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despite significant progress in identifying and tracking 
objects in complex traffic scenarios, real-world deployment 
remains challenging due to the unpredictability of environ-
mental conditions. For instance, vehicles exhibit distinct 
characteristics during the day compared to nighttime, and 

1  Introduction

The rapid evolution of computer vision algorithms, partic-
ularly in object detection, has transformed modern traffic 
surveillance and autonomous vehicle systems. However, 
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Abstract
The performance of object detection models in adverse weather conditions remains a critical challenge for intelligent trans-
portation systems. Since advancements in autonomous driving rely heavily on extensive datasets, which help autonomous 
driving systems be reliable in complex driving environments, this study provides a comprehensive dataset under diverse 
weather scenarios like rain, haze, nighttime, or sun flares and systematically evaluates the robustness of state-of-the-art 
deep learning-based object detection frameworks. Our Adverse Driving Conditions Dataset features eight single weather 
effects and four challenging mixed weather effects, with a curated collection of 50,000 traffic images for each weather 
effect. State-of-the-art object detection models are evaluated using standard metrics, including precision, recall, and IoU. 
Our findings reveal significant performance degradation under adverse conditions compared to clear weather, highlighting 
common issues such as misclassification and false positives. For example, scenarios like haze combined with rain cause 
frequent detection failures, highlighting the limitations of current algorithms. Through comprehensive performance analy-
sis, we provide critical insights into model vulnerabilities and propose directions for developing weather-resilient object 
detection systems. This work contributes to advancing robust computer vision technologies for safer and more reliable 
transportation in unpredictable real-world environments.
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adverse weather conditions, such as rain, haze, or sun flare, 
introduce additional complexity that often undermines the 
accuracy of object detection models. These conditions can 
obscure objects, reduce visibility, and introduce distortions 
like glare and reflections, leading to detection failure. For 
example, in Fig.  1, the DETER model [1] misclassified 
objects under flare conditions, such as mistaking a car for 
a bus, or fail to detect objects altogether under nighttime 
conditions, generating false negatives. Such failures can 
pose serious safety risks in critical areas like autonomous 
driving.

There is a growing need for specialized datasets to 
address these challenges and improve the performance of 
object detection systems. Although various public datasets 
exist, creating a new one is often essential to meet specific 
domain requirements. However, the effort typically requires 
sophisticated experimental setups, which environmental 
factors, accessibility, and logistical limitations can con-
strain. It also necessitates expensive hardware (vehicles, 
LiDARs, radar, IMUs, etc.) along with extensive labeling 
efforts, making the process both costly and time-intensive. 
As a result, researchers suggest that developing synthetic 
datasets is among the most effective strategies to overcome 
the limitations of real-world data [2, 3]. Johnson-Roberson 
et al. (2017) [4] also demonstrated that for the task of vehicle 
detection, training a CNN model solely on synthetic images 
can outperform the same model trained on real-world data-
sets like Cityscapes [5].

Existing datasets offer robust annotations and content; 
however, they often do not capture the diverse spectrum of 
edge-driving scenarios. This gap is especially evident when 
assessing the resilience of object detection models when 
exposed to challenging weather conditions. Addressing this 
critical need, our research aims to contribute to advancing 
computer vision frameworks tailored to real-world applica-
tions. Our contributions are threefold:

	● A synthetic dataset with twelve weather conditions. 
Our Adverse Driving Conditions Dataset (ADCD) is 
an extension of the Urban Weather Diversity Dataset 

(UWDD) [6]. The ADCD comprises a curated collection 
of 50,000 traffic images sourced from well-established 
sources, including Udacity Self-Driving Car Dataset, 
ApolloScape [7], Indian Driving Dataset (IDD) [8], 
Audi Autonomous Driving Dataset (A2D2) [9], and the 
newly developed Dayton Driving Dataset (DDD). We 
aim to provide a dataset that captures a broad spectrum 
of weather conditions, including haze, rain, snow, night, 
sunset, and additional extreme scenarios like a cracked 
windshield, sun flare, and raindrops on the windshield. 
We also introduce four complex combinations that emu-
late practical cases, as illustrated in Fig. 2. This design 
results in a total of 600,000 augmented samples, making 
the ADCD a comprehensive benchmark for evaluating 
object detection models and advancing adaptive percep-
tion systems.

	● Weather synthesis methodology. Our approach focuses 
on preserving the exact positions of all objects within 
the images while altering only the weather effects. This 
is because one of the key objectives of a synthetic da-
taset is to eliminate annotation costs by providing auto-
matically generated, accurate ground truth data for tasks 
such as object detection and tracking. Cloning images 
from popular datasets, we leverage a combination of 
deep-learning models and traditional methods to intro-
duce diverse environmental conditions while preserving 
the integrity of the original scene.

	● Benchmark evaluation: Our evaluation focuses on wide-
ly adopted object detection models, including YOLO 
(v5 onwards) [10–16], DETR [1], R-CNN [17], Faster 
R-CNN [18], RetinaNet [19], and SSD [20]. As dis-
cussed, the performance of these models may be chal-
lenged by adverse conditions compared to clear weather 
scenarios. By identifying such challenges, we provide 
critical insights into the limitations of current approach-
es and suggest pathways for developing more resilient 
algorithms. Our findings emphasize the need for adap-
tive and weather-aware models to ensure the safety and 
reliability of intelligent transportation systems.

Fig. 1  Object detection model, i.e., DETR [1] fails to detect objects accurately under weather challenge (left: original images with ground truth, 
middle: original images with DETR detections, right: weather synthetic images with DETR detections)
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2  Related work

2.1  Real-world datasets

Many datasets have become widely recognized as bench-
marks for training and testing, offering a foundation for 
evaluating model performance. Janai et al. [21] has provided 
an overview of datasets spanning both computer vision and 
autonomous driving research. Within the field of computer 
vision, specific datasets have been developed to address 
distinct problems, playing a crucial role in advancing the 
state of the art. For instance, ImageNet [22], Pascal VOC 

[23], and Microsoft COCO [24] have become benchmarks 
for object recognition. MOTChallenge benchmark [25, 26] 
focuses on object tracking, while the Middlebury stereo 
benchmark [27–29] and the DTU MVS dataset [30] have 
contributed significantly to stereo and 3D reconstruction 
tasks. Meanwhile, in the context of autonomous driving, the 
release of groundbreaking datasets such as KITTI [31] and 
Cityscapes [5] has set the standard for various tasks. Fol-
lowing these foundational datasets, others [7, 32–35] have 
introduced rigorous benchmarks focused on the (temporal 
coherence of) approaches related to semantic segmenta-
tion, motion estimation, recognition, tracking, and more. 

Fig. 2  Illustration of the Adverse 
Driving Conditions Dataset (ADCD) 
showcasing base image, ground truth 
labeled image, 8 single methods 
(brown), and 4 mixed weather syn-
thesis (blue)
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some benchmarks, as shown by Dhariwal and Nichol [54]. 
Notable diffusion-based methods, such as InstructPix2Pix 
[55] and CycleGAN-Turbo [56], enhance the ability to cre-
ate diverse driving scenarios. Recent advances in LLMs 
[57–59] further complement these efforts, enabling integra-
tion of image synthesis with context to produce data that 
balances realism and domain relevance for autonomous 
driving systems.

3  Proposed work

3.1  ADCD dataset collection

Our proposed dataset, the Adverse Driving Conditions 
Dataset (ADCD), is a combination of five subsets that span 
a wide range of geographical locations and driving sce-
narios, making it a valuable resource for creating a diverse 
dataset. For example, scenes in India capture more people 
riding motorcycles in dense traffic, whereas other regions 
feature sparse roads with cars, occasional bikes and pedes-
trians. Table 1 presents the distribution of selected images 
across each dataset unit. In ADCD, we intentionally chose 
to include datasets that, though still popular, are less fre-
quently utilized (except DDD). Since popular datasets such 
as KITTI and Cityscapes have been widely benchmarked 
and come with extensive support, serving as foundational 
resources for many tasks, their widespread usage makes 
them less ideal for introducing new challenges in adverse 
driving conditions. In terms of DDD, the aim is to contribute 
a completely new, high-quality, and well-annotated dataset, 
as proved via the experiments in Sect. 5.2. Overall, the goal 
is to provide fresh insights into driving scenarios that have 
not been as thoroughly explored in existing literature.

3.2  Weather-centric data augmentation

3.2.1  Single weather effects

Under eight effects, we categorized them into two groups: 
traditional methods and deep learning models, as shown 
in Fig.  3. Traditional methods, such as image blending 
and pixel-level modifications, offer advantages over deep 
learning models by being computationally efficient, highly 
controllable, and faster to implement while still providing 
simple yet realistic effects. However, deep learning models 
are better suited for more intricate effects requiring semantic 
understanding or contextual transformation-such as creating 
water reflections on roads in a rainy scene or identifying 
streetlight locations to enhance nighttime brightness. These 
complex requirements are beyond the capabilities of tradi-
tional methods.

These datasets have played a crucial role in bridging the 
gap between controlled laboratory settings and the complex 
challenges of real-world environments.

2.2  Synthetic datasets

Traditional computer vision methods, primarily through 
physics-based rendering techniques, have contributed to 
visibility restoration problems, including dehazing, derain-
ing, and desnowing. For example, the Koschmieder model 
has been applied to generate pioneering foggy datasets like 
FRIDA and FRIDA2 [36, 37], or Foggy Cityscapes [38], 
developed by Sakaridis et al. in 2018, utilized an optical 
model of fog implemented on the MATLAB platform. 
Meanwhile, streak-based models are employed for rain 
simulation, considering factors such as velocity and wind 
direction, as demonstrated in [39, 40]. For snow simulation, 
researchers rely on image overlay methods to mimic snow-
flakes, with DesnowNet [41] as an example.

Another non-deep learning approach involves using the 
3D world of game engines, which have been used to cre-
ate notable datasets such as Virtual KITTI [42], SYNTHIA 
[43], and those based on GTA V [44], followed by VIPER 
[45]. These datasets offer diverse environmental condi-
tions: SYNTHIA simulates variations in daylight, Virtual 
KITTI covers four weather conditions (clear, cloudy, foggy, 
and heavy rain), and VIPER introduces additional condi-
tions, including sunset, rain, snow, and night. Although this 
method offers customization and precise control over vari-
ables like weather, lighting, or camera angles, it often comes 
with a trade-off in the realism of the generated images com-
pared to real-world data.

The advent of neural networks, particularly generative 
models, has revolutionized synthetic dataset creation. The 
introduction of GANs by Goodfellow et al. [46] marked a 
breakthrough in generating high-quality images, inspiring 
subsequent innovations [47–50]. In the context of autono-
mous driving, GAN-based methods like CycleGAN [51] 
and Pix2Pix [52] have been applied to transform more com-
plex weather conditions in driving scenes, such as day-to-
night or summer-to-winter. However, GANs face challenges 
in adapting to new domains. Diffusion models, which itera-
tively reconstruct data [53], surpassed GANs in quality for 

Table 1  Summary of selected subsets with location, release year, and 
the number of images compiled in our Adverse Driving Conditions 
Dataset
Dataset Location Year Images
Udacity Mountain View, United States 2016 24,007
ApolloScape China 2018 7040
IDD India 2019 5713
A2D2 Germany 2020 12,469
DDD Dayton, United States 2024 755
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adjusting the opacity α( here, α is randomly selected 
between 0.3 and 0.5).

	 Isyn = (1 − α)I + αIeffect.� (1)

	– Sun flare. Similar to cracks, we collected flare 
images from major sources. However, unlike cracks, 
which can be placed anywhere on the image due to 
the windshield covering the entire frame in dashcam 
captures, flares require realistic placement, ideally 
positioned in the sky area. To achieve this, we utilize 
Grounding DINO [60], an object detection model 
guided by prompts, to identify the sky regions. The 
detected bounding boxes are then processed by the 
SAM model [61] to generate precise sky segmen-
tations. We accurately position and blend the flare 
images using these segmented areas as masks. The 
blending technique applied to flares is similar to the 
method used for cracks, ensuring the uniqueness of 

	● Traditional methods are associated with the following 
effects:

	– Crack on windshields. We collected dozens of pure 
crack images from sources such as Google and 
FreePik and blended them with the main image. To 
ensure diversity, we selected cracks with varying 
shapes and applied transformations such as rotation 
and flipping. The seamless blending process began 
by randomly selecting a crack image, resizing it 
using random scaling factors, and cropping it at ran-
dom points to fit precisely within the dimensions of 
the main image. We then adjusted the opacity level 
of the crack image to integrate it. This approach min-
imizes the likelihood of two images having identical 
crack placements, ensuring a highly varied dataset. 
The synthesized image Isyn is generated by blend-
ing the crack image Ieffect with the main image I by 

Fig. 3  Examples of weather 
effects and augmentation tech-
niques for single effect
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traffic scenarios. To ensure minimal deviation from 
the original image, we configure a low number of 
steps and increase the weighting of the image rela-
tive to the text prompts. After the initial generation, 
we enhance the seasonal effect for winter images by 
overlaying a snow layer using a similar method for 
introducing cracks.

	– Rain and Night. CycleGAN-Turbo, trained on an 
extensive dataset focusing on clear-to-rain and day-
to-night transitions, outperforms InstructPix2Pix 
for these specific effects due to its domain-specific 
training. The transformation of an input image I can 
be formulated as follows:

	 Isyn = G(I),� (3)

	 where G: X→Y is the generator function that maps the 
image from domain X to domain Y. However, Cycle-
GAN-Turbo’s night scene transformations often 
introduce multiple bright spots, resembling moons, 
in large sky regions. This behavior likely arises from 
the model learning to replicate cityscapes with abun-
dant artificial lighting, which it then applies indis-
criminately to all images. To mitigate this issue and 
produce more realistic results, the brightness of the 
sky area, extracted using the SAM model previously 
applied for flare effects, is reduced. This adjustment 
guides the model toward recognizing the dark sky 
characteristic before transformation.

3.2.2  Mixed weather effects

The effect is tailored to reflect practical driving scenarios. 
Two mixed effects are implemented using only traditional 
methods: Haze and raindrops simulate conditions where 
atmospheric humidity is exceptionally high, while flare 
reflections on cracks are added to heighten visual chal-
lenges, making the driving experience more demanding. 
Two other effects combine deep learning models with tra-
ditional methods: While rain and raindrops depict the obvi-
ous scene of heavy rainfall, haze and night scenes further 
demonstrate the impact of high humidity during nighttime 
conditions.

3.3  Evaluating object detection models

In this paper, we benchmark a range of state-of-the-art 
object detection models:

	● YOLO (You Only Look Once). Known for balancing 
speed and accuracy, YOLO is ideal for real-time tasks 

each flare-blended image. For images where the sky 
cannot be detected, we use flare images that mimic 
sunlight reflections on the windshield, creating the 
effect of reflected flares rather than direct ones, 
thereby enhancing the dataset’s realism.

	– Haze. Although haze can be categorized into several 
subtypes, such as fog, mist, smoke, vog, and smog, 
this approach simplifies the concept by focusing on 
the visual texture that reduces image clarity, simu-
lating the typical obscuration caused by haze. Perlin 
noise is generated to create natural, continuous pat-
terns resembling haze. Gaussian blur is then applied 
to smooth the noise and ensure seamless transitions. 
Finally, the noise is blended with the main image 
using alpha transparency, with adjustments to the 
noise’s contrast or opacity to control the haze’s 
density.

	– Raindrop Unlike rain, the formation of raindrops on 
a windshield requires simulating a real lens effect. 
To model this, an elliptical shape, resembling an 
egg, is created by merging a circle and an oval. A 
blur algorithm is then applied to soften the edges of 
the shape, mimicking the optical distortion caused 
by the refraction of light through the lens-like curva-
ture of the raindrop. This method emulates the visual 
effects observed in real-world scenarios, where the 
edges of raindrops appear diffused due to the inter-
action of light and the windshield’s curvature. Simi-
lar to other effects, we configure the size and number 
of raindrops in the generator to keep the dataset’s 
diversity.

	● Deep-learning models are associated with the following 
effects:

	– Snow and Sunset. We employ InstructPix2Pix, 
which applies transformation to an input image I 
using a diffusion-based generative model guided by 
text instructions.

	 Isyn = f(I, T ),� (2)

	 where T is the text instruction and f is the neural net-
work function of the InstructPix2Pix model, which 
learns to modify the image based on T. We guide the 
generation process with prompts such as “Make it 
winter” or “Make it sunset”. Unlike other diffusion 
models, InstructPix2Pix is trained from paired data, 
maintaining the natural integrity of the scene while 
introducing localized changes to specific objects 
or areas. This approach aligns with the require-
ments of our dataset, which prioritizes realistic 
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AP =
∑

(rn+1 − rn)pinterp(rn+1), where pinterp(rn+1)
= max

r̃≥rn+1
p(r̃) � (4)

When computing Precision/Recall, the IoU between the 
predicted bounding box and the ground truth bounding box 
must meet or exceed a threshold θIoU  = 0.5 to be consider 
a True Positive. The confidence score of the prediction 
is also at least θconf ≥ 0.25, filtering out predictions that 
could inflate the False Positive rate. Figure 4 visualizes the 
detection results of different models across diverse weather 
scenarios.

The final evaluation metric, mean Average Precision 
(mAP), is used to evaluate the overall performance of the 
model. It is computed as the mean of the AP values across 
all classes:

mAP = 1
C

C∑
i=1

APi,� (5)

where C is the total number of classes, and APi is the AP 
score for the i-th class.

4.2  Experimental setups

In this work, we focus on transportation-related objects, 
particularly performing predictions on six classes, namely, 
car, truck, bicycle, motorcycle, person, and traffic light. The 
distribution of the base dataset is provided in Table 2. We 
utilize pretrained state-of-the-art object detection models 
and proceed with two main experiments.

First, we hypothesize that these models, which are pri-
marily trained under clear-weather data, will experience a 
performance drop when exposed to adverse effects. They 
are initially tested on the clear-weather dataset to estab-
lish reference performance. Then the models are evalu-
ated on augmented datasets in ADCD, including single and 
mixed conditions, to assess robustness to environmental 
challenges.

Second, we investigate whether the proposed ADCD 
dataset can meaningfully support the future development 
of object detection models in adverse weather conditions. 
Specifically, we analyze if restoration techniques can suffi-
ciently recover detection performance to match that of non-
affected images.

like traffic monitoring. We evaluate versions from YO-
LOv5 to YOLOv11, each introducing improvements 
such as improved feature extraction, reduced compu-
tational overhead, or better detection of small objects. 
By comparing these variants, we aim to understand their 
relative performance.

	● DETR (Detection Transformer). DETR leverages atten-
tion mechanisms for end-to-end object detection. Unlike 
traditional methods that rely on region proposals, DETR 
excels in complex scenes with overlapping objects, 
making it particularly relevant for the diverse scenarios 
in ADCD. However, its higher computational demands 
pose challenges for real-time applications.

	● R-CNN and Faster R-CNN (Region-based Convolution-
al Neural Networks). These two-stage models generate 
region proposals before classification and regression. 
While highly accurate, these models are computation-
ally intensive. In addition, Faster R-CNN enhances effi-
ciency by integrating a Region Proposal Network (RPN) 
into the architecture, reducing inference time.

	● RetinaNet. RetinaNet utilizes a single-stage object de-
tection architecture augmented by a Focal Loss func-
tion, which addresses class imbalance, particularly be-
tween foreground and background objects. This model 
strikes a balance between speed and accuracy, with no-
table strength in detecting smaller objects.

	● SSD (Single Shot MultiBox Detector). SSD is designed 
for real-time applications, focusing on maintaining 
speed without compromising accuracy. It employs a 
multi-scale feature map approach to efficiently detect 
objects of varying sizes.

4  Experiments

4.1  Evaluation metrics

We validate the performance of object detection models 
based on two categories: class-level performance and over-
all performance.

For each class, we calculate the Average Precision (AP). 
The AP score is the area under the curve (AUC) of the Pre-
cision-Recall curve, which is derived from the predictions 
of the model compared to the ground truth. It is suggested 
that by interpolating all points, which reduces the impact 
of the “wiggles” in the curve caused by small variations in 
the ranking of samples [23], the Average Precision can be 
interpreted as an approximated AUC of the Precision-Recall 
curve.
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follows a similar pattern but delivers below-average per-
formance. In contrast, SDD struggles in all scenarios with 
scores below usable levels, while DETR show significant 
mAP degradation under mixed conditions, with performance 
drops reaching over 70% despite moderate performances 
under a few cases, indicating its instability in environments 
that reduce visibility.

Regarding adverse effects, some single ones such as 
Crack, Rain, and Night cause noticeable performance drops 
than others in the same group. Mixed weather conditions 
result in the most significant degradation overall. Even the 
best-performing YOLO models are affected; for example, 
YOLOv6-l6 suffers a 30% drop under Haze + Night. These 
results show that while some models maintain reasonable 
accuracy under isolated effects, mixed conditions remain 
a major challenge, emphasizing the importance of datasets 
like ADCD for improving detection in real-world scenarios.

5.2  Class impact on detection performance in 
adverse weather

The mAP of models was influenced by the AP score of each 
class, as illustrated in Tables 5 and 6. Each class achieves 
its highest score on the base dataset and experiences vary-
ing degrees of performance drop under different conditions. 

5  Results

5.1  Overall performance under weather effects

Table 3 summarizes the mAP score of each model across 
all weather conditions, and the accompanying heatmap 
visualization in Table 4 shows the percentage decrease in 
mAP scores compared to the baseline. In general, all mod-
els experience a performance decrease when weather effects 
are applied, especially under mixed-weather datasets.

YOLO variants perform competitively with minimal 
differences among them. YOLOv5-x6 and Yolov6-l6, in 
particular, are the most robust and stable, consistently out-
performing others with both high mAP scores and low drop 
rates. RCNN-based models also perform well and closely to 
one another, though less robust than the YOLOs. RetinaNet 

Table 2  Distribution of transportation-related classes in our dataset
Class Count
Car 199,840
Truck 34,145
Bicycle 5167
Motorcycle 32,050
Person 93,319
Traffic light 23,736

Fig. 4  Visualization of the object detection results in different weather 
conditions. Different objects are highlighted using different colors: 
cars (blue), trucks (red), persons (green), bicycles (purple), motor-

cycles (yellow), and traffic lights (pink). (For a better viewing experi-
ence, please zoom to at least 400%)
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misidentified as traffic signals. In terms of models, DETR, 
as mentioned above, performs well under certain conditions 
but struggles significantly under others—a pattern clearly 
reflected in class-wise scores. Furthermore, R-CNN out-
performs YOLOv6-l6 in detecting traffic lights under some 
conditions. There are also anomalies, such as YOLOv10-
x performing unusually poorly on persons under the Night 
compared to other YOLO variants and effects.

Under mixed effects, nearly all models witness a 
noticeably lower score across all classes, especially with 
Crack+Flare. Similar patterns observed under single effects 
persist, such as the stability of cars and persons, as well as 

Additionally, most models follow a similar class-wise pat-
tern: high scores for cars, average performance for trucks, 
motorcycles, persons, and traffic lights, while bicycles show 
the lowest scores.

Under single weather effects, cars are correctly detected 
across almost all models, with AP scores around 60. Their 
stability is comparable to that of persons, but the latter tends 
to have lower accuracy. Trucks and motorcycles, scoring 
from 30 to 35, decline moderately under Crack and Night 
conditions. Night also slightly affects bicycles, while traf-
fic lights experience a noticeable drop in performance com-
pared to other effects, possibly due to bright light spots being 

Table 3  Overall mAP scores (for six classes) under all weather conditions
Base Crack Flare Haze Raindrop Snow Sunset Night Rain

Yolov5-x6 43.52 35.99 41.45 38.92 41.28 41.72 40.16 35.30 35.23
Yolov6-l6 46.91 39.70 45.00 42.99 45.02 45.68 44.63 39.43 39.46
Yolov7-e6e 37.74 31.32 35.01 34.15 36.19 36.91 35.77 30.28 32.82
Yolov8-x 38.35 31.53 36.09 34.93 36.64 37.53 36.45 30.14 33.27
Yolov9-e 39.23 32.01 35.98 34.62 37.24 37.95 37.27 31.11 33.59
Yolov10-x 37.17 30.91 34.81 33.45 35.58 36.36 35.19 28.46 31.90
Yolov11-x 38.82 32.00 36.48 34.62 36.80 37.74 36.17 29.60 32.84
DETR 34.91 27.10 16.25 15.95 29.60 33.00 32.65 11.65 21.43
RCNN 40.32 34.45 33.54 31.69 38.05 35.94 38.18 30.88 32.90
Faster-RCNN 39.69 33.78 32.70 31.29 37.35 36.30 37.54 30.58 32.38
RetinaNet 32.00 26.44 24.95 23.66 29.20 26.47 28.70 22.08 24.42
SSD 5.44 4.81 3.13 3.07 5.19 4.04 4.82 3.84 4.50

Base Haze 
raindrop

Haze 
night

Rain 
raindrop

Crack 
flare

Yolov5-x6 43.52 39.25 33.91 32.95 30.40
Yolov6-l6 46.91 43.23 38.40 37.42 33.74
Yolov7-e6e 37.74 34.52 28.98 30.91 24.89
Yolov8-x 38.35 35.12 28.19 30.87 25.25
Yolov9-e 39.23 34.94 29.15 31.30 24.83
Yolov10-x 37.17 33.80 26.67 29.47 24.85
Yolov11-x 38.82 27.35 28.31 30.27 26.41
DETR 34.91 16.38 7.89 15.42 8.43
RCNN 40.32 33.11 27.96 29.17 21.60
Faster-RCNN 39.69 32.57 27.26 28.16 20.93
RetinaNet 32.00 24.36 19.77 20.35 15.20
SSD 5.44 3.37 2.39 4.14 2.07
The top performance for each condition is highlighted in bold

Table 4  Overall mAP scores (for six classes) under all weather conditions

Crack Flare Haze Raindrop Snow Sunset Night Rain Haze
Raindrop

Haze
Night

Rain
Raindrop

Crack
Flare

Yolov5-x6 17.3 4.76 10.57 5.15 4.14 7.72 18.89 19.05 9.81 22.08 24.29 30.15
Yolov6-l6 15.37 4.07 8.36 4.03 2.62 4.86 15.95 15.88 7.84 18.14 20.23 28.08
Yolov7-e6e 17.01 6.7 7.23 4.32 2.04 5.64 16.91 16.24 8.53 23.21 18.1 34.05
Yolov8-x 17.78 5.89 8.92 4.46 2.14 4.95 21.41 11.55 8.42 26.49 19.5 34.16
Yolov9-e 18.4 8.34 11.88 10.12 6.53 9.02 21.18 20.04 10.94 25.69 20.21 36.71
Yolov10-x 16.84 6.35 9.66 6.91 2.07 5.38 23.43 16.06 9.07 28.25 20.72 33.15
Yolov11-x 17.39 6.18 11.75 5.56 2.78 6.34 21.66 15.51 29.55 27.07 22.02 31.97
DETR 15.07 18.05 18.68 7.24 3.57 13.35 21.47 26.64 48.67 75.27 51.68 73.58
RCNN 20.7 13.71 22.56 14.42 5.72 16.47 26.15 24.27 19.09 31.67 28.71 47.21
Faster-RCNN 14.89 17.61 21.16 5.9 8.54 5.42 22.95 18.42 17.94 31.32 29.05 47.27
Re�naNet 17.38 22.03 26.06 8.75 17.28 10.31 31 23.69 23.88 38.22 36.41 52.5
SSD 11.58 42.46 43.57 4.6 25.74 11.4 29.41 17.28 38.05 56.07 23.9 61.95

*Lower values, or brighter colors, indicate better * robustness
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Model Base Crack Flare Haze Raindrop Snow Sunset Night Rain
Car Yolov5-x6 65.45 59.15 64.89 62.66 64.10 62.78 64.48 62.52 61.40

Yolov6-l6 69.12 63.45 68.90 67.10 68.27 67.37 68.69 66.67 66.10
Yolov7-e6e 65.09 57.83 64.00 62.49 63.59 62.72 64.67 61.47 59.89
Yolov8-x 64.25 56.97 63.57 61.37 62.63 61.84 63.85 60.03 58.80
Yolov9-e 64.10 57.16 63.68 61.42 62.57 62.05 63.89 60.72 59.10
Yolov10-x 63.05 56.43 62.48 59.82 61.61 60.66 62.74 58.26 57.48
Yolov11-x 64.07 57.11 63.50 60.96 62.33 61.94 63.59 59.92 58.31
DETR 60.32 51.04 40.18 37.27 56.05 59.02 58.28 27.01 49.54
RCNN 62.54 55.87 61.14 58.32 60.61 56.22 62.24 63.14 57.39
Faster-RCNN 62.90 56.29 61.81 59.60 61.14 58.26 62.41 62.50 57.78
RetinaNet 60.35 51.28 56.11 54.08 57.30 51.05 58.32 54.34 50.41
SSD 16.14 14.75 12.41 11.91 15.55 13.66 15.21 14.08 14.30

Truck Yolov5-x6 39.82 31.87 38.75 37.35 38.29 37.73 34.65 30.89 33.02
Yolov6-l6 42.12 34.92 40.74 40.01 40.77 40.09 38.14 35.24 36.91
Yolov7-e6e 37.24 29.33 35.98 35.24 36.37 35.06 34.64 29.55 32.58
Yolov8-x 36.41 28.20 35.88 35.13 35.37 35.74 32.73 27.84 31.41
Yolov9-e 37.71 28.78 34.73 34.05 36.22 35.10 34.29 28.57 32.02
Yolov10-x 35.89 28.10 34.87 34.28 34.68 34.46 32.32 27.70 31.47
Yolov11-x 36.51 28.33 35.96 34.44 35.69 34.44 32.02 29.05 30.65
DETR 27.01 17.71 5.38 7.59 21.49 22.73 21.40 5.61 11.36
RCNN 37.79 29.90 31.34 31.28 36.49 33.18 33.83 23.64 31.08
Faster-RCNN 38.18 29.83 31.20 31.69 36.81 34.14 33.93 26.21 32.69
RetinaNet 31.54 23.72 24.52 25.42 30.19 27.22 26.38 18.15 26.16
SSD 7.44 6.12 2.68 2.73 7.29 4.00 5.98 3.77 5.37

Bicycle Yolov5-x6 25.62 20.82 24.02 22.47 25.15 25.43 20.89 21.74 18.04
Yolov6-l6 24.77 20.71 23.21 22.36 24.71 25.81 21.37 21.37 19.00
Yolov7-e6e 17.95 14.67 16.34 15.87 17.10 18.16 13.73 12.41 14.67
Yolov8-x 17.97 14.79 16.87 16.69 17.51 18.70 14.65 13.25 15.72
Yolov9-e 18.83 15.06 17.61 16.89 17.87 19.93 15.45 13.89 15.05
Yolov10-x 17.19 14.36 16.48 15.87 16.91 18.25 13.89 12.32 14.68
Yolov11-x 18.55 15.48 17.71 17.02 18.27 19.57 14.78 13.03 15.63
DETR 18.18 15.58 6.76 6.94 15.68 16.86 12.20 4.52 4.70
RCNN 19.33 17.60 15.94 15.37 19.53 18.96 15.14 12.30 15.69
Faster-RCNN 17.60 16.06 14.17 13.36 17.55 18.00 13.38 11.28 13.87
RetinaNet 13.89 12.70 10.40 8.94 13.49 13.03 9.01 7.27 10.16
SSD 1.14 1.01 0.29 0.38 1.12 0.90 0.83 0.55 0.92

Motorcycle Yolov5-x6 47.14 35.09 44.45 39.87 42.89 44.67 41.48 38.45 34.57
Yolov6-l6 51.85 39.71 48.58 45.07 48.11 49.36 46.70 42.65 38.95
Yolov7-e6e 35.28 26.98 31.97 30.46 33.32 35.32 33.11 29.81 29.43
Yolov8-x 38.27 28.60 34.82 32.89 36.22 37.38 35.21 30.70 31.28
Yolov9-e 39.11 29.36 35.33 33.00 36.83 38.10 36.69 32.92 32.26
Yolov10-x 35.79 27.54 33.07 30.83 34.09 35.24 33.52 29.08 28.93
Yolov11-x 38.95 29.38 36.01 33.16 35.93 37.59 35.27 30.91 31.27
DETR 32.88 23.12 6.78 7.80 24.36 24.07 33.46 10.01 14.46
RCNN 35.26 29.09 26.38 23.20 31.62 29.44 32.05 29.79 26.33
Faster-RCNN 34.67 28.15 24.96 22.86 31.19 30.94 30.86 29.57 24.93
RetinaNet 23.12 18.78 15.43 13.24 20.13 18.88 20.22 17.86 16.44
SSD 3.98 3.49 0.86 0.92 3.53 2.44 3.54 2.56 2.78

Table 5  Class-wise AP scores under single conditions
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image restoration alone is insufficient to bridge the gap in 
our task, underscoring the value of comprehensive datasets 
like ADCD for both training and evaluation under diverse 
weather conditions.

5.4  Discussion

The aforementioned experiments emphasize the critical 
impact of weather effects on the evaluation of the model. 
All models experience performance degradation compared 
to the base dataset’s score, emphasizing the need for rein-
forcing the dual importance of advanced architectures and 
high-quality datasets in developing robust object detection 
systems in the real world. It also reveals that certain weather 
effects can cause specific models to degrade significantly, 
even if those models perform well under other condi-
tions, indicating that performance may be condition-spe-
cific. Moreover, the need to examine class-wise AP scores 
becomes evident, as it helps identify bottlenecks in model 
performance under specific effects. For example, under 
night conditions, models may falsely detect light spots, such 
as headlights or reflections, revealing class-specific vulnera-
bilities that could be masked when only considering overall 
metrics. Furthermore, the imbalance in performance across 
different classes suggests that certain categories are more 
prone to degradation than others, pointing to a potential 

the high false detection rate of traffic lights under Night 
(with Haze). In terms of models, DETR and SSD per-
form significantly worse across all conditions. Meanwhile, 
YOLOv6-l6 and YOLOv5-x6 show a substantial difference 
from other YOLO variants in certain classes, particularly 
bicycles and motorcycles.

5.3  Comparison between non-effect and restored 
images

We further compare the performance of object detection 
methods on non-effect images and restored images. We aim 
to restore the hazy images to a state resembling the Base 
dataset. In particular, we utilized state-of-the-art dehazing 
models, SFNet [62] and CORUN [63], on the Haze dataset 
(generated from the original non-effect images).

Then, we assess model performance across three settings, 
namely Base (non-effect images), Haze, and Dehazing. As 
shown in Fig. 5, restoring the Haze images with SFNet and 
CORUN does yield a clear improvement over the Haze 
input. However, both methods still fall short of the results 
on “Base”, remaining much closer to the Haze baseline than 
to the clean images. This may be attributed to information 
loss during the dehazing process, domain shifts introduced 
by restoration artifacts, and visual inconsistencies such as 
unnatural lighting or contrast. These results indicate that 

Model Base Crack Flare Haze Raindrop Snow Sunset Night Rain
Person Yolov5-x6 49.60 40.90 46.61 42.85 45.71 45.56 45.00 36.39 38.10

Yolov6-l6 55.51 46.89 53.17 49.31 52.12 52.72 53.17 43.13 44.36
Yolov7-e6e 41.08 34.33 37.17 36.12 39.13 39.87 39.13 30.36 35.35
Yolov8-x 42.50 35.40 38.92 37.32 39.72 40.40 40.17 30.87 35.56
Yolov9-e 42.51 35.18 38.57 36.61 39.73 39.64 39.81 31.01 36.51
Yolov10-x 39.64 33.28 36.06 34.28 37.31 37.92 37.21 27.70 33.29
Yolov11-x 41.67 34.44 37.97 35.88 38.65 39.36 38.66 29.14 34.48
DETR 42.61 33.83 25.93 23.22 37.32 43.43 39.80 19.27 31.36
RCNN 46.86 40.18 39.32 35.53 43.18 42.94 44.51 34.38 38.77
Faster-RCNN 46.76 39.96 38.83 35.10 42.98 42.72 44.61 33.81 38.33
RetinaNet 33.55 27.97 27.02 24.44 29.87 27.70 29.79 21.41 27.33
SSD 3.89 3.38 2.54 2.49 3.57 3.21 3.34 2.09 3.50

Traffic light Yolov5-x6 33.48 28.12 29.98 28.33 31.55 34.17 34.43 21.83 26.22
Yolov6-l6 38.06 32.51 35.42 34.12 36.14 38.75 39.73 27.52 31.44
Yolov7-e6e 29.78 24.78 24.62 24.74 27.61 30.32 29.31 18.05 25.03
Yolov8-x 30.72 25.25 26.48 26.18 28.39 31.13 32.12 18.14 26.86
Yolov9-e 33.12 26.51 25.96 25.77 30.25 32.90 33.49 19.58 26.61
Yolov10-x 31.44 25.75 25.92 25.63 28.89 31.63 31.47 15.72 25.53
Yolov11-x 33.20 27.23 27.72 26.28 29.92 33.55 32.68 15.54 26.69
DETR 28.44 21.31 12.49 12.85 22.72 31.89 30.73 3.46 17.13
RCNN 40.16 34.08 27.14 26.45 36.90 34.88 41.31 22.04 28.14
Faster-RCNN 38.00 32.37 25.22 25.14 34.42 33.77 40.03 20.14 26.69
RetinaNet 29.52 24.16 16.20 15.82 24.25 20.97 28.50 13.44 16.03
SSD 0.06 0.13 0.00 0.00 0.07 0.04 0.02 0.01 0.14

The top performance for each condition is highlighted in bold

Table 5  (continued) 
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Model Base Haze raindrop Haze night Rain raindrop Crack flare
Car Yolov5-x6 65.45 63.11 61.06 58.58 53.38

Yolov6-l6 69.12 67.72 65.92 64.43 57.93
Yolov7-e6e 65.09 62.84 59.30 57.43 50.03
Yolov8-x 64.25 61.66 56.80 55.88 48.99
Yolov9-e 64.10 61.73 58.29 55.99 49.10
Yolov10-x 63.05 60.27 55.42 54.28 49.21
Yolov11-x 64.07 51.31 57.55 55.29 51.02
DETR 60.32 41.10 20.83 39.62 24.69
RCNN 62.54 58.88 57.43 52.82 44.01
Faster-RCNN 62.90 60.17 56.94 52.64 44.24
RetinaNet 60.35 54.23 48.71 44.44 36.99
SSD 16.14 12.55 9.86 13.30 8.75

Truck Yolov5-x6 39.82 37.75 30.44 31.55 26.60
Yolov6-l6 42.12 40.38 34.39 35.24 28.73
Yolov7-e6e 37.24 35.78 28.23 30.35 22.21
Yolov8-x 36.41 35.34 26.97 29.00 21.66
Yolov9-e 37.71 34.63 27.16 29.38 20.07
Yolov10-x 35.89 34.96 26.72 29.38 21.25
Yolov11-x 36.51 30.62 28.20 28.46 22.62
DETR 27.01 6.58 3.28 5.97 1.74
RCNN 37.79 33.67 22.86 28.00 15.62
Faster-RCNN 38.18 34.28 23.82 28.31 15.37
RetinaNet 31.54 27.40 18.65 20.48 10.82
SSD 7.44 3.65 1.71 5.05 1.55

Bicycle Yolov5-x6 25.62 22.76 19.96 17.00 17.64
Yolov6-l6 24.77 22.75 20.21 18.04 17.55
Yolov7-e6e 17.95 15.51 11.61 13.57 12.26
Yolov8-x 17.97 16.38 12.38 14.08 12.45
Yolov9-e 18.83 16.74 12.54 13.84 12.57
Yolov10-x 17.19 15.94 10.94 13.41 12.31
Yolov11-x 18.55 13.72 11.97 14.36 13.64
DETR 18.18 6.28 3.08 2.20 4.00
RCNN 19.33 16.33 10.64 13.63 11.93
Faster-RCNN 17.60 14.16 9.37 11.79 10.80
RetinaNet 13.89 9.42 5.81 7.91 7.99
SSD 1.14 0.31 0.15 0.84 0.13

Motorcycle Yolov5-x6 47.14 40.20 36.36 31.47 29.41
Yolov6-l6 51.85 45.16 40.88 35.71 32.73
Yolov7-e6e 35.28 31.32 28.38 27.29 21.03
Yolov8-x 38.27 33.97 28.44 28.36 22.49
Yolov9-e 39.11 33.72 30.58 29.44 22.88
Yolov10-x 35.79 31.90 26.93 25.94 21.67
Yolov11-x 38.95 18.45 28.98 28.19 24.30
DETR 32.88 6.65 3.88 7.49 1.85
RCNN 35.26 25.89 27.63 21.01 15.52
Faster-RCNN 34.67 25.07 26.91 19.68 14.48
RetinaNet 23.12 14.72 15.03 12.73 8.90
SSD 3.98 1.00 1.02 2.24 0.38

Table 6  Class-wise AP scores under mixed conditions
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to address a specific kind of visual degradation (e.g., Haze, 
Snow, Rain), which limits their generalizability. Meanwhile, 
combining multiple restoration models can add complexity, 
especially in real-time applications where rapid perception 
is critical. Moreover, some visual effects, such as Crack 
and Flares, still remain challenging to restore. These limi-
tations highlight the need for more robust object detection 
systems that can handle degraded inputs. In this context, 

need for class-balanced training or evaluation strategies. In 
short, all these insights suggest that training models on more 
targeted, condition-specific data could improve their robust-
ness and mitigate such failure cases.

Regarding the restoration approach, although improving 
model performance is essential, single-purpose restoration 
may be impractical under mixed effects, where multiple 
types of noise co-occur, while most models are designed 

Fig. 5  Comparison of object 
detection performance on Base, 
Haze, and the dehazed images 
from two dehazing models, 
SFNet [62] and CORUN [63]. 
SSD is excluded for clearer 
visualization, as its low mAP 
(∼0–5%) would compress the 
scale relative to other models (∼
20–50%)

 

Model Base Haze raindrop Haze night Rain raindrop Crack flare
Person Yolov5-x6 49.60 42.88 34.91 34.89 34.46

Yolov6-l6 55.51 49.33 42.19 41.92 40.53
Yolov7-e6e 41.08 36.78 29.43 33.67 27.65
Yolov8-x 42.50 37.59 29.03 33.20 28.83
Yolov9-e 42.51 36.77 29.47 34.15 28.15
Yolov10-x 39.64 34.67 26.27 30.66 26.93
Yolov11-x 41.67 24.43 27.71 31.45 28.27
DETR 42.61 24.63 14.40 25.63 13.62
RCNN 46.86 37.85 31.72 35.04 27.10
Faster-RCNN 46.76 37.55 30.71 34.63 26.54
RetinaNet 33.55 26.00 20.02 23.91 17.77
SSD 3.89 2.68 1.62 3.20 1.59

Traffic light Yolov5-x6 33.48 28.79 20.74 24.18 20.91
Yolov6-l6 38.06 34.05 26.78 29.17 24.98
Yolov7-e6e 29.78 24.91 16.95 23.16 16.17
Yolov8-x 30.72 25.80 15.55 24.68 17.09
Yolov9-e 33.12 26.07 16.84 24.98 16.23
Yolov10-x 31.44 25.03 13.72 23.17 17.72
Yolov11-x 33.20 25.58 15.43 23.86 18.59
DETR 28.44 13.05 1.87 11.59 4.66
RCNN 40.16 26.06 17.46 24.50 15.44
Faster-RCNN 38.00 24.22 15.83 21.89 14.17
RetinaNet 29.52 14.41 10.39 12.62 8.75
SSD 0.06 0.00 0.00 0.18 0.00

The top performance for each condition is highlighted in bold

Table 6  (continued) 
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comprehensive datasets like ADCD are valuable for both 
training and evaluation under diverse conditions.

For future work, beyond the dataset itself, the proposed 
work presents promising opportunities for broader impact. 
While expanding with additional effects, such as sand to 
simulate dusty conditions, snow-covered vehicles, or com-
plex combinations such as snow at night, can help challenge 
object detection models further, a transferable construction 
approach opens even broader possibilities. Instead of being 
confined to a specific domain, such methods can be adapted 
to build diverse datasets for other real-world challenges. For 
example, wildlife object detection often involve capturing 
images under adverse conditions such as rain, haze, or night 
surveillance. These conditions may cause data imbalance, 
as there is typically less available data for these scenarios 
compared to clear images. The work we propose can help 
diversify and balance such datasets, making it possible to 
build more robust models.

6  Conclusion

In this paper, we assessed the robustness of state-of-the-
art object detection models under adverse weather con-
ditions. To this end, we collected the Adverse Driving 
Conditions Dataset (ADCD) which comprises 50,000 
images augmented with 12 unique weather effects. Through 
experiments, YOLOs consistently demonstrated superior 
performance across most weather scenarios among the 
evaluated models. However, all models experienced notable 
performance degradation under adverse conditions, which 
was evidenced through detailed analysis, including per-
centage drops in mAP and class-wise AP, emphasizes the 
need for more resilient architectures capable of addressing 
multiple environmental challenges. Moreover, while image 
restoration methods have shown some promise, their impact 
remains limited, especially in cases involving mixed or 
severe effects. By identifying specific gaps in model per-
formance and proposing adaptable methodology for dataset 
construction, our work contributes to advancing the safety 
and reliability of computer vision systems in critical appli-
cations such as autonomous vehicles and traffic monitoring.
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