(qM−N−c; q)p = (qM−N−c; q)p(q

M−N−c+p; q)Pn ;
(q−L; q)Dn

(q−L; q)Dn−Cn+Pn

= (qDn−Cn−L; q)Cn

(qDn−Cn−L; q)Pn

;
(q−L; q)Bn+Pn

(q−L; q)Bn

= (qBn−L; q)Pn ;
(q−N−1; q)p

(q−N; q)b+p
= (q−N−1; q)p(q p−N−1; q)Pn

(q−N; q)b(qb−N; q)p(qb−N+p; q)Pn

,

from which it follows that

UqN−L+1;q−L/2,q−M/2(A, B;C, D)

= (−1)Cn q
ϕ(D,C)+

(

Cn + 1
2

)

+cd+LCn (q; q)b

(q; q)d

(qM−N−c; q)d

(q; q)Cn

× (qDn−Cn−L; q)Cn

(q−N; q)b

(q−N; q)L

(qM−N; q)L

×
n−1
∏

j=1

(q; q)B j

(q; q)D j

∑

P≤B,C

(−1)pqϕ(B−D−P,P) (q
−N−1; q)p(qM−N+d−c; q)p

(qM−N−c; q)p(qb−N; q)p

×
n−1
∏

j=1

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)Pj (q; q)B j −Pj

× q
p(b−d+1)+

(

p
2

)

Cn
∑

Pn=0

q Pn
(q p−N−1; q)Pn

(qM−N−c+p; q)Pn

(qM−N+d−c+p; q)Pn

(qb−N+p; q)Pn

× (qBn−L; q)Pn (q
−Cn ; q)Pn

(q; q)Pn (q
Dn−Cn−L; q)Pn

,
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where we used the fact that any summands on the right side with Pn > Bn =
L − Bn are equal to 0, due to the factor of (qBn−L; q)Pn . This, with (q−N; q)L =
(q−N; q)∞(qL−N; q)−1∞ , (qM−N; q)−1

L = (qL+M−N; q)∞(qM−N; q)−1∞ , and (A.4),
yields the lemma. ��

A.2 Degenerations of the fused complemented weights

We next proceed to take limits of the weights from Definition A.1 that will eventually
lead us to the log-gamma polymer. The first is to let qM and qN tend to infinity, in
such a way that (L and) qM−N = q−Lγ (for some constant γ ∈ C) remains fixed.

Lemma A.4 Adopting the notation of Lemma A.3, we have for any complex number
γ ∈ C that

lim
qM→∞

UqL;qM;qM+L/γ

(

A, (B, Bn);C, (D,Dn)
)

= (−1)Cn qϕ(D,C)+(Cn+1
2 )+cd+LCn ·

n−1
∏

j=1

(q; q)B j

(q; q)D j

· 1A+B=C+D · 1b−a=d−c

× (q; q)b
(q; q)d−Cn

(q−c−Lγ ; q)d
(q; q)Cn

(qBn−L; q)Cn (γ ; q)∞
(qL+c−Cn−p+1γ −1; q)Cn (q−Lγ ; q)∞

×
∑

P≤B,C

(−1)pqϕ(B−D−P,P)
(qd−c−Lγ ; q)p

(q−L−cγ ; q)p

n−1
∏

j=1

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)Pj (q; q)B j −Pj

× q p(b−d+1)+(p
2) · 3ϕ2

(

q−Cn ; q−An , qL−Cn+c−p+1γ −1

qd−Cn+1, qL−Bn−Cn+1

∣

∣

∣

∣

q, q

)

. (A.13)

Proof We assume throughout this proof that A + B = C + D and b − a = d − c,
for otherwise both sides of (A.13) are equal to 0 by Lemma A.3. Then letting qN and
qM tend to ∞, while keeping qM−N = q−Lγ fixed, in Lemma A.3 yields

lim
qM→∞

UqL;qM;qM+L/γ

(

A, (B, Bn);C, (D,Dn)
)

= (−1)Cn q
ϕ(D,C)+

(

Cn + 1
2

)

+cd+LCn (q; q)b
(q; q)d

(q−c−Lγ ; q)d
(q; q)Cn

(qDn−Cn−L; q)Cn (γ ; q)∞
(q−Lγ ; q)∞

×
n−1
∏

j=1

(q; q)B j

(q; q)D j

×
∑

P≤B,C

(−1)pqϕ(B−D−P,P)
(qd−c−Lγ ; q)p

(q−L−cγ ; q)p

n−1
∏

j=1

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)Pj (q; q)B j −Pj

× q
p(b−d+1)+

(

p
2

)

· 3ϕ2
(

q−Cn ; qBn−L, qd−c+p−Lγ

q p−L−cγ, qDn−Cn−L

∣

∣

∣

∣

q, q

)

. (A.14)
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Next recall from the Sears identity [45, Equation (3.2.9)] that, for any integerm ≥ 0
and complex numbers A, B, C, D, E, F ∈ C with q1−m ABC = DE F , we have

4ϕ3

(

q−m; A, B, C
D, E, F

∣

∣

∣

∣

q, q

)

= (B; q)m
( DE

AB ; q
)

m

( DE
BC ; q

)

m

(D; q)m(E; q)m
( DE

ABC ; q
)

m

× 4ϕ3

(

q−m; D
B , E

B , DE
ABC

DE
AB , DE

BC , q1−m B−1

∣

∣

∣

∣

q, q

)

.

Letting A and E tend to 0 in such a way that A
E = qm−1 DF

BC remains fixed, we deduce
(under no restrictions on B, C, D, F ∈ C) that

3ϕ2

(

q−m; B, C
D, F

∣

∣

∣

∣

q, q

)

= (B; q)m(q1−mC F−1; q)m

(D; q)m(q1−m F−1; q)m

× 3ϕ2

(

q−m; D
B , q1−m F−1

q1−mC F−1, q1−m B−1

∣

∣

∣

∣

q, q

)

.

Taking m = Cn and (B, C; D, F) = (qBn−L, qd−c+p−Lγ ; qDn−Cn−L, q p−L−cγ )

(and using the fact that Bn − An = Dn −Cn , by (A.3) and the equalities b−a = d− c
and A + B = C + D), we obtain

3ϕ2

(

q−Cn ; qBn−L, qd−c+p−Lγ

q p−L−cγ, qDn−Cn−L

∣

∣

∣

∣

q, q

)

= (qBn−L; q)Cn (qd−Cn+1; q)Cn

(qDn−Cn−L; q)Cn (qL+c−Cn−p+1γ −1; q)Cn

× 3ϕ2

(

q−Cn ; q−An , qL−Cn+c−p+1γ −1

qd−Cn+1, qL−Cn−Bn+1

∣

∣

∣

∣

q, q

)

.

Inserting this into (A.14), and using the fact that (qd−Cn+1; q)Cn (q; q)−1
d =

(q; q)−1
d−Cn

, gives the lemma. ��

We next take the further limit in LemmaA.4 as qL tends to∞. The below definition
provides this limit; see the lemma that follows.

Definition A.5 Adopting the notation of Definition A.1, define for any γ ∈ C the q-
discrete polymer weight Uqp;n

γ

(

A, (B, Bn);C, (D,Dn)
) = Uqp

γ

(

A, (B, Bn);C, (D,Dn)
)

by
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U qp
γ

(

A, (B, Bn);C, (D,Dn)
)

= qϕ(D,C)+c(Bn−An−d)(γ ; q)∞
(q; q)b

(q; q)Bn−An−d
· 1A+B=C+D · 1b−a=d−c

×
n−1
∏

j=1

(q; q)C j +D j

(q; q)C j (q; q)D j

×
Cn
∑

k=0

γ Cn−k

(q; q)Cn−k

(q An−k+1; q)k

(q; q)k(qBn−An−d+1; q)k
qk(Bn−An+c+k)

×
∑

P≤B,C

q p(An−k+1)+ϕ(P,D−B)
n−1
∏

j=1

(q−B j ; q)Pj (q
−C j ; q)Pj

(q; q)Pj (q
−C j −D j ; q)Pj

. (A.15)

Remark A.6 If n = 1, then the Uqp weights from Definition A.5 coincide with those of
the geometric q-PushTASEP introduced in [68, Section 6.3], which degenerates to the
log-gamma polymer [68, Theorem 8.7]. This is the reason behind the term, “q-discrete
polymer weight” in Definition A.5.

Lemma A.7 Under the notation of Lemma A.4, we have

lim
qL→∞

(

lim
qM→∞

UqL;qM;qM+L/γ

(

A, (B, Bn);C, (D,Dn)
)

)

= Uqp
γ

(

A, (B, Bn);C, (D,Dn)
)

.

Proof Throughout this proof, we assume that A + B = C + D and b − a =
d − c, for otherwise the lemma holds by Lemma A.4 and Definition A.5. Since

lima→∞ a−k(ab; q)k = (−b)kq(k
2) for any b ∈ C and k ∈ Z≥0, we have

lim
qL→∞

(−1)Cn qLCn+(Cn+1
2 )(qL+c−Cn−p+1γ −1; q)−1

Cn
= qCn(Cn−c+p)γ Cn ;

lim
qL→∞ 3ϕ2

(

q−Cn ; q−An , qL−Cn+c−p+1γ −1

qd−Cn+1, qL−Bn−Cn+1

∣

∣

∣

∣

q, q

)

= 2ϕ1

(

q−Cn ; q−An

qd−Cn+1

∣

∣

∣

∣

q, qBn+c−p+1γ −1
)

,

where in the second statementweused (A.4). Inserting these (with the fact thatCn−c =
−c), into the limit as qL tends to ∞ of (A.4), we find
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lim
qL→∞

(

lim
qM→∞

UqL;qM;qM+L/γ

(

A, (B, Bn);C, (D,Dn)
)

)

= qϕ(D,C)+c(d−Cn)γ Cn
(q; q)b

(q; q)d−Cn (q; q)Cn

(γ ; q)∞ ·
n−1
∏

j=1

(q; q)B j

(q; q)D j

×
∑

P≤B,C

(−1)pqϕ(B−D−P,P) ·
n−1
∏

j=1

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)Pj (q; q)B j −Pj

× q p(b−d+1)+(p
2)q pCn · 2ϕ1

(

q−Cn , q−An

qd−Cn+1

∣

∣

∣

∣

q, qBn+c−p+1γ −1
)

. (A.16)

Next we separate the Pj subscripts in the q-Pochhammer symbols on the right
side of (A.16) from the other ones. To that end, observe since (q; q)m−k =
(−1)kq(k

2)−mk(q; q)m(q−m; q)−1
k that we have

(q; q)C j +D j −Pj

(q; q)C j −Pj (q; q)B j −Pj

=(−1)Pj q
Pj (B j −D j )−

(

Pj

2

)

(q; q)C j +D j

(q; q)C j (q; q)B j

× (q−C j ; q)Pj (q
−B j ; q)Pj

(q−C j −D j ; q)Pj

. (A.17)

We also have

ϕ(B − D − P, P) + p(b − d + Cn + 1) +
(

p

2

)

+
n−1
∑

j=1

(

Pj (B j − D j ) −
(

Pj

2

))

= p(An + 1) + ϕ(P, D − B), (A.18)

since

(

p

2

)

= ϕ(P, P) +
n−1
∑

j=1

(

Pj

2

)

; ϕ(B − D, P) + p(d − b) +
n−1
∑

j=1

Pj (B j − D j )

= ϕ(P, D − B);
p(b − d) + p(b − d) + pCn = p(Bn − Dn) + pCn = p An .

Inserting (A.17) and (A.18) into (A.16) yields

lim
qL→∞

(

lim
qM→∞

UqL;qM;qM+L/γ

(

A, (B, Bn);C, (D,Dn)
)

)

= qϕ(D,C)+c(d−Cn)γ Cn
(q; q)b

(q; q)d−Cn (q; q)Cn

(γ ; q)∞ ·
n−1
∏

j=1

(q; q)C j +D j

(q; q)C j (q; q)D j
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×
∑

P≤B,C

q p(An+1)+ϕ(P,D−B) ·
n−1
∏

j=1

(q−C j ; q)Pj (q
−B j ; q)Pj

(q−C j −D j ; q)Pj (q; q)Pj

× 2ϕ1

(

q−Cn , q−An

qd−Cn+1

∣

∣

∣

∣

q, qBn+c−p+1γ −1
)

.

Thus, using (A.4) to write the 2ϕ1 basic hypergeometric series as a sum, we obtain

lim
qL→∞

(

lim
qM→∞

UqL;qM;qM+L/γ

(

A, (B, Bn);C, (D,Dn)
)

)

= qϕ(D,C)+c(d−Cn)(γ ; q)∞
(q; q)b

(q; q)d−Cn

n−1
∏

j=1

(q; q)C j +D j

(q; q)C j (q; q)D j

×
Cn
∑

k=0

γ Cn−k

(q; q)Cn

(q−Cn ; q)k(q−An ; q)k

(q; q)k(qd−Cn+1; q)k
qk(Bn+c+1)

×
∑

P≤B,C

q p(An−k+1)+ϕ(P,D−B)
n−1
∏

j=1

(q−B j ; q)Pj (q
−C j ; q)Pj

(q; q)Pj (q
−C j −D j ; q)Pj

.

Together with the facts that

(q−Cn ; q)k(q; q)−1
Cn

= (−1)kq(k
2)−Cnk(q; q)−1

Cn−k;
(q−An ; q)k = (−1)kq(k

2)−Ank(q An−k+1; q)k,

that c − Cn = c, and that d − Cn = Dn − d − Cn = Bn − An − d, this yields the
lemma. ��

Remark A.8 ByRemark 6.2, LemmasA.3,A.4,A.7, and uniqueness of analytic contin-
uation (with the fact that the Uqp weights are rational in qL, to extend from L ∈ Z≥0
to L ∈ C) the Uqp weights are stochastic, in the sense that for any A ∈ Z

n≥0 and

(B, Bn) ∈ Z
n−1
≥0 × Z≥0, we have

∑

Uγ

(

A, (B, Bn);C, (D,Dn)
) = 1, where we sum

over all C ∈ Z
n≥0 and (D,Dn) ∈ Z

n−1
≥0 × Z≥0.

A.3 An additional degenerated weight

In this section we provide an additional degeneration of the complemented Uz;r ,s-
weight, which will eventually serve as boundary weights for the polymer model. We
begin with the following lemma from [20] providing a specialization of the Uz;r ,s-
weights from Definition 6.1.
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Lemma A.9 ([20, Lemma 6.8]). For any integer L ≥ 1 and n-tuples A,C, D ∈ Z
n≥0,

we have

lim
s→0

Uz/s2;q−L/2,s(A, Len;C, D) = (zqL)|D|

(z; q)L

(q−L; q)|D|
(q; q)|D|

· 1A+L·en=C+D · 1D=|D|·en .

We will next implement the complementation procedure explained in Sect.A.1 on the
weights specialized as in LemmaA.9. The below definition provides the eventual form
they will take, which is shown in the corollary following it.

Definition A.10 For any complex numbers z,L ∈ C and integer k ≥ 0, define the
q-discrete boundary weight

Ub;n
z;qL(k) = Ub

z;qL(k) = z−k (z−1; q)∞
(q−Lz−1; q)∞

(q−L; q)k

(q; q)k
.

We further set

Ub;n
z (k) = Ub

z (k) = Ub
z;∞(k) = z−k (z−1; q)k

(q; q)k
.

Observe that both the Ub
z;qL -weights and the Ub

z -weights are stochastic, by the q-
binomial theorem.

Corollary A.11 Adopt the notation of Lemma A.9, and set Dn = L − |D|. We have

lim
s→0

Uz/s2;q−L/2,s(A, Len;C, D) = Ub
z/q;qL(Dn) · 1A+Dn ·en=C · 1D=(L−Dn)·en .

(A.19)

Proof We may assume throughout this proof that A + Len = C + D and that D =
|D|en = (L−Dn)en , for otherwise both sides of (A.19) are equal to 0 (byLemmaA.9).
Then, combining the equalities

(zqL)|D| = (zqL)L−Dn ; (z; q)L = (−z)Lq(L2)(q1−Lz−1; q)L;
(q−L; q)L−Dn = (−1)L−Dn q(Dn+1

2 )−(L+1
2 ) (q; q)L

(q; q)Dn

;

(q; q)L−Dn = (−1)Dn q(Dn
2 )−LDn

(q; q)L

(q−L; q)Dn

,

with Corollary A.11, we deduce

lim
s→0

Uz/s2;q−L/2,s(A,Len;C, D) = (zqL)L−Dn

(z; q)L

(q−L; q)L−Dn

(q; q)L−Dn

= (qz−1)Dn

(q1−Lz−1; q)L

(q−L; q)Dn

(q; q)Dn

.
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This, with Definition A.10, yields the corollary. ��

A.4 The q → 1 Limit

In this section we analyze the limit as q tends to 1 of the q-discrete polymer weights
Uqp from Definition A.5 (and their boundary counterparts Ub from Definition A.10).
Throughout this section, we fix a real number θ > 0 and n-tuples of nonnegative
real numbers (a1, a2, . . . , an) and (b1, b2, . . . , bn). Moreover, ε ∈ (0, 1) will be a
parameter that we view as tending to 0. If for some functions f and g of ε we have
limε→0

∣

∣ f (ε) − g(ε)
∣

∣ = 0, then we write f ∼ g. We further let Bn = Bε
n ∈ Z≥0 be

an integer, B = B
ε ∈ Z

n−1
≥0 be an (n − 1)-tuple, and A = Aε ∈ Z

n≥0 be an n-tuple
(all dependent on ε); throughout this section, we assume that

εAn − log ε−1 ∼ an; εA j ∼ a j ; εBn − log ε−1 = bn; εB j ∼ b j ,

(A.20)

for each j ∈ �1, n − 1�. Also define q = qε ∈ (0, 1) and γ = γε,θ ∈ (0, 1) by setting

qε = e−ε; γ = qθ . (A.21)

Recalling from Remark A.8 that the Uqp weights are stochastic, the following
proposition describes the limiting law of the n-tuple C sampled20 according to
Uqp

γ (A, B;C, D) as ε tends to 0; it indicates that this law can be expressed through a
single Gamma(θ) random variable Y.

Proposition A.12 Let q = qε ∈ (0, 1) and γ = γε,θ ∈ (0, 1) be as in (A.21); also
let Bn ∈ Z≥0, B ∈ Z

n−1
≥0 , and A ∈ Z

n≥0 be as in (A.20). Sample
(

C, (D,Dn)
) ∈

Z
n≥0 × Z

n−1
≥0 × Z≥0 with probability Uqp

γ

(

A, (B, Bn);C, (D,Dn)
)

, and denote

cn = εCn − log ε−1, and c j = εC j , for each j ∈ �1, n − 1�.

The joint law of (c[ j,n]) j∈�1,n� converges to that of
(

log(ea[ j,n]−bn+b[ j,n−1] + 1) −
logY

)

j∈�1,n� as ε tends to 0, where Y ∈ R>0 is a Gamma(θ) random variable.

Remark A.13 Denoting (d1, d2, . . . , dn) = (εD1, εD2, . . . , εDn−1, εDn − log ε−1) in
Proposition A.12, the joint limiting law of (d[ j,n]) j∈�1,n� is determined by that of
(c[ j,n]) j∈�1,n� by arrow conservation.

To establish Proposition A.12, we will express the right side of (A.15) as a convo-
lution of the following two functions, which we will then analyze separately.

20 We do not verify here that the Uqpγ -weights are all nonnegative for fixed q ∈ (0, 1). However, it can
quickly be deduced from the proof of Lemma A.18 below that the sum of the absolute values of all negative
Uqpγ -weights tends to 0, as ε tends to 0. Together with the stochasticity of the Uqp weights, this implies that
one can view Uqp as prescribing a probability measure, as ε tends to 0.
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Definition A.14 Define the function �ε : Z≥0 → R by setting, for any integer � ≥ 0,

�ε(�) = (γ ; q)∞ · γ �

(q; q)�
. (A.22)

Also define the function �ε : Z≥0 × Z
n−1
≥0 by setting, for any integer k ≥ 0 and

(n − 1)-tuple C ∈ Z
n−1
≥0 ,

�ε(k;C) = qϕ(D,C)+c(Bn−An−d) (q; q)b
(q; q)Bn−An−d

·
n−1
∏

j=1

(q; q)C j +D j

(q; q)C j (q; q)D j

· qk(Bn−An+c+k)

× (q An−k+1; q)k

(q; q)k(qBn−An−d+1; q)k

∑

P≤B,C

q p(An−k+1)+ϕ(P,D−B)

×
n−1
∏

j=1

(q−B j ; q)Pj (q
−C j ; q)Pj

(q; q)Pj (q
−C j −D j ; q)Pj

, (A.23)

Remark A.15 By Definition A.5, we have

Uqp
γ

(

A, (B, Bn);C, (D,Dn)
) =

Cn
∑

k=0

�ε(Cn − k) · �ε(k;C). (A.24)

Hence, to sample C as in Proposition A.12, we may first independently sample �

and (k;C) under the density functions �ε and �ε (the fact that these give stochastic
weights is due to Lemma A.16 below), respectively, and then set C = (C, k + �).

Lemma A.16 We have

∞
∑

�=0

�ε(�) = 1;
∑

k≥0
C∈Zn−1

≥0

�ε(k;C) = 1. (A.25)

Proof The first statement in (A.25) holds by the q-binomial theorem. The second holds
since

∑

k≥0
C∈Zn−1

≥0

�ε(k;C) =
∑

k,�≥0
C∈Zn−1

≥0

�ε(�) · �ε(k;C)

=
∑

Cn≥0
C∈Zn−1

≥0
D∈Zn≥0

Uqp
γ

(

A, (Bn, B); (C, Cn), (Dn, D)
) = 1,

where in the first equality we used the first statement of (A.25); in the second we used
(A.24); and in the third we used the stochasticity of Uqp (from Remark A.8). ��
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We next have the following two lemmas that describe the probability measures
arising as the limit when ε tends to 0 of those with distribution functions �ε and �ε.
The first shows that the former (as well as the Ub

z weights from Definition A.10) gives
rise to the Gamma(θ) random variable from Proposition A.12; it is due to [40]. The
second shows that the latter is given by the delta distribution at a specific pair of real
number and (n − 1)-tuple; we outline its proof (which is similar to previous results,
such as [68, Lemma 8.17] and [20, Proposition 6.19]) in Sect.A.5 below.

Lemma A.17 ([40, Lemma 2.1]). The following two statements hold.

(1) Sample �ε ∈ Z≥0 according to the distribution P[�ε = �] = �ε(�). Then, ε−1 ·
e−ε�ε converges in distribution to a Gamma(θ) random variable, as ε tends to 0.

(2) Sample �ε ∈ Z≥0 according to the distribution P[�ε = �] = Ub
1/γ (�). Then,

ε−1 · e−ε�ε converges in distribution to a Gamma(θ) random variable, as ε tends
to 0.

Lemma A.18 Sample an (n − 1)-tuple and integer (C; k) ∈ Z
n−1
≥0 × Z≥0 with proba-

bility �ε(C; k); denote c = (c1, c2, . . . , cn−1) = ε · C ∈ R
n−1
≥0 and k = εk ∈ R. As ε

tends to 0, we have that

ek+c[ j,n−1] converges in probability to the constant ea[ j,n]−bn+b[ j,n−1] + 1, for each

j ∈ �1, n�. (A.26)

Now we can quickly establish Proposition A.12.

Proof of Proposition A.12 This follows from Remark A.15, Lemmas A.17 and A.18. ��

A.5 Proof outline of Lemma A.18

In this section we outline the proof of Lemma A.18.

Proof of Lemma A.18 (Outline) First, it is quickly verified that the contribution to the
second sum in (A.25) coming from k ≥ (2ε−1) log ε−1 becomes negligible as ε tends
to 0, due to the factor of qk(k+Bn−An+c) on the right side of (A.23) (namely, the fact
that the exponent of q is quadratic in k). We may therefore restrict our attention to
when k ≤ (2ε)−1 log ε−1, in which case it can be confirmed that

lim
ε→0

∑

P≤B,C

q p(An−k+1)+ϕ(P,D−B)
n−1
∏

j=1

(q−B j ; q)Pj (q
−C j ; q)Pj

(q; q)Pj (q
−C j −D j ; q)Pj

= 1. (A.27)

Indeed, for sufficiently small ε, we have q p(An−k+1) ≤ ε p/3 (recalling (A.20), (A.21),
and the fact that k ≤ (2ε)−1 log ε−1), while the remaining factors in (A.27) grow at
most exponentially in p (with a uniformly bounded base). Therefore the sum on the
left side of (A.27) is asymptotically supported on the term P = e0, for which p = 0,
which gives (A.27).
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The remaining factors on the right side of (A.23) are nonnegative, since q ∈ (0, 1).
Let us analyze how their k-dependent parts

Fε(k;C) = qk(k+Bn−An+c) (q An−k+1; q)k

(q; q)k(qBn−An−d+1; q)k
, (A.28)

behave as ε tends to 0. Observe for any real numbers y, z ∈ R (with y ≥ 0) that

ε · log(qz/ε; q)�y/ε� = ε

�y/ε�
∑

j=0

log(1 − qz/ε+ j ) = ε
∑

x∈[0,y]∩ε·Z
log(1 − e−x−z)

∼
∫ y

0
log(1 − e−x−z)dx, (A.29)

as ε tends to 0.Applying this in (A.28), and setting k = εk and c = (c1, c2, . . . , cn−1) =
ε · C , we obtain

ε · log Fε(k;C) ∼ k(an − bn − k − c[1,n−1]) −
∫ k

0
log(1 − e−x )dx (A.30)

−
∫ k

0
log(1 − ea[1,n]+b[1,n−1]−bn−c[1,n−1]−x )dx, (A.31)

where we used the facts that d = a + b − c and that ε · log(q An−k+1; q)k ∼ 0 (as εAn

grows faster than any constant as ε tends to 0, by (A.20)). Denoting the right side of
(A.30) by G(k), we find

G ′(k)=an − bn − c[1,n−1]−2k − log(1 − e−k)− log(1 − ea[1,n]+b[1,n−1]−bn−c[1,n−1]−k);

G ′′(k) = −2 − e−k

1 − e−k
− ea[1,n]+b[1,n−1]−bn−c[1,n−1]−k

1 − ea[1,n]+b[1,n−1]−bn−c[1,n−1]−k
≤ −2 < 0.

Due to the negativity of G ′′, we deduce that G is maximized at the solution k to the
equation G ′(k) = 0, or equivalently to the unique nonnegative solution of

(ek − 1)(ek − ea[1,n]−bn+b[1,n−1]−c[1,n−1]) = ean−bn−c[1,n−1] . (A.32)

Hence, as ε tends to 0, the function Fε(k;C), and thus �ε(k;C) is maximized when
εk = k. By the strict concavity of G, these functions decay exponentially in ε−1/2 ·
|εk − k|. Hence, sampling (k;C) under �, we find that (A.32) must hold as ε tends to
0.

We next analyze the terms in �ε(k;C) that asymptotically depend on a given Ci .
Denoting

R = Bn − An − a − b + k,
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this quantity is given by (using (A.27) with the fact that D = A + B − C)

Fε;i (k;C) = qϕ(A+B−C,C)+c(R+c) 1

(q; q)R+c

1

(q; q)Ci (q; q)A j +B j −Ci

.

Using (A.29), and setting

r = bn − a[1,n] − b[1,n−1] + k ∼ εR; p j = a j + b j , (A.33)

for each j ∈ �1, n − 1�, it follows that

ε · log Fε;i (k;C) ∼
∑

1≤ j<h≤n−1

c j ch −
n−1
∑

j=1

p[1, j−1]c j − c[1,n−1]r − c2[1,n−1]

−
∫ r+c[1,n−1]

0
log(1 − e−x )dx

−
∫ ci

0
log(1 − e−x )dx −

∫ pi −ci

0
log(1 − e−x )dx . (A.34)

Denoting the right side of (A.34) (as a function in ci ) by Gi (ci ), we find that

G ′
i (ci ) =

∑

j �=i

c j + p[1,i−1] − r − 2c[1,n−1] − log(1 − e−ci ) − log(1 − e−r−c[1,n−1])

+ log(1 − eci −pi )

= log(1 − eci −pi ) − p[1,i−1] − log(eci − 1) − log(er+c[1,n−1] − 1),

and hence

G ′′
i (ci ) = − eci −pi

1 − eci −pi
− eci

eci − 1
− er+c[1,n−1]

er+c[1,n−1] − 1
< −2.

Due to this negativity of G ′′
i , we deduce that Gi is maximized at the solution ci to

the equation G ′
i (ci ) = 0, or equivalently the solution of

epi − eci

eci − 1
= ep[1,i] · (er+c[1,n−1] − 1).

Setting

η = (er+c[1,n−1] − 1)ep[1,n−1]

(er+c[1,n−1] − 1)ep[1,n−1] + 1
, so that

1 − η

η
= e−p[1,n−1](er+c[1,n−1] − 1)−1,

(A.35)
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it follows that ci solves

eci − 1

epi − eci
= ep[i+1,n−1] · 1 − η

η
, or equivalently eci = η + ep[i,n−1](1 − η)

η + ep[i+1,n−1](1 − η)
.

(A.36)

Hence, as ε tends to 0, the function Fε;i (k;C), and thus�ε(k;C), is maximized when
εCi = ci solves the Eq. (A.36). By the strict concavity of Gi , these functions decay
exponentially in ε−1/2 · |εCi − ci |. Hence, sampling (k;C) under �, we find that
(A.36) must hold for all i ∈ �1, n − 1�, as ε tends to 0; recall that (A.32) also must
hold.

Let us now solve these equations. Fixing some j ∈ �1, n − 1�, and taking the
product in (A.36) over all i ∈ � j, n − 1�, we find that

ec[ j,n−1] = η + ep[ j,n−1](1 − η), for all j ∈ �1, n − 1�. (A.37)

At j = 1, (A.37) gives (using (A.35) and (A.33))

ec[1,n−1] = er+c[1,n−1]+p[1,n−1]

(er+c[1,n−1] − 1)ep[1,n−1] + 1
, so ebn−an+k = er+p[1,n−1] = ep[1,n−1] − 1

ec[1,n−1] − 1
.

(A.38)

Inserting this into (A.32) yields

(

ean−bn (ep[1,n−1] − 1)

ec[1,n−1] − 1
− 1

)

· ean−bn

(

ep[1,n−1] − 1

ec[1,n−1] − 1
− ep[1,n−1]−c[1,n−1]

)

= ean−bn−c[1,n−1] ,

and thus

ean−bn (ep[1,n−1] − 1)(ep[1,n−1]−c[1,n−1] − 1) = (1 − e−c[1,n−1])(ep[1,n−1] − 1).

Hence,

ec[1,n−1] = ean−bn+p[1,n−1] + 1

ean−bn + 1
, so qk = ean−bn + 1. (A.39)

where in the last equality we applied (A.38). Together with (A.33), it follows that

er+c[1,n−1] = ebn−an−p[1,n−1]+k+c[1,n−1] = ebn−an−p[1,n−1] + 1,

and hence (A.35) implies

η = ebn−an

ebn−an + 1
, so ec[ j,n−1] = ean−bn+p[ j,n−1] + 1

ean−bn + 1
, for any j ∈ �1, n − 1�,

where in the last equality we used (A.37). This, together with (A.39) yields (A.26). ��
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A.6 The q → 1 LimitingWeights in Transitionary Rows

Recall that in Sect.A.4 we analyzed the limits of the Uqp
γ weight (fromDefinition A.5),

under the conditions (A.20) of its arguments. While (A.20) may hold in several rows
of our eventual fused vertex model converging to the log-gamma polymer, it will not
hold in all of them. In particular, there will be some rows in which An = 0, such as the
lowest one in which an arrow of color n enters the system. Such rows may be viewed
as “transitionary” regions where the “dominant color” changes from n − 1 to n, in
the sense that vertices output about ε−1 log ε−1 vertical arrows of color n − 1 in the
previous row, but they output about ε−1 log ε−1 vertical arrows of color n in this one.

In this section we analyze the limit as q tends to 1 of the Uqp
γ weight, under this

regime An = 0. Throughout this section, we fix a real number θ > 0 and nonnegative
real numbers (a1, a2, . . . , an−1) and (b1, b2, . . . , bn). Moreover, let ε ∈ (0, 1) be a
real number; set q = qε and γ = γε,θ as in (A.21); let Bn = Bε

n ∈ Z≥0 be an integer;
and let A = A

ε
and B = B

ε ∈ Z
n−1
≥0 be (n − 1)-tuples of integers such that for some

(uniformly bounded) integer β ≥ 1 we have

εA j ∼ a j , and εB j ∼ b j , for each j ∈ �1, n − 2�;
εAn−1 − log ε−1 ∼ an−1; An = 0; εBn−1 − (β − 1) log ε−1 ∼ bn−1;

εBn − β log ε−1 ∼ bn .

(A.40)

The following lemma describes the limiting law of the n-tuple C sampled according
to the stochastic weight Uqp

γ (from Definition A.5), as ε tends to 0.

Lemma A.19 Let q = qε ∈ (0, 1) and γ = γε,θ ∈ (0, 1) be as in (A.21); also
let Bn ∈ Z≥0, B ∈ Z

n−1
≥0 , and A ∈ Z

n≥0 be as in (A.40). Sample
(

C, (D,Dn)
) ∈

Z
n≥0 × Z

n−1
≥0 × Z≥0 with probability Uqp

γ

(

A, (B, Bn);C, (D,Dn)
)

, and denote

cn = εCn − log ε−1, and c j = εC j , for each j ∈ �1, n − 1�.

The the joint law of (c[ j,n]) j∈�1,n� converges to that of
(

log(ea[ j,n−1]−bn+b[ j,n−1] +1)−
logY

)

j∈�1,n−1� as ε tends to 0, where Y ∈ R>0 is a Gamma(θ) random variable.

Remark A.20 Set (d1, d2, . . . , dn) = (εD1, εD2, . . . , εDn−2, εDn−1−β log ε−1, εDn−
(β+1) log ε−1

)

in LemmaA.19. Then, the joint limiting law of (d[ j,n]) j∈�1,n� is deter-
mined by that of (c[ j,n]) j∈�1,n� by arrow conservation.

Remark A.21 Observe in Lemma A.19 that the limiting law of (c[ j,n]) j∈�1,n� is inde-
pendent of β, which will be useful in the proof of Theorem A.23 below.

Proof of LemmaA.19 (Outline) The proof of this lemma is similar to that of Proposi-
tionA.12, and soweonly brieflyoutline it. Recalling the notation fromDefinitionA.14,
Remark A.15 indicates that, to sample C , we may first sample � and (k;C) under
the density functions �ε and �ε, respectively, and then set C = (C; k + �).
By Lemma A.17, the law of ε−1 · e−ε� converges to a Gamma(θ) random vari-
able Y, as ε tends to 0. Hence, it suffices to show that εC[ j,n−1] converges to
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log(ea[ j,n−1]−bn+b[1,n−1] + 1) as ε tends to 0, if C = (C1, C2, . . . , Cn−1) ∈ Z
n−1
≥0

is sampled according to �ε.
By the factor of (q An−k+1; q)k on the right side of (A.23), and the fact that An = 0,

we must have k = 0 almost surely under �ε. Then, recalling (A.3) and the fact that
D = A + B − C in (A.23), it follows that

�ε(0;C) = qϕ(A+B−C,C)+c(Bn−a−b+c)
(q; q)Bn−b

(q; q)Bn−a−b+c
·

n−1
∏

j=1

(q; q)A j +B j

(q; q)C j (q; q)A j +B j −C j

×
∑

P≤B,C

q p+ϕ(P,D−B)
n−1
∏

j=1

(q−B j ; q)Pj (q
−C j ; q)Pj

(q; q)Pj (q
−A j −B j ; q)Pj

. (A.41)

Wefirst restrict to the casewhen c = O(ε−1), by showing that otherwise
∣

∣�ε(0;C)
∣

∣

would decay faster than e−εc2/3 and therefore become negligible. Indeed, since
C j ≤ A j + B j = O(ε−1) for j ∈ �1, n − 2� by (A.40), it suffices to verify that
∣

∣�ε(0;C)
∣

∣ ≤ eO(Cn−1)−εC2
n−1/2 if εCn−1 is sufficiently large. To that end, first observe

since ε(Bn − a − b) = O(1) by (A.40), we have qc(Bn−a−b+c) ≤ qc2−O(Cn−1/ε) ≤
eO(Cn−1)−εC2

n−1 . Moreover (since
∣

∣(q−B j ; q)Pj

∣

∣ <
∣

∣(q−A j −B j ; q)Pj

∣

∣), the remaining
terms on the right side of (A.41) decay at most exponentially in ε−1, except for

the term (q−Cn−1; q)Pn−1(q; q)−1
Pn−1

, which is at most eO(Cn−1)−εC2
n−1/2. Therefore,

∣

∣�ε(0;C)
∣

∣ ≤ eO(Cn−1)−εC2
n−1/2, which verifies the above-mentioned decay.

Thus we may assume c = O(ε−1), so ε(Dn−1 − Bn−1) = ε(An−1 − Cn−1) =
log ε−1 − O(1). Due to factor of qϕ(P,D−B) in the sum on the right side of
(A.41) (and the fact that the remaining terms in the sum grow at most expo-
nentially in |P |), one can verify that this sum is asymptotically supported on
the P ∈ Z

n−1
≥0 satisfying Pj = 0 for j ∈ �1, n − 2�. Moreover, due to the

fact that
∣

∣(q−Bn−1; q)Pn−1(q
−Cn−1; q)Pn−1(q; q)−1

Pn−1
(q−An−1−Bn−1; q)−1

Pn−1

∣

∣ decays as

q Pn−1(An−1−Cn−1), the asymptotic support of this sum also requires Pn−1 = 0, and
hence P = e0. Thus, to understand the behavior of (k;C) = (0;C) sampled from the
density function �ε, it suffices to understand the limiting behavior as ε tends to 0 of

˜�ε(0;C) = qϕ(A+B−C,C)+c(Bn−a−b+c)
(q; q)Bn−b

(q; q)Bn−a−b+c
·

n−1
∏

j=1

(q; q)A j +B j

(q; q)C j (q; q)A j +B j −C j

.

As in the proof of Lemma A.18, the C that contribute to ˜�ε will asymptotically be
supported on a single value of c = (c1, c2, . . . , cn−1) = ε · C . To understand which
value, we take the logarithm of the part of ˜�ε that depends on C, and multiply by ε to
obtain (using (A.29) and the facts that ε(An−1 + Bn−1 − Cn−1) ≥ log ε−1 − O(1))
the function



105 Page 92 of 111 A. Aggarwal, A. Borodin

Gε(c) = c[1,n−1] · (p[1,n−1] − bn − c[1,n−1]) −
n−1
∑

j=1

p[1, j−1]c j

−
n−1
∑

j=1

∫ c j

0
log(1 − e−x )dx +

∑

1≤ j<h≤n−1

c j ch

−
∫ bn−p[1,n−1]+c[1,n−1]

0
log(1 − e−x )dx

−
n−2
∑

j=1

∫ p j −c j

0
log(1 − e−x )dx,

where we have denoted p j = a j + b j for each j ∈ �1, n − 1�. The C that contributes
to ˜�ε is then obtained at the maximum of Gε, which is the solution of ∂ci Gε(c) = 0
for each i ∈ �1, n − 1�. These equations are given by

log(epi − eci ) − log(eci − 1) − p[1,i]
− log(ebn+c[1,n−1]−p[1,n−1] − 1) = 0, for i ∈ �1, n − 2�;
− log(ecn−1 − 1) − log(ec[1,n−1]+bn−p[1.n−1] − 1) − p[1,n−2] = 0.

Denoting

η = ebn+c[1,n−1]−p[1,n−1]

ebn+c[1,n−1]−p[1,n−1] − 1
, so that

1

η − 1
= ebn+c[1,n−1]−p[1,n−1] − 1,

(A.42)

it follows that

ec j = ep j · ep[1, j−1] + η − 1

ep[1, j] + η − 1
, for each j ∈ �1, n − 2�;

ecn−1 = e−p[1,n−2](η − 1 + ep[1,n−2]).

Thus, for each j ∈ �1, n − 1�, we have

ec[ j,n−1] = e−p[1, j−1] · (ep[1, j−1] + η − 1),

which taken at j = 1 implies that η = ec[1,n−1] . Together with (A.42), this yields
η = ec[1,n−1] = ep[1,n−1]−bn + 1, and therefore

ec[ j,n−1] = ep[ j,n−1]−bn + 1. (A.43)
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Hence, if we sample C according to �ε and set c = (c1, c2, . . . , cn−1) = ε · C, then
(A.43) holds. As mentioned previously, this (with Remark A.15 and Lemma A.17)
implies the lemma. ��

A.7 Convergence to the log-gamma polymer

In this section we show convergence of a stochastic vertex model with weightsUqp
γ and

Ub
1/γ (fromDefinitionsA.5 andA.10) to the log-gamma polymer.We begin by defining

the latter; throughout this section, we fix positive real parameters θ = (θ1, θ2, . . .) and
θ ′ = (θ ′

1, θ
′
2, . . .).

For each vertex (i, j) ∈ Z
2
>0, let Yi j denote a Gamma(θi + θ ′

j ) random variable,

with all (Yi j ) mutually independent over (i, j) ∈ Z
2
>0. For any vertices u, v ∈ Z

2
>0

such that v − u ∈ Z
2≥0, a directed path P = (w0, w1, . . . , wk) ∈ Z>0 from u to

v is a sequence of vertices starting at w0 = u, ending at wk = v, and satisfying
wi − wi−1 ∈ {(1, 0), (0, 1)} for each i ∈ �1, k�. The polymer weight of such a
directed path is defined to be

Z(P) =
∏

(i, j)∈P
Y−1

i j , (A.44)

and the point-to-point partition function from u to v is defined to be

Z(u → v) =
∑

P
Z(P), (A.45)

where the sum is over all directed paths P ⊂ Z
2
>0 from u to v.

Now let us describe the stochastic vertex model that converges to the log-gamma
polymer. To that end, let ε ∈ (0, 1) denote a real number, and set

q = qε = e−ε, and γi j = qθi +θ ′
j , for each (i, j) ∈ Z

2
>0.

Fix (possibly infinite) integers K1,K2, . . . ≥ 1. At any vertex (i, j) ∈ Z
2
>0, we will

sample a random colored (complemented) arrow configuration
(

A(i, j), (B(i, j),
Bm(i, j));C(i, j), (D(i, j),Dm(i, j))

)

, where Bm(i, j),Dm(i, j) ∈ Z≥0; B(i, j), D
(i, j) ∈ Z

m−1
≥0 ; and A(i, j),C(i, j) ∈ Z

m≥0. Here, m = m( j) ≥ 1 is the (unique)
positive integer such that K[1,m−1] +1 ≤ j ≤ K[1,m]. These arrow configurations will
be consistent, in the sense that A(i, j +1) = C(i, j) and

(

B(i +1, j), Bm(i +1, j)
) =

(

D(i, j),Dm(i, j)
)

for each (i, j) ∈ Z
2
>0 (where if j = K[1,m], the m-tuple C(i, j)

is interpreted as an (m + 1)-tuple by setting its (m + 1)-th entry to 0).
We will sample these arrow configurations recursively on triangles of the form

TN = {(x, y) ∈ Z
2
>0 : x + y ≤ N

}

. Given some integer N ≥ 1, suppose that arrow
configurations have been assigned to all vertices in TN−1; we will explain how to
sample them on TN . Fix a vertex on the diagonal (i, j) ∈ DN = TN \TN−1. First, set
A(N − 1, 1) = e0, B(1, N − 1) = e0, and Bm(N−1)(1, N − 1) = 0. Then, if i = 1 set
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D(1, j) = e0, and inductively define C(1, j) = A(1, j) + Dm( j)(1, j) · em( j), where
Dm(1, j) is sampled according to the probability (recalling Definition A.10)

P
[

Dm(1, j) = k
] = Ub;m

1/γ1, j
(k) (A.46)

If i > 1, then the inputs A(i, j) = C(i, j − 1) and
(

B(i, j), Bm(i, j)
) = (D(i −

1, j),Dm(i − 1, j)
)

at (i, j) have already been assigned (as they arise from arrow
configurations at vertices in TN−1). Sample its outputs

(

C(i, j), (D(i, j),Dm(i, j))
)

according to the probability (recalling Definition A.5)

P

[

(

C(i, j),
(

D(i, j),Dm(i, j)
)

)

∣

∣

∣

∣

(

A(i, j),
(

B(i, j), Bm(i, j)
)

)

]

= Ub;m
γi j

(

A(i, j),
(

B(i, j), Bm(i, j)
);C(i, j), (D(i, j),Dm(i, j))

)

.

This assigns a random arrow configuration to each vertex in TN ; letting N tend to ∞
yields a random ensemble of arrow configurations on the quadrant Z2

>0.
Observe in this way that, by (A.46), arrows of color n begin to enter the system

through its (K[1,n−1]+1)-st row. As in Sect.A.6, we will sometimes refer to such rows
as transitionary (as they will be where the most frequent color transitions from n − 1
to n). Moreover, due to the forms (from Definition A.5) of the weights Uqp, arrow
conservation in the ensemble sampled above appears slightly different from that in the
colored fused path ensembles introduced in Sect. 6.1. Here, it depends on the vertex
(i, j) ∈ Z

2
>0, and in particular on the index

21 m( j) associated with its row; it is given
by

A(i, j) + B(i, j) = C(i, j) + D(i, j);
Bm( j)(i, j) − Am( j)(i, j) = Dm( j)(i, j) − Cm(i, j)(i, j). (A.47)

Still, we will explain how the above ensemble arises from the colored stochastic fused
vertex model (from Sect. 6.1) in Remark A.24 below.

To state convergence of this model to the log-gamma polymer, we need to prescribe
an associated height function.Given an integer c ≥ 1, define the color (at least) c height
functions h→

c , h→≥c : Z2≥0 → Z by for any (i, j) ∈ Z
2≥0 setting (where we let Xc = 0

for any X ∈ Z
n and c > n)

h→
c (i, j) = −

j
∑

k=1

1c=m(k) · Dm(k)(1, k) −
i
∑

k=2

Cc(k, j); h→≥c(i, j) =
∞
∑

c′=c

hc′(i, j).

(A.48)

Remark A.22 The height functions are defined above by summing (negative) entries
of arrow configurations along the specific up-right path from (1, 1) to (i, j) that first

21 This is related to the fact that we are implicitly “complementing” the arrows of color m( j) on the j-th
row.
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proceeds north to (1, j) and then east to (i, j). Using arrow conservation (A.47), one
obtains the same result by replacing this by any up-right path. For instance, by instead
considering the path that first proceeds east to (i, 1) and then north to (i, j), we also
have

h→
c (i, j) =

j
∑

k=1

1c<m(k) · Dc(i, k) −
j
∑

k=1

1c=m(k) · Dm(k)(i, k) −
i
∑

k=2

1c≤m(i) · Cc(k, 1).

Given this notation, we have the following theorem. It indicates the convergence,
as ε tends to 0, of the height functions for the above vertex model to the point-to-point
polymer partition functions of the log-gamma polymer. Observe in this result that the
colors are lost in the polymer degeneration, and they instead track one endpoint of the
polymer.

Theorem A.23 Under the above setup, the random variables Xε
c(i, j) = εi+ j ·

e−εh→≥c(i, j) converge to the log-gamma polymer partition functionsZ
(

(1, K[1,c−1]+1) →
(i, j)

)

, as ε tends to 0, jointly over all (c, i, j) in compact subsets ofZ>0×Z>0×Z>0.

Proof For each (i, j) ∈ Z
2
>0, let Yi j = Yi, j denote a Gamma(θi + θ ′

j ) random

variable, with all (Yi j )mutually independent over (i, j) ∈ Z
2
>0. Further setZc(i, j) =

Z
(

(1,K[1,c−1] + 1) → (i, j)
)

for each c ∈ Z>0 and (i, j) ∈ Z
2
>0. Then, it follows

from (A.44) and (A.45) that for c > 0 the Zc(i, j) are determined by the recursive
relations

Zc(i, j) = Y−1
i j · (Zc(i − 1, j) + Zc(i, j − 1)

)

, for (i, j) ∈ Z>1 × Z>K[1,c−1]+1;
Zc(1, j) = Y−1

1 j · Zc(1, j − 1), for j ≥ K[1,c−1] + 1;
Zc(i,K[1,c−1] + 1) = Y−1

i,K[1,c−1]+1 · Zc(i − 1,K[1,c−1] + 1), for i ≥ 2;
Zc(1,K[1,c−1] + 1) = Y−1

1,K[1,c−1]+1. (A.49)

It therefore suffices to show that Xε
c(i, j) satisfies the same recursion, as ε tends to 0.

To that end let us analyze the behavior, as ε tends to 0, of the dynamics for the arrow
configurations

(

A(i, j), (B(i, j), Bm( j)(i, j));C(i, j), (D(i, j),Dm( j)(i, j))
)

. First
observe from (A.46) and the second part of Lemma A.17 that for each j ≥ 1 we
have Bc(1, j) = Dc(1, j) = 0 for c �= m( j), and Bm( j)(1, j) = 0 and Dm( j)(1, j) =
ε−1 log ε−1 + O(ε−1); more specifically, we have

ε · eεDm( j)(1, j) converges in distribution to Y−1
1 j , as ε tends to 0. (A.50)

We will next understand the behavior of these arrow configurations for (i, j) ∈
Z>1 × Z>0. We will see that their behavior depends on whether j is a transitionary
row, that is, if j = K[1,m( j)−1] + 1. In particular, we will show the following by
induction on the lexicographic pair ( j, i); here, we abbreviate m = m( j), and
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(

z1(i, j), z2(i, j), . . . , zm(i, j)
)

are some real numbers that are bounded by a ran-
dom number independent of ε, for each index z ∈ {a, b, c, d}. If j = K[1,m−1] + 1
indexes a transitionary row, then we will show

Am−1(i, j) = ε−1 log ε−1 + ε−1am−1(i, j); Bm−1(i, j) = (i − 2) · ε−1 log ε−1 + ε−1bm−1(i, j);
Cm−1(i, j) = ε−1cm−1(i, j); Dm−1(i, j) = (i − 1) · ε−1 log ε−1 + ε−1dm−1(i, j);
Am (i, j) = 0; Bm (i, j) = (i − 1) · ε−1 log ε−1 + ε−1bm (i, j);
Cm = ε−1 log ε−1 + ε−1cm (i, j);Dm (i, j) = i · ε−1 log ε−1 + ε−1dm (i, j). (A.51)

In this way, the transitionary row “absorbs” most color m −1 arrows from the previous
row, and also “emits” arrows of color m; due to the arrow conservation (A.47), this
leads to an accumulation of arrows of both colors m − 1 and m in this row. If instead
j > K[1,m−1] + 1 does not index a transitionary row, then we will show

Zm−1(i, j) = ε−1zm−1(i, j), if Z ∈ {A, B, C, D};
Zm(i, j) = ε−1 log ε−1 + ε−1zm(i, j), if Z ∈ {A, C};
Zm(i, j) = ε−1 log ε−1 + ε−1zm(i, j), if Z ∈ {B,D}. (A.52)

In both cases for j , we will also show for any index Z ∈ {A, B, C, D} that

Zc(i, j) = ε−1zc(i, j), if c ≤ m − 2. (A.53)

Let us first verify that (A.51) and (A.53) both hold if j = K[1,m−1] + 1 indexes a
transitionary row. To that end, observe by the inductive hypothesis (and the previous
discussion on the first column, if i = 2) that these statements for the entrance data
Ak(i, j), Bk(i, j), andBk(i, j)hold. The fact that it also holds for the exit dataCk(i, j),
Dk(i, j), andDm(i, j) then follows from (theβ = i−1 case of) LemmaA.19, together
withRemarkA.21 and arrowconservation (A.47) (recall RemarkA.20).Wenext verify
that (A.52) and (A.53) hold if j > K[1,m−1] + 1 does not index a transitionary row. In
this case, again the inductive hypothesis (together with the previous discussion on the
first column, if i = 2, and (A.51) if j = K[1,m−1] + 2 indexes a row directly above a
transitionary one) verifies these statements for the entrance data Ak(i, j) and Bk(i, j).
The fact that it also holds for the exit dataCk(i, j), Dk(i, j), andDm(i, j) then follows
from Proposition A.12, together with arrow conservation (A.47). This verifies (A.51),
(A.52), and (A.53); by Proposition A.12 and Lemma A.19, it also shows that

ec[k,m](i, j) converges in distribution to Y−1
i j · (ea[k,m](i, j)−bm (i, j)+b[k,m](i, j) + 1),

(A.54)

as ε tends to 0 (where we have set an(i, j) = 0 if j = K[1,m−1] + 1 indexes a
transitionary row, due to the fact that Am = 0 in (A.51)).

Now let us analyze the height function for this model. First observe for any (i, j) ∈
Z>1×Z>0 and c ∈ �1, m−1�, wherem = m( j), that the definition (A.48) of the height
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function, consistency of the ensemble, arrow conservation (A.47), and Remark A.22
together imply that

h→
c (i, j − 1) = h→

c (i − 1, j − 1) − Ac(i, j);
h→

c (i − 1, j) = h→
c (i − 1, j − 1) + Bc(i, j);

h→
c (i, j) = h→

c (i − 1, j) − Cc(i, j), (A.55)

and that

h→
m (i, j − 1) = h→

m (i − 1, j − 1) − Am(i, j);
h→

m (i − 1, j) = hm(i − 1, j − 1) − Bm(i, j);
h→

m (i, j) = h→
m (i − 1, j) − Cm(i, j). (A.56)

Hence, for any integer c ≥ 1, we have

h→≥c(i − 1, j) = h→≥c(i, j − 1) + A[c,m](i, j) + B[c,m−1](i, j) − Bm(i, j). (A.57)

Thus, setting X0
c(i, j) = limε→0 X

ε
c(i, j), we have if i > 1 and j > K[1,c−1] + 1

that

X0
c(i, j) = lim

ε→0
εi+ j e−εh→≥c(i, j)

= lim
ε→0

εi+ j e−εh→≥c(i−1, j) · eεC[c,m](i, j)

= lim
ε→0

εi+ j−1e−εh→≥c(i−1, j) · ec[c,m](i, j)

= lim
ε→0

εi+ j−1e−εh→[c,m](i−1, j) · (ea[ j,m](i, j)+b[ j,m−1](i, j)−bm (i, j) + 1) · Y−1
i j

= lim
ε→0

εi+ j−1e−εh→≥c(i−1, j) · (eεA[c,m](i, j)+εB[c,m−1](i, j)−εBm (i, j) + 1) · Y−1
i j

= lim
ε→0

εi+ j−1(e−εh→≥c(i, j−1) + e−εh→≥c(i−1, j)) · Y−1
i j

= Y−1
i j · (X0

c(i, j − 1) + X0
c(i − 1, j)

)

, (A.58)

where the first equality follows from the definition ofXε
c(i, j) = εi+ j ·e−εh→≥c(i, j); the

second from the third statements in (A.55) and (A.56); the third from the definition
of ck in terms of Ck from (A.51), (A.52), and (A.53); the fourth from (A.54); the fifth
from the definitions of ak and bk in terms of Ak and Bk , respectively, from (A.51),
(A.52), and (A.53); the sixth from (A.57); and the seventh again from the definition
of Xε

c(i, j). If instead i > 1 and j = K[1,c−1] + 1 (meaning that c = m and j indexes
a transitionary row), then following (A.58) we obtain

X0
c(i, j) = lim

ε→0
εi+ j−1e−εh→[c,m](i−1, j) · (ea[ j,m](i, j)+b[ j,m−1](i, j)−bm (i, j) + 1) · Y−1

i j

= lim
ε→0

εi+ j−1e−εh→≥c(i−1, j) · (εeεA[c,m](i, j)+εB[c,m−1](i, j)−εBm (i, j) + 1) · Y−1
i j
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= lim
ε→0

εi+ j−1e−εh→≥c(i−1, j) · Y−1
i j = Y−1

i j · X0
c(i − 1, j),

where the second statement follows from (A.51); similarly, it is quickly verified that
X0

c(1, j) = Y−1
1 j · X0

c(1, j − 1) for j > K[1,c−1] + 1 and X0
c(1,K[1,c−1] + 1) =

Y−1
1,K[1,c−1] , using (A.50). These, with (A.58) confirm that X0

c satisfies the same recur-

sion (A.49) determining the Zc(i, j). It follows that X0
c(i, j) = Zc(i, j), which

establishes the theorem. ��
Remark A.24 Let us explain how the random ensemble described in this section arises
as a specialization of the colored stochastic fused vertex model introduced in Sect. 6.1.
To that end, let M ∈ R be a real number and L ≥ 1 be an integer (that we will
analytically continue in). The parameters (x j , r j ) associated with the j-th row of the
model, and those (yi , si ) associated with the i-th column, will be given by

(x j , r j ) = (q1−θ ′
j , q−L/2), for each j ≥ 1;

(yi , si ) = (qθi −M, q−M/2), for each i ≥ 1.

Consider a colored stochastic fused vertex model on Z
2
>0 with these parame-

ters, and with L arrows of color m( j) entering through row22 j , for each j ≥ 1.
Let
(

A(i, j), B(i, j);C(i, j), D(i, j)
)

denote the colored fused arrow configura-
tion in this model at any vertex (i, j) ∈ Z

2
>0. We next “complement” arrows of

color m( j) in the j-th row, by setting B(i, j) = (

B(i, j),L − Bm( j)(i, j)
)

and
D(i, j) = (D(i, j),L−Dm( j)(i, j)

)

for each i ≥ 1.We then track the complemented
arrow configuration

(

A(i, j), (B(i, j), Bm( j)(i, j));C(i, j), (D(i, j),Dm( j)(i, j))
)

over (i, j) ∈ Z
2
>0.

Now analytically continue in L, replacing it with a real number L ≥ 0. Let M

tend to ∞, and then let L tend to ∞. Since x j y−1
i = q1−θi −θ ′

j +M = qM+1γ −1
i j ,

Lemmas A.3, A.4, and A.7 (with the qN in the first two equal to qM+Lγ −1
i j here, so

that x j y−1
i = qN−L+1) implies that this procedure yields at (i, j) ∈ Z

2
>0 the U

qp;m( j)
γ -

weights from Lemma A.7. Since x j (yi s2i )−1 = qγ −1
i j , it also at any vertex (1, j) (in

the first column) yields the Ub;m( j)
1/γ1 j

-weights from Definition A.10. Hence, this gives
rise to the vertex model described above Theorem A.23.

Remark A.25 Let us briefly (and informally) explain the reason behind our parameter
choiceswhen degenerating the colored fused stochastic vertexmodel to the log-gamma
polymer inRemarkA.24. In the uncolored case n = 1, [27, Proposition 7.26] describes
how to specialize theUq(̂sl2) stochastic fused vertexmodel to the q-Hahn PushTASEP
introduced in [37]. However, the arrows in that vertex model are reversed relative to
here; they are directed up-left instead of up-right [27, Figure 19]. To remedy this,
one must complement those arrow configurations by tracking how many arrows its

22 Since m = m( j) is defined so that j ∈ �K[1,m−1] + 1,K[1,m]�, this means that there are K1,K2, . . .

rows inputting arrows of colors 1, 2, . . . into the model, respectively.
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horizontal edges are from being saturated (as in (A.2)); this directs its paths up-right
(and also imposes a change in the spectral parameters involved in the vertex weights).
The vertex weights obtained in this way precisely coincide with the n = 1 case of
the complemented ones provided in Definition A.1 (and Lemma A.3). The subsequent
limits taken in Appendix A.2 correspond to degenerating the q-Hahn PushTASEP to
the q-PushTASEP; those taken in Appendix A.4 correspond to degenerating the latter
to the log-gamma polymer (as described in [68]).

In the colored case n > 1, the setup is similar, though it admits a few differences.
The main one is that we only complement arrows of the largest color when defining
the complemented weights in Secion A.1 (a choice that is essentially forced by the
step type boundary conditions we consider). This leads to a seemingly new presence
of “transitionary rows,” where the largest color in the model changes, and the limiting
behavior of the weights in these rows must be addressed in Appendix A.4.

Appendix B Effective convergence of the six-vertexmodel to ASEP

In Sect. 4 we described colored line ensembles for the stochastic six-vertex model.
It was shown in [1, 18] that under a certain limit degeneration that the latter, with
weights (b1, b2) as depicted in Fig. 23, converges to the asymmetric simple exclusion
process (ASEP), with left jump rate L and right jump rate R. This degeneration takes
(b1, b2) = (εL, εR), scales the vertical coordinate by ε−1, lets ε tend to 0, and
observes the vertically exiting arrows along the main diagonal of Z2; this in particular
makes time (the vertical coordinate) continuous and space (the horizontal coordinate)
infinite. A similar limit can be taken on the associated colored line ensemble, and
most of its relevant properties would be preserved, including its height function match
Theorem 4.7 (in this case, to the colored ASEP) and its Gibbs property Theorem 4.8.
However, the domain of this colored line ensemble would be infinite, and therefore its
boundary conditions would be lost.

When analyzing line ensembles, it is at times (including in the forthcoming
work [6]) useful to keep these boundary conditions intact. Thus, to understand the
colored ASEP, it can be helpful not to directly study its line ensemble by letting ε

tend to 0 in the colored stochastic six-vertex one, but instead to analyze the latter at
ε > 0 (where its boundary conditions are present) and then let ε tend to 0 afterwards.
This can require effective convergence rates of the stochastic six-vertex model to the
ASEP, which were not proven in [1].

In this section we provide such a convergence result. We state it in Sect.B.2 after
introducing the colored ASEP in Sect.B.1; its proof is then given in Sects.B.3 and
B.4. Throughout this section, we fix real numbers23 R, L ≥ 0. The constants below
might implicitly depend on R and L , even when not stated explicitly.

23 The ASEP usually imposes the asymmetry condition R �= L , but we will not require that here.
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B.1 Properties of the colored ASEP

The colored ASEP is a continuous time Markov process that can be described as
follows. Particles are initially, at time 0, placed on Z in such a way that exactly one
particle occupies any site. Assigned to each particle is a color, which is a nonnegative
integer label that informally measures the “priority” of the particle (those of a larger
color are viewed as having higher priority than those of a smaller one). Denote the
color of the particle at site x ∈ Z and time t ∈ R≥0 by ηt (x) ∈ Z≥0; further denote
the full state of the process at time t by ηt = (ηt (x)

)

x∈Z.
Associated with each site x ∈ Z are two independent exponential clocks, a “left”

one of rate L and a “right” one of rate R. If the left clock of x rings at some time
s ∈ R>0, then the particle at site x switches places with the one at site x − 1 if
ηs−(x) > ηs−(x − 1) (and does nothing otherwise). Similarly, if the right clock of x
rings at time s, then the particle at site x switches places with the one at site x + 1 if
ηs−(x) > ηs−(x + 1) (and does nothing otherwise).

We next recall from [52, 53] a graphical representation for the colored ASEP. For
any x ∈ Z, let S(x) = (S1(x), S2(x), . . .

)

and T(x) = (T1(x), T2(x), . . .
)

denote the
ringing times (in increasing order) for the left and right clocks associated with site x ,
respectively. For each integer i ≥ 1, draw a directed arrow onZ×R≥0 from

(

x, Si (x)
)

to
(

x −1, Si (x)
)

and from
(

x, Ti (x)
)

to
(

x +1, Ti (x)
)

. The union of these arrows from
a directed graph G, which we call the ASEP time graph; its horizontal and vertical
directions index space and time, respectively. Given G, the dynamics of the colored
ASEP are defined by having each particle remain at its site x until it reaches a time t at
which there is an arrow in G connecting (x, t) to some (y, t) (for y ∈ {x − 1, x + 1}).
At this time t , the particle at site x switches locations with the one at site y if either
ηt−(x) > ηt−(y) and the edge is directed from (x, t) to (y, t), or if ηt−(x) < ηt−(y)

and the edge is directed from (y, t) to (x, t); otherwise, the particle at x stays in place.
Before proceeding, let us record the following lemma, which is sometimes known

as a finite speed of discrepancy bound. It states that, if two colored ASEPs initially
agree on a (sufficiently long) interval, then with high probability their dynamics can
be coupled so as to agree on a shorter interval, up until a given time.

Lemma B.1 There exists a constant C > 1 such that the following holds. Let T ≥ 0
and K > 1 be real numbers; U ≤ V be integers; and ξ = (ξt (x)

)

and η = (ηt (x)
)

denote two colored ASEPs whose initial data satisfy ξ0(x) = η0(x) for each x ∈
�U −C K T , V +C K T �. Then it is possible to couple ξ and η such that, with probability
at least 1 − Ce−K (T +1), we have ξt (x) = ηt (x) for each (x, t) ∈ �U , V � × [0, T ].
Proof Let C > 1 be a constant to be fixed later. Couple ξ and η under the same time
graph G. Then ξt0(x0) �= ηt0(x0) holds for some (x0, t0) ∈ �U , V � × [0, T ] only if
there exists some (x1, t1) ∈ (Z\�U −C K T , V +C K T �

)×[0, T ], such that a particle
at site x1 at time t1 could (for some trajectories of the remaining particles) enter the
interval �U , V � sometime during [0, T ] under G; this is contained in the union of
two events. The first is that there exists a sequence of times 0 ≤ r1 ≤ r2 ≤ . . . ≤
r�C K T � ≤ T for which there exists an arrow in G connecting

(

U −�C K T �+ i −1, ri
)

and
(

U − �C K T � + i, ri
)

for each i ∈ �1, C K T �; the second is that there exists
a sequence of times 0 ≤ r ′

1 ≤ r ′
2 ≤ · · · ≤ r ′�C K T � ≤ T for which there exists an
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Fig. 23 The weights for the colored stochastic six-vertex model in Sect.B.2 are depicted above

arrow in G connecting
(

V + �C K T � − i + 1, r ′
i ) and

(

V + �C K T � − i, r ′
i

)

for each
i ∈ �1, C K T �.

Now recall that the set of times at which arrows in G enter or exit a given column
{x}×R≥0 has the same law as that of the ringing times of an exponential clock of rate
R + L . Hence, the probabilty of each of the above events is bounded by the probability
that a sum of T exponential random variables with parameter R + L is at least C K T .
A Chernoff bound implies that the latter is at most Ce−K (T +1) if C is sufficiently
large, establishing the lemma. ��

B.2 Properties of the colored stochastic six-vertex model

In this section we state the effective convergence of the stochastic six-vertex model to
the colored ASEP, and also provide several properties of the former. Let b1, b2 ∈ [0, 1]
denote real numbers; set q = b1b−1

2 ; consider the colored stochastic six-vertex model
(as defined in Sect. 1.2) on the quadrant Z2

>0, with spectral parameter zi, j = (1 −
b2)(1− b1)−1 at each (i, j) ∈ Z

2
>0; and assume that the largest color in this system is

at most some integer n ≥ 0. See Fig. 23 for the stochastic weights of this model. For
any integer (x, y) ∈ Z

2
>0, let ηy(x) ∈ �0, n� denote the color of the arrow vertically

exiting (x, y) in this model; also let ηy = (ηy(x)
)

x>0 denote the full state of the
process at vertical coordinate y.

Next we state the effective24 convergence result; it will be proven in Sect.B.3 below.
In what follows, given a function � : Z → �0, n�, we say that the colored stochastic
six-vertex model η on the quadrant Z2

>0 has boundary data � if the below holds. For
each integer x ≤ 0, an arrow of color �(x) horizontally enters the quadrant through
(0, 1 − x) and, for each integer x > 0, an arrow of color �(x) vertically enters the
quadrant through (x, 0). We say that the boundary data for this model matches the
initial condition for a colored ASEP ξ = (ξt (x)

)

if � = ξ0.

Proposition B.2 There exists a constant C > 1 such that the following holds. Let
ε ∈ (0, 1) and T ≥ 0 be real numbers; let U ≤ V be integers; let T ⊂ [0, T ]
denote a finite set of real numbers; and let ξ = (ξt (x)

)

denote a colored ASEP with
at most n colors. Further let η = (

ηy(x)
)

denote a colored stochastic six-vertex

24 We made no effort to optimize the exponent ε1/8 in the probability in Proposition B.2.
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model on Z
2
>0 with parameters (b1, b2) = (εL, εR), whose boundary data matches

the initial data of ξ . It is possible to couple ξ and η so that, with probability at least
1 − C(V − U + 1)(T + 1)2|T|ε1/8, we have

ξt (x) = η�t/ε�
(

x + �tε−1�), for each (x, t) ∈ �U , V � × T with x + �tε−1� > 0.
(B.1)

To prove Proposition B.2, it will be useful to introduce notation for the randomness
defining the colored stochastic six-vertex model (this discussion also appears in a
slightly different, though equivalent, form in [3, Section 2.3] and [64, Section 2.2]).
To that end, for any vertex (x, y) ∈ Z≥0, we associate Bernoulli random variables
χx,y, ψx,y ∈ {0, 1} with P[χx,y = 1] = b1 and P[ψx,y = 1] = b2. Given all of these
random variables, the dynamics of the colored stochastic six-vertex model are defined
as follows. Fix a vertex (x, y) ∈ Z

2
>0, and suppose that colored six-vertex arrow

configurations have been assigned to each (x ′, y′) ∈ Z
2
>0 with x ′ + y′ < x + y; this

fixes the colors a = a(x, y) and b = b(x, y) of the arrows vertically and horizontally
entering (x, y), respectively. Then define the colors c = c(x, y) and d = d(x, y)

of the arrows vertically and horizontally exiting (x, y), respectively, according to the
below procedure.

(1) If a = b, then set c = d = a = b.
(2) If a > b, then set (c, d) = (a, b) if χx,y = 1 and (c, d) = (b, a) if χx,y = 0.
(3) If a < b, then set (c, d) = (a, b) if ψx,y = 1 and (c, d) = (b, a) if ψx,y = 0.

This provides a way of sampling the colored stochastic six-vertex model defined
above. In what follows, for any x ∈ Z, define the increasing integer sequences s(x) =
(

s1(x), s2(x), . . .) and t(x) = (t1(x), t2(x), . . .
)

, such that s ∈ s(x) if and only if
χx+s−1,s > 0, and t ∈ t(x) if and only if ψx+t,t > 0 (here, the offsets x + s and
x + t are introduced to match with (B.1)). Observe that the

(

s(x)
)

and
(

t(x)
)

(over all
x ∈ Z) together determine all (χx,y, ψx,y)x,y>0.

Before proceeding, we record the following lemma that provides a finite speed of
discrepancy bound for the colored stochastic six-vertex model (and is analogous to
Lemma B.1).

Lemma B.3 There exists a constant C > 1 such that the following holds. Let T ≥ 0,
K > 1, and ε ∈ (0, 1) be real numbers; set (b1, b2) = (εL, εR); and let U ≤ V
be integers. Further let ξ y = (ξy(x)

)

x>0 and ηy = (ηy(x)
)

x>0 denote two colored

stochastic six-vertex models with parameters (b1, b2) and boundary data � ξ : Z →
�0, n� and � η : Z → �0, n�, respectively. Assume that � ξ (x) = � η(x) for each x ∈
�U −C K T , V +C K T �. Then it is possible to couple ξ and η such that, with probability
at least 1 − Ce−K (T +1), we have ξy(x) = ηy(x) for each (x, y) ∈ Z>0 × �1, T ε−1�
satisfying U ≤ x − y ≤ V .

Proof Couple ξ and η under the same processes
(

s(x)
)

and
(

t(x)
)

, and define the strip

R = {(x, y) ∈ Z>0 × �1, T ε−1� : U ≤ x − y ≤ V
}

.



Colored line ensembles for stochastic vertex models Page 103 of 111 105

Then ξy0(x0) �= ηy0(x0) holds for some (x0, y0) ∈ R only if there exists some
(x1, y1) on the x-axis or y-axis with x1 − y1 /∈ [U − C K T , V + C K T ], such that
a colored path entering the quadrant through (x1, y1) could (for some trajectories of
the remaining colored paths) enterR under the above randomness

(

s(x)
)

and
(

t(x)
)

.
This is contained in the event on which there exists an integer k ≥ 0; a sequence of
integers w0, w1, . . . , wk with |wi − wi−1| = 1 for each i ∈ �1, k�; and a sequence
of positive integers 0 ≤ r0 ≤ r1 ≤ . . . ≤ rk ≤ T ε−1 such that ri ∈ s(wi ) ∪ t(wi )

for each i ∈ �1, k�, and one of the following two possibilities holds. The first is that
w0 ≤ U − C K T ≤ U ≤ wk ; the second is that w0 ≥ V + C K T ≥ V ≥ wk .

Now, observe that the differences between consecutive entries of any s(x) ∪ t(x)

are distributed as independent geometric random variables with parameter 1 − (1 −
εL)(1 − εR) ≤ ε(L + R). Hence, the probability of each of the above possibilities
is bounded by the probability that a sum of �T ε−1� geometric random variables with
parameter ε(R + L) is at least C K T . A Chernoff bound implies that the latter is at
most Ce−K (T +1) if C is sufficiently large, establishing the lemma. ��

B.3 Proof of Proposition B.2

In this section we establish Proposition B.2. Its proof will use the below lemma, which
is shown in Sect.B.4 below. It indicates that the processes S(x) and T(x) from Sect.B.1
can be coupled to nearly coincide (after scaling) with the s(x) and t(x) from Sect.B.2,
on a long interval, with high probability. In what follows, we recall the notation from
those sections, assocating the parameters (L; R)with the (S; T)processes and (εL; εR)

with the (s; t) ones.

Lemma B.4 There exists a coupling between
(

S(x); T(x)
)

x∈Z and
(

s(x); t(x)
)

x∈Z, and
a constant C > 1 such that, for any real numbers U0 ≤ V0, ε ∈ (0, 1), and T ≥ 0, the
following statements all hold with probability at least 1−C(V0−U0+1)(T +1)ε1/4.

(1) For any index pair (R, r) ∈ {(S, s), (T, t)} and each pair (i, x) ∈ Z≥1 × �U0, V0�

such that Ri (x) ≤ T or ri (x) ≤ T ε−1, we have εri (x) ≤ Ri (x) ≤ εri (x)+ ε1/2 <

T .
(2) For distinct triples (R, i, x), (R′, i ′, x ′) ∈ {S, T} × Z≥1 × �U0, V0� such that

Ri (x), R′
i ′(x ′) < T , we have

∣

∣Ri (x) − R′
i ′(x ′)

∣

∣ > 2ε1/2.

Proof of Proposition B.2 We will assume for notational convenience that the set of
times T = {T } (from which the proof of the proposition for general T quickly follows
by a union bound). Set K = �ε−1/8�, and let C0 > 1 denote the maximum of the
constants C from Lemmas B.1, B.3, and B.4.

We first use the finite speed of discrepancy bounds (Lemmas B.1 and B.3) to “cut
off” the initial data for ξ and η. To that end, let ξ ′ = (ξ ′

t (x)
)

denote a colored ASEP
with initial data ξ ′

0(x) = ξ0(x) · 1x∈[U−C0K T ,V +C0K T ], and let η′ = (η′
y(x)
)

denote
a colored stochastic six-vertex model with parameters (b1, b2) = (εL, εR), whose
boundary data matches the initial data of ξ ′. By Lemmas B.1 and B.3, we may couple
ξ and ξ ′, and also η and η′, so that with probability at least 1− 2C0e−K ≥ 1− 16C0ε

we have ξt (x) = ξ ′
t (x) for each (x, t) ∈ �U , V �×[0, T ], and ηy(x) = η′

y(x) for each
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(x, y) ∈ Z>0 × �1, T ε−1� with U ≤ x − y ≤ V . Hence, we may replace ξ and η by
ξ ′ and η′, respectively, so we will assume in what follows that ξ = ξ ′ and η = η′.

Next define the process ζ = (ζy(x)
)

from η by setting ζy(x) = ηy(x+y) (see (B.1))
for each (x, y) ∈ Z

2
>0. Recall fromSects.B.1 andB.2 that ξ and ζ are determined from

the processes
(

S(x); T(x)
)

x∈Z and
(

s(x); t(x)
)

x∈Z, respectively; it will be useful to
restrict these processes to a bounded subset of x ∈ Z. To that end, recall for any x ∈ Z

that S(x) ∪ T(x) is given by the ringing times of an exponential clock of rate L + R.
Hence, the trajectory of the rightmost particle of nonzero color in ξ is stochastically
dominated by a random walk starting at V + C0K T , that jumps one space to the
right whenever an exponential clock of rate L + R rings. Therefore, a Chernoff bound
implies (after increasing C0 if necessary) that this particle remains left of V +2C0K T
with probability at least 1 − C0e−K ≥ 1 − 8C0ε. Similarly, the leftmost particle of
nonzero color in ξ remains right of U − 2C0K T with probability at least 1 − 8C0ε.

Wemay apply analogous reasoning to ζ . In particular, for any x ∈ Z, the differences
of the entries in s(x) ∪ t(x) are given by mutually independent geometric random
variables of parameter 1−(1−εL)(1−εR) ≤ ε(L+ R). Hence, recalling the diagonal
shifts in the definitions of s and t from Sect.B.2, the trajectory of the rightmost path (of
nonzero color) in ζ is stochastically dominated by a randomwalk starting at V +C0K T
that jumps to the right according to a geometric randomvariable of parameter ε(L+R).
Therefore, a Chernoff bound implies (after increasing C0 if necessary) that this path
remains to the left of V + 2C0K T with probability at least 1 − C0e−K ≥ 1 − 8C0ε.
Similarly, the leftmost path of nonzero color in ζ remains right of U − 2C0K T with
probability at least 1 − 8C0ε. Together, these facts yield P[E] ≥ 1 − 32C0ε, where
E = E1 ∩ E2 and we have denoted the events

E1 = {ξt (x) = 0, for all x /∈ �U − 2C0K T , V + 2C0K T � and t ∈ [0, T ]};
E2 = {ζy(x) = 0, for all (x, y) ∈ �U − 2C0K T , V + 2C0K T �

× �0, T ε−1� with x + y > 0
}

.

Now, Lemma B.4 gives a coupling between
(

S(x); T(x)
)

and
(

s(x); t(x)
)

such that
the following holds on an eventFwithP[F] ≥ 1−C0(V −U+4C0K T +1)(T +1)ε1/4.
First, for any index pair (R, r) ∈ {(S, s), (T, t)} and each pair (i, x) ∈ Z≥1 × �U −
2C0K T , V + 2C0K T � with Ri (x) ≤ T , we have

εri (x) ≤ Ri (x) ≤ εri (x) + ε1/2 < T . (B.2)

Second, for any distinct triples (R, i, x), (R′, i ′, x ′) ∈ {S, T}×Z≥1×�U −2C0K T , V +
2C0K T � with Ri (x), R′

i ′(x ′) ≤ T , we have

∣

∣Ri (x) − R′
i ′(x ′)

∣

∣ > 2ε1/2. (B.3)

We claim on E∩F that the ASEP and stochastic six-vertex configurations coincide,
namely,

ξT (x) = ζ�T /ε�(x), for each x ∈ Z with x + �T ε−1� > 0. (B.4)
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To verify this, first observe on E that (ζ t )t≤T and (ξ y)y≤T /ε only depend on
(

S(x), T (x)
)

and
(

s(x), t(x)
)

for x ∈ �U − 2C0K T , V + 2C0K T �, respectively.
Let R1 < R2 < · · · < Rm and r1 < r2 < · · · < rm′ be such that

[0, T ] ∩
�V −2C0K T �
⋃

x=�U−2C0K T �

(

S(x) ∪ T (x)
) = {R1, R2, . . . , Rm};

�1, T ε−1� ∩
�V −2C0K T �
⋃

x=�U−2C0K T �

(

s(x) ∪ t(x)
) = {r1, r2, . . . , rm′ }.

For each i ∈ �1, m�, let wi ∈ �U − 2C0K T , V + 2C0K T � be such that Ri ∈ S(wi ) ∪
T(wi ). Then, by (B.2) and (B.3), we have that m′ = m and for each i ∈ �1, m� that
ri ∈ s(wi ) ∪ t(wi ) and

R1 − ε1/2 ≤ r1 ≤ R1 < R2 − ε1/2 ≤ r2 ≤ R2 < · · ·
≤ Rm − ε1/2 ≤ rm ≤ Rm < T − ε1/2. (B.5)

Now, observe if y /∈ {r1, r2, . . . , rm} then ηy+1(x +1) = ηy(x) holds for all x ∈ Z, as
all paths in η proceed one step horizontally and one step vertically; thus, ζ y+1 = ζ y .
Similarly, if t /∈ {R1, R2, . . . , Rm} then ξ t = ξ t− . Hence, to show (B.4), it suffices to
show for each (i, x) ∈ �1, m� × Z that ξRi (x) = ζ�Ri /ε�(x).

We do this by induction on i ∈ �0, m�, where we set R0 = 0. It holds at i = 0, since
the boundary data ofηmatches that of ξ . Hence, let us assume it holds for all i ≤ m0−1
for some integer m0 ∈ �1, m� and verify it holds for i = m0. By (B.5) and the induc-
tive hypothesis (with the above discussion that ζ y+1 = ζ y if y /∈ {r1, r2, . . . , rm} and
ξ t = ξ t− if t /∈ {R1, R2, . . . , Rm}), we have ξR−

m0
(x) = ξRm0−1(x) = ζ�Rm0−1/ε�(x) =

ζ�Rm0/ε−1�(x) for each x ∈ Z. Next, if rm0 ∈ s(wm0), then it follows from the dis-
cussion in Sect.B.2 that ηrm0

(wm0 + rm0 − 1) = ηrm0−1(wm0 + rm0 − 1), as then the
path of color ηrm0−1(wm0 + rm0 − 1) entering (wm0 + rm0 − 1, rm0) proceeds one step
vertically and no steps horizontally; thus,

ζ�Rm0−1/ε�(wm0) = ζrm0−1(wm0) = ζrm0
(wm0 − 1) = ζ�Rm0/ε�(wm0 − 1), (B.6)

where in the first and last equality we again used (B.5). By (B.5) and (B.3), we then
also have Rm0 ∈ S(wm0), and so ζ�Rm0−1/ε�(wm0) = ξRm0−1(wm0) = ξR−

m0
(wm0) =

ξRm0
(wm0 − 1). This coincides with (B.6); the proof that ζ�Rm0/ε�(x) = ξRm0

(x) for all
other x ∈ Z is entirely analogous. This verifies the statement at i = m0 in this case.

If instead rm0 ∈ t(wm0), then ηrm0
(wm0 + rm0 + 1) = ηrm0−1(wm0 + rm0 − 1), as

then the path of color ηrm0−1(wm0 + rm0 − 1) at (wm0 + rm0 − 1, rm0 − 1) proceeds
two steps horizontally and one step vertically. So,

ζ�Rm0−1/ε�(wm0) = ζrm0−1(wm0) = ζrm0
(wm0) = ζ�Rm0/ε�(wm0 + 1). (B.7)



105 Page 106 of 111 A. Aggarwal, A. Borodin

By (B.5) and (B.3), we then also have Rm0 ∈ T(wm0). Hence, ζ�Rm0−1/ε�(wm0) =
ξRm0−1(wm0) = ξR−

m0
(wm0) = ξRm0

(wm0 + 1). This again coincides with (B.7), and

the proof that ζ�Rm0/ε�(x) = ξRm0
(x) for all other x ∈ Z is entirely analogous. This

confirims (B.4).
Thus, (B.1) holds on E ∩ F. Together with the fact that

P[E ∩ F] ≥ 1 − 32C0ε − C0(V − U + 4C0K T + 1)(T + 1)ε1/4

≥ 1 − 40C2
0 (V − U + 1)(T + 1)2K ε1/4

≥ 1 − 80C2
0 (V − U + 1)(T + 1)2ε1/8,

this establishes the proposition. ��

B.4 Proof of Lemma B.4

In this section we establish Lemma B.4 as a quick consequence of the two lemmas
below.

Lemma B.5 For any real number A > 0, there exists a constant C = C(A) > 1
such that, if R = (r1, r2, . . .) denotes the ringing times in increasing order for an
exponential clock with parameter A, then the following two statements hold.

(1) For any real numbers T ≥ 0 and K ≥ 1, we have P[r�C K (T +1)� ≥ T ] ≥ 1 −
Ce−K (T +1).

(2) For any real numbers 0 < δ ≤ 1 ≤ B, we have P
[

min1≤i≤B(ri+1 − ri ) ≥ δ
] ≥

1 − ABδ.

Proof First observe that the event on which r�C(T +1)� ≥ T is that on which the
sum of

⌊

C K (T + 1)
⌋

independent exponential random variables is at least T . By
a Chernoff bound, this is at least 1 − Ce−K (T +1) if C = C(A) > 1 is sufficiently
large, which verifies the first statement of the lemma. Further observe for any integer
i ≥ 1 that, since ri+1 − ri is an exponential random variable of parameter A, we have
P[ri+1−ri ≤ δ] = 1−e−Aδ ≤ Aδ. This, together with a union bound over i ∈ �1, B�,
implies the second statement of the lemma. ��
Lemma B.6 Let A > 0 and δ ∈ (0, 1) be real numbers; let g ∈ Z≥0 denote a geometric
random variable with P[g = k] = Aδ(1 − Aδ)k for each k ∈ Z≥0; and let e ∈ R≥0
denote an exponential random variable with P[e > x] = e−Ax for each x ∈ R≥0. It
is possible to couple e and g such that

P
[

g = �δ−1e�] ≥ 1 − 12Aδ.

Proof We may assume that δ < (2A)−1, for otherwise 1 − 12Aδ < 0. It suffices to
show that

e−A2Sδ2 · P[Sδ ≤ e < (S + 1)δ
] ≤ P[g = S] ≤ (1 + 2Aδ) · P[Sδ ≤ e < (S + 1)δ

]

,

(B.8)
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for any integer S ≥ 0, or equivalently that

e−A2Sδ2 ≤ Aδ(1 − Aδ)S

e−ASδ(1 − e−Aδ)
≤ 1 + 2Aδ. (B.9)

Indeed, given (B.8), it would follow that

∞
∑

S=0

∣

∣

∣P
[

Sδ ≤ e < (S + 1)δ
]− P[g = S]

∣

∣

∣ ≤ 2
∞
∑

S=0

(1 − e−A2Sδ2 + Aδ) · e−ASδ(1 − e−Aδ)

≤ 2A2δ2
∞
∑

S=0

(ASδ + 1)e−ASδ

≤ 2A2δ2

1 − e−Aδ
+ 2A3δ3

(1 − e−Aδ)2
≤ 12Aδ,

where in the first equality we used the explicit probability distribution for e; in the
secondweused the facts that 1−e−A2 Sδ2 ≤ A2 Sδ2 and that 1−e−Aδ ≤ Aδ; in the third
we bounded the sums

∑∞
i=0 r i = (1−r)−1 and

∑∞
i=0 ir i = r(1−r)−2 ≤ (1−r)−2 at

r = e−Aδ ∈ (0, 1); and in the fourth we bounded 1− e−Aδ ≥ Aδ/2 (as δ < (2A)−1).
This implies that it is possible to couple e and g so that g ≤ δ−1e < g + 1, or
equivalently that g = �δ−1e�, with probability at least 1 − 12Aδ.

It therefore remains to confirm (B.9). To that end, since 1 − e−Aδ ≤ Aδ and
1 − e−Aδ ≥ Aδ(1 − Aδ) ≥ Aδ(1 + 2Aδ)−1 (the latter as δ < (2A)−1), observe that

1 ≤ Aδ

1 − e−Aδ
≤ 1 + 2Aδ. (B.10)

We also have since log(1 − x) ≤ −x for each x ≥ 0, since log(1 − x) ≥ −x(1 + x)

for x ∈ (0, 1/2), and since δ < (2A)−1 that

e−A2Sδ2 ≤ eASδ(1 − Aδ)S ≤ 1. (B.11)

Combining (B.10) and (B.11) yields (B.9) and thus the lemma. ��
Proof of Lemma B.4 Let C0 denote the constant C from Lemma B.5; we will assume
throughout this proof that ε < C−4

0 (T +1)−4, for otherwise 1−C(V0 −U0 +1)(T +
1)ε1/4 ≤ 0 for any C > C0. Let us first bound the cardinalities of S(x) ∩ [0, T ] and
T (x)∩[0, T ], with high probability. To that end, observe by the first part of LemmaB.5
(with A ∈ {L, R} and K = C−1

0 (T + 1)−1ε−1/4 ≥ 1) that there exist constants c > 0

and C1 > 1 such that P
[

S�ε−1/4�(x) ≥ T
] ≥ 1−c−1e−cε−1/4 ≥ 1−C1ε, and similarly

P
[

T�ε−1/4�(x) ≥ T
] ≥ 1−C1ε, both hold for any x ∈ Z. Together with a union bound,

it follows that P[A1] ≥ 1 − 2C1ε(V0 − U0 + 1), where

A1 =
�V0�
⋂

x=�U0�

{

#
{

S(x) ∩ [0, T ]} ≤ ε−1/4
}

∩
{

#
{

T(x) ∩ [0, T ]} ≤ ε−1/4
}

. (B.12)
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We may therefore restrict to the event A1 in what follows.
On A1, there are at most ε−1/4 entries in any S(x) ∩ [0, T ] or T(x) ∩ [0, T ];

their differences are exponential random variables with parameters L and R, respec-
tively. Moreover, the differences between consecutive entries of any s(x) and t(x) are
geometric random variables of parameters b1 = 1 − εL and b2 = 1 − εR, respec-
tively. Hence, fixing an integer x ∈ �U , V � and an index (R, r) ∈ {(S, s), (T, t)},
and applying Lemma B.6 to the at most ε−1/4 differences in R(x), it follows that
we may couple R(x) ∩ [0, T ] = (R1(x), R2(x), . . . , Rm(x)

)

with r(x) ∩ �1, T ε−1� =
(

r1(x), r2(x), . . . , rm′(x)
)

so that with probability 1−12(R+L)ε3/4 we havem ≤ m′
and εri (x) ≤ Ri (x) ≤ ε

(

ri (x) + ε−1/4
) ≤ εri (x) + ε1/2, for each i ∈ �1, m�. After

increasing C0 if necessary, we further have that εrm′(x) < T − ε1/2 with probability
at least 1 − C0ε

1/2 (since the probability that rm′(x) lies in any fixed interval at size
ε−1/2 + 1 is at most (R + L)ε · (ε−1/2 + 1) = 2(R + L)ε1/2), and so m = m′ and
εri (x) ≤ Ri (x) ≤ εri (x) + ε1/2 < T for all i ∈ �1, m�. Applying a union bound over
x ∈ �U0, V0� gives the first statement of the lemma.

To establish the second, observe that the law of
⋃�V0�

x=�U0�
(

S(x) ∪ T(x)
)

coincides

with that of the ringing times of an exponential clock of rate (R + L) · (�V0�−�U0�+
1
) ≤ (V0 − U0 + 1)(R + L). Hence the second part of Lemma B.5 implies, for any
real number B ≥ 1, that with probability at least 1 − 2(V0 − U0 + 1)(R + L)Bε1/2

we have
∣

∣Ri (x) − R′
i ′(x ′)

∣

∣ > 2ε1/2, for any distinct triples (R, i, x), (R′, i ′, x ′) ∈
{S, T} × �1, B� × �U0, V0�. Applying this at B = ε−1/4, using our restriction to A1,
and applying a union bound then yields the second part of the lemma. ��
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