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Abstract

We initiate the study of algorithms for constraint satisfaction problems with ML oracle advice. We

introduce two models of advice and then design approximation algorithms for Max Cut, Max 2-Lin, and

Max 3-Lin in these models. In particular, we show the following.

• For Max-Cut and Max 2-Lin, we design an algorithm that yields near-optimal solutions when the

average degree is larger than a threshold degree, which only depends on the amount of advice and

is independent of the instance size. We also give an algorithm for nearly satisfiable Max 3-Lin

instances with quantitatively similar guarantees.

• Further, we provide impossibility results for algorithms in these models. In particular, under

standard complexity assumptions, we show that Max 3-Lin is still 1/2+η hard to approximate given

access to advice, when there are no assumptions on the instance degree distribution. Additionally,

we also show that Max 4-Lin is 1/2 + η hard to approximate even when the average degree of the

instance is linear in the number of variables.

1 Introduction

In recent years, numerous breakthroughs have occurred in machine learning (ML), and today, ML tools can
solve tasks that were completely out of reach even a decade ago. This has sparked an interest in designing
and using algorithms and data structures that rely on ML oracle advice (see e.g. [BDSV18; Mit18; PSK18;
HIKV19; GP19; LV21]). Algorithms with access to ML advice can be used in the setting when we can
learn some unknown information about the problem at hand using machine learning tools. This can be some
information about the result or optimal solution (e.g., the position of an element in the sorted array [LRSZ21;
CL23; BC24] or membership in a set [KBCDP18; Mit18]), information about future events or yet unread
data in the input stream (see e.g., [MNS07; DH09; VVS10; MV17; GP19; LLMV20; Mit20]), as well as some
information about the optimal set of parameters for the algorithm [BDSV18; DILMV21].

In this paper, we introduce two models for solving constraint satisfaction problems (CSPs) with oracle advice.
Suppose that we are given a constraint satisfaction problem with predicates Ψ = {ψ1, . . . , ψm} and Boolean
variables x1, . . . , xn.

1 It will be convenient for us to assume that value 1 represents false and −1 represents
true. Let x∗ = (x∗

1, . . . , x
∗
n) be a fixed optimal solution, which we will refer to as the ground-truth solution.

Now we assume that we are given noisy advice about x∗
i . Specifically, we consider two models.

• Label Advice. In the first model, the algorithm receives advice x̃ = (x̃1, . . . , x̃n), where x̃i is a noisy
prediction of the ground-truth value x∗

i Each x̃i is a random variable taking values −1 and 1 and is
slightly biased toward x∗

i . Namely, x̃i = x∗
i with probability 1+ε

2 and x̃i = −x∗
i with probability 1−ε

2 .
All variables x̃i are independent.

∗Supported by NSF Awards CCF-1955351.
†Supported by NSF Awards CCF-1955351 and EECS-2216970.
‡Supported by NSF Awards CCF-1955173, CCF-1934843, and ECCS-2216899.
1More generally, we can also consider the case where variables take values in some domain [d] = {1, . . . , d}.
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• Variable Subset Advice. In the second model, the algorithm receives a random subset of vari-
ables/indices S ⊆ {1, . . . , n} and their values (x∗

i )i∈S . Subset S includes every i with probability ε; all
events i ∈ S are independent.

These models capture the setting where we have an ML algorithm (or another oracle) that provides unreliable
predictions for values x∗

i . Since the predictions are very noisy, they do not provide a good solution. Consider,
for example, the Label Advice model for Max 2-Lin, a constraint satisfaction problem with constraints
xi ·xj = −1 and xi ·xj = 1. Even if the optimal solution satisfies all the constraints, solution x̃ satisfies only

a 1+ε2

2 fraction of the constraints in expectation; this is just a tiny bit better that the 1/2 fraction that a
random solution satisfies. The aim of this paper is to show that, nevertheless, advice x̃ may be very valuable.
In this paper, we focus on the Max k-Lin problem. Our choice of the Max k-Lin problem is not arbitrary.
H̊astad [H̊as01] proved that Max 3-Lin is approximation resistant (as well as every Max k-Lin problem with
k ≥ 3). In other words, it is not possible to obtain a solution satisfying 1/2 + η fraction of all constraints in
polynomial time even if the optimal solution satisfies 1 − δ fraction of all constraints (for every positive δ
and η; assuming P 6= NP ). For Max 2-Lin and Max Cut problems, the best approximation can be obtained
using the Goemans-Williamson algorithm [GW95; KKMO07]. We show how to get nearly optimal solutions
using oracle advice for Max Cut, Max 2-Lin and almost satisfiable instances of Max 3-Lin when the number
of constraints is sufficiently large (for unweighted instances, the number of constraints should be at least
Cεn for Max Cut and Cε,δn for Max 3-Lin, where Cεn and Cε,δn depend only on ε and ε, δ, respectively).
We complement our algorithmic results with hardness of approximation bounds. Specifically, we show that
there are no polynomial-time algorithms for Max k-Lin instances with k ≥ 3 in the Label Advice and
Variable Subset Advice models that given a (1− δ)-satisfiable instance and advice find a solution satisfying
at least a (1/2 + δ)-fraction of the constraints with constant probability (for every δ > 0). Furthermore, for
k ≥ 4, we show that there are no algorithms for (1− δ)-satisfiable Max k-Lin instances with n variables and
Θ(n2) constraints (“high-degree instances”) that satisfy at least a 0.99 fraction of the constraints with high
probability.

Comparing the Models. We note that the Variable Subset Advice model provides more information
than the Label Advice one. Indeed, given set S and values (x∗

i )i∈S , we can generate advice x̃ as follows: if
i ∈ S, let x̃i = x∗

i ; otherwise, sample x̃i uniformly at random. It is immediate that

Pr(x̃i = x∗
i ) = Pr(xi = x∗

i | i ∈ S) Pr(i ∈ S) + Pr(xi = x∗
i | i /∈ S) Pr(i /∈ S) = 1 · ε+ 1/2 · (1− ε) =

1 + ε

2

as required, and all x̃i are independent. Thus, every algorithm for the Label Advice model also works in the
Variable Subset Advice model. For this reason, we will consider the Label Advice model in this paper.

Max Cut and Max k-Lin Problems. We recall the definitions of Max Cut and Max 2-Lin problems.

Definition 1.1 (Max Cut) In Max Cut, we are given an undirected graph G = (V,E) with edge weights
we > 0. The goal is to find a cut (S, T ) that maximizes the total weight of cut edges.

Alternatively, Max Cut can be stated as a constraint satisfaction problem. We are given a set of Boolean
variables x1, . . . , xn and a set of constraints of the form xi · xj = −1 (or, equivalently, xi 6= xj); each
constraint has a non-negative weight. The goal is to find an assignment that maximizes the total weight of
satisfied constraints.

The connection between the graph and CSP formulations of Max Cut is straightforward: vertex vi corre-
sponds to variable xi and edge (vi, vj) corresponds to constraint xi · xj = −1. If vi ∈ S then xi = −1; if
vi ∈ T then xi = 1. We now define Max 2-Lin, which is a generalization of Max Cut.

Definition 1.2 (Max 2-Lin) In Max 2-Lin, we are given a set of Boolean variables x1, . . . , xn and a set
of constraints of the form xi · xj = cij where cij ∈ {−1, 1}; each constraint has a non-negative weight wij .
The goal is to find an assignment that maximizes the total weight of satisfied constraints.
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Both problems Max Cut and Max 2-Lin are NP-hard [Kar10]. The Goemans–Williamson algorithm provides
an αGW = 0.878 . . . approximation [GW95] for them and, as Khot, Kindler, Mossel, and O’Donnell showed,
this is optimal assuming the Unique Games Conjecture [KKMO07]. If a Max Cut or Max 2-Lin instance
is almost satisfiable – that is, the value of the optimal solution is (1 − δ)W , where W is the total weight
of all the constraints/edges – then the Goemans–Williamson algorithm finds a solution of value 1 − O(

√
δ).

This result is again optimal assuming the Unique Games Conjecture [KKMO07]. See [MM17] for a detailed
discussion of these and other approximation and hardness results for constraint satisfaction problems.

Definition 1.3 (Max k-Lin) In Max k-Lin, we are given a set of Boolean variables x1, . . . , xn and a set of
constraints of the form xi1 · · ·xik = ci1...ik where ci1...ik ∈ {−1, 1}; each constraint has a non-negative weight
wij . The goal is to find an assignment that maximizes the total weight of satisfied constraints.

Unlike the case of Max 2-Lin, one cannot find near-optimal solutions to nearly satisfiable instances of Max
3-Lin. In particular, H̊astad [H̊as01] showed that for Max 4-Lin is approximation resistant i.e., for instances
where the optimal solution satisfies at least 1− δ fraction of constraints, it is NP-hard to find an assignment
that satisfies more than 1/2 + δ fraction of constraints, for every small constant δ > 0.

1.1 Our results

We design polynomial-time approximation algorithms for Max Cut, Max 2-Lin, and Max 3-Lin. In un-
weighted graphs, the algorithm for Max Cut finds a nearly optimal solution if the average degree ∆ = 2m/n
is a sufficiently large constant (for a fixed parameter ε), specifically ∆ ≥ C/ε2 (here m is the number of
constraints/edges, n is the number of variables/vertices; C is a constant).

Theorem 1.4 There exists a polynomial-time algorithm for the Label Advice model that given an unweighted
instance of Max Cut or Max 2-Lin and advice x̃ finds a solution of value at least (1 − O(1/ε

√
∆))OPT in

expectation (over the random advice), where OPT is the value of the optimal solution, ε is the parameter of
the model, and ∆ is the average degree (see above).

In weighted graphs, our results require that n
∑

ij

(wij

W

)2 ≪ ε2, where W is the total weight of all constraints.

Theorem 1.5 There exists a polynomial-time algorithm for the Label Advice model that given an instance

of Max Cut or Max 2-Lin and advice x̃ finds a solution of value at least OPT −
√

n
∑

ij w
2
ij/ε in expectation

(over random advice), where OPT is the value of the optimal solution, ε is the parameter of the model, and
wij is the weight of the constraint for xi and xj.

Next, we state our result for the Max 3-Lin problem. As stated in the theorem below, we show that for nearly
satisfiable Max 3-Lin instances, there exists an efficient algorithm that finds a nearly satisfying assignment,
if the average degree of the instance is large enough.

Theorem 1.6 There exists a polynomial-time algorithm that given a (1 − δ)-satisfiable (unweighted) in-
stance Φ of Max 3-Lin having n variables and at least δ−1 ln 1

δ · ε−6 · n constraints along with a label advice

with parameter ε > 0, returns a solution that satisfies a 1−O(
√
δ) fraction of all the constraints.

Hardness Results. We complement the above positive results with a couple of hardness results. Our
first result is the following theorem which shows that under standard assumptions, Max 3-Lin retains its
(1/2+ o(1))-inapproximability if there are no guarantees on its average degree, even in the setting where the
algorithm has access to the oracle advice.
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Theorem 1.7 Assume that the Exponential Time Hypothesis (ETH) and Linear Size PCP Conjecture hold.
For every δ > 0, there exists ε0 = ε0(δ) such that for every ε ∈ [0, ε0], there is no polynomial time algorithm
for Max 3-Lin in the variable subset advice model with parameter ε that given a (1 − δ)-satisfiable instance
returns a solution satisfying at least a (1/2 + δ)-fraction of the constraints with probability at least 0.9 over
the random advice.

Next, we show that for the Max 4-Lin problem, there are no efficient algorithms in the oracle advice setting
that can find nearly optimal solutions, even when the average degree of the instance is large.

Theorem 1.8 Assume that the Exponential Time Hypothesis (ETH) and Linear Size PCP Conjecture hold.
Then there exists a constant δ0 ∈ (0, 1) such that for every δ ∈ (0, δ0), there exists d(δ) ∈ N and ε(δ) ∈ (0, 1)
for which the following statement holds. For every ε ∈ (0, ε(δ)), n ≥ n(δ), and d ∈ [d(δ), n], there is no
polynomial time algorithm for Max 4-Lin in the variable subset advice model with parameter ε that, given
a (1 − δ)-satisfiable Max 4-Lin instance with n variables and at least Ω(dn) constraints, returns a solution
satisfying a least a (1/2 + δ)-fraction of the constraints with probability at least 0.9 over the random advice.

Remark 1.9 Theorem 1.7 holds not only for Max 3-Lin but also for Max k-Lin with k ≥ 3 and Theorem 1.8
holds for Max k-Lin with k ≥ 4. To see the former, note that any instance of 3-Lin can be converted to
an equivalent instance of Max k-Lin as follows. Let us introduce k − 3 new variables y1, . . . , yk−3 and then
replace each constraint xaxbxc = cabc with xaxbxcy1 · · · yk−3 = cabc. Every solution of the original Max
3-Lin instance can be extended to a solution of the obtained Max k-Lin by letting y1 = · · · = yk−3 = 1 and
keeping all xi as is. Also, every solution of Max k-Lin can be transformed to a solution of Max 3-Lin: if
y1 · · · yk−3 = 1, keep all xi as is; otherwise, negate all xi. The same transformation shows that Theorem 1.8
applies when k ≥ 4. In this case, however, the analysis of the transformation is non-black-box but still pretty
simple.

Note that while Theorems 1.7 and 1.8 have been stated for the variable subset advice model, by the discussion
above, it follows that they also apply to the label advice model as well (with parameter ε/2 instead of ε).

Discussion. Our results for Max-2-Lin and Max-Cut (Theorem 1.4) show that using oracle advice we can
find a near-optimal solution as long as the average degree of the instance is large enough, irrespective of the
optimal value of the instance (importantly, the degree requirement depends on the amount of oracle advice
ε but not on the size of the instance). Theorem 1.5 gives an analogous result for the weighted variants
of these problems. For Max 3-Lin, we obtain a similar guarantee for nearly satisfiable instances (with a
different requirement on the average degree), and it is an interesting open question if one can find near-
optimal solutions for Max 3-Lin instances that are not nearly satisfiable, given access to oracle advice. To
complement our positive results, Theorem 1.7 shows that if there are no assumptions on the average degree
of the instance, Max 3-Lin is still 1/2 + o(1) hard to approximate even with oracle advice (under certain
complexity assumptions). That is, our assumption on the average degree (or another related assumption)
is necessary in our algorithmic result for Max 3-Lin. Finally, Theorem 1.8 shows that Max 4-Lin is much
more difficult than Max 2-Lin and Max 3-Lin: even if the input instance is nearly satisfiable and has a
high average degree (the number of constraints is quadratic in the number of variables), it is hard to find a
solution that satisfies strictly better than 1/2-fraction of the constraints (in our oracle-advice models).

1.2 Comparison with Independent Works

Independently and concurrently with our work, Cohen-Addad, d’Orsi, Gupta, Lee, Panigrahi [CdGLP24]
proposed the same model of ML oracle advice for constraint satisfaction problems. In their work, they provide
approximation algorithms for Max Cut that have approximation factors αGW + Ω̃(ε4) and αGW + Ω(ε) in
the Label Advice and Variable Subset Advice models, respectively (they call these models Noisy Predictions
and Partial Predictions). They also present an algorithm that finds almost optimal solutions for Max Cut
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on ∆-wide graphs, a notion introduced in their paper. Loosely speaking, a graph is ∆-wide if not all weight
is concentrated on few edges. We refer the reader to [CdGLP24] for details. Given an instance of Max
Cut satisfying OPT constraints, the algorithm by Cohen-Addad et al. [CdGLP24] finds a solution of value
(1 − O(η + 1/ε

√
∆))OPT . This result is somewhat similar but not directly comparable to our Theorems 1.4

and 1.5. For example, in regular unweighted and weighted ∆-wide graphs, our algorithm finds a solution
of value at least (1 − O(

√
η/ε

√
∆))OPT ; this guarantee is stronger than the one given by Cohen-Addad et

al. However, our algorithm cannot be used on some ∆-wide graphs, whose vertex degrees are very irregular.
The authors complement their results with an algorithm for ∆-narrow graphs i.e., graphs that are not ∆-
wide. This algorithm does not use any oracle advice. It is based on the algorithms by Feige, Karpinski,
and Langberg [FKL02] and Hsieh and Kothari [HK22] for low-degree instances of Max Cut. In their paper,
Cohen-Addad et al. [CdGLP24] do not study Max k-Lin for k > 2.

In an independent work [BEX24], Bampis, Escoffier, and Xefteris considered a similar (but not identical)
notion of advice and provided PTAS for δ-dense instances of Max Cut and other problems (a δ-dense instance
of Max Cut contains δn(n− 1)/2 edges).

2 Algorithm for Max Cut and Max 2-Lin with Advice

Our algorithm finds a solution for Max 2-Lin instance by (approximately) maximizing the quadratic form

∑

i,j

|aij |+ aijxixj

4
, (1)

where the matrix A = (aij) is defined as follows. For Max Cut, A is minus adjacency matrix i.e., aij = −wij ,
where wij is the weight of edge (i, j). For Max 2-Lin, aij = wij if we have constraint xixj = 1 and aij = −wij

if we have xixj = −1, wij is the weight of the constraint for xi and xj . Note that matrix A is an n × n
symmetric matrix with zero diagonal. We remark that Quadratic Program (1) was used by Goemans and
Williamson [GW95] in their seminal paper on semi-definite programming algorithm for Max Cut.

In this section, we give an algorithm for Max Cut that finds a solution of value (1 − O(1/
√
∆ · ε−1))OPT ,

where OPT is the value of the optimal solution, ε is the parameter of our model, and ∆ = 2m/n is the
average vertex degree in the graph. Our algorithms give a nontrivial approximation when ∆ ≥ C/ε2. Note
that matrix A = (aij) is symmetric with a zero diagonal.

The value of quadratic form (1) exactly equals the number of satisfied constraints in the corresponding
instance of Max 2-Lin. Indeed, if the constraint for xi and xj is satisfied, then the term |aij |+aijyiyj = 2|aij |;
if it is not satisfied, then |aij |+ aijyiyj = 0. Consequently,

|aij |+ aijxixj + |aji|+ ajixixj

4
= wij ,

if the constraint for xi and xj is satisfied; and

|aij |+ aijxixj + |aji|+ ajixixj

4
= 0,

if the constraint is not satisfied. Since the sum of all |aij | equals 2W , where W is the total weight of all
constraints, quadratic form (1) equals

W

2
+
∑

i,j

aijxixj

4
. (2)

In the next section, we show how to obtain a solution of value OPT − ε−1√n‖A‖F for Max QP (see
Theorem 3.1). Here, ‖A‖F is the Frobenius norm of A. This result implies Theorem 1.5 and also Theorem 1.4,
because OPT ≥ W/2.
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3 Quadratic Forms with Advice

In this section, we consider the quadratic form maximization problem with advice. Let A = (aij) be a
symmetric n × n matrix. Our goal is to maximize the quadratic form

∑

ij aijxixj for x ∈ {−1, 1}n. This
quadratic form can also be written as 〈x,Ax〉. We assume that the ground truth solution is x∗. The algorithm
receives advice x̃. Each x̃i is a random variable, x̃i = x∗

i with probability (1 + ε)/2 and x̃i = −x∗
i with

probability (1 − ε)/2. All variables x̃i are independent. The main result of this section is the following
theorem.

Theorem 3.1 Let A ∈ R

n×n be a symmetric matrix with zero diagonal entries. Then, there exists a
deterministic polynomial time algorithm that finds a labeling x′ such that randomizing over the choice of
advice x̃, we have that

Ex̃ [〈x′, Ax′〉] ≥ 〈x∗, Ax∗〉 − ε−1
√
n‖A‖F . (3)

The algorithm for the theorem is described below.

Algorithm

Input: Coefficient matrix A, oracle advice x̃1, . . . , x̃n ∈ {±1}.
Output: Solution x′

1, . . . , x
′
n.

1. Define F (x, y) := 〈x,Ay〉 − ‖A(εx− y)‖1.
2. Solve the following mathematical program with a concave objective:

Maximize F (x, x̃) (4)

Subject to xi ∈ [−1, 1] ∀ i ∈ [n] (5)

3. Round the fractional solution x coordinate-by-coordinate to a solution x′ ∈ {±1}n such that
〈x′, Ax′〉 ≥ 〈x,Ax〉.

4. Output labeling x′.

Figure 1: Quadratic Program Maximization Algorithm

Proof. First, observe that function F (x, y) is a concave function of x for a fixed y, since 〈x,Ay〉 is a linear
function of x, and ‖A(εx − y)‖1 is a convex function (because all vector norms are convex). Thus, we can
find the maximum of F (x, x̃) subject to the constraint x ∈ [−1, 1]n in polynomial time. Also, note that
〈x,Ax〉 is a linear function of each xi when all other coordinates xj (j 6= i) are fixed. Thus, the algorithm
can round each x to a x′ ∈ {±1} by rounding coordinates one-by-one. At every step, the algorithm replaces
one coordinate xi ∈ [−1, 1] with −1 or +1 making sure that the quadratic form 〈x,Ax〉 does not decrease.
We now show that inequality (3) holds. We begin with the following claim.

Claim 3.2 For every x, y ∈ [−1, 1]n, we have

〈Ax, x〉 ≥ F (x, y)

ε
.

Proof. Write:

〈x,Ax〉 = 〈x,Ay〉+ 〈x,A(εx − y)〉
ε

≥ 〈x,Ay〉 − ‖A(εx− y)‖1
ε

=
F (x, y)

ε
,

where the inequality follows from Hölder’s inequality:

|〈x,A(εx − y)〉| ≤ ‖A(εx− y)‖1.
�
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Next, we bound the expected value of the optimization program (4)

Lemma 3.3 Let x ∈ [−1, 1]n denote the optimal solution of concave program (4). Then,

Ex̃ [F (x, x̃)] ≥ ε〈x∗, Ax∗〉 −
√
n ‖A‖F .

Proof. The ground truth solution x∗ is always a feasible solution to program (4). Hence, we have

Ex̃ [F (x, x̃)] ≥ Ex̃

[
F (x∗, x̃)

]
= Ex̃

[
〈x∗, Ax̃〉 − ‖A(εx∗ − x̃)‖1

]
= ε〈x∗, Ax∗〉 − Ex̃

[
‖A(εx∗ − x̃)‖1

]
.

Here, we used that Ex̃ = εx∗. To bound the last term, we let z = εx∗−x̃ and observe that ‖Az‖1 ≤
√
n ‖Az‖2

by the Cauchy–Schwarz inequality (since Az is an n-dimensional vector). Then,

E‖A(εx∗ − x̃)‖1 = E‖Az‖1 ≤
√
nE‖Az‖2.

By Jensen’s inequality,

√
nE‖Az‖2 ≤

√
nE

[

‖Az‖22
]1/2

=
√
nE

[

〈Az,Az〉
]1/2

=
√
nE

[

〈z, A∗Az〉
]1/2

=
√
nE

[∑

ij

(A∗A)ijzizj
]1/2

.

Random variables zi are mutually independent and E[zi] = 0 for all i. Thus, E[zizj ] = 0 if i 6= j. Also,
E[z2i ] = Var[x̃i] = 1− ε2. Therefore,

E

[∑

ij

(A∗A)ijzizj
]

= (1− ε2)
∑

i

(A∗A)ii = (1− ε2) tr(A∗A) = (1− ε2)‖A‖2F .

Putting the bounds together completes the proof. �

We are now ready to finish the proof of Theorem 3.1. Recall that x′ ∈ {−1, 1}n is the integral solution
obtained by greedy coordinate-wise rounding of x. Thus,

Ex̃ [〈x′, Ax′〉] ≥ Ex̃ [〈x,Ax〉] ≥ Ex̃

[
F (x, x̃)

ε

]

≥ ε〈x∗, Ax∗〉 − √
n‖A‖F

ε
= 〈x∗, Ax∗〉 −

√
nε−1‖A‖F .

�

4 Algorithm for Max 3-Lin with Advice

Theorem 1.6 There exists a polynomial-time algorithm that given a (1 − δ)-satisfiable (unweighted) in-
stance Φ of Max 3-Lin having n variables and at least δ−1 ln 1

δ · ε−6 · n constraints along with a label advice

with parameter ε > 0, returns a solution that satisfies a 1−O(
√
δ) fraction of all the constraints.

Remark: Instance Φ must have at least ln 1
δ · δ−1ε−6 ·n constraints. This means that every variable should

participate in 3δ−1 ln 1
δ · ε−6 constraints on average.

Proof. Our algorithm works as follows. First, it creates a new weighted instance Ψ of Max 2-Lin. This
instance has the same set of variables, x1, . . . , xn, as Max 3-Lin instance Φ but a different set of con-
straints, which are created by functionsCreate-H-Constraints andCreate-L-Constraints (see below).
Then, the algorithm solves the Max 2-Lin instance using the Goemans and Williamson algorithm for MAX
CUT [GW95] and obtains a solution x̂1, . . . , x̂n. Finally, it outputs x̂1, . . . , x̂n as a solution to the original
Max 3-Lin instance. We now describe functions Create-H-Constraints and Create-L-Constraints.

Fix a threshold t = 8ε−2 ln 1/δ. Denote by E(Φ) the set of indices of all constraints in Φ i.e., for every
constraint xixjxj = cijk, set E(Φ) contains an unordered tuple (i, j, k). Let Eij = {(i, j, k) ∈ E(Φ)} be

7



the set of indices of all constraints in Φ that contain variables xi and xj . We say that set Eij is heavy if
it contains at least t elements. If a constraint belongs to at least one heavy set, we call it heavy. In other
words, constraint xixjxk = cijk is heavy if Eij , Ejk, or Eik is heavy. If a constraint is not heavy, we call it
light.

For every heavy set Eij , function Create-H-Constraints creates 2|Eij | constraints in Ψ. It first computes

σij = sgn
( ∑

k:(i,j,k)∈Eij

cijkx̃k

)

and then creates constraints xixj = σij and xk = σijcijk in Ψ for each constraint xixjxk = cijk in Eij . We
say that these constraints are representatives for xixjxk = cijk in the new instance Ψ. Note that the first
constraint (xixj = σij) is identical for all constraints in Eij and does not depend on k. However, the second
constraint (xk = σijcijk) does depend on k. Strictly speaking, if σij = 0, constraint xixj = σij is not a valid
constraint because the right hand side must be either 1 or −1. To make this constraint valid, we replace σij

with 1 but nevertheless, we conservatively assume that this constraint is always violated.

For every variable xi, function Create-L-Constraints finds all light constraints that contain xi. Denote
this set by Li. Then, for each constraint xixjxk = cijk in Li, Create-L-Constraints creates a constraint
xi = σi, where

σi = sgn
( ∑

j,k:(i,j,k)∈Li

cijkx̃j x̃k

)

.

We say that this constraint is a representative for xixjxk = cijk in the new instance Ψ. Note that Create-

L-Constraints creates identical constraints for all constraints in Li. If σi = 0, then, as before, we replace
σi with 1 but will assume that xi = σi is violated for every solution x.

Analysis. We have completely described the algorithm and now proceed to the analysis. It is clear that our
algorithm runs in polynomial time. We prove that the expected fraction of satisfied constraints is 1−O(

√
δ).

We first state the main technical lemma.

Lemma 4.1 The ground truth solution x∗
1, . . . , x

∗
n to Φ satisfies a (1 −O(δ)) fraction of all the constraints

in Ψ, in expectation.

We prove Lemma 4.1 in Section 4.1. Now, we show that Lemma 4.1 implies Theorem 1.6. First, observe that
for every constraint in the original Max 3-Lin instance Φ our algorithm creates 2, 3, 4, or 6 constraints in
Max 2-Lin instance Ψ: For each light constraint, it creates exactly 3 constraints; for each heavy constraint, it
creates from 2 to 6 new constraints. Also, note that every constraint in Ψ is a representative for exactly one
constraint in Φ. By Lemma 4.1, the optimal solution satisfies a (1 − O(δ)) fraction of the constraints in Ψ,
in expectation. Thus, the Goemans–Williamson algorithm [GW95] finds a solution satisfying a (1−O(

√
δ))

fraction of the constraints in Ψ, in expectation (see also Theorem 2 in survey [MM17])2. This means that
at most O(

√
δ m) constraints in Max 2-Lin instance Ψ are not satisfied by x̂1, . . . , x̂n, in expectation.

We now bound the number of constraints in Φ not satisfied by x̂1, . . . , x̂n. We separately consider heavy
and light constraints. If xixjxk = cijk is a heavy constraint, then at least one of the sets Eij , Ejk, Eik

must be heavy. Assume without loss of generality that Eij is heavy. Then, xixjxk = cijk must have two
representatives in Ψ: xixj = σij and xk = σijcijk. If both of these constraints are satisfied in Ψ by x̂1, . . . , x̂n,
then xixjxk = cijk is also satisfied, because

x̂ix̂j x̂k = (x̂ix̂j)x̂k = σij(σijcijk) = (σij)
2cijk = cijk.

Therefore, if a heavy constraint in Φ is not satisfied by x̂1, . . . , x̂n, then one of its representatives is not
satisfied by x̂1, . . . , x̂n. Since every constraint in Ψ is a representative for exactly one constraint in Φ, the

2The intermediate Max 2-Lin instance Ψ may contain duplicate constraints, and hence the analysis counts the constraints
with their multiplicities. However, this is fine since the result of [GW95] holds for weighted instances as well.
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number of unsatisfied heavy constraints is upper bounded by the number of unsatisfied constraints in Ψ,
which is at most O(

√
δm).

Suppose xixjxk = cijk is a light constraint. We claim that this constraint is satisfied by x̂1, . . . x̂n if (1) it
is satisfied by the ground truth solution x∗

1, . . . x
∗
n and (2) its representatives – constraints xi = σi, xj = σj ,

xk = σk – are satisfied by both x∗
1, . . . x

∗
n and x̂1, . . . x̂n. Indeed, in this case, we have x̂i = σi = x∗

i ,
x̂j = σj = x∗

j , x̂k = σk = x∗
k, and x̂ix̂j x̂k = x∗

i x
∗
jx

∗
k = cijk. Therefore, if xixjxk = cijk is not satisfied

by x̂1, . . . x̂n, then (1) it is also not satisfied in the ground truth solution; or (2) one of its representatives
is not satisfied by x∗

1, . . . x
∗
n or x̂1, . . . x̂n. Consequently, the number of light constraints unsatisfied by

x̂1, . . . x̂n is upper bounded by the number of light constraints unsatisfied by x∗
1, . . . x

∗
n plus the number

of constraints in Ψ not satisfied by either x∗
1, . . . x

∗
n or x̂1, . . . x̂n. The total number of such constraints is

O(δm) +O(δm) +O(
√
δm) = O(

√
δm). This concludes the proof of Theorem 1.6. �

4.1 Proof of Lemma 4.1

In this section, we prove Lemma 4.1.

Proof of Lemma 4.1. We first upper bound the expected number of representatives for heavy constraints
violated by the ground truth solution x∗. Let Rij be the set of representative constraints for constraints
in Eij . In other words, Rij is the set of constraints created by function Create-H-Constraints for set
Eij . Let cost(Eij , x) and cost(Rij , x) be the numbers of constraints violated by solution x in Eij and Rij ,
respectively. We claim that the following bound holds.

Lemma 4.2 For every heavy set Eij ,

E[cost(Rij , x
∗)] ≤ 8 cost(Eij , x

∗) + 2e−ε2t/8|Eij |. (6)

Proof. If cost(Eij , x
∗) ≥ |Eij |/4, then 8 cost(Eij , x

∗) ≥ 2|Eij |. Since cost(Rij , x
∗) ≤ |Rij | = 2|Eij |, bound

(6) holds. For the rest of the proof, we shall assume that cost(Eij , x
∗) < |Eij |/4. We upper bound the

probability that σij 6= x∗
i x

∗
j . To simplify the exposition, let us assume that x∗

i x
∗
j = 1 (the proof for the case

x∗
i x

∗
j = −1 is analogous). Write

Pr(σij 6= x∗
i x

∗
j ) = Pr(σij 6= 1) = Pr

( ∑

k:(i,j,k)∈Eij

cijkx̃k ≤ 0
)

.

The expectation of x̃k is εx∗
k. Thus, E[cijkx̃k] = εcijkx

∗
k. For each constraint xixjxk = cijk satisfied by x∗,

we have cijk = x∗
i x

∗
jx

∗
k = x∗

k and cijkx
∗
k = (x∗

k)
2 = 1. Since the number of unsatisfied constraints is upper

bounded by |Eij |/4, we have

E

[ ∑

k:(i,j,k)∈Eij

cijkx̃k

]

=
∑

k:(i,j,k)∈Eij

εcijkx
∗
k ≥ ε|Eij |/2.

By Hoeffding’s inequality,

Pr(σij 6= 1) = Pr
( ∑

k:(i,j,k)∈Eij

cijkx̃k ≤ 0
)

≤ e
− 2(ε|Eij |/2)2

4|Eij | = e−
ε2|Eij |

8 .

Recall that Eij is a heavy set and thus contains at least t elements. Hence, Pr(σij 6= x∗
i x

∗
j ) ≤ e−ε2t/8.

If σij 6= x∗
i x

∗
j , then we bound the number of unsatisfied constraints by |Rij | = 2|Eij |. This gives us the

second term in bound (6). If σij = x∗
i x

∗
j , then all constraints xixj = σij in Ψ are satisfied by x∗. A

constraint xk = σijcijk in Ψ is not satisfied by x∗ if and only if x∗
i x

∗
jx

∗
k 6= cijk. In other words, xk = σijcijk

is not satisfied only if constraint xixjxk = cijk is not satisfied by x∗. The number of such constraints is
cost(|Eij |, x∗). It is upper bounded by the first term in (6) �
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We now upper bound the expected number of representatives for light constraints violated by the ground
truth solution x∗. Let Ri be the set of representative constraints for constraints in Li. In other words, Ri is
set of constraints created by function Create-L-Constraints for set Li. Let cost(Li, x) and cost(Ri, x) be
the number of constraints violated by solution x in Li and Ri, respectively. We prove the following lemma.

Lemma 4.3 For every set Li,

E[cost(Ri, x
∗)] ≤ 4 cost(Li, x

∗) +
6t

ε4
. (7)

Proof. If cost(Li, x
∗) ≥ |Li|/4, then the desired bound holds since, in this case, cost(Ri, x

∗) ≤ |Ri| = |Li| ≤
4 cost(Li, x

∗). So, we shall assume that cost(Li, x
∗) < |Li|/4.

Recall that Ri contains |Li| identical constraints xi = σi. These constraints are not satisfied by x∗ if x∗
i 6= σi.

Similarly to the proof of Lemma 6, we shall assume that x∗
i = 1 (the proof for the case x∗

i = −1 is analogous).
We have

Pr(σi 6= x∗
i ) = Pr(σi 6= 1) = Pr

( ∑

j,k:(i,j,k)∈Li

cijkx̃j x̃k ≤ 0
)

.

The expected value of each term cijk x̃j x̃k is ε2cijkx
∗
jx

∗
k since x̃j and x̃k are independent random variables

with means εx∗
j and εx∗

k, respectively. Thus,

E

[ ∑

j,k:(i,j,k)∈Li

cijk x̃j x̃k

]

=
∑

j,k:(i,j,k)∈Eij

ε2cijkx
∗
jx

∗
k ≥ ε2|Li|/2.

Here, we used that for every satisfied constraint xixjxk = cijk , we have cijkx
∗
jx

∗
k = 1 and the assumption

that cost(Li, x
∗) ≤ |Li|/4. We now use McDiarmid’s bounded difference inequality [McD89]. Let ρs be the

number of occurrences of variable x̃s in the sum Σi =
∑

j,k:(i,j,k)∈Li
cijkx̃j x̃k. If we change the value of

variable x̃s from −1 to 1 or from 1 to −1, then sum Σi can change by at most 2ρs, since all coefficients
cijk ∈ {±1}. Consequently, σi satisfies the bounded differences property with constants ρs. By McDiarmid’s
inequality,

Pr(σi 6= 1) = Pr
( ∑

j,k:(i,j,k)∈Li

cijkx̃j x̃k ≤ 0
)

≤ e
− 2(ε2|Li|/2)

2
∑

s(2ρs)2 = e
− ε4|Li|

2

8
∑

s ρ2s .

The total number of random variables participating in the sum Σi counted with repetitions is 2|Li|. The
number of times xj appears in the sum is at most |Eij |, which is at most t if Eij is light. On the other hand,
if Eij is heavy, then so is every (i, j, k) ∈ E(Φ), and thus xj does not appear in the sum at all. In either
case, xj appears in the sum at most t times. Thus, by Hölder’s inequality,

∑

s ρ
2
s ≤ ‖ρ‖1 ‖ρ‖∞ ≤ 2|Li| · t.

Therefore, Pr(σi 6= 1) ≤ e−
ε4|Li|

16t and

E[cost(Ri, x
∗)] = Pr(σi 6= 1)|Li| ≤ e−

ε4|Li|

16t |Li| ≤
6t

ε4
.

Here, we used inequality e−zz ≤ 1/e for z = ε4|Li|
16t . �

To finish the proof of Lemma 4.1, we sum the bounds obtained in Lemmas 4.2 and 4.3 over all heavy and
light sets. The total number of violated constraints in Ψ is upper bounded in expectation by

∑

i,j

8 cost(Eij , x
∗) +

∑

i

4 cost(Li, x
∗)

︸ ︷︷ ︸

≤24δ|E(Φ)|

+
∑

i,j

2e−ε2t/8|Eij |
︸ ︷︷ ︸

6δ|E(Φ)|

+
∑

i

6t

ε4

︸ ︷︷ ︸

6tε−4n

.

The first two terms together are upper bounded by the total number of violated constraints in Φ times 24,
because each violated constraint can belong to at most three sets Eij or three sets Li. The third term is
upper bounded by 6δ|E(Φ)| because t = 8ε−2 ln 1/δ and

∑

ij |Eij | ≤ 3|E(Φ)|. Finally, the last term is upper

bounded by 6ε−4tn = 6(8ε−2 ln 1/δ) · ε−4 · n < 48 δ|E(Φ)|, because |E(Φ)| ≥ ln 1/δ · δ−1ε−6 · n. �
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5 Hardness of Max k-Lin with Oracle Advice

In this section, we prove our hardness results for Max k-Lin problems in the advice model, i.e., Theorem 1.7
and Theorem 1.8. We build towards these results in several steps; we briefly outline them below:

• Firstly, in Section 5.1, we introduce our first ingredient, Lemma 5.1, where we show that (1/2 + ε)-
approximation for Max 3-Lin on n-variables requires 2cεn-running time, assuming ETH. We show this
by combining the 2c

′
εn-running time lower bound for (1 − ε, ε)-Gap Label Cover (Lemma 5.8), with

H̊astad’s reduction from Label Cover to Max 3-Lin (Theorem 5.9).
• Next, in Section 5.2, we show that we can transfer the above hardness for Max 3-Lin to Max 4-Lin
instances with up to linear average degree, using a simple combinatorial reduction (Corollary 5.13).

• Then in Section 5.3, we give a generic tool (Lemma 5.14), which shows that 2cεn-time lower bound for
a problem can be transferred to give polynomial time hardness for the same problem in the variable-
subset advice model with parameter c′′ε .

• Finally, in Section 5.4, we combine the above ingredients to prove Theorems 1.7 and 1.8.

5.1 ETH and Hardness of Max 3-Lin

We first review the Exponential Time Hypothesis (ETH) and Linear PCP Conjecture and prove the following
hardness result for Max 3-Lin.

Lemma 5.1 Assume the ETH and Linear Size PCP Conjecture (see Conjecture 5.4). For some absolute
constants C′, C′′, C′′′ > 0, ε0 ∈ (0, 1/2), and η(ε) = C′/

√

log(1/ε), the following holds. For every ε ∈
(0, ε0), there is no algorithm that given a Max 3-Lin instance I on n variables and 2O(1/ε)C

′′′

n constraints,
distinguishes between the following cases:

Yes Case : Val(I) ≥ 1− η(ε) and No Case : Val(I) ≤ 1/2 + η(ε).

in time 22
−(1/ε)C

′′

n · poly(n).

We point out that the above hardness result is folklore3, and it is well-known that it can be derived by
combining ETH, Linear Size PCP conjecture, and the techniques from [H̊as01]. For the sake of completeness,
we provide a proof of this lemma in this section.

We remind the reader the Exponential Time Hypothesis (ETH) and definition of the Label Cover problem.

Conjecture 5.2 (ETH [IPZ01]) There exists a constant c ∈ (0, 1) such that for all large enough integers
n, the 3-SAT problem on n variables cannot be solved in time 2cnpoly(n).

Definition 5.3 (Label Cover) An instance L(U, V,E,ΣU ,ΣV , {πe}e∈E) of Label Cover is a 2-CSP on a
bipartite graph (U, V,E). The left and right label sets of instance L are ΣU and ΣV , respectively. Every edge
(u, v) ∈ E is identified with a projection constraint πuv : ΣV → ΣU . A labeling σ : U ∪ V → ΣU ∪ ΣV

satisfies an edge (u, v) if πuv(σ(v)) = σ(u). We denote the maximum fraction of constraints that can be
satisfied by a labeling by Val(L). For every 0 < s < c ≤ 1, the objective of the (c, s)-Gap Label Cover problem
on L is to decide whether Val(L) ≥ c or Val(L) ≤ s.

We write N = |U |+ |V | and K = |ΣU |+ |ΣV | to denote the number of variables and labels in L.

Linear Size PCPs. We will use the following conjecture on linear size PCPs.

3See e.g., the TCS Stack Exchange post [Exc] for a discussion on quantitatively similar bounds for Max 3-SAT.
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Conjecture 5.4 (Linear Size PCP Conjecture, Conjecture 4.2 in [Din16]) For some C1, C2 > 0
and all sufficiently small ε > 0, there exists a polynomial-time reduction from 3-SAT to Label Cover that
satisfies the following properties. Assume that the reduction maps a 3-SAT instance Φ of size m to a Label
Cover instance L = (U, V,E,ΣU ,ΣV , {πe}e∈E). Then,

• |U |, |V | ≤ (1/ε)C1 ·m.
• |ΣU |, |ΣV | ≤ (1/ε)C2.
• If Val(Φ) = 1, then Val(L) = 1.
• If Val(Φ) < 1, then Val(L) ≤ ε.

The above conjecture posits that for any ε, there exists a reduction from 3-SAT on m-clauses to the (1, ε)-
Gap-Label-Cover problem, such that the number of variables is at most poly(1/ε) times the number of
clauses, and the label set size is also bounded by poly(1/ε). It is instructive to compare this with the
result of Moshkovitz–Raz [MR08], which gives a reduction from 3-SAT to (1, ε)-label cover with a weaker
guarantee of Oε(logm)-blow up in the instance size. The Linear Size PCP Conjecture states that one can
get (qualitatively) the same parameters in the reduction from 3-SAT to (1, ε)-Gap-Label Cover without the
additional O(logm) blow up in the number of variables.

Degree Increment Lemma. We shall also need the following lemma which says that one can increase the
average degree of the Label Cover instance while preserving its optimal value.

Lemma 5.5 The following holds for every integer ℓ ≥ 1. Let L = (U, V,E,ΣU ,ΣV , {πe}e∈E) be a Label
Cover instance. Then there exists a polynomial time procedure that constructs a Label Cover instance L′ =
(U ′, V ′, E′,ΣU ,ΣV , {π′

e}e∈E′) which satisfies the following properties:

• Val(L′) = Val(L).
• |U ′| = ℓ|U | and |V ′| = ℓ|V |.
• |E′| = ℓ2|E|.

The above lemma is folklore; we provide a proof of it in Appendix A for the sake of completeness. The
following corollary follows immediately by combining Conjecture 5.4 and Lemma 5.5.

Corollary 5.6 Assume Conjecture 5.4. For some C1, C2 > 0 and all sufficiently small ε > 0, the following
holds for every integer ℓ ≥ 1. There exists a polynomial-time reduction from 3-SAT to Label Cover that
satisfies the following properties. Assume that the reduction maps a 3-SAT instance Φ of size m to a Label
Cover instance L = (U, V,E,ΣU ,ΣV , {πe}e∈E). Then,

• |U |, |V | ≤ (1/ε)C1 · ℓ ·m.
• |ΣU |, |ΣV | ≤ (1/ε)C2.
• If Val(Φ) = 1, then Val(L) = 1.
• If Val(Φ) < 1, then Val(L) ≤ ε.
• The average degree of L is at least ℓ.

Sparsification Lemma. Additionally, we will use the following sparsification lemma for 3-SAT by Calabro,
Impagliazzo, and Paturi [CIP06].

Lemma 5.7 (Sparsification Lemma [CIP06]) For every γ > 0, there exists a deterministic algorithm
that given a 3-SAT formula F on n-variables outputs a sequence of 3-SAT formulas F1, . . . , Fs such that

1. s ≤ 2γn.
2. F is satisfiable if and only if at least one of F1, . . . , Fs is satisfiable.
3. Each formula Fi is on n variables. The number of clauses in each Fi is at most (1/γ)9 · n.
4. The algorithm runs in time 2γn · poly(n), where the degree of the polynomial may depend on γ.
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5.1.1 Reduction to Gap Label Cover

In this section, we reduce 3-SAT to Gap Label Cover.

Lemma 5.8 Assume ETH and the Linear Size PCP conjecture. For some constants C > 2C2 > 0 and
every choice of constants 0 < ε < c/2, there exists no algorithm for (1, ε)-Gap Label Cover that given an

instance with at most N vertices, K = (1/ε)C2 labels, and at least 25(1/ε)
C2
N constraints, decides whether

the instance is completely satisfiable or at most ε satisfiable in time 22
−5(1/ε)C ·NKpoly(N). Here c is the

constant from Conjecture 5.2.

Proof. Let C1, C2 be the constants from Conjecture 5.4 and let

C := C1 + 2C2 + 10.

We describe a Turing reduction from the 3-SAT problem to the Gap Label Cover problem:

Reduction. Given a 3-SAT instance Φ on n variables, we do the following:

• Run the sparsification algorithm from Lemma 5.7 on Φ with γ = ε and get 3-SAT instances Φ1, . . . ,Φs.

• For every i ∈ [s], run the reduction from Corollary 5.6 on Φi with ℓ = 25(1/ε)
C2

and get a (1, ε)-Gap
Label Cover instance Li.

• Solve each of the (1, ε)-Gap Label Cover instances Li and output YES if at least one of the Li is a
YES instance.

We make a couple of immediate observations. Note that for every i ∈ [s], the formula Φi has n variables
and at most m := (1/γ)9 · n clauses. Furthermore, the corresponding label cover instance Li has at most

N = (1/ε)C1 · ℓ ·m = 25(1/ε)
C2
(1/ε)C1+9n variables, and K ≤ (1/ε)C2 labels. Furthermore, it has at least

25KN constraints.

Completeness. Suppose Φ is satisfiable. Then, for some i ∈ [s], the corresponding 3-SAT instance Φi is
satisfiable, and thus the corresponding Label Cover instance Li is also satisfiable.

Soundness. Suppose Φ is not satisfiable, then for every i ∈ [s], Φi is not satisfiable, and hence Val(Li) < ε.

Now suppose there exists a 22
−5(1/ε)C ·NKpoly(N) time algorithm for (1, ε)-Gap Label Cover. By running it

on every instance Li, we solve 3-SAT in time:

2εn · 22−5(1/ε)C ·(25(1/ε)C2 (1/ε)C1+9n·(1/ε)C2)poly(N) ≤ 22εnpoly(n),

which refutes ETH if ε < c/2. �

5.1.2 Reduction from Gap Label Cover to Max 3-Lin

Here, we recall H̊astad’s 3-bit PCP-based reduction from Label Cover to Max 3-Lin.

Theorem 5.9 ([H̊as01]) There exists an increasing continuous function η : [0, 1] → [0, 1] with η(0) = 0
for which the following holds. Given an instance L = (U, V,E,ΣU ,ΣV , {πe}e∈E) of (1, ε)-Gap Label Cover
with n := |U | + |V | variables, and k := |ΣU | + |ΣV | labels, and average degree at least 25k, there exists a
randomized polynomial-time reduction that with probability at least 1 − 2−k/2, outputs an instance of Max
3-Lin I ′′ such that

• If Val(L) = 1, then Val(I ′′) ≥ 1− η(ε).
• If Val(L) ≤ ε, then Val(I ′′) ≤ 1/2 + η(ε).
• The number of variables in I ′′ is n′ = 2|ΣU ||U | + 2|ΣV ||V |, and the number of constraints is at most

8n′/ε2.
• All constraints in I ′′ are non-edge-weighted and distinct.
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Additionally, η(ε) = C′/
√

log(1/ε) for some constant C′ > 0.

Proof. The reduction consists of two parts:

• First, we use H̊astad’s reduction [H̊as01] to reduce (1, ε)-Gap Label Cover to (1−η(ε), 1/2+η(ε))-Gap
Max 3-Lin4. Note that this will output a Max 3-Lin instance I ′ where the constraints are edge-weighted.

• Then we use a sub-sampling step to sample a non-edge-weighted instance I ′′ with no duplicate con-
straints.

To begin with, we recall the reduction from [H̊as01] for the sake of completeness and observe the bounds on
the number of variables and running time of the reduction. As is standard, the reduction is stated in the
form of a dictatorship test, which we describe in Figure 2:

Input. Let L = (U, V,E,ΣU ,ΣV , {πe}e∈E) denote a (1, ε)-Gap Label Cover instance as in the setting
of the theorem.

Long Code Tables. For every u ∈ U and v ∈ V , introduce long code table fu : {0, 1}a → {0, 1} and
fv : {0, 1}b → {0, 1}, where a = |ΣU | and b = |ΣV |. Let µ = 2−100/ε.

Test. The distribution over the 3-Lin constraints is defined using the following process:
1. Sample an edge (u, v) ∼ E uniformly at random, and let πuv : [b] → [a] be the constraint for

(u, v).
2. Independently sample θ ∈ {0, 1}, x ∈ {0, 1}a, and y ∈ {0, 1}b uniformly at random.
3. Sample z ∈ {0, 1}b as follows: for every i ∈ [b], sample zi = 0 with probability 1 − µ and z = 1

with probability µ.
4. Output the constraint

fu(x)⊕ fv(y)⊕ fv(y ⊕ πuv(x) ⊕ z ⊕ θ · 1) = θ.

Here, for a projection function π : [b] → [a] and a string x ∈ {0, 1}a, π(x) denotes the string xπ(1), xπ(2), . . . , xπ(b)

Figure 2: PCP Reduction to Max 3-Lin

It is easy to see that the resulting Max 3-Lin instance has n′ := 2a|U | + 2b|V | ≤ 2k · n variables. The
reduction runs in time 2O(k/ε)poly(n). Furthermore, the analysis from H̊astad’s paper [H̊as01] shows that if
L is satisfiable, then the resulting instance has value at least 1− µ ≥ 1− η(ε), and if L has value at most ε,
then I has value at most 1/2 + η(ε).

Removing Edge Weights. Note that the instance (say, I) output by the above reduction is constraint-
weighted; in particular, the weights define a probability distribution (say, ν) over the set of constraints. Now
consider the following new unweighted instance I ′′ that is constructed as follows:

• First, we construct the following intermediate instance I ′. The variable set of I ′ is the same as that of I.
Let η = η(ε). For m := 8n′/η2, sample constraints e1, e2, . . . , em ∼ ν independently with replacement,
and include the constraints e1, . . . , em in I ′.

• For every constraint that has multiple copies in I ′, delete all but one copy of the constraint. Call the
resulting duplicate free instance I ′′.

Clearly, by definition, the resulting instance still has n′ = 2a|U |+ 2b|V | variables, and at most m = 8n′/η2

constraints. It remains to be shown that the optimal value of I ′′ is nearly identical to I with high probability.
We show this using a couple of claims. We first show that the intermediate instance I has nearly the same
fraction of satisfied edges as I ′ w.r.t. every labeling.

4For any 1 ≥ a > b ≥ 1/2, an instance of (a, b)-Gap Max 3-Lin is the decision problem, where the input is a Max 3-Lin
instance, and the objective is to distinguish between the cases whether the optimal value of the instance is at least a or at most
b.
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Claim 5.10 The following holds with probability at least 1 − e−O(n′) over the choice of I ′. Suppose m ≥
8n′/η2. Then for every labeling σ of I, we have that

∣
∣
∣Pr
e∼ν

(σ satisfies e)− Pr
e∼I′

(σ satisfies e)
∣
∣
∣ ≤ η,

where ν is the distribution over the constraints from the reduction in Figure 2.

Proof. Fix a labeling σ of I, and let α ∈ [0, 1] denote the fraction of constraints satisfied by the labeling σ
in I. Now, for every i ∈ [m], let Xσ,i indicate whether the ith sampled constraint is satisfied by σ. Note
that E[Xσ,i] = α. Then using Hoeffding’s bound, we have that

Pr
I′





∣
∣
∣
∣
∣
∣

∑

i∈[m]

Xσ,i − αm

∣
∣
∣
∣
∣
∣

≥ ηm



 ≤ e−
η2m

4 ≤ e−2n′

,

where the last inequality uses m = 8n′/η2. The claim now follows by taking a union bound over all 2n
′

possible labelings, and using our lower bound on m. �

Next, we show that the number of duplicate edges in I ′ is not too large.

Claim 5.11 Suppose |E| ≥ 25kn. With probability at least 1 − 2−2k, the number of duplicate constraints in
I ′ is at most ηm.

Proof. Firstly, note that by definition of the distribution over the constraints ν (described in Figure 2), we
have that for any constraint e, ν(e) := Pre′∼ν(e

′ = e) ≤ 2−(a+b)/|E|. This is due to the observation that
every constraint that can be generated by the process described in Figure 2 is specified by the choice of (i) the
label cover edge (u, v), (ii) the choice of the strings x, y, z and the bit θ. Furthermore, since (u, v) is sampled
uniformly from E and independently, x, y are sampled uniformly from {0, 1}a and {0, 1}b respectively, it
follows that ν(e) ≤ |E|−1 · 2−(a+b).

Therefore, for any i, j ∈ [m], we have

Pr
I′

(

ei = ej

)

=
∑

e

ν(e)2 ≤ 2−(a+b)

|E|
∑

e

ν(e) =
2−k

|E| .

Therefore, for a fixed constraint ei, I ′ contains another copy of ei with probability at most 2−km/|E|. Hence,
the expected number of constraints that have another copy in I ′ is at most

2−k

|E| ·m
2 ≤ 2−k

|E|

(
22kn

η2

)

·m ≤ 2−2kηm

where the first inequality uses the bound

m = 8n′/η2 ≤ 8 · 2kn/η2 ≤ 22kn/η2,

and the second inequality follows from the assumption that |E| ≥ 25kn. The claim now follows using
Markov’s inequality. �

Therefore, by combining the guarantees of Claims 5.10 and 5.11, we have that with probability at least
1 − 2−k, the following holds simultaneously for every labeling of I: if a labeling σ satisfies ασ fraction of
constraints in I, then it satisfies ασ±2η fraction of constraints in I ′′. This concludes the proof of the lemma.

�
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5.1.3 Proof of Lemma 5.1

Let C > 2C2 > 0 be the constants from Lemma 5.8. Let L be a (1, ε)-Label Cover instance with N
variables and K Labels as in the setting of Lemma 5.8. Note that by the guarantee of Lemma 5.8, we
have K ≤ (1/ε)C2 , and the average degree of the instance is at least 25K . Then we use the reduction from
Theorem 5.9 to construct a (1 − η(ε), 1/2 + η(ε))-Gap Max 3-Lin instance I with n ≤ 22K · N variables,
and at most 8n/ε2 constraints. Furthermore, from the guarantee of Theorem 5.9, we know that I is a YES
instance if and only if L is a YES instance.

Now, suppose there exists a 22
−10(1/ε)Cn · poly(n)-time algorithm for solving (1− η(ε), 1/2 + η(ε))-Gap Max

3-Lin. Then there exists an algorithm for (1, ε)-Gap Label Cover on N variables, K labels, and 25KN
constraints, that runs in time

22
−10(1/ε)Cn · poly(n) ≤ 22

−10(1/ε)C 22(1/ε)
C2

N · 2O(K)poly(N) ≤ 22
−(1/ε)CNK · poly(N),

where the first inequality uses the bound K ≤ (1/ε)C2, and the second inequality is due to the definition of
C ≥ 2C2. Since this contradicts Lemma 5.8, it follows that there is no algorithm for (1−η(ε), 1/2+η(ε))-Gap

Max 3-Lin instances on n variables with average degree at most 2O((1/ε)C2 ).

5.2 Hardness of Max 4-Lin Instances with Large Average Degree

In this section, we reduce bounded degree Max 3-Lin instances to Max 4-Lin instances with large degrees.
It will be more convenient to work with 3- and 4-Lin constraints over the 0-1 alphabet. Accordingly, the
constraints will be of the form xi ⊕ xj ⊕ xk = bijk or xi ⊕ xj ⊕ xk ⊕ xl = bijkl. We will say that the average
degree of a 3-Lin or 4-Lin instance I is the ratio between the number of constraints |E| and variables |V | in
I, divided by the arity r of the constraints, i.e., the average degree is defined as |E|/(|V |r).

Lemma 5.12 For 0 < ε, δ ≤ 1/2, and a fixed integer parameter t ∈ N there exists a polynomial-time
deterministic reduction from Max 3-Lin to Max 4-Lin that satisfies the following properties.

• If the input instance I is (1 − ε)-satisfiable, then the output instance is also (1 − ε)-satisfiable.
• If the output instance I ′ is (1/2 + δ)-satisfiable, then the input instance I is (1/2 + δ)-satisfiable.
• The number of variables in I ′ is n+ t, where n is the number of variables in I.
• The average degree of I ′ is ndt/(n+ t).

Proof. Let Let I = (V = [n], E) be an instance of Max 3-Lin. Given I, we construct an instance of Max
4-Lin I ′ = (V ′, E′) as follows.

Vertex Set. Let V ′ = V ∪ V1, where V1 := {y1, . . . , yt} is a set of t new variables.

Constraint Set. For every constraint e := xi⊕xj ⊕xk = bijk and every variable yr ∈ V1, we add constraint

er := xi ⊕ xj ⊕ xk ⊕ yr = bijk. (8)

We will refer to the cloud of constraints corresponding to e as Ce. Note that the degree of vertices in V and
V1 are dt and nd, respectively, which implies that the minimum degree of I ′ is min{dt, nd}.
Analysis. First, let us assume that Val(I) ≥ 1 − ε. Denote an optimal labeling by σ∗. We extend σ∗ to
a labeling σ′ of V ′ by labeling all the variables in V1 as 0. The resulting labeling satisfies at least a 1 − ε
fraction of type-1 constraints and all type-2 constraints. Thus, it satisfies at least a 1 − ε/2 fraction of all
the constraints in I ′. Therefore, Val(I ′) ≥ 1− ε/2.

Now let us assume that I ′ has an assignment, say σ′ : V ′ → {0, 1}, that satisfies at least a (1/2+ δ)-fraction
of the constraints in I ′. Consider the following randomized labeling scheme.

• Sample r ∼ [t] uniformly at random.
• Define labeling σ : V → {0, 1} as σ(x) = σ′(x) ⊕ yr for very x ∈ V .
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Note that under the above randomized scheme, the expected fraction of constraints satisfied by σ in I is

EσEe=(i,j,k)∼E

[

1

(
σ(i)⊕ σ(j) ⊕ σ(k) = bijk

)]

= Ee=(i,j,k)∼EEr∼[t]

[

1

(
σ′(i)⊕ σ′(j)⊕ σ′(k) + yr = bijk

)]

=
1

2
+ δ,

which implies that for at least one choice of yr, the corresponding labeling σ of V satisfies at least (1/2 + δ)
fraction of variables in I, which concludes the soundness analysis. �

By combining Lemmas 5.1 and 5.12, we get the following corollary.

Corollary 5.13 Assume ETH and the Linear Size PCP conjecture. There exists δ0 ∈ (0, 1) such that the
following holds. Then for every δ ∈ (0, δ0] there exists d(δ) ∈ N and ε(δ) ∈ (0, 1) such that given a n-variable
Max 3-Lin instance I of average degree within [d0(δ), n], there is no 2ε(δ)n time algorithm that distinguish
between the case when I is at least (1− δ) satisfiable and the case when I is at most 1/2 + δ-satisfiable.

Proof. Let η and ε0 be as in Lemma 5.1. Let δ0 = η−1(ε0), and fix a δ ∈ (0, δ0). Let ε = η−1(δ). Note
that since η is increasing, we have that ε ∈ (0, ε0]. Now, from Lemma 5.1. Then from Lemma 5.1 we know
that there is no 2−c(ε)n time algorithm which can distinguish between the following cases for a Max-3-Lin

instance on n-variables and d(ε)n constraints, where d(ε) = 2O(1/ε)C
′′′

:

YES Case : Val(I) ≥ 1− δ and NO Case : Val(I) ≤ 1/2 + δ,

since δ = η(ε). Now, we instantiate Lemma 5.12 with the above instance and a fixed choice of t ∈ {1, 2, . . . , n},
which will yield a 4-Lin instance I ′ on N := n+ t variables and ndt constraints with the following guarantees:

• If I is a YES instance (as above), then Val(I ′) ≥ 1− δ.
• If I is a NO instance (as above), then Val(I ′) ≤ 1/2 + δ

Since there is no 2c(ε(δ))n-time algorithm that can distinguish between the YES and NO cases of I, since
N ∈ [n, 2n], it follows that there is no 2c(ε)N/2 = 2c(η

−1(δ))N/2-time algorithm that can distinguish between
the YES and NO cases of I ′. Finally, also note that for any fixed choice of t, the average degree is ndt/n+t =
Θ(d ·min{t, n}), from which the claim follows. �

5.3 Hardness with Oracle Advice

In this section, we combine the hardness results from the previous section to prove ETH-based lower bounds
for algorithms with oracle advice in the variable subset model. Our key tool here is the following lemma
that shows that oracle advice can be simulated deterministically in near sub-exponential time. Let us say
that an algorithm A is a (c, s)-approximation algorithm if given a c-satisfiable instance, it finds a solution
that satisfies at least an s-fraction of the constraints.

Lemma 5.14 Suppose there exists a polynomial-time algorithm A for Max r-Lin that given a c-satisfiable
instance I and advice with parameter ε in the variable-subset model, outputs a solution satisfying an s-
fraction of the constraints with probability at least 0.9 over the choice of the advice string. Then there exists
a deterministic (c, s)-approximation algorithm A′ for Max r-Lin that runs in time 2(ε log(4/ε))npoly(n).

Proof. Consider the following algorithm:

Input: Max r-Lin instance I.
1. For every S ⊆ [n] of size at most 2εn and σS ∈ {0, 1}S, run algorithm A with advice string (S, σS) and

let xS,σS ∈ {0, 1}n denote the corresponding labeling returned by algorithm.
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2. Output the best assignment among all the assignments {xS,σS}S,σS computed in the above step.

The running time of the algorithm is at most

2εn∑

t=0

(
n

t

)

· 2tpoly(n) ≤
2εn∑

t=0

2H(t/n)n · 2tpoly(n) = 2H(ε)n+2εnpoly(n) = 2(ε log2
4
ε )npoly(n).

where H(x) = x log2
1
x is the Shannon entropy function.

Let x∗ be the ground-truth solution. We assume that it satisfies at least a c-fraction of the constraints.
Sample a random set S by including every i ∈ [n] with probability ε (all decisions are independent). Then
we are guaranteed that A finds a solution that satisfies an s fraction of the constraints with probability at
least 0.9 given advice (S,X∗|S) (here x∗|S is the restriction of x∗ to S). The probability that |S| ≤ 2εn
is 1 − eΩ(εn). Thus, for all sufficiently large n, with positive probability, we have that (1) A, with advice
(S,X∗|S), finds a solution satisfying at least a c fraction of the constraints and (2) |S| ≤ 2εn. Let S0 be one
of such sets S. When our algorithm goes over all S of size at most 2εn, it also tries S = S0. Then, for this
S = S0, it goes over assignments σS including x∗|S . For this choice of (S, σS) = (S0, x

∗|S0), A will find an
solution satisfying at least a c-fraction of the constraints. As our algorithm returns the best of the solutions
it finds at Step 1, it will output this or another solution satisfying at least a c-fraction of the constraints. �

5.4 Proofs of Theorem 1.7 and Theorem 1.8

We now combine the ingredients from the previous section to prove the following hardness results:

Theorem 1.7 Assume that the Exponential Time Hypothesis (ETH) and Linear Size PCP Conjecture hold.
For every δ > 0, there exists ε0 = ε0(δ) such that for every ε ∈ [0, ε0], there is no polynomial time algorithm
for Max 3-Lin in the variable subset advice model with parameter ε that given a (1 − δ)-satisfiable instance
returns a solution satisfying at least a (1/2 + δ)-fraction of the constraints with probability at least 0.9 over
the random advice.

Proof. We apply Lemma 5.1 with ε chosen so that δ = η(ε). We get that there is no algorithm that decides

whether a 3-Lin instance is at most 1
2 + δ or at least 1 − δ satisfiable in time 2

(

2−(1/ε)C
′′
)

n
poly(n). Define

ε0 so that ε0 log2
4
ε0

≤ 2−(1/ε)C
′′

. Now the theorem statement follows from Lemma 5.14. �

Theorem 1.8 Assume that the Exponential Time Hypothesis (ETH) and Linear Size PCP Conjecture hold.
Then there exists a constant δ0 ∈ (0, 1) such that for every δ ∈ (0, δ0), there exists d(δ) ∈ N and ε(δ) ∈ (0, 1)
for which the following statement holds. For every ε ∈ (0, ε(δ)), n ≥ n(δ), and d ∈ [d(δ), n], there is no
polynomial time algorithm for Max 4-Lin in the variable subset advice model with parameter ε that, given
a (1 − δ)-satisfiable Max 4-Lin instance with n variables and at least Ω(dn) constraints, returns a solution
satisfying a least a (1/2 + δ)-fraction of the constraints with probability at least 0.9 over the random advice.

Proof. The proof of the theorem is almost identical to the proof of Theorem 1.7 – we simply use Corollary 5.13
in place of Lemma 5.1. Let δ0 be as in Corollary 5.13, and for a fixing of δ ∈ (0, δ0), let ε(δ) be as in Lemma
5.13. Define ε0 so that ε0 log2

4
ε0

≤ ε(δ). The desired result then follows from Lemmas 5.1 and 5.14. �
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A Degree Increment Lemma

We prove Lemma 5.5 here.

Proof. Given L, we construct the label cover instance L′(U ′, V ′, E′,ΣU ,ΣV , {π′
e}e∈E′) as follows.

Vertex Set. For every u ∈ U , we introduce ℓ copies of the vertex u, which we call (u, 1), . . . , (u, ℓ).
Similarly, for every vertex v ∈ V , we introduce ℓ copies of the vertex v, which we call (v, 1), . . . , (v, ℓ). Let
U ′ = {(u, i) : u ∈ U, i ∈ [ℓ]}, and similarly, let V ′ = {(v, i) : v ∈ V, i ∈ [ℓ]}.
Label Set. The left and right label sets are still ΣU and ΣV .

Constraint Set. For every constraint e = (u, v) ∈ E, and for every pair of indices (i, j) ∈ [ℓ] × [ℓ], we
introduce an edge eij = {(u, i), (v, j)} in E′, and define the corresponding projection function π′

eij = πe.

Note that by construction |U ′| = ℓ|U |, |V ′| = ℓ|V |, and |E′| = ℓ2|E|. This concludes the description of
the reduction. All that remains is to claim that Val(L) = Val(L′). To that end, let us first show that
Val(L′) ≥ Val(L). Let σ be an optimal labeling of L. Given σ, we construct a labeling σ′ of L′ as follows.
For every (u, i) ∈ U ′, we let σ′(u, i) = σ(u), and similarly, for every (v, j) ∈ V ′, we let σ′(v, j) = σ(v). Then
the fraction of constraints in L′ satisfied by σ′ is

Pr
(u′,v′)∼E′

[

π′
(u′,v′)(σ

′(v′)) = σ′(u′)
]

= Ei,j∼[ℓ]×[ℓ] Pr
(u,v)∼E

[

π′
(u,i),(v,j)(σ

′(u, i)) = σ′(v, j)
]

= Ei,j∼[ℓ]×[ℓ] Pr
(u,v)∼E

[

π′
(u,v)(σ(u)) = σ(v)

]

= Val(L),
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which shows that there exists a labeling of L′ which can satisfy at least Val(L) fraction of constraints in L′.
This establishes that Val(L′) ≥ Val(L).
Conversely, let σ′ be an optimal labeling of Val(L). Consider the following randomized labeling procedure
for L.

• Sample i ∼ [ℓ] and j ∼ [ℓ] uniformly at random.
• Assign σ(u) = σ′(u, i) and σ(v) = σ′(v, j) for every u ∈ U and v ∈ V respectively.

Then, randomizing over the choice of σ, the expected fraction of constraints that are satisfied by the labeling
σ is

Eσ Pr
(u,v)∼E

[
π(u,v)(σ(v)) = σ(u)

]
= Ei,j∼[ℓ]×[ℓ] Pr

(u,v)∼E

[
π(u,v)(σ

′(u, i)) = σ′(v, j)
]

= Ei,j∼[ℓ]×[ℓ] Pr
(u,v)∼E

[

π′
(u,i),(v,j)(σ

′(u, i)) = σ′(v, j)
]

= Val(L′),

which implies that there exists a labeling of σ of L which satisfies at least Val(L′) fraction of constraints,
thus implying that Val(L) ≥ Val(L′). �
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