
The TESS Ten Thousand Catalog: 10,001 Uniformly Vetted and Validated Eclipsing
Binary Stars Detected in Full-frame Image Data by Machine Learning and Analyzed by

Citizen Scientists
Veselin B. Kostov1,2aa, Brian P. Powell1aa, Aline U. Fornear3aa, Marco Z. Di Fraia3aa, Robert Gagliano4aa,

Thomas L. Jacobs5aa, Julien S. de Lambilly3aa, Hugo A. Durantini Luca3aa, Steven R. Majewski6aa, Mark Omohundro7,
Jerome Orosz8aa, Saul A. Rappaport9aa, Ryan Salik3,10, Donald Short8aa, William Welsh8aa, Svetoslav Alexandrov3,11aa,

Cledison Marcos da Silva3aa, Erika Dunning8aa, Gerd Gühne3, Marc Huten3, Michiharu Hyogo3aa, Davide Iannone3, Sam Lee3,
Christian Magliano12aa, Manya Sharma3,13, Allan Tarr3, John Yablonsky3aa, Sovan Acharya3aa, Fred Adams14aa,

Thomas Barclay1aa, Benjamin T. Montet13aa, Susan Mullally15aa, Greg Olmschenk1aa, Andrej PrTa16aa, Elisa Quintana1aa,
Robert Wilson1aa, Hasret Balcioglu3, Ethan Kruse1aa, and

The Eclipsing Binary Patrol Collaboration
1 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

2 SETI Institute, 189 Bernardo Ave., Ste. 200, Mountain View, CA 94043, USA
3 Citizen Scientist, Eclipsing Binary Patrol Collaboration

4 Citizen Scientist, Glendale, AZ 85308, USA
5 Citizen Scientist, Missouri City, TX 77459, USA

6 Department of Astronomy, University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904, USA
7 Citizen Scientist, c/o Zooniverse, Department of Physics, University of Oxford, Denys Wilkinson Bldg., Keble Rd., Oxford OX1 3RH, UK

8 Department of Astronomy, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
9 Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

10 Department of Computer Science, Princeton University, NJ, USA
11 Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bontchev Str., BI. 23, Soha 113, Bulgaria

12 Dipartimento di Fisica “Ettore Pancini,” Università di Napoli Federico II, 80126 Napoli, Italy
13 School of Physics, University of New South Wales, Sydney, NSW 2052, Australia

14 Department of Physics, University of Michigan, Ann Arbor, MI, USA
15 Space Telescope Science Institute, 3700 San Martin Dr., Baltimore MD 21212, USA

16 Department of Astrophysics and Planetary Science, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA
Received 2025 May 8; revised 2025 June 5; accepted 2025 June 5; published 2025 August 1

Abstract
The Transiting Exoplanet Survey Satellite (TESS) has surveyed nearly the entire sky in full-frame image mode
with a time resolution of 200 s to 30 minutes and a temporal baseline of at least 27 days. In addition to the primary
goal of discovering new exoplanets, TESS is exceptionally capable at detecting variable stars, and in particular
short-period eclipsing binaries, which are relatively common, making up a few percent of all stars, and represent
powerful astrophysical laboratories for deep investigations of stellar formation and evolution. We combed Sectors
1–82 of the TESS full-frame image data searching for eclipsing binary stars using a neural network that identihed
∼1.2 million stars with eclipse-like features. Of these, we have performed an in-depth analysis on ∼60,000 targets
using automated methods and manual inspection by citizen scientists. Here we present a catalog of 10,001
uniformly vetted and validated eclipsing binary stars that passed all our ephemeris and photocenter tests, as well
as complementary visual inspection. Of these, 7936 are new eclipsing binaries while the remaining 2065 are
known systems for which we update the published ephemerides. We outline the detection and analysis of the
targets, discuss the properties of the sample, and highlight potentially interesting systems. Finally, we also provide
a list of ∼900,000 unvetted and unvalidated targets for which the neural network found eclipse-like features with
a score higher than 0.9, and for which there are no known eclipsing binaries within a sky-projected separation of a
TESS pixel (≈21″).
Uni:ed Astronomy Thesaurus concepts: Binary stars (154); Eclipsing binary stars (444)
Materials only available in the online version of record: machine-readable tables

1. Introduction

Binary stars make up a large fraction of the Galactic stellar
population (e.g., D. Raghavan et al. 2010; A. Tokovinin 2021;
S. S. R. Offner et al. 2023). Of these, perhaps the most
important subsets are those that produce eclipses due to a
favorable geometric conhguration with respect to the observer.

These eclipsing binary stars (EBs) have paved the “royal road”
to stellar astrophysics (H. N. Russell 1948) and have long
served as a fundamental pillar on which our understanding of
how stars form and evolve stands (e.g., D. E. Osterbrock 1953;
J. Andersen 1991; G. Torres et al. 2010). Spectroscopic
double-lined EBs enable direct and accurate measurements of
the masses, radii, and temperatures of their components, and
provide critical calibrators for theoretical models (e.g.,
G. Torres et al. 2010).
Despite the ubiquitous distribution of binary stars through-

out the solar neighborhood and over two centuries of study
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(e.g., J. Goodricke 1783; Z. Kopal 1956; O. J. Eggen 1957;
V. Niemela 2001; and references therein, including Sewell’s
letter to S. Vince) pressing questions about these systems
remain. For example, it is unclear whether the multiplicity
properties of stellar systems are universal or depend on the
formation environment and/or stellar mass, what the origin is of
the brown dwarf “desert” scarcity, and how stellar multiplicity
affects planet formation (e.g., M. Moe & R. Di Stefano 2017
and references therein). These uncertainties are due in large part
to the enormous size of the parameter space, since binary stars
have extensive distributions of stellar masses and mass ratios,
orbital periods, eccentricities, etc., all of which can vary with the
environment (e.g., cluster membership).

Large-scale photometric surveys are well suited for
monitoring a large number of binary stars through the
detection of eclipses, and have detected hundreds of thousands
of EBs. For example, millions of EBs have been observed by
Gaia (N. Mowlavi et al. 2023);17 hundreds of thousands by the
Optical Gravitational Lensing Experiment (OGLE; I. Soszyński
et al. 2017), ASAS-SN (D. M. Rowan et al. 2022), ATLAS
(A. N. Heinze et al. 2018), and the Wide-held Infrared Survey
Explorer (WISE; E. Petrosky et al. 2021); and tens of thousands
by primarily exoplanet-focused surveys such as Kepler (A. PrTa
et al. 2011; R. W. Slawson et al. 2011; K. E. Conroy et al.
2014a), the Transiting Exoplanet Survey Satellite (TESS;
P. W. Sullivan et al. 2015), SuperWASP (H. B. Thiemann
et al. 2021), etc. With its extremely wide sky coverage (∼98%)
and long dwell time (∼27 days of nearly continuous observa-
tions), NASA’s TESS mission is an excellent example of the
power of all-sky surveys for studying EBs. While the primary
science objective of TESS is hnding transiting rocky exoplanets
around nearby stars (G. R. Ricker et al. 2015), it presents an
ideal platform for the detection of thousands of EBs covering a
wide range of physical and orbital parameter space (e.g.,
N. L. Eisner et al. 2021; L. Cacciapuoti et al. 2022;
E. L. Howard et al. 2022; A. PrTa et al. 2022; M. J. Green
et al. 2023; C. Magliano et al. 2023; M. Montalto 2023;
L. W. IJspeert et al. 2024; E. J. Melton et al. 2024; X. Gao et al.
2025; Y. Shan et al. 2025).

The TESS mission is also well suited for exploring the
variability of many different classes of stars, and searching for
rare systems that may be studied with extensive follow-up
observations from space and the ground. The large EB
population monitored by TESS enables statistical studies of
the effects of mass, mass ratio, and composition on the binary
fraction, eccentricity, and orbital period distributions. Such a
large sample of EBs covering all stellar types and Galactic
environments also helps advance our knowledge of the physics
of binary interactions, such as tidal forces, migration, spin–
orbit coupling, and mass transfer (e.g., H. V. Zeipel 1910;
Y. Kozai 1962; M. L. Lidov 1962; O. Pejcha et al. 2013;
X. Fang et al. 2018; G. Fragione & B. Kocsis 2019; B. Liu &
D. Lai 2019; A. S. Hamers et al. 2021; C. S. Kochanek 2021;
M. M. Shara et al. 2021; A. A. Trani et al. 2022; P. Vynatheya
& A. S. Hamers 2022; and references therein). Last but not
least, by better understanding the distribution and properties of
EBs in the Galaxy, we can improve our priors on background
contamination for TESS’s core mission of exoplanet transit
observations.

Given the enormous amount of data produced by the TESS
mission—for example, there are, on average, ∼3 million stars
brighter than Tmag = 15 observed per sector—we need to
develop sophisticated yet efhcient analysis techniques to
extract the relevant astrophysical information from this unique
data set. At the time of writing, several projects have already
developed pipelines for the extraction of full-frame image (FFI)
lightcurves from TESS (e.g., R. J. Oelkers & K. G. Stassun
2018; A. D. Feinstein et al. 2019; D. A. Caldwell et al. 2020;
M. Kunimoto et al. 2022; T. Han & T. D. Brandt 2023;
J. D. Hartman et al. 2025), and have released tools and data
products to the public. To study binary stars from TESS, we
have developed a local implementation of the ELEANOR
pipeline (A. D. Feinstein et al. 2019) and used it to extract
FFI lightcurves for Sectors 1–82 for all targets brighter than
Tmag = 15. To detect EB candidates, we have created and
trained a machine learning (ML) identihcation scheme. Here we
describe the development and implementation of our extraction
and detection pipeline and the processing and analysis of the
data by automated methods and human inspection and present
the TESS Ten Thousand Catalog containing 10,001 uniformly
vetted and validated EBs. Of these, 7936 are new EBs and 2065
are known EBs for which we update the ephemeris provided in
one or more catalogs. We describe the general properties of the
population and touch on individual systems of interest. The
catalog provides general target information (TESS Input
Catalog (TIC) ID, sky coordinates, TESS magnitude, number
of sectors observed, effective temperature, and Gaia astrometric
measurements), ephemerides, eclipse depths and durations,
secondary phases, and relevant notes and comments. We
envision this catalog as a community-facing product to serve
as a platform for subsequent studies and analysis of both the
population as a whole and individual targets of interest,
including but not limited to conhrmation and modeling efforts,
crossmatching against catalogs of TESS planet candidates, etc.
All our data products and results are publicly available as
machine-readable online supplements.
This paper is organized as follows. In Section 2 we describe

the construction of the FFI lightcurves; Section 3 outlines the
identihcation of EB candidates by an ML pipeline while the
vetting and validation of the candidates is presented in
Section 4. Section 5 outlines the catalog of uniformly vetted
and validated EBs, and the results are summarized in
Section 6.

2. Construction of FFI Lightcurves

While other lightcurve data sets were available to us, such
as the MIT Quick Look Pipeline (QLP; C. X. Huang et al.
2020a) or the TESS Science Processing Operations Center
(SPOC) pipeline (D. A. Caldwell et al. 2020), we wanted to
pursue potentially unknown systems beyond the scope of
available lightcurves. For example, the QLP lightcurves are
limited to stars brighter than Tmag = 13.5. As such, we
undertook an effort to construct all available TESS lightcurves
to a limit of Tmag = 15.0 using ELEANOR (A. D. Feinstein
et al. 2019).18
We started by downloading the full TIC (K. G. Stassun

et al. 2019), available as a set of CSV hles in increments of 2°

17 Farewell, Gaia! Thank you for all the amazing science!

18 Later, we rebuilt these for public release using the ELEANOR-LITE pipeline
for Sectors 1–26 to a limit of Tmag = 16.0 (B. P. Powell et al. 2022a). These
are available at https://archive.stsci.edu/hlsp/gsfc-eleanor-lite.
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of decl., from MAST.19 Each target in the TIC was queried in
parallel using the TESS-POINT Python package (C. J. Burke
et al. 2020) to determine the sectors of TESS data in which it
was present, effectively translating the overall TIC into a per-
sector TIC.

In preparation for building the lightcurves for a given sector,
we then downloaded the TESS FFIs from MAST and used
ELEANOR to create the necessary “postcards” and “back-
grounds” required for local construction of the lightcurves
(described further in A. D. Feinstein et al. 2019). The per-
sector TIC was then used as input to a parallelized
implementation of ELEANOR on the NASA Center for Climate
Simulation (NCCS) Discover supercomputer.20 The outputs of
our parallelized lightcurve construction code were minimized
to limit the need for memory storage, and contained only basic
metadata along with the times and muxes.

3. ML IdentiIcation of EB Candidates

Eclipses are an ideal shape for ML classihcation in
lightcurves. They are usually a prominent feature in the
lightcurve, with common spatial interrelationships between the
eclipse and the baseline, as well as the characteristic point at
the eclipse minimum. These features are uniquely identihable
in lightcurves and lend themselves to processing with a
convolutional neural network (CNN; Y. LeCun et al. 1989).
Rather than limit ourselves to only those lightcurves that
demonstrated periodicity with eclipses, we chose to pursue a
strategy of training the neural network to hnd the feature of the
eclipse. In this manner, we could also treat the lightcurve
purely as a 1D shape rather than having to consider time
dependencies, allowing a simpler methodology. Our intent was
to build the neural network for classihcation purposes, i.e., to
produce a single sigmoid-activated output where unity is a
positive (indicating that the lightcurve contains an eclipse) and
zero is a negative (indicating that the lightcurve does not
contain an eclipse).

The performance of a CNN as a classiher is broadly tied to
the depth of the network (K. Simonyan & A. Zisserman 2014).
While vanishing or exploding gradients generally limit depth,
the concept of residual blocks (K. He et al. 2016) has allowed
for depth to be limited only by hardware (in terms of physical
memory available) and by training data shape and batch size
(in terms of the trade-off between depth and data size within
the physical memory). As such, we designed the general
structure of our neural network as a 1D adaptation of ResNet
(K. He et al. 2016), which was originally designed to process
2D images. Of course, too much depth in conjunction with
very little data or overly simplistic data can also prevent
convergence. Since a lightcurve is not a particularly complex
data representation requiring extreme depth, we started our
development process with a relatively shallow network. We
developed the neural network iteratively (using TensorFlow/
Keras; M. Abadi et al. 2015; F. Chollet 2015), and made it
deeper as we augmented our training data and ensured that
additional data and a deeper network offered continued
reduction of the model loss, as given by binary cross entropy
(I. Goodfellow et al. 2016) using the RMSprop optimizer.21

We also found that an additive and multiplicative attention

mechanism (D. Bahdanau et al. 2014; M.-T. Luong et al. 2015)
at the beginning of the network was benehcial to performance.
Apart from the sigmoid activation on the output layer, we used
leaky rectihed linear unit (ReLU; V. Nair &
G. E. Hinton 2010) activation throughout the network to
prevent the problem of vanishing gradients. The structure of
our neural network, shown in Figure 1, is rather simple. In
total, our network has 241 layers with ∼5.5 million trainable
parameters.

3.1. Lightcurve Preprocessing

Concurrently with the development of the neural network,
we also needed to rehne our method of preprocessing the
lightcurves, which, as in many ML applications, was critical to
the performance of the neural network. ML methods require
data to be of the same shape. This of course presents a problem
with TESS FFI lightcurves, especially after the per-time-step
quality mags are masked from the lightcurve, resulting in a
wide variety of 1D array sizes. The temporal discontinuities
caused by the data downlink gap and the quality mask also
create a temporally irregular data set. We chose to ignore the
temporal component and treat the lightcurve as a 1D shape
rather than a time-dependent signal. This approach is
consistent with our selection of a CNN rather than a recurrent
neural network (D. E. Rumelhart et al. 1986) or another time-
dependent methodology such as long short-term memory
(LSTM; S. Hochreiter & J. Schmidhuber 1997), convolutional
LSTM (ConvLSTM; X. Shi et al. 2015), or temporal
convolutional networks (C. Lea et al. 2017), among others.
To create homogeneous shapes from the irregular light-

curves, our options were to either truncate longer lightcurves
or pad shorter lightcurves. Truncation, of course, risks missing
a lightcurve where a single eclipse occurs in the truncated
section. Padding provides its own risks in providing artihcial
information in the discontinuity of the data shape. We decided
to pad the lightcurves to a maximum length of 1400 elements,
with the padding containing a mirror of the data. We
emphasize again that the neural network has no time
dependency, and therefore no understanding of periodicity,
and it was determined that the neural network could learn to
ignore the discontinuity in the padding in the same manner as
it would the discontinuity in the collapsed time gaps. We also
note that we developed the neural network during Year 2 of the
TESS mission, when the 30 minute cadence data provided
relatively short lightcurves. With the continued shortening of
the TESS cadence over subsequent years, we have not
retrained the network. Rather, we downsampled longer
lightcurves to ht our required data shape.
TESS systematics presented a different set of challenges. In

many TESS FFI lightcurves, indeed, the dominant signal is
scattered light systematics, which often produce features in the
lightcurves that resemble eclipses. In Years 1 and 2 of the
TESS data, this problem is particularly pronounced in Sectors
1, 12, 13, 14, 15, 23, 24, and 26. In neural networks, and ML in
general, the magnitude of a value is a representation of its
importance. As such, strong eclipse-like systematic signals
have the potential to dominate an ML method if not properly
diminished in importance, hence the need for data scaling. We
specihcally selected the quantile transform as our method of
scaling, using the built-in SCIKIT-LEARN (F. Pedregosa et al.
2011) package functionality. With this method, scattered light
systematics are reduced to effectively the same size as the

19 https://archive.stsci.edu/tess/tic_ctl.html
20 https://www.nccs.nasa.gov/systems/discover
21 https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6e.mp4
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eclipses, forcing the neural network to learn the shape of the
eclipse signal in contrast to the systematics. Figure 2
demonstrates the outcome of this scaling on a lightcurve
dominated by a scattered light feature. The top panel shows the
unscaled lightcurve, while the bottom panel shows the
quantile-scaled lightcurve processed as input to the neural
network. Although it is clearly more difhcult for the human
eye to distinguish eclipses in the scaled form, this method
proved to be superior to the neural network for understanding
subtle differences between eclipses and eclipse-shaped noise
or systematics. This is not to say that we were able to avoid
outcomes where the neural network classihes such features as
eclipses entirely, but this method did substantially diminish the
problem.

While quantile scaling underemphasizes large features, it
also has the effect of overemphasizing small features. To our
beneht, this helped in the identihcation of shallow eclipses.

However, we also found that our network will identify planet
transits as well as small eclipse-like shapes in noise patterns,
which became a substantial source of error (discussed further
in Section 3.3). Thus, we effectively made the decision to trade
large noise effects for small noise effects. We make no
assertion that this trade was ideal, nor our method of
classifying the eclipse shape versus identifying an EB directly.

3.2. Training Data Collection

A particular challenge of this effort was the collection and
augmentation of the training data set. Generally, the
performance of a classiher will track directly with the quantity
of training data samples to an asymptotic limit (e.g., C. Sun
et al. 2017). Additional difhculties arise for our particular
application in that eclipses can be vastly different in
appearance, thus requiring a substantial amount of training
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Figure 1. The structure of our neural network, with like layers grouped by color. The full network summary is shown on the left. The attention block has a structure
such as shown on the upper right, while each convolutional block has a structure such as shown on the lower right. Arrows into the addition layers indicate the mow
of the residual.

4

The Astrophysical Journal Supplement Series, 279:50 (32pp), 2025 August Kostov et al.



data for a neural network to effectively generalize the features
of an eclipse.

At the time of development of our neural network (TESS
Year 2), we had tens of millions of lightcurves, but only a
handful of manually selected EB lightcurves. To gather a
sufhciently sized data set to effectively train our neural
network by manually sorting through individual lightcurves
would have been an intractable task. As such, we progressively
augmented our data set by iteratively using a weakly trained
neural network to hnd new training samples among the full
data set of lightcurves. After each iteration of training and
inference, we would select (i) lightcurves given a score near
unity that clearly did not show an eclipse, or (ii) lightcurves
given a score near zero that clearly showed an eclipse. The
former represented false positives and the latter false
negatives. We used these as properly labeled training samples
in the next iteration of training, effectively hlling gaps in the
understanding of the neural network. With each of these

iterations, the neural network became progressively more
capable. By the time we were satished with the performance of
the neural network, we had built a training set of ∼40,000
samples.

3.3. Model Performance

We emphasize that our neural network was not trained to
hnd EBs. It has no concept of repeated features or periodicity.
Rather, it was trained to hnd eclipses, or, more broadly,
features resembling eclipses. We show how the neural network
activates on the shape of the eclipse in the saliency map of the
activation weights of the penultimate layer in Figure 3. Note
that the neural network will emphasize a single eclipse in
determining the output score of the lightcurve.
Knowing that the neural network would be providing

candidates for manual review rather than directly populating a
list of near-certain EBs, we wanted to allow for interesting
results that would not ht the conventional shape of an eclipse,

Figure 2. Lightcurve of TIC 139079180 for Sector 15 (top panel) vs. the same lightcurve scaled with a quantile transform (bottom panel). Eclipses are highlighted in
blue. The scattered light near the ends of the two segments dominates the lightcurve and also resembles an eclipse, making this type of feature difhcult to overcome
as a source of false positives. The quantile transform has the effect of making these events less prominent and emphasizing the actual eclipses. The inputs to the
neural network are the quantile-scaled lightcurves. Although making classihcation perhaps more difhcult to the human eye, the quantile transform represents the
lightcurve to the neural network in a manner that allows it to successfully hnd and classify the eclipse feature.
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e.g., a complex syzygy or lopsided eclipse. This process has
allowed us to hnd multiple star systems with complex outer
orbital eclipses, among other interesting phenomena, the body
of work on which has established the effectiveness of our
methods given that this neural network has contributed to
many discoveries (e.g., V. B. Kostov et al. 2021a,
2021b, 2022b, 2023, 2024a, 2024b; B. P. Powell et al.
2021a, 2021b, 2022b, 2023, 2025; T. Borkovits et al. 2022;
B. K. Capistrant et al. 2022; S. A. Rappaport et al. 2022,
2023, 2024; R. Jayaraman et al. 2024; T. Mitnyan et al. 2024a;
K. Oláh et al. 2025).

Our results have been qualitative, with a manual review of
outputs in multiple stages (described further in Section 4). As
such, an assessment of performance of the neural network
against a data set of known EBs is hardly direct. However, we
provide such a comparison here to provide the reader with the
context of our process as well as the contents of our catalog.

An evaluation of the model would be most complete with a
section of the sky where we could consider all EBs within
TESS’s limiting magnitude to be known. As such, the Kepler
(W. J. Borucki et al. 2010) held provided an ideal testing
ground, with the full data set having been thoroughly evaluated
for the presence of EBs, resulting in the production of an EB
catalog (A. PrTa et al. 2011; R. W. Slawson et al. 2011;
G. Matijevič et al. 2012; K. E. Conroy et al. 2014a, 2014b;
D. M. LaCourse et al. 2015; M. Abdul-Masih et al. 2016;
B. Kirk et al. 2016), hereafter referred to as the “Kepler EB
catalog.” By comparing the number and characteristics of
lightcurves identihed in our catalog against those of the 2920
EBs of the Kepler EB catalog, we could make an estimate of
the performance of our catalog.

We also considered the catalog of 4584 TESS EBs from
short-cadence data in Sectors 1–26 (A. PrTa et al. 2022),
hereafter referred to as the “TESS EB catalog.” Although less
comprehensive in terms of a full survey of a section of the sky,
a direct comparison to TESS EBs rather than Kepler allows for

fewer independent sources of error such as different noise
amplitudes or photometric capabilities.
We cross-referenced our catalog with the Kepler held

boundaries,22 hnding each object from our catalog that would
have been observed by the original Kepler mission, which
resulted in 9768 unique TIC IDs. We then reduced the Kepler
EB catalog to those objects with Tmag < 15, as this was the
limit of our lightcurve construction, resulting in 2458 EBs out
of the original 2920. Our catalog contains 1371 of these 2458
EBs, or ∼55.8%. To compare our catalog to the TESS EB
catalog, we cross-referenced our catalog with lists of the 2
minute targets for TESS Sectors 1–26,23 from which the TESS
EB catalog was derived. In total, there were 507,898 unique 2
minute targets in these sectors, 8910 of which were identihed
by our neural network. Comparing this sample directly to the
TESS EB catalog revealed that our neural network found 3884
of the 4584 EBs therein, or ∼84.7%. In this comparison of true
positives, it is clear that our neural network performed far
better than the TESS EB catalog, which we assess to be likely
due to the systematic differences between the TESS and
Kepler data.
In Figure 4, we show a scatter plot of the morphology

parameter versus Tmag of the Kepler EBs found (blue) and not
found (red) by our neural network. The morphology parameter
(described further in A. PrTa et al. 2011) is a measure of the EB
type, with values less than 0.5 corresponding to detached EBs,
values in the range 0.5–0.7 corresponding to semidetached
EBs, values in the range 0.7–0.8 corresponding to overcontact
EBs, and values greater than 0.8 corresponding to ellipsoidal
or unknown classihcations. We exclude analysis where the
morphology parameter was given a value of −1, indicating the
lightcurve was unclassihable by the methods of A. PrTa et al.

Figure 3. Neural network saliency map (shades of red according to the activation magnitude) for a segment of the TIC 214716930 lightcurve in TESS Sector 12
(blue), demonstrating the activation of the neural network in the penultimate convolutional layer on the feature of the eclipse, made using KERAS-
VIS (R. Kotikalapudi 2017).

22 Available from MAST at https://archive.stsci.edu/missions/kepler/fh_
footprints/morc_2_ra_dec_4_seasons.txt.
23 https://tess.mit.edu/public/target_lists/target_lists.html
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(2011). Furthermore, we make the same comparison using the
EB period versus Tmag in Figure 5 and the EB period versus
the morphology parameter in Figure 6. We can make two
conclusions from these hgures:

(i) The Tmag histograms in the left panels (Kepler
comparisons) of Figures 4 and 5 show a clear decrease in
performance with decreasing Tmag, while we do not see the
same decrease in the right panels (TESS comparisons) of the
same hgures. Although there is a somewhat artihcial lower
limit on magnitude in the TESS 2 minute cadence targets due

to the selection bias for bright stars, we can still see a generally
uniform trend of the fraction identihed in the Tmag histograms
of the TESS comparisons. However, these targets are still
somewhat idealized in comparison to a full sample over a
section of the sky. As such, we consider our neural network’s
performance against the TESS EB catalog 2 minute cadence
targets to be an upper limit, while the performance against the
Kepler EB catalog should be considered a lower limit.

(ii) For the Kepler (left) panels in Figures 4 and 6, the
morphology histograms show a clear weakness of our neural

Figure 4. (Left panel) Scatter plot of the morphology parameter vs. Tmag for the Kepler EBs found (blue) and not found (red) by our neural network. (Right panel)
The same plot for the TESS EB catalog. For both panels, the top histogram shows the distribution over morphology, while the right histogram shows the distribution
by Tmag. Our performance against the Kepler EBs shows a clear preference for the central morphology range as well as a decline as magnitude decreases. Note that
the Tmag distribution for the TESS EBs is limited by their selection as 2 minute cadence targets, hence the apparent cutoff at Tmag ≈ 12.

Figure 5. (Left panel) Scatter plot of the EB period vs. Tmag for the Kepler EBs found (blue) and not found (red) by our neural network. (Right panel) The same plot
for the TESS EB catalog. For both panels, the top histogram shows the distribution over EB period, while the right histogram shows the distribution by Tmag. Again,
our performance against the Kepler EBs shows a decline as magnitude decreases. As with Figure 4, note that the Tmag distribution for the TESS EBs is limited by
their selection as 2 minute cadence targets, hence the apparent cutoff at Tmag ≈ 12.
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network for the extremes of the morphology range. Aside from
showing the general relationship between EB period and
morphology, Figure 6 demonstrates a clear trend of weakness
for our neural network in identifying EBs at the extremes of
the period range for any given morphology range in both the
Kepler (left) and TESS (right) comparisons. That is, the red
points seem to dominate the blue both to the far left and to the
far right of the general trend line. We assess that both of these
trends demonstrate a weakness in generalization of the neural
network to less common types of eclipse patterns.

Having examined the nature of our true positives and false
negatives, we turned to the much larger set of false positives.
As previously discussed, 1371 of the 9768 unique TIC IDs
from the Kepler held and 3884 of the 8910 in the TESS Sector
1–26 short-cadence targets found by our neural network were
true positives, leaving the remaining 8397 (∼86%) of the
Kepler sample and 5026 (∼56%) of the TESS sample as false
positives. Naturally, the questions arise as to what these false
positives are and why they are so numerous. To determine
their nature, we manually examined a subset of bright false
positives in the Kepler held with Tmag < 10, totaling 126
unique TIC IDs.

Of these lightcurves, we found that 16 (∼13%) showed clear
EBs. Since these were not in the Kepler EB catalog, we
assumed that most of these are likely the result of blending.
That is, the 21″ pixels of TESS will frequently cause the
lightcurves of bright stars to show in the lightcurves of dimmer
close neighbors. To demonstrate this effect, we show the
Kepler held with true positives, false positives, and false
negatives in Figure 7, where the clustering of several large
groups of false positives can be seen, likely as a result of
blending. While this was only a problem in ∼13% of our false
positives with Tmag < 10, it can be reasonably expected that
lightcurves of dimmer stars will show this type of contamina-
tion more frequently. We examined each of the 16 lightcurves

showing clear EBs and conhrmed that contamination from
nearby brighter stars was indeed the source of the signal.
However, we assessed two of the 16 lightcurves showing clear
eclipses as the true source of an EB, TIC 26542657 (KIC
12013550) and TIC 63454475 (KIC 10342012). We conhrmed
that neither of these targets are present in the Kepler EB
catalog. Furthermore, we found that there was no Kepler data
available for TIC 63454475, while the Kepler lightcurves for
TIC 26542657 (hrst identihed as an EB in the TESS EB
catalog by A. PrTa et al. 2022) indeed showed no eclipses,
conhrming that neither of the targets were missed accidentally
in the creation of the Kepler EB catalog. Given that TIC
26542657 has Kepler lightcurves without eclipses, we assess
that it must be a higher-order system, likely a triple, with so-
called “disappearing eclipses.” We will discuss this particular
system further (also conhrming it as a triple) as well as identify
other examples of this type of system in Section 5.4. Although
it is beyond the scope of this effort to analyze these systems,
we note briemy that the changes in binary inclination causing
periods of eclipsing and noneclipsing behavior are driven by
interaction with the outer body, and we refer the reader to
T. Borkovits (2022) for a detailed discussion of the nature of
this type of triple system, among others. Given we found one
such system out of only 126 in our crossmatch with the Kepler
EB catalog with Tmag < 10, we expect there to be several more
such systems in our 8397 false positives from the Kepler held,
which may merit an investigation in its own right.
Returning to our false positives from the Tmag < 10 sample,

oscillations resembling eclipses comprised 16 (∼13%) of the
false positives, while 21 (∼17%) showed scattered light
systematics resembling eclipses, as in Figure 2. The latter were
particularly prominent in TESS Sector 14, which overlapped
with the Kepler held. The bulk of the false positives, 74
(∼59%), contained noise patterns that resembled eclipses. We
provide examples of these false positives in Figure 8.

Figure 6. (Left panel) Scatter plot of the EB period vs. the morphology parameter for the Kepler EBs found (blue) and not found (red) by our neural network. (Right
panel) The same plot for the TESS EB catalog. For both panels, the top histogram shows the distribution over EB period, while the right histogram shows the
distribution by morphology parameter. Besides revealing the relationship between EB period and morphology as described by A. PrTa et al. (2011), we can see a
pattern of weakness of our neural network for EBs at the extremes of the period range for any given morphology range.
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Another type of scientihcally valuable false positive found
by our neural network was planet transits. We compared our
catalog to the NASA Exoplanet Archive Kepler catalog and
found an overlap of 1502 out of the 8397 TIC IDs. Of these,
125 were determined to be genuine exoplanet candidates. The
overlap with the NASA Exoplanet Archive TESS exoplanet
candidate catalog24 is even more pronounced. Of the 7576
TESS exoplanet candidates, our catalog contains 2445
(∼32%). Given how we scale the lightcurves (see Figure 2),
the neural network is generally not able to discern a difference
between an eclipse and a clean transit signal, as it was not
trained to do so. As such, we expect that our catalog is also
rich with planet candidates. Of particular interest is the fact
that, since our neural network has no periodicity requirement,

we expect there to be many single transit events that evade
discovery through periodicity-based analyses.

3.4. Limitations and Caveats of Our Results

We emphasize, again, that our neural network was trained to
hnd features resembling eclipses, not EBs. Our results were
qualitative and manually reviewed. As such, the comparisons
provided in the previous section should not be considered a
fully accurate measure of the performance of the neural
network as much as context for the reader to understand our
process and the contents of our catalog. Our method should be
considered as a means of reducing an extremely large data set
(hundreds of millions of lightcurves) to a much smaller,
manageable data set with a high concentration of scientihc
value.
Our full catalog consists of 1,223,603 unique TIC IDs with

lightcurves that our neural network gave a score of �0.9. The
distribution of these, in terms of TESS magnitude and ecliptic

Figure 7. As compared to the Kepler EB catalog, true positives (blue), false negatives (red), and false positives (green) identihed by our neural network, shown here
in the Kepler held. Local groupings of false positives are attributable to very bright EBs contaminating the lightcurves of adjacent stars or systematics such as
scattered light, which closely resembled the shape of an eclipse in the overlapping TESS Sector 14.

24 Both Kepler and TESS exoplanet catalogs are available at https://
exoplanetarchive.ipac.caltech.edu/index.html.
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coordinates, is shown in Figure 9. Most of the targets are on
the faint side, with a median TESS magnitude of ≈14, and the
majority are near the Galactic plane. It is from these candidates
that we distilled the much smaller catalog of vetted EBs to be
discussed in the remainder of this paper. This catalog could be
employed by interested researchers with the caveats of the
analysis in the preceding section. We use the Kepler EB
catalog comparison as the lower end of our estimate and the
TESS EB catalog comparison as the upper end of our estimate
in the following summary of caveats and contents:

1. This is a catalog of lightcurves with eclipse-like features,
not an EB catalog.

2. A total of 14%–44% of the catalog should be expected to
be EBs.

3. It follows that 56%–86% of the catalog should be
expected to not be EBs. These will consist of
contaminated lightcurves, transiting exoplanets, dippers,
systematics, and other sharp ellipsoidal features.

4. The catalog should be expected to contain 55%–84% of all
EBs in the TESS lightcurves for Sectors 1–82 with

Tmag < 15. The fraction of completeness will decrease
with brightness.

5. The full catalog is entirely unvetted and we offer no
guarantee as to its contents. We have, however, found the
neural network outputs to be scientihcally valuable, so
we offer it to the community in its entirety for their own
purposes.

With these caveats in mind, we transition in the next section
to explaining how we analyzed a subset of these, producing
10,001 genuine EBs for inclusion in a well-vetted catalog.

4. Vetting and Validation of the EB Candidates

Contamination from nearby (in terms of sky projection) EBs
can result in a not-insignihcant contribution of light to the
aperture used to extract the target’s lightcurve—and thus mimic
eclipse-like signals that seem to come from the target star. This is
a common occurrence in TESS observations, where it is not
unusual to see one or more held stars within 2–3 pixels of the
target star (where each pixel is ≈21″), often even falling within

Figure 8. Examples of several different types of false positives returned by our neural network shown by TESS Sector 14 lightcurves. The TIC 120693310 lightcurve
(upper left) demonstrates scattered light resembling eclipses, a particularly difhcult false positive to train against. The TIC 120426180 lightcurve (upper right) shows
pulsations with local minima broad enough to be classihed an an eclipse. The TIC 26656569 lightcurve (bottom left) shows a clear EB, but this lightcurve is
contaminated by the nearby TIC 26656583 (KIC 11560447), which is in the Kepler EB catalog. The TIC 123447105 lightcurve (bottom right) shows a noise pattern
with several features that could be mistaken for eclipses.

Figure 9. Left: number of TESS targets exhibiting eclipse-like features from Sectors 1–82 as a function of TESS magnitude. Right: corresponding R.A. vs. decl.
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the same pixel, and thus adding their often signihcant signal to
that of the target of interest (e.g., C. X. Huang et al.
2020a, 2020b; V. B. Kostov et al. 2022b, 2024a; M. Kunimoto
et al. 2024; and references therein). Thus detection of eclipse-like
features from a particular star in TESS does not immediately tell
us their origin and additional investigations are required before an
EB candidate is verihed. In the absence of radial velocity
measurements to conhrm or rule out a potential EB (or planet)
candidate, one can capitalize on the information-rich content of
the available photometric data.

4.1. Photocenter Vetting

A particularly powerful method to constrain the pixel position
of the source of detected eclipses (or transits) is the photocenter-
based analysis that is routinely used in surveys aimed at
hnding transiting exoplanets (e.g., J. L. Coughlin et al. 2014;
S. E. Thompson et al. 2015, 2018; J. D. Twicken et al. 2018;
V. B. Kostov et al. 2019; D. J. Armstrong et al. 2021;
H. Valizadegan et al. 2025; and references therein). Briemy, the
method uses the target pixel hles to measure the in-eclipse
center-of-light (“photocenter”) pixel position for each eclipse
detected in the difference image,25 and compare it to the out-of-
eclipse photocenter and/or to the catalog pixel position of
the target. If there is no statistical difference between these and
the in-eclipse photocenter, the eclipses are considered to be
“on-target”; otherwise the eclipses are “off-target,” likely
coming from a nearby held EB, and the candidate is marked as
a false positive.

Obtaining robust photocenter measurements depends on
multiple factors such as the signal-to-noise ratio (SNR) of the
target pixel hles, the depth of the detected eclipses, the
presence of nearby comparably bright held stars (worst-case
scenario: ones that are much brighter and variable on
timescales comparable to the duration of the eclipses), etc.
In theory, the difference images used to measure the per-
eclipse photocenters resemble a well-dehned, bright pixelated
spot superimposed on an otherwise dark background
(Figure 10, hrst three columns from the left). In practice, the
difference images are often distorted due to various astro-
physical, systematic, or instrumental effects (Figure 10,
rightmost column), making the corresponding photocenter
measurements unreliable (e.g., L. Cacciapuoti et al. 2022;
V. B. Kostov et al. 2022b, 2024a; C. Magliano et al. 2023).
Overall, based on our experience with TESS data—and

depending on the peculiarities of the specihc target—
measurements of genuine photocenter offsets of ≳0.2–0.3
pixels (i.e., ≳4″–6″) are often trustworthy (V. B. Kostov et al.
2022b, 2024a; C. Magliano et al. 2023). However, considering
measured offsets of ≲0.1–0.2 pixels as signihcant can be
extremely challenging or potentially even impossible. Thus,
throughout this work we adopt a photocenter offset threshold
of 0.2 pixels (≈4″) such that cases below are considered as
likely “on-target” and those above “off-target.”
Ideally, genuine photocenter offsets 3–5 times larger than this

threshold (i.e., ∼12″–21″) should be relatively easy to measure
(and accept as reliable). Thus, to account for potential false
positives due to known EBs, we hrst evaluated whether the TESS
EB candidates our neural network identihed are within a 21″
(1 TESS pixel) sky-projected separation of EBs listed in various
catalogs. In particular, we queried EB catalogs from ASAS-SN

Figure 10. Example 5 × 5 pixel sector-averaged difference images used for photocenter measurements of TESS EB candidates. The red star symbols represent the
pixel position of the target star, the open black circles represent the sector-averaged photocenter, and the small red symbols represent nearby held stars that are bright
enough to produce the detected eclipses as contamination to the target star. The hrst three columns from the left (labels (A), (B), and (C)) show difference images that
are reasonably well suited for photocenter measurements. The photocenters in the hrst column (A) indicate that the detected eclipses are on-target, whereas the
second (B) and third (C) columns show false positives due to signihcant photocenter offset. Column (B) highlights the case for a well separated target and
contaminator, while the two are within the same pixel in column (C)—and also reside in crowded helds. Column (D) shows difference images that are dominated by
systematic effects, thus making them inadequate for reliable photocenter measurements.

25 The difference image is created by subtracting the out-of-eclipse target
pixel data from the in-eclipse pixel data, both covering the measured duration
of the eclipse.
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(∼150,000 EBs), ATLAS (∼30,000 EBs), Gaia (∼2,200,000
EBs), OGLE (∼430,000 EBs), Simbad (∼2,400,000 EBs,
∼200,000 spectroscopic binaries), TESS (∼50,000 EBs,
∼10,000 planet candidates from ExoFOP-TESS26), the Interna-
tional Variable Star Index (VSX; ∼900,000 EBs), and WISE
(∼50,000 EBs), taking into account the respective overlaps
between the different data sets. Unsurprisingly, given the pixel
size of TESS and the corresponding crowding, about one-
quarter of our ∼1.2 million candidates fulhll the above criteria
(see Table 1). We note that this consideration does not
immediately rule these out as false positives, but it marks them
as likely suspects. Conversely, those that are not within 1 pixel
of known EBs (∼900,000 TIC IDs) can potentially be
conhrmed as bona hde new EBs through careful photocenter
analysis. For the beneht of the community, we provide these
targets as an auxiliary data set (see Table 2).

To investigate this matter further, we conducted a deep dive
into a subset of ∼60,000 (hereafter 60K) targets, representing
∼5% of the likely known and potentially new EB candidates
from our preliminary list. The targets were randomly selected
and evenly split on either side of the 21″ demarcation line, and
are representative of the TESS magnitude and sky position
distributions shown in Figure 9. These 60K targets were
subjected to comprehensive ephemeris determination and
photocenter measurements, and analyzed in depth via the
two-step process outlined below.

4.2. In-depth Analysis of 60K Targets

During the hrst step, we developed and utilized an automated
pipeline to calculate ephemerides and measure photocenter
offsets. Specihcally, we applied the box least-squares algorithm

(BLS; G. Kovács et al. 2002) to the available ELEANOR FFI
lightcurves to measure periods and conjunction times, limiting the
minimum/maximum period searched for to 0.5/40 days,
respectively. The BLS results were further improved by htting
a generalized Gaussian model to each detected eclipse adopting
the methodology of V. B. Kostov et al. (2022b), and testing for
period deviations from the linear ephemeris. The latter helps take
into account potential eclipse timing variations (ETVs) that may
decrease the precision of the BLS measurements, and also
provides robust measurements for the eclipse depths and
durations. Next, we used the rehned ephemerides and eclipse
durations to construct the appropriate difference images for each
EB candidate, following the prescription of V. B. Kostov et al.

Figure 11. Distributions of the TESS magnitudes, preliminary measured periods, and respective photocenter offsets for the 60K sample. The lower right panel is a
zoomed-in version of the lower left panel, highlighting the distribution of measured photocenters smaller than 2 pixels. See text for details.

Table 1
Likely Overlap between TESS Targets Exhibiting Eclipse-like Features

Detected by Our Neural Network and Known EBs

Source Number of Targets

This work 1,223,603
ASAS-SN 119,126
ATLAS 21,244
Gaia 259,631
OGLE 6841
Simbad 268,669
Simbad (spectroscopic binaries) 14,076
TESS (EBs or planet candidates) 62,681
VSX 136,190
WISE 41,085
ZTF 18,336

Total overlap 343,014

Notes. “Overlap” is dehned here as a sky-projected separation of less than 1
TESS pixel (≈21″). Duplicates are removed from the total number of overlaps.

26 https://exofop.ipac.caltech.edu/tess/
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(2019). Finally, we obtained photocenter measurements by htting
to each difference image the TESS pixel response function and a
Gaussian point-spread function, and adopting the average of the
two as the corresponding photocenter of the image.

Preliminary results from the hrst step are highlighted in
Figure 11, showing the distributions of the 60K sample in
terms of TESS magnitude, measured period, and photocenter
offset. At this stage, the relevant measurements have not yet
undergone the rigorous vetting and validation analysis
required for promoting a target as a genuine EB, and are
thus likely affected by various systematics. For example, the
period distribution of the new EBs seen in Figure 11 shows a
local maximum near 14 days. This is close to half the
duration of a TESS sector, which makes the potential periods
suspicious.

The second step of the process addresses the issue of potentially
incorrect ephemeris measurements and, consequently, incorrect
photocenter measurements produced by the automated pipeline
outlined above. This can occur when the period search is misled
by, for example, strong systematic effects such as prominent out-
of-eclipse lightcurve variations (due to, e.g., starspots) that can
dominate or even completely overwhelm the eclipse signal (see
Figures 12 and 13, upper panels). Additionally, EBs where the
primary and secondary eclipses are similar in depth, duration, and
shape can lead to situations where the automatically measured
period is an integer ratio of the true period (see Figure 13, lower
panels). While we tried to minimize the impact of such issues on
the ephemeris and photocenter pipeline as much as possible, it was
challenging to account for all possible complications without
negatively affecting the signals of interest. For example, we only
used data points with good quality mags as provided by ELEANOR;
removed those that were near known issues, such as momentum
dumps (TESS Instrument Handbook27), or that we identihed as
potentially suspect sections of the lightcurve; and, where
appropriate, utilized low-order polynomial detrending.
To account for these and other challenges, we manually

inspected the products of the automated pipeline for each of
the 60K targets as outlined below.

4.3. Citizen Science

Analyzing vast amounts of data using automated methods
remains a highly nontrivial process as various sources of
“noise”—be it astrophysical, instrumental, or systematic—can
introduce subtleties that are challenging to automatically

Figure 12. An example issue associated with the automated ephemeris measurements of the TESS FFI ELEANOR lightcurve and difference image for TIC 33521833.
The upper panel shows one sector of TESS data with the automatically detected periodic signal highlighted by the green vertical bands. Lower left panel:
corresponding phase-folded data from all available sectors. Lower right panel: corresponding difference image and photocenter measurements. Here, the lightcurve
is dominated by stellar variability and the automatically measured period is incorrect.

Table 2
Identifying Information for ∼900,000 Unvetted and Unvalidated Targets That

Match Our Selection Criteria

TIC ID R.A. Decl. Tmag

(deg) (deg)
1051 218.815978 −28.267080 14.77
4482 218.858361 −25.722840 13.42
8639 219.017912 −27.561259 14.75
17084 219.309771 −25.415941 14.68
17361 219.336321 −24.958481 11.34

Note. Selection criteria: (i) the neural network identihed eclipse-like events
with a score greater than 0.9, and (ii) no EBs from the sources listed in Table 1
are within ≈21″.
(This table is available in its entirety in machine-readable form in the online
article.)

27 https://archive.stsci.edu/hles/live/sites/mast/hles/home/missions-and-
data/active-missions/tess/_documents/TESS_Instrument_Handbook_v0.
1.pdf
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account for. Additionally, while autonomous methods excel at,
for example, hnding a periodic signal in time series such as the
transits of an exoplanet (e.g., using BLS), they often lack the
insight to discover unique and unexpected features, or various
unusual and uncommon astrophysical objects or phenomena.
For example, all known transiting circumbinary planets have
been identihed by visual inspection of Kepler and TESS
lightcurves (V. B. Kostov 2023). Notably, while human
intervention can help hll in the voids left by algorithms, given
the complexity and scope of astronomical data sets it is quite
challenging for a traditional research group to manually
inspect hundreds of thousands of targets.

Thankfully, to the rescue come volunteers from all walks of
life that boost the capacity of bandwidth-limited professional
astronomers manyfold and help tackle the ever-increasing
volume of publicly available astronomical data. This so-called
citizen science approach is not a new concept—professional
and amateur astronomers have a fantastic and strongly
intertwined history. One famous example is the “Harvard
Computers” project, where some of the participants started
with no formal astronomy training yet helped revolutionize
astronomy and became some of the most successful profes-
sional astronomers (e.g., S. Nelson 2008). Among the more
recent examples, many transiting planets with orbital periods
longer than 1 yr have been discovered by citizen scientists
(e.g., J. Wang et al. 2015), and hundreds of eclipsing triple-
and quadruple-star systems have been spotted by eagle-eyed
volunteers (e.g., T. Borkovits 2022 and references therein).
Citizen scientists have been responsible for many “hrsts,” e.g.,
(i) the unusual Boyajian’s Star (T. S. Boyajian et al. 2016), (ii)
an exocomet transiting its host star (S. Rappaport et al. 2018),
and (iii) a newly discovered class of objects called “tidally
tilted pulsators” (e.g., G. Handler et al. 2020). Time and again,
volunteers have demonstrated they can extract interesting
signals from noise in numerous cases.

The state of citizen science is strong, with multiple projects
tackling various astronomical data sets and making important
scientihc contributions on a regular basis thanks to, e.g., Planet
Hunters and Planet Hunters TESS,28 Exoplanet Explorers,29

Citizen ASAS-SN,30 SuperWASP Variable Stars,31 Planet
Patrol,32 Eclipsing Binary Patrol (EBP),33 Exoplanet Watch,34

UNITE: Unistellar Network Investigating TESS Exoplanets,35

and the Visual Survey Group (VSG; M. H. K. Kristiansen
et al. 2022). The power and dedication of citizen scientists is
truly incredible—for example, members of the VSG have
visually inspected tens of millions of lightcurves from Kepler
and TESS (M. H. K. Kristiansen et al. 2022), and helped make
important new discoveries in multiple branches of
astrophysics.

4.3.1. Exogram

The manual inspection of the 60K targets proceeded as
follows. First, we adapted our online vetting portal Exogram36

for rapid visual scrutiny of a randomly drawn subset of about
10,000 targets out of the 60K set by our core science team
composed of professional astronomers and highly knowledge-
able citizen scientist “superusers.” The team formed during the

Figure 13. Same as Figure 12 but for TIC 823000. Here, the primary and secondary eclipses have similar depths (130 parts per thousand (ppt) and 120 ppt,
respectively) and the automatically measured period is off by a factor of 2.

28 https://blog.planethunters.org/2010/12/16/planet-hunters-introduction/,
D. A. Fischer et al. (2012); https://www.zooniverse.org/projects/nora-dot-
eisner/planet-hunters-tess.
29 https://exoplanetexplorers.org
30 https://www.zooniverse.org/projects/tharinduj/citizen-asas-sn
31 https://www.zooniverse.org/projects/ajnorton/superwasp-variable-stars
32 https://www.zooniverse.org/projects/marckuchner/planet-patrol/
33 https://www.zooniverse.org/projects/vbkostov/eclipsing-binary-patrol
34 https://exoplanets.nasa.gov/exoplanet-watch/about-exoplanet-watch/
overview/
35 https://science.unistellar.com/exoplanets/unite/
36 https://exogram.vercel.app/, developed by one of the citizen scientists on
our team (R. Salik).
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Planet Patrol project, and we have been working together ever
since. The custom interface breaks down the vetting process
into three main questions: “Is this an EB?,” “Is the measured
period correct?,” and a space for additional comments (both
predehned and free text). An example screenshot from the
Exogram EB vetting portal is shown in Figure 14.

Briemy, the user hrst evaluates the data for clear evidence of
eclipse-like features, paying close attention to the two panels on
the right, and to the lower left panel. Next, Exogram automatically
proceeds to the second question, where the user scrutinizes the
phase-folded plot (middle left panel) and decides whether the
measured period is correct. Finally, the portal takes the user to the
last question, which provides the opportunity to mark the target as
particularly noteworthy. Several predehned options are provided,
corresponding to the most commonly observed characteristics.

Importantly, Exogram is designed to enable fast image
classihcation through the use of keyboard shortcuts. We found
this to be a critical advantage as it allows an expert vetter to
classify images with a typical “cruising speed” on the order of
seconds, especially when the data clearly indicates a typical EB
system.37 Naturally, more interesting cases such as those
exhibiting additional eclipse-like features take longer to
inspect, as do targets dominated by systematics such as
momentum dumps, but even for these the access to keyboard
shortcuts signihcantly decreases the response time.

The portal also provides links to external tools such as the Fast
Lightcurve Inspector (FLI38) and LATTE (N. Eisner 2022) that
enable deeper investigation of potentially interesting or
particularly challenging targets. Both tools allow researchers
to interactively examine the entire lightcurve, making it easier,
for example, to distinguish between genuine eclipses and
momentum dumps or other sources of interference. It is worth

noting that FLI was created by one of our superusers (J. S. de
Lambilly) and is designed as a free, online, user-friendly,
interactive tool for visual inspection of TESS data, including
BLS analysis and phase folding. FLI uses the Lightkurve
package (Lightkurve Collaboration et al. 2018) to query
MAST for all available GSFC-ELEANOR-LITE, QLP, SPOC, and
TESS-SPOC lightcurves, along with corresponding diagnostics
(e.g., background mux and centroid measurements), and
presents them in a Bokeh/Plotly environment.
Exogram was developed using SvelteKit, a modern web

application framework. The database and authentication are
handled by Google’s Firebase platform, and the website itself is
hosted by Vercel. We store the lightcurve images on Google
Drive. Behind the scenes, the Exogram server tallies the number of
responses, labels targets as fully classihed if three users have
already commented, and removes them from the pool of images
shown. Additionally, the Exogram platform integrates social
media–like features to encourage collaboration between users. For
example, users can “star” a target to save it for later inspection.
Starred EBs are public, and users can see which targets were saved
by others. This makes it easy for vetters to hnd targets that others
deemed interesting or unusual. Users can also share targets with
each other, and the integrated notihcation feature alerts users when
something has been shared with them. Finally, the platform also
shows a vetting leaderboard to encourage friendly competition
among the users.

4.3.2. EBP

To further capitalize on the power of citizen science, and
inspired by the success of the Planet Patrol project (V. B. Kostov
et al. 2022a), we proceeded with the investigation of all 60K
targets by developing the EBP project.39 EBP is hosted on
Zooniverse and provides a streamlined, interactive, and user-

Figure 14. An example screenshot of the workmow and interface of Exogram EB vetting, enabling rapid image classihcation.

37 For the easiest cases, the vetting speed is practically limited by the reaction
time for pressing the relevant shortcut.
38 https://fast-lightcurve-inspector.osc-fr1.scalingo.io

39 The targets inspected through Exogram are included in EBP as an
additional layer of scrutiny and validation.
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friendly platform to visually inspect a summary of the results
produced by the automated pipeline described above. EBP was
launched on 2024 September 3, and was completed on 2025
March 26, during which period ∼1800 participants produced
∼320,000 classihcations.

The EBP workmow consists of four questions aimed at
evaluating whether the target is indeed an EB candidate,
whether the calculated period is correct, and whether the
photocenter measurements are reliable. An example screenshot
of the classihcation scheme is shown in Figure 15. The
volunteers inspect the original and phase-folded lightcurves,
and decide whether they see periodic eclipse-like signals,
check if the period is correct, and scrutinize the lightcurve for
secondary eclipses. Additionally, they evaluate the quality of
the difference image and classify it as either appropriate for
photocenter measurements—i.e., the image shows a well-
dehned bright spot on an otherwise dark background—or
otherwise.

The EBP portal provides extensive background information
on the science of EBs and their astrophysical importance, a
comprehensive tutorial with a step-by-step demonstration of
the workmow, a held guide presenting relevant examples, edge
cases, etc. The portal also includes guidelines on how to
interpret and classify the images, as well as an active talkboard
where volunteers can discuss targets of interest and ask for
help from the science team. Each image presented to the
volunteers also contains additional auxiliary information
enabling more detailed investigation of the inspected target,
particularly with the help of FLI. We note that classihcations
on EBP are not strictly blind. Volunteers could freely look up
outside information, based on the provided TIC ID, which
could potentially affect their evaluation. Finally, volunteers
interested in contributing to the vetting process beyond the
Zooniverse project are invited to join the science team.

For completeness, we would like to briemy share the
experience gained and lessons learned from EBP. First and
foremost, frequent interactions between the science team and

volunteers on the talkboards, especially during the initial
stages, were critical for the success of the project. These
interactions ensured timely resolution of technical issues,
addressed vetting and scientihc questions, and enabled live
updates aimed at improving the overall workmow. For
example, prompted by feedback from volunteers we quickly
rehned the FAQ and tutorial by adding new examples,
clarifying existing instructions, etc. Finally, consistent com-
munication, including social media posts highlighting inter-
esting targets and celebrating milestones, helped retain user
engagement throughout the duration of the project, averaging
about 1000 classihcations per day, even months after launch.
The workmow of EBP is designed such that each target is

considered as fully classihed when at least hve different
volunteers have inspected the corresponding image and
answered the provided questions. It is worth pointing out that
at the launch of the project, the image “retirement” limit was
set to nine. However, that proved to be too high as the rate of
completed classihcations was rather slow. Thus, in order to
speed up the vetting and complete the 60K sample in a timely
manner, three weeks after the project was launched we reduced
the limit to seven, and shortly after down to hve.
To adopt an aggregate response to each question, we tested

three options: (i) a simple majority, i.e., at least three out of
hve volunteers select the same answer; (ii) at least four out of
hve; and (iii) hve out of hve. To evaluate the reliability of
these aggregates, we checked the corresponding classihcations
for a random sample of 1000 targets where the measured
period was classihed as correct. Overall, we found that about
75%, 85%, and 90% of the responses are correct for options
(i), (ii), and (iii), respectively. In order to increase the hdelity
and maximize the reliability of the classihcations, members of
the science team performed complementary visual inspection
of all potentially new EB candidates for which at least three
out of hve volunteers indicate that the period is correct.
Altogether, 7936 targets passed the following vetting and

validation tests: (1) the ELEANOR lightcurve shows clear

Figure 15. An example screenshot highlighting the hrst question of the EBP workmow. The upper panel in the hgure shows one sector of TESS data, highlighting the
detected eclipses in green, and listing the measured period. The lower left panel shows the corresponding phase-folded lightcurve, and the lower right panel shows
the difference image used for the photocenter measurements. The difference image also shows the pixel position of the target (red star) and the sector-averaged
measured photocenter (open black circle). The user decides whether the target shows clearly visible periodic dips (indicating an EB), answers “yes” or “no,” and is
then taken to the second question.
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eclipses; (2) the measured period is correct; (3) the difference
images used for photocenter analysis are of sufhciently high
quality for reliable measurements; (4) the measured photo-
center offsets are smaller than 0.2 pixels; and (5) no held
stars from the Gaia catalog and TIC are within 0.2 pixels of
the target, and bright enough to produce the detected eclipses
as contamination. An example of a target that passes the hrst
four tests but fails the last is TIC 187172446, shown in
Figure 16. Here, there is a nearby held star, TIC 510123334,
that is about 1 TESS magnitude fainter and at a projected
separation of 0.17. Thus, while the measured photocenter
offset is about 0.14 pixels, it is impossible to tell from the
TESS data which of these two stars is producing the detected
eclipses.

5. A Catalog of Uniformly Vetted and Validated EBs from
TESS FFI Data

The hnal product of the process outlined above is a
uniformly vetted and validated catalog of new EB candidates
identihed in TESS FFI data. The catalog contains 7936 targets
with verihed ephemerides, eclipse depths and durations, and,
where applicable, phases of secondary eclipses. Table 3 shows
the content of the catalog, which also includes the TIC ID of
the target, sky position, TESS magnitude, number of sectors
observed, Gaia astrometric information, relevant comments,
etc. We note that 29 of the 7936 targets are listed in Gaia as
single-lined spectroscopic binaries. In addition, we provide
updated ephemerides for 2065 known EBs for which the
period listed in one or more catalogs is incorrect. Most of our

Figure 16. Same as Figure 12 but for TIC 187172446. Here, the lightcurve shows a clear EB signal, the measured period is correct, the difference image is adequate
for reliable photocenter analysis, and the measured photocenter offset is ∼0.14 pixels. However, there is a nearby held star, TIC 510123334, that is bright enough to
be the source of the eclipses and too close to the target (projected separation of about 0.71) for the photocenter measurements to pinpoint the source of the detected
eclipses. Such targets are not included in our catalog.

Figure 17. The distributions of the TESS magnitudes, orbital periods, photocenter offsets, and number of sectors observed for the 7936 new EBs in our catalog. A
darker shade represents a higher number of targets. Most of the EBs are faint, have short orbital periods, have detected eclipses that originate within ∼1″–2″ of the
respective target star, and have been observed by TESS in at least three sectors.
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Table 3
Parameters of the 7936 New EBs

TIC ID R.A. Decl. Tmag Period T0,prim
Prim.
Depth

Prim.
Duration T0,sec

Sec.
Phase

Sec.
Depth

Sec.
Duration Sector RUWE AEN AENS Teff Comments

(deg) (deg) (days) (BJDa) (ppt) (hr) (BJDa) (ppt) (hr) (µas) (K)
8636 219.005555 −27.569441 12.36 3.886554 1603.2923 121 3.0 2355.3404 0.5 45 3.0 2 1.78 0.17 39.28 4965 ⋯
672717 73.486075 −26.691694 14.44 7.18193 1448.2325 121 2.6 1445.1831 0.58 113 2.6 2 8.61 2.71 912.95 ⋯ ⋯
737910 74.543779 −28.491438 13.32 2.297452 1447.8866 31 3.6 1453.6230 0.5 30 3.5 2 1.06 0.07 1.08 4949 ⋯
823000 127.043916 −16.737116 12.05 7.530827 2979.1752 132 3.5 2967.8872 0.5 121 4.6 4 0.99 0.00 0.00 5991 ⋯
890432 127.043916 −13.796373 14.63 14.201932 2235.1764 143 4.5 2980.5780 0.49 58 4.9 5 1.12 0.09 8.63 4841 ⋯
891636 127.057470 −12.512750 13.61 2.023998 1496.7517 99 2.1 2973.2540 0.5 38 2.7 5 39.40 4.10 11,889.59 ⋯ ⋯
1102444 155.353410 27.595890 12.8 4.04989 2612.6915 16 4.9 ⋯ ⋯ ⋯ ⋯ 2 1.01 0.00 0.00 4087 ⋯
1124666 36.948680 −7.826921 13.78 3.524638 2148.3515 139 3.5 ⋯ ⋯ ⋯ ⋯ 2 ⋯ 6.11 9190.83 ⋯ ⋯
1195217 136.100062 −11.945334 13.29 1.788685 1541.2277 16 1.8 ⋯ ⋯ ⋯ ⋯ 4 1.02 0.00 0.00 4156 ⋯
1195846 71.095974 −32.854422 14.69 3.141602 2145.8888 33 2.5 2191.4521 0.5 8 2.7 3 1.02 0.00 0.00 4518 ⋯
1196032 71.069268 −33.584354 14.64 15.15001 1444.4083 173 4.8 1449.5224 0.34 124 5.0 3 0.96 0.00 0.00 5516 ⋯
1199301 71.333957 −35.113030 13.08 5.26431 2188.7857 62 6.0 1443.8504 0.49 3 6.1 3 0.98 0.00 0.00 6086 ⋯
1309535 72.858580 −32.250238 12.12 13.531491 2187.5640 192 3.9 1452.1739 0.65 10 4.2 2 0.89 0.04 1.86 5987 ⋯
1471956 146.911387 −15.546746 13.03 9.007584 2995.8203 135 3.3 2991.3347 0.5 81 3.3 4 18.99 2.10 2515.51 4326 ⋯
1503836 131.959336 −24.266628 13.07 1.021917 1527.7987 21 1.6 2993.7410 0.5 12 1.7 7 1.92 0.21 34.13 ⋯ ⋯
1541478 169.541503 −14.092368 13.52 14.665098 3026.3663 417 3.1 3033.0097 0.45 359 3.0 4 1.19 0.05 0.76 3729 ⋯
1616408 132.133251 −24.902464 14.71 3.115479 1524.3949 28 3.9 ⋯ ⋯ ⋯ ⋯ 6 1.10 0.06 0.87 5861 ⋯
1755837 78.624341 32.548174 14.28 4.28833 2502.8285 128 5.0 3645.6576 0.5 21 3.8 8 1.01 0.00 0.00 5368 ⋯
1942820 78.947929 34.186537 14.34 3.381414 1826.4456 141 2.8 ⋯ ⋯ ⋯ ⋯ 8 4.14 0.83 179.45 5780 ⋯
2099994 79.341909 30.521062 10.91 3.827636 2496.3074 8 4.0 2521.1347 0.49 1 3.9 6 8.15 1.26 3159.49 5923 ⋯
2158899 79.451105 30.893429 14.69 1.805987 2497.1628 20 3.5 ⋯ ⋯ ⋯ ⋯ 8 1.06 0.04 0.31 6622 ⋯
2438442 80.004098 35.227821 12.81 3.147522 1826.3919 133 4.0 3647.2077 0.49 55 3.8 7 18.74 2.18 3404.77 5972 ⋯
2508333 80.125447 32.402184 13.85 2.183682 1840.1360 60 4.7 ⋯ ⋯ ⋯ ⋯ 8 1.51 0.13 9.05 7104 ⋯
2509102 79.993792 32.023402 11.78 2.486683 1825.6144 20 5.1 ⋯ ⋯ ⋯ ⋯ 8 1.00 0.07 6.26 7141 ⋯
2601042 80.292516 35.601431 13.57 3.476145 2493.7629 4 2.8 2481.5927 0.5 1 3.1 6 1.13 0.09 3.01 7681 ⋯
2678574 80.370472 32.400301 13.59 1.329262 2475.2094 14 2.7 ⋯ ⋯ ⋯ ⋯ 8 0.95 0.00 0.00 6825 ⋯
2679754 80.290739 31.819113 12.32 3.184818 2508.1125 9 3.4 ⋯ ⋯ ⋯ ⋯ 8 0.96 0.04 2.04 7065 ⋯
2680580 80.337560 31.421225 14.28 6.874418 2492.9904 74 5.8 1829.4379 0.48 46 6.3 8 1.08 0.00 0.00 6650 ⋯
2762701 356.676090 −16.842597 14.08 1.216169 1366.2573 179 1.3 1359.5735 0.5 69 1.4 3 1.05 0.08 0.75 ⋯ pETVs
2840082 243.496472 −41.192966 11.49 2.887738 3073.6308 42 9.0 3092.4026 0.5 7 9.7 3 3.66 0.41 211.15 6456 ⋯

Note. In the Comments column, pETVs = potential ETVs.
a BJD–2457000.

(This table is available in its entirety in machine-readable form in the online article.)
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Table 4
Comparison between the Correct Period Measured from TESS and the Periods from Gaia, ASAS-SN, ATLAS, VSX, and WISE for 2065 Known EBs

TIC R.A. Decl.
TESS
Period TESS T0

Gaia
Period

Gaia
vs. TESS

ASAS-SN
Period

ASAS-SN
vs. TESS

ATLAS
Period

ATLAS
vs. TESS

VSX
Period

VSX
vs. TESS

WISE
Period

WISE
vs. TESS

(deg) (deg) (days) (BJD) (days) (days) (days) (days) (days)
761795257 111.7000 12.5605 2.5887 1494.1521 3.2064 1.33 ⋯ ⋯ 5.1740 2 ⋯ ⋯ ⋯ ⋯
252351823 74.9920 55.4948 4.0213 1820.4185 7.4545 0 ⋯ ⋯ ⋯ ⋯ 4.0088 1 ⋯ ⋯
436564213 70.6023 12.9477 3.2533 1444.2706 3.2431 1 3.2432 1 ⋯ ⋯ 3.2431 1 1.6215 2
386250632 139.1054 −58.3239 1.5174 1546.1097 1.5174 1 9.1040 6 ⋯ ⋯ 1.5172 1 0.7587 2
369995729 20.8105 59.8022 2.6458 1792.0862 2.0944 1.33 0.2571 0 ⋯ ⋯ 0.2571 0 ⋯ ⋯
68543179 103.6037 32.4242 4.1924 1845.8610 4.6823 0 4.1927 1 ⋯ ⋯ 4.1925 1 ⋯ ⋯
311651226 260.8442 −77.3195 1.0494 1629.9139 1.0494 1 1.0494 1 ⋯ ⋯ 1.0524 1 0.5247 2
427654873 349.4827 70.1097 4.2869 1764.9825 8.5734 2 ⋯ ⋯ ⋯ ⋯ 4.2871 1 2.1434 2
410498300 26.0089 48.0453 2.2905 1792.8908 2.2905 1 2.2903 1 ⋯ ⋯ 2.2904 1 1.1453 2
123135027 118.6583 −5.2361 2.1691 1494.1874 0.2870 0 2.1689 1 ⋯ ⋯ 2.1689 1 ⋯ ⋯

(This table is available in its entirety in machine-readable form in the online article.)
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corrections are with respect to the Gaia EB catalog—1233 out
of 1889 targets, followed by 312 out of 986 ASAS-SN EBs,
and 308 out of 1015 VSX EBs.

The distributions of the TESS magnitudes, orbital periods,
photocenter offsets, and number of sectors observed for the
7936 new EBs are shown in Figure 17. The period distribution
has mean and median values of ≈4.5 and ≈3.5 days,
respectively, and a 95th percentile of ≈11.6 days. This is
comparable to the Kepler EB catalog, where the median period
is also about 3.5 days (A. PrTa et al. 2011; R. W. Slawson
et al. 2011; K. E. Conroy et al. 2014a; W. F. Welsh &

J. A. Orosz 2018). The shortest period in our catalog is ≈0.65
days, while the longest is ≈40 days. As seen from the hgure,
the measured photocenter offsets are remarkably small, with
mean/median/95th percentile values of 0.053/0.05/0.12
pixels, respectively, conhrming that the detected eclipses
originate from within ∼1″–2″ of the target stars. Additionally,
granted that most of the EBs are on the fainter end (i.e., mean/
median/95th percentile of 13.6/13.8/14.9 mag) there is no
strong correlation between a target’s brightness and the
magnitude of the corresponding photocenter offset, high-
lighting the excellent quality of the TESS FFIs even for the

Figure 18. Example hts to all phase-folded primary eclipses of TIC 470715046 for three models: trapezoid (red), Gaussian (green), and generalized Gaussian (cyan).
The red and green curves are vertically offset for clarity. As seen from the hgure, the generalized Gaussian model provides a much better ht to the data than either of
the other models.

Figure 19. Distributions of the median primary and, where present, secondary eclipse depths (left panel, in ppt) and durations (right panel, in hours) for the 7936 new
EBs presented here.

Figure 20. Left panel: distribution of the detected secondary eclipses as a function of the orbital phase. Middle and right panels: the two EBs with the most extreme
secondary phases, TIC 149673382 with phase ≈0.87 (middle) and TIC 337097515 with phase ≈0.11 (right panel), both exhibiting a heartbeat “bump.”
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fainter stars. Finally, TESS observed the majority of the EBs
three times or more, such that ≈88%/32%/13% of the targets
were covered in at least three/six/nine sectors, respectively.

5.1. Depth, Duration, and Secondary Eclipses

To measure the eclipse times, depths, and durations, we
adopted the methodology of V. B. Kostov et al. (2022b) and,

for each sector, ht each eclipse with its generalized Gaussian
model:

( )( ) ( ) ( )= +F t A Be C t t . 1o
t to

For illustrative purposes, Figure 18 shows the model ht to
all phase-folded primary eclipses of TIC 470715046, as well as
a Gaussian and a trapezoid ht for comparison. As seen from

Figure 21. Phase-folded lightcurves for two targets with primary eclipse depths close to unity: TIC 42066695 (sector-averaged depth of ≈848 ppt, left panel) and
TIC 446208053 (sector-averaged depth of ≈804 ppt, right panel).

Figure 22. TESS FFI ELEANOR lightcurve of TIC 5232381 for Sector 9 (left) and Sector 62 (right). The vertical span is the same for both panels. The eclipse depths
are different between the two sectors due to systematic effects caused by contamination from TIC 5232374.

Figure 23. Similar to Figure 22 but for TIC 77392704. The vertical span is the same for all three panels. Here, the eclipses are loud and clear in Sectors 12 and 39,
but barely present in Sector 65.
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the hgure, the generalized Gaussian model provides an
excellent ht to the data—certainly better than both the
trapezoid and the narrower Gaussian model—and we used it
for measuring the eclipse depths and durations.

Table 3 provides the median depths and durations for the
new EBs presented here. The corresponding distributions are
shown in Figure 19. The primary depth distribution has mean/
median/95th percentile values of 91/62/276 ppt, respectively;
the mean/median/95th percentile values for the primary
duration distribution are 4.2/3.9/7.4 hr, respectively. Roughly
half of the targets exhibit secondary eclipses. As highlighted in
Figure 20, most of these occur near an orbital phase of 0.5, and
about 95%/99% of them reside within the phase range of
∼0.43–0.58/∼0.3–0.72, respectively. The two most extreme
secondary phases in our catalog are for TIC 149673382, with a
secondary phase of ≈0.87, and TIC 337097515, with a
secondary phase of ≈0.11, both exhibiting a pronounced
heartbeat “bump” between the primary and secondary eclipses.

We note that several targets in our catalog have primary
depths larger than 0.5 according to the current version of
ELEANOR data, likely due to systematics. The three most
extreme cases are TIC 42066695 (average depth of ≈848 ppt),
TIC 446208053 (depth of ≈804 ppt), and TIC 192305147
(depth of ≈751 ppt); the phase-folded lightcurves for the hrst
two are shown in Figure 21. The average primary depth for
42066695 is much smaller, ≈434 ppt; for the other two targets
there is no publicly available QLP data at the time of writing.

It is important to note that the observed eclipse depths often
vary from one sector to the next. With a handful of exceptions,
mentioned below, these depth variations are due to systematic
effects inherent to the lightcurve extraction process. An example is
shown in Figure 22 for the case of TIC 5232381, where the
eclipses in Sector 9 (left panel) are about half as deep as those in
Sector 62 (right panel). This is likely due to the sector-specihc
background subtraction being affected by TIC 5232374, ≈13″
away and about 2 mag fainter.

TIC 5232381 is neither an isolated occurrence nor an
outlier. Sometimes, eclipse depths can muctuate even within a

single sector, showing differences before and after TESS data
downlink gaps. In the most extreme cases, the eclipses can be
virtually undetectable in certain sectors, as highlighted in
Figure 23 for TIC 77392704 (also, e.g., for TIC 63165670).
Thus, in these cases it is preferable to exclude such sectors
when phase-folding the lightcurve, which we did by visual
inspection on a target-by-target and sector-by-sector basis.
These complications are often further exacerbated when the

number of detected eclipses is small due to relatively long
orbital periods, data gaps, and systematic effects. Sometimes,
even the addition of new sectors does not help improve the
measurements. An example of this is shown in Figure 24 for
the case of TIC 173706211, where the Sector 84 lightcurve is
completely dominated by systematics and there is a single
useful eclipse near the end of the sector. As a result, while
obtaining reliable eclipse depths and durations for individual
sectors is, in general, relatively straightforward, extending
these measurements across multiple sectors is challenging and
sector-averaged depths and durations can be misleading.
Collectively, these factors underscore the complexity of

obtaining accurate and precise measurements for many TESS
FFI EBs. Thus, it is important to emphasize that even after
thorough scrutiny it is still possible that the ephemerides
provided in this catalog are slightly off, especially when the
number of TESS observations is small, the eclipses are few
and shallow, the SNR is low, and the lightcurve is dominated
by systematics. Unfortunately, resolving these issues by, e.g.,
cross-checking EBs between different lightcurve pipelines is
far from straightforward. For instance, it is not uncommon to
see depth differences when comparing ELEANOR data to QLP
or TESS-SPOC data, likely due to different treatments of
crowding correction.40

Finally, it is worth pointing out two further considerations
regarding eclipse depth variations in particular. First, these do

Figure 24. TESS FFI ELEANOR lightcurve of TIC 173706211 for all available sectors at the time of writing. Sector 84 is completely dominated by systematics. As a
result, the ephemeris measured from Sectors 16 and 17 is not signihcantly improved with the addition of the latest data.

40 We note that, at the time of writing, the QLP lightcurves beyond Sector 74
were not well suited for ephemeris determination due to a timing error of about
3 minutes. One of us (D. Short) noticed this issue during our investigations and
brought it to the attention of the QLP team.
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not substantially affect the ephemeris measurements as these
are done on an eclipse-by-eclipse basis—each eclipse is
independently modeled with a generalized Gaussian that hts
for the depth by design. Neither do the depth variations
dramatically impact our photocenter-based vetting as it mostly
depends on the eclipse durations.41

5.2. EBs in Multiple Stellar Systems

Multiple stellar systems are not uncommon. About one in 10
binary stars reside in hierarchical (2+1) triples, and thousands
of even higher order systems have already been discovered
(e.g., D. Raghavan et al. 2010; S. Tremaine 2020; and
references therein). The higher the multiplicity of the system,
the higher its complexity in terms of orbital and physical
parameters, formation and evolution pathways, and long-term
dynamical stability (e.g., M. Moe & R. Di Stefano 2017;
S. Tremaine 2020; A. Tokovinin 2021; and references therein).
In general, wide multiple systems are prime targets for long-
term astrometric monitoring, while compact multiples are
ideally suited for observing short-term dynamical interactions
between their components such as ETVs.

Crossmatching our catalog with the Gaia DR3 astrometric
measurements, we extracted the available astrometri-
c_excess_noise (AEN), astrometric_excess_-
noise_sig (AENS), and renormalized unit weight error
(RUWE). These can be used to test for unseen companions
(e.g., V. Belokurov et al. 2020; Z. Penoyre et al. 2020;
K. G. Stassun & G. Torres 2021; P. Gandhi et al. 2022;
S. R. Majewski et al. 2025, in preparation; and references
therein), which, if indeed present, would potentially mark the
EBs as components in systems of three (or more) stars. The
corresponding distributions are shown in Figure 25, high-
lighting several interesting features. In particular, the AEN is
greater than 10 mas for hundreds of targets, and the AENS is
greater than 3 for ∼40% of the EBs, reaching values of tens to
even hundreds of thousands for dozens of targets. Similarly,
the RUWE is greater than 1.4—suggesting unresolved
companions (K. G. Stassun & G. Torres 2021)—for about
one in every four targets. Altogether, these considerations
indicate that a potentially large fraction of the 7936 new EBs
presented here may reside in multiple stellar systems.

Another option for hnding multiple stellar systems is
through the presence of extra events in the lightcurves of

EBs. Indeed, TESS has already enabled the detection of
thousands of such events, practically revolutionizing the held
by discovering hundreds of new 2+1 triply eclipsing triple
systems (e.g., T. Borkovits 2022; S. A. Rappaport et al.
2022, 2024; V. B. Kostov et al. 2024b; and references therein)
and 2+2 eclipsing quadruple systems (V. B. Kostov et al.
2022b, 2024a; P. Zasche et al. 2024; B. P. Powell et al. 2025),
as well as unusual (2+1)+1 eclipsing quadruples (e.g.,
B. P. Powell et al. 2022b), several (2+1)+2 quintuple systems
(V. B. Kostov et al. 2022b, 2024a), the hrst two (2+2)+2
eclipsing sextuple systems (B. P. Powell et al. 2021a;
P. Zasche et al. 2023), and even two transiting circumbinary
planets (V. B. Kostov et al. 2020, 2021a). Volunteers at EBP
have independently rediscovered many of these and, naturally,
a signihcant number of false positives that mimic 2+2
eclipsing quadruples due to blended light from two unrelated
EBs,42 and also identihed several new eclipsing triple and
quadruple candidates (V. B. Kostov 2025, in preparation).

5.3. Known EBs Observed by TESS

Given our ML search was effectively blind, it was inevitable
that it picked up a large number of known EBs. And indeed, as
discussed above, about one in four of the identihed candidates
are within 1 pixel of known EBs. Thus, in order to verify the
efhciency and reliability of our automated ephemeris and
vetting pipeline, we applied it to ≈30,000 such targets and
tracked its performance. Interestingly, during the early stages
of the EBP project, the volunteers noticed that the correctly
measured periods from TESS were sometimes different from
the literature values. Altogether, we marked 2065 such cases.
As an example, the distributions of the period ratios between
TESS on the one hand and Gaia, ASAS-SN, ATLAS, and VSX
on the other are highlighted in Figure 26.
As seen from the hgure, most of the Gaia, ASAS-SN,

ATLAS, and VSX periods are close to an integer fraction of
the true period, where for simplicity “close” is dehned as
within 10% of integer fractions of 2 (from 1/2 to 10/2) and 3
(from 1/3 to 20/3).43 This is perhaps not too surprising given
the much longer continuous baseline coverage and higher
cadence of TESS observations compared to other surveys. As
an example, Figure 27 shows TIC 2597145, where the correct
period measured from TESS is 1.4143 days, twice the period

Figure 25. The distributions of Gaia’s AEN, AENS, RUWE, and effective temperatures for the 7936 new EBs presented here. The vertical dashed lines represent
AENS = 3 (left panel) and RUWE = 1.4 (middle panel), potentially suggesting unresolved companions.

41 Naturally, it would be important to keep track of such effects when
validating targets based on eclipse depths and contamination from nearby
stars.

42 See, for example, https://www.zooniverse.org/projects/vbkostov/
eclipsing-binary-patrol/talk/tags/multiple-system-candidate.
43 The reciprocal fractions are combined in the hgure, i.e., 1/2 with 2/1 , 1/3
with 3/1, 2/3 with 3/2, etc.
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listed in Gaia (0.7072 days). For this target, the periods listed
in ASAS-SN and VSX are correct. Another example is TIC
9473243, where the correct period measured from TESS is
2.2669 days, whereas Gaia gives a period of 9.0680 days
(4 times as long), ASAS-SN gives a period of 4.5338 days
(2 times as long), and WISE gives a period of 1.1335 days
(only half as long). Additionally, TESS excels at enabling the
detection of shallow secondary eclipses. An example of this is
shown in Figure 28 for TIC 403072759, highlighting the
shallow but clear secondary eclipse near the phase of 0.5.
Here, the true period measured from TESS is 1.3029 days

whereas Gaia gives a period of 0.52 days, i.e., a 2/5 fraction of
the true period.
Interestingly, about 20% of the Gaia EB periods seem to be

unrelated to the TESS periods at all. These cases are
represented in Figure 26 by the peak at zero. One example is
TIC 2239760, where the correct TESS period is 5.8855 days,
while the Gaia period is 3.2370 days, a ratio of ≈0.55
(Figure 29, left panel). Another is TIC 143060048, where the
TESS period is 4.2852 days and the Gaia period is 30.4715
days (ratio of ≈7.11; Figure 29, right panel). Some of the most
extreme discrepancies are for TIC 443450339, 152328270,

Figure 26. Distributions of ratios between the correct TESS periods and the incorrect periods from Gaia (hrst panel from left), ASAS-SN (second panel from left),
ATLAS (third panel from left), and VSX (last panel from left) for 2065 known EBs. For simplicity, the reciprocal fractions are combined, i.e., 1/2 with 2/1, 1/3
with 3/1, etc. The zero values represent targets of which the Gaia/ASAS-SN/ATLAS/VSX periods are not within 10% of a corresponding integer fraction of the
TESS periods.

Figure 27. Left panels: ephemeris and vetting pipeline results for TIC 2597145. The correct period measured from TESS is 1.4143 days—twice as long as the period
listed in Gaia (0.7072 days); ASAS-SN and VSX provide the correct period. Right panels: same as left but for TIC 9473243. Here, the Gaia period is 4 times the
correct period, the ASAS-SN period is twice the correct period, and the WISE period is half of the correct period.

Figure 28. Same as Figure 27 but for TIC 403072759 (left) and TIC 12396863 (right). Thanks to TESS, shallow secondary eclipses can be detected near phase 0.5
for both targets, conhrming the corresponding periods are 1.3029 days and 2.6760 days. For comparison, the periods listed in Gaia are 0.5210 days for TIC
403072759 (i.e., two-hfths of the true period) and 5.3519 days for TIC 12396863 (i.e., twice the true period).
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353628656, 138032974, and 34853800, for which the TESS
periods are 2.9032, 9.0706, 2.5816, 1.8713, and 3.2028 days,
respectively, whereas the corresponding Gaia periods are
orders of magnitude longer, i.e., 406.0884, 381.0741,
355.6257, 189.4914, and 164.4351 days.

Table 4 highlights 10 random rows of the catalog of 2065
known EBs with updated ephemerides produced as part of
this work.

5.4. Interesting Systems

Here, we highlight some of the more interesting targets
independently identihed as part of this effort, split into the
following categories:

1. Additional eclipses: Targets exhibiting extra events not
associated with the EB signal, such as a second set of

eclipses following a different period (representing a 2+2
quadruple system consisting of two EBs) or complex
tertiary events (representing triply eclipsing 2+1 triple
systems or eclipsing (2+1)+1 quadruple systems).
Figure 30 highlights two such examples.

2. ETVs: Targets where the eclipse times deviate from the
linear ephemeris, suggesting potential dynamical inter-
actions with additional bodies. An example is shown in
the upper panel of Figure 31 for the case of the 2+2
quadruple system TIC 219006972, where the two EB
subsystems are dynamically interactive on observable
timescales (V. B. Kostov et al. 2023). Another example
is the known EB TIC 26542657 (A. PrTa et al. 2022),
which, through our comparison with the Kepler catalog,
we determined does not show the ∼11 day eclipses in
Kepler and must therefore be a higher-order system. It is

Figure 29. Same as Figure 27 but for TIC 2239760 (left) and TIC 143060048 (right), for which the corresponding ratios between the Gaia and TESS periods are not
close to low-order integer ratios (≈0.55 and ≈7.11, respectively).

Figure 30. Upper panel: TESS FFI ELEANOR lightcurve of TIC 307119043, an eclipsing 2+2 quadruple exhibiting two sets of primary and secondary eclipses
(V. B. Kostov et al. 2022b). Lower panel: eclipsing (2+1)+1 quadruple system TIC 114936199 exhibiting a complex eclipse on the outer orbit (B. P. Powell
et al. 2022b).
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Figure 31. Upper panel: primary ETVs for the two EBs in the 2+2 quadruple system TIC 219006972, conhrming the two subsystems are gravitationally bound
(V. B. Kostov et al. 2023) with an outer period of 168 days. Lower panel: primary (red) and secondary (blue) ETVs of the known EB TIC 26542657, suggesting a 2
+1 triple system with an outer period of about 300 days.

Figure 32. TESS ELEANOR lightcurve of the known EB TIC 26542657, highlighting clear changes in the shape of the primary and secondary eclipses between the
hrst two sectors (14 and 15; sharp primary, rounded secondary) and the last three sectors (81, 82, and 83; rounded primary, mat secondary), along with a prominent
tertiary eclipse in Sector 81 (red arrow).

26

The Astrophysical Journal Supplement Series, 279:50 (32pp), 2025 August Kostov et al.



Figure 33. Kepler lightcurve of the known TESS EB TIC 26542657 showing a single tertiary eclipse (marked with a red arrow) and no discernible eclipses from the
∼11 day EB.

Figure 34. Disappearing eclipses due to dynamical interactions with unseen companions. Upper panel: TIC 236774836 (T. Mitnyan et al. 2024b); lower panel: TIC
220410224.
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separated by only 1 from TIC 1882992210, which is
only ∼0.1 mag fainter in TESS, making photocenter
conhrmation of the eclipse source effectively impossible
from TESS. However, the target exhibits clear primary
and secondary ETVs (see Figure 31, lower panel), a
tertiary eclipse in Sector 81, and prominent changes in
the shape of both the primary and secondary eclipses

between Sectors 14/15 (narrow, sharper primary, more
rounded secondary) and later sectors (more rounded
primary, mat secondary; see Figure 32). Taken together,
these provide strong evidence that either TIC 26542657
or TIC 1882992210 is a dynamically interacting, triply
eclipsing triple system with an outer period of about 300
days. Additionally, as seen from Figure 33, the Kepler

Figure 35. TESS lightcurve of the known EB TIC 234229841, where the primary and secondary eclipses “switch” places. In Sector 6, the deeper eclipses precede the
heartbeat-like hump, the primary and secondary eclipses have similar depths in Sector 33, and in Sector 87 the deeper eclipses follow the hump.

Figure 36. Pronounced apsidal motion exhibited by TIC 189281140 (upper panel) and TIC 470715046 (lower panel).
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lightcurve of the target shows one tertiary eclipse
suggesting that the system was out of the eclipsing
window for the ∼11 day EB during the Kepler era due to
orbital precession.44

3. Disappearing eclipses: Targets where the detected
eclipses exhibit prominent depth variations due to
precession of the EB orbital plane, to the point of
eventually ceasing altogether. Figure 34 shows the TESS
lightcurves of TIC 236774836 (T. Mitnyan et al. 2024b)
and TIC 220410224, indicating dynamical interaction
with unseen companions.

4. “Switching” eclipses: Similar to the previous example,
but here the depth ratio between the primary and

secondary eclipses changes between sectors. Figure 35
shows an example of this effect for the case of the known
EB TIC 234229841.

5. Apsidal motion: Targets exhibiting pronounced “smear”
of the secondary eclipses in orbital phase, indicating
apsidal motion. Figure 36 highlights two such targets,
TIC 189281140 and TIC 470715046.

6. Stellar variability: Targets exhibiting prominent light-
curve modulations due to, e.g., rotational variability
(spotted stars), pulsating components, heartbeat patterns,
etc. Figures 37 and 38 show examples of each category,
represented by TIC 21159577, TIC 22621932, and TIC
336538437.

7. Transiting planets: It is only logical that a search for
stellar eclipses will result in hnding planetary transits as
well. Indeed, our ML pipeline picked up the conhrmed
planet TIC 408310006 (WASP-166 b). Interestingly, an

Figure 37. Two sectors of ELEANOR data for TIC 21159577, an EB showcasing an evolving pattern of starspot-induced rotational modulations.

Figure 38. Upper panel: TESS lightcurve of an EB with a pulsating component (TIC 22621932). Lower panel: TESS lightcurve of an EB exhibiting a pronounced
heartbeat pattern (TIC 336538437; S. Solanki et al. 2025).

44 We note that the tertiary eclipse has nonzero quality mags, which were not
uncommon in Kepler data, and could be easily missed if one only investigates
“quality = 0” data.
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eagle-eyed volunteer on EBP (D. Iannone) noticed an
additional transit-like event in the lightcurve of the target
in Sector 62.45 Further investigation showed another
event in Sector 89 (see Figure 39), suggesting the
potential presence of a second transiting planet in the
system.

6. Summary

We have presented the TESS Ten Thousand Catalog
containing 10,001 uniformly vetted and validated EBs
observed by TESS in FFI data. Of these 7936 are new EBs
while the remaining 2065 are known EBs of which the period
listed in one or more catalogs is incorrect. The targets were
detected by a neural network search applied to the Sector 1
through 26 lightcurves. These were produced with a local
implementation of the ELEANOR pipeline, and extracted for all
stars brighter than TESS magnitude T = 15. The EBs passed
comprehensive automated analysis and thorough visual
scrutiny by citizen scientists, including conhrmation of the
measured ephemerides and photocenter offsets, and cross-
matching against millions of known EBs from multiple
catalogs. Most of the 7936 new EBs are on the fainter end
(median magnitude T = 13.8), have short orbital periods
(median period of 3.5 days), have eclipses that originate within

∼1″–2″ of the respective TIC star, and have been observed in
at least three TESS sectors. For the 2065 known EBs, we
corrected the ephemerides available at the time of writing.
Astrometric measurements from Gaia suggest that a signihcant
fraction of the new EBs may have unresolved companions and
thus be part of higher-order stellar systems. In addition, some
of the new EBs show ETVs, apsidal motion, and even extra
eclipses due to additional stars. These are excellent targets for
further in-depth investigation aimed at unraveling the under-
lying architecture and dynamics. Finally, we provide a list of
∼900,000 unvetted and unvalidated TESS targets for which
the neural network identihed eclipse-like features and scored
them higher than 0.9, and for which there are no known EBs
within a sky-projected separation of 1 TESS pixel (21″).
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