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Abstract

The performance of object detection models in adverse weather conditions remains a critical challenge for intelligent trans-
portation systems. Since advancements in autonomous driving rely heavily on extensive datasets, which help autonomous
driving systems be reliable in complex driving environments, this study provides a comprehensive dataset under diverse
weather scenarios like rain, haze, nighttime, or sun flares and systematically evaluates the robustness of state-of-the-art
deep learning-based object detection frameworks. Our Adverse Driving Conditions Dataset features eight single weather
effects and four challenging mixed weather effects, with a curated collection of 50,000 traffic images for each weather
effect. State-of-the-art object detection models are evaluated using standard metrics, including precision, recall, and IoU.
Our findings reveal significant performance degradation under adverse conditions compared to clear weather, highlighting
common issues such as misclassification and false positives. For example, scenarios like haze combined with rain cause
frequent detection failures, highlighting the limitations of current algorithms. Through comprehensive performance analy-
sis, we provide critical insights into model vulnerabilities and propose directions for developing weather-resilient object
detection systems. This work contributes to advancing robust computer vision technologies for safer and more reliable
transportation in unpredictable real-world environments.

Keywords Weather augmentation - Synthetic dataset - Generative Al - Computer vision - Autonomous driving

1 Introduction despite significant progress in identifying and tracking

objects in complex traffic scenarios, real-world deployment

The rapid evolution of computer vision algorithms, partic-
ularly in object detection, has transformed modern traffic
surveillance and autonomous vehicle systems. However,
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remains challenging due to the unpredictability of environ-
mental conditions. For instance, vehicles exhibit distinct
characteristics during the day compared to nighttime, and
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adverse weather conditions, such as rain, haze, or sun flare,
introduce additional complexity that often undermines the
accuracy of object detection models. These conditions can
obscure objects, reduce visibility, and introduce distortions
like glare and reflections, leading to detection failure. For
example, in Fig. 1, the DETER model [1] misclassified
objects under flare conditions, such as mistaking a car for
a bus, or fail to detect objects altogether under nighttime
conditions, generating false negatives. Such failures can
pose serious safety risks in critical areas like autonomous
driving.

There is a growing need for specialized datasets to
address these challenges and improve the performance of
object detection systems. Although various public datasets
exist, creating a new one is often essential to meet specific
domain requirements. However, the effort typically requires
sophisticated experimental setups, which environmental
factors, accessibility, and logistical limitations can con-
strain. It also necessitates expensive hardware (vehicles,
LiDARs, radar, IMUs, etc.) along with extensive labeling
efforts, making the process both costly and time-intensive.
As a result, researchers suggest that developing synthetic
datasets is among the most effective strategies to overcome
the limitations of real-world data [2, 3]. Johnson-Roberson
etal. (2017) [4] also demonstrated that for the task of vehicle
detection, training a CNN model solely on synthetic images
can outperform the same model trained on real-world data-
sets like Cityscapes [5].

Existing datasets offer robust annotations and content;
however, they often do not capture the diverse spectrum of
edge-driving scenarios. This gap is especially evident when
assessing the resilience of object detection models when
exposed to challenging weather conditions. Addressing this
critical need, our research aims to contribute to advancing
computer vision frameworks tailored to real-world applica-
tions. Our contributions are threefold:

e A synthetic dataset with twelve weather conditions.
Our Adverse Driving Conditions Dataset (ADCD) is
an extension of the Urban Weather Diversity Dataset

(UWDD) [6]. The ADCD comprises a curated collection
of 50,000 traffic images sourced from well-established
sources, including Udacity Self-Driving Car Dataset,
ApolloScape [7], Indian Driving Dataset (IDD) [8],
Audi Autonomous Driving Dataset (A2D2) [9], and the
newly developed Dayton Driving Dataset (DDD). We
aim to provide a dataset that captures a broad spectrum
of weather conditions, including haze, rain, snow, night,
sunset, and additional extreme scenarios like a cracked
windshield, sun flare, and raindrops on the windshield.
We also introduce four complex combinations that emu-
late practical cases, as illustrated in Fig. 2. This design
results in a total of 600,000 augmented samples, making
the ADCD a comprehensive benchmark for evaluating
object detection models and advancing adaptive percep-
tion systems.

Weather synthesis methodology. Our approach focuses
on preserving the exact positions of all objects within
the images while altering only the weather effects. This
is because one of the key objectives of a synthetic da-
taset is to eliminate annotation costs by providing auto-
matically generated, accurate ground truth data for tasks
such as object detection and tracking. Cloning images
from popular datasets, we leverage a combination of
deep-learning models and traditional methods to intro-
duce diverse environmental conditions while preserving
the integrity of the original scene.

Benchmark evaluation: Our evaluation focuses on wide-
ly adopted object detection models, including YOLO
(v5 onwards) [10-16], DETR [1], R-CNN [17], Faster
R-CNN [18], RetinaNet [19], and SSD [20]. As dis-
cussed, the performance of these models may be chal-
lenged by adverse conditions compared to clear weather
scenarios. By identifying such challenges, we provide
critical insights into the limitations of current approach-
es and suggest pathways for developing more resilient
algorithms. Our findings emphasize the need for adap-
tive and weather-aware models to ensure the safety and
reliability of intelligent transportation systems.

Fig. 1 Object detection model, i.e., DETR [1] fails to detect objects accurately under weather challenge (left: original images with ground truth,
middle: original images with DETR detections, right: weather synthetic images with DETR detections)
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Fig. 2 Illustration of the Adverse
Driving Conditions Dataset (ADCD)
showcasing base image, ground truth
labeled image, 8 single methods
(brown), and 4 mixed weather syn-
thesis (blue)
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2 Related work
2.1 Real-world datasets

Many datasets have become widely recognized as bench-
marks for training and testing, offering a foundation for
evaluating model performance. Janai et al. [21] has provided
an overview of datasets spanning both computer vision and
autonomous driving research. Within the field of computer
vision, specific datasets have been developed to address
distinct problems, playing a crucial role in advancing the
state of the art. For instance, ImageNet [22], Pascal VOC

| Crack
Flare

[23], and Microsoft COCO [24] have become benchmarks
for object recognition. MOTChallenge benchmark [25, 26]
focuses on object tracking, while the Middlebury stereo
benchmark [27-29] and the DTU MVS dataset [30] have
contributed significantly to stereo and 3D reconstruction
tasks. Meanwhile, in the context of autonomous driving, the
release of groundbreaking datasets such as KITTI [31] and
Cityscapes [5] has set the standard for various tasks. Fol-
lowing these foundational datasets, others [7, 32-35] have
introduced rigorous benchmarks focused on the (temporal
coherence of) approaches related to semantic segmenta-
tion, motion estimation, recognition, tracking, and more.
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These datasets have played a crucial role in bridging the
gap between controlled laboratory settings and the complex
challenges of real-world environments.

2.2 Synthetic datasets

Traditional computer vision methods, primarily through
physics-based rendering techniques, have contributed to
visibility restoration problems, including dehazing, derain-
ing, and desnowing. For example, the Koschmieder model
has been applied to generate pioneering foggy datasets like
FRIDA and FRIDA2 [36, 37], or Foggy Cityscapes [38],
developed by Sakaridis et al. in 2018, utilized an optical
model of fog implemented on the MATLAB platform.
Meanwhile, streak-based models are employed for rain
simulation, considering factors such as velocity and wind
direction, as demonstrated in [39, 40]. For snow simulation,
researchers rely on image overlay methods to mimic snow-
flakes, with DesnowNet [41] as an example.

Another non-deep learning approach involves using the
3D world of game engines, which have been used to cre-
ate notable datasets such as Virtual KITTI [42], SYNTHIA
[43], and those based on GTA V [44], followed by VIPER
[45]. These datasets offer diverse environmental condi-
tions: SYNTHIA simulates variations in daylight, Virtual
KITTI covers four weather conditions (clear, cloudy, foggy,
and heavy rain), and VIPER introduces additional condi-
tions, including sunset, rain, snow, and night. Although this
method offers customization and precise control over vari-
ables like weather, lighting, or camera angles, it often comes
with a trade-off in the realism of the generated images com-
pared to real-world data.

The advent of neural networks, particularly generative
models, has revolutionized synthetic dataset creation. The
introduction of GANs by Goodfellow et al. [46] marked a
breakthrough in generating high-quality images, inspiring
subsequent innovations [47-50]. In the context of autono-
mous driving, GAN-based methods like CycleGAN [51]
and Pix2Pix [52] have been applied to transform more com-
plex weather conditions in driving scenes, such as day-to-
night or summer-to-winter. However, GANs face challenges
in adapting to new domains. Diffusion models, which itera-
tively reconstruct data [53], surpassed GANSs in quality for

Table 1 Summary of selected subsets with location, release year, and
the number of images compiled in our Adverse Driving Conditions
Dataset

Dataset Location Year Images
Udacity Mountain View, United States 2016 24,007
ApolloScape  China 2018 7040
IDD India 2019 5713
A2D2 Germany 2020 12,469
DDD Dayton, United States 2024 755

@ Springer

some benchmarks, as shown by Dhariwal and Nichol [54].
Notable diffusion-based methods, such as InstructPix2Pix
[55] and CycleGAN-Turbo [56], enhance the ability to cre-
ate diverse driving scenarios. Recent advances in LLMs
[57-59] further complement these efforts, enabling integra-
tion of image synthesis with context to produce data that
balances realism and domain relevance for autonomous
driving systems.

3 Proposed work

3.1 ADCD dataset collection

Our proposed dataset, the Adverse Driving Conditions
Dataset (ADCD), is a combination of five subsets that span
a wide range of geographical locations and driving sce-
narios, making it a valuable resource for creating a diverse
dataset. For example, scenes in India capture more people
riding motorcycles in dense traffic, whereas other regions
feature sparse roads with cars, occasional bikes and pedes-
trians. Table 1 presents the distribution of selected images
across each dataset unit. In ADCD, we intentionally chose
to include datasets that, though still popular, are less fre-
quently utilized (except DDD). Since popular datasets such
as KITTI and Cityscapes have been widely benchmarked
and come with extensive support, serving as foundational
resources for many tasks, their widespread usage makes
them less ideal for introducing new challenges in adverse
driving conditions. In terms of DDD, the aim is to contribute
a completely new, high-quality, and well-annotated dataset,
as proved via the experiments in Sect. 5.2. Overall, the goal
is to provide fresh insights into driving scenarios that have
not been as thoroughly explored in existing literature.

3.2 Weather-centric data augmentation
3.2.1 Single weather effects

Under eight effects, we categorized them into two groups:
traditional methods and deep learning models, as shown
in Fig. 3. Traditional methods, such as image blending
and pixel-level modifications, offer advantages over deep
learning models by being computationally efficient, highly
controllable, and faster to implement while still providing
simple yet realistic effects. However, deep learning models
are better suited for more intricate effects requiring semantic
understanding or contextual transformation-such as creating
water reflections on roads in a rainy scene or identifying
streetlight locations to enhance nighttime brightness. These
complex requirements are beyond the capabilities of tradi-
tional methods.
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Fig.3 Examples of weather
effects and augmentation tech-
niques for single effect

—_—

e Traditional methods are associated with the following
effects:

Crack on windshields. We collected dozens of pure
crack images from sources such as Google and
FreePik and blended them with the main image. To
ensure diversity, we selected cracks with varying
shapes and applied transformations such as rotation
and flipping. The seamless blending process began
by randomly selecting a crack image, resizing it
using random scaling factors, and cropping it at ran-
dom points to fit precisely within the dimensions of
the main image. We then adjusted the opacity level
of the crack image to integrate it. This approach min-
imizes the likelihood of two images having identical
crack placements, ensuring a highly varied dataset.
The synthesized image I, is generated by blend-
ing the crack image I, fc.; with the main image / by

Image overlay

Perlin noise overlay —

Localized oval blurring

InstructPix2Pix

CycleGAN-Turbo

raindrop

(a) Traditional methods

snow sunset

night rain

(b) Deep-learning models

adjusting the opacity a( here, « is randomly selected
between 0.3 and 0.5).

Isyn = (1—a)l+ alefrect- (1

Sun flare. Similar to cracks, we collected flare
images from major sources. However, unlike cracks,
which can be placed anywhere on the image due to
the windshield covering the entire frame in dashcam
captures, flares require realistic placement, ideally
positioned in the sky area. To achieve this, we utilize
Grounding DINO [60], an object detection model
guided by prompts, to identify the sky regions. The
detected bounding boxes are then processed by the
SAM model [61] to generate precise sky segmen-
tations. We accurately position and blend the flare
images using these segmented areas as masks. The
blending technique applied to flares is similar to the
method used for cracks, ensuring the uniqueness of

@ Springer
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each flare-blended image. For images where the sky
cannot be detected, we use flare images that mimic
sunlight reflections on the windshield, creating the
effect of reflected flares rather than direct ones,
thereby enhancing the dataset’s realism.

— Haze. Although haze can be categorized into several
subtypes, such as fog, mist, smoke, vog, and smog,
this approach simplifies the concept by focusing on
the visual texture that reduces image clarity, simu-
lating the typical obscuration caused by haze. Perlin
noise is generated to create natural, continuous pat-
terns resembling haze. Gaussian blur is then applied
to smooth the noise and ensure seamless transitions.
Finally, the noise is blended with the main image
using alpha transparency, with adjustments to the
noise’s contrast or opacity to control the haze’s
density.

—  Raindrop Unlike rain, the formation of raindrops on
a windshield requires simulating a real lens effect.
To model this, an elliptical shape, resembling an
egg, is created by merging a circle and an oval. A
blur algorithm is then applied to soften the edges of
the shape, mimicking the optical distortion caused
by the refraction of light through the lens-like curva-
ture of the raindrop. This method emulates the visual
effects observed in real-world scenarios, where the
edges of raindrops appear diffused due to the inter-
action of light and the windshield’s curvature. Simi-
lar to other effects, we configure the size and number
of raindrops in the generator to keep the dataset’s
diversity.

® Deep-learning models are associated with the following
effects:

— Snow and Sunset. We employ InstructPix2Pix,
which applies transformation to an input image /
using a diffusion-based generative model guided by
text instructions.

Isyn :f(I7T)7 (2)

where T is the text instruction and fis the neural net-
work function of the InstructPix2Pix model, which
learns to modify the image based on 7. We guide the
generation process with prompts such as “Make it
winter” or “Make it sunset”. Unlike other diffusion
models, InstructPix2Pix is trained from paired data,
maintaining the natural integrity of the scene while
introducing localized changes to specific objects
or areas. This approach aligns with the require-
ments of our dataset, which prioritizes realistic

@ Springer

traffic scenarios. To ensure minimal deviation from
the original image, we configure a low number of
steps and increase the weighting of the image rela-
tive to the text prompts. After the initial generation,
we enhance the seasonal effect for winter images by
overlaying a snow layer using a similar method for
introducing cracks.

— Rain and Night. CycleGAN-Turbo, trained on an
extensive dataset focusing on clear-to-rain and day-
to-night transitions, outperforms InstructPix2Pix
for these specific effects due to its domain-specific
training. The transformation of an input image / can
be formulated as follows:

Isyn = G(I), €)

where G: X— Yis the generator function that maps the
image from domain X to domain Y. However, Cycle-
GAN-Turbo’s night scene transformations often
introduce multiple bright spots, resembling moons,
in large sky regions. This behavior likely arises from
the model learning to replicate cityscapes with abun-
dant artificial lighting, which it then applies indis-
criminately to all images. To mitigate this issue and
produce more realistic results, the brightness of the
sky area, extracted using the SAM model previously
applied for flare effects, is reduced. This adjustment
guides the model toward recognizing the dark sky
characteristic before transformation.

3.2.2 Mixed weather effects

The effect is tailored to reflect practical driving scenarios.
Two mixed effects are implemented using only traditional
methods: Haze and raindrops simulate conditions where
atmospheric humidity is exceptionally high, while flare
reflections on cracks are added to heighten visual chal-
lenges, making the driving experience more demanding.
Two other effects combine deep learning models with tra-
ditional methods: While rain and raindrops depict the obvi-
ous scene of heavy rainfall, haze and night scenes further
demonstrate the impact of high humidity during nighttime
conditions.

3.3 Evaluating object detection models

In this paper, we benchmark a range of state-of-the-art
object detection models:

e YOLO (You Only Look Once). Known for balancing
speed and accuracy, YOLO is ideal for real-time tasks
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like traffic monitoring. We evaluate versions from YO-
LOv5 to YOLOvl1, each introducing improvements
such as improved feature extraction, reduced compu-
tational overhead, or better detection of small objects.
By comparing these variants, we aim to understand their
relative performance.

® DETR (Detection Transformer). DETR leverages atten-
tion mechanisms for end-to-end object detection. Unlike
traditional methods that rely on region proposals, DETR
excels in complex scenes with overlapping objects,
making it particularly relevant for the diverse scenarios
in ADCD. However, its higher computational demands
pose challenges for real-time applications.

® R-CNN and Faster R-CNN (Region-based Convolution-
al Neural Networks). These two-stage models generate
region proposals before classification and regression.
While highly accurate, these models are computation-
ally intensive. In addition, Faster R-CNN enhances effi-
ciency by integrating a Region Proposal Network (RPN)
into the architecture, reducing inference time.

® RetinaNet. RetinaNet utilizes a single-stage object de-
tection architecture augmented by a Focal Loss func-
tion, which addresses class imbalance, particularly be-
tween foreground and background objects. This model
strikes a balance between speed and accuracy, with no-
table strength in detecting smaller objects.

o SSD (Single Shot MultiBox Detector). SSD is designed
for real-time applications, focusing on maintaining
speed without compromising accuracy. It employs a
multi-scale feature map approach to efficiently detect
objects of varying sizes.

4 Experiments
4.1 Evaluation metrics

We validate the performance of object detection models
based on two categories: class-level performance and over-
all performance.

For each class, we calculate the Average Precision (AP).
The AP score is the area under the curve (AUC) of the Pre-
cision-Recall curve, which is derived from the predictions
of the model compared to the ground truth. It is suggested
that by interpolating all points, which reduces the impact
of the “wiggles” in the curve caused by small variations in
the ranking of samples [23], the Average Precision can be
interpreted as an approximated AUC of the Precision-Recall
curve.

AP = Z (7'n+1 - Tn)pinterp (Tn+1)7 where pinterp(7'n+l)

= max p(7
fZTan( )

“4)

When computing Precision/Recall, the IoU between the
predicted bounding box and the ground truth bounding box
must meet or exceed a threshold 6,y = 0.5 to be consider
a True Positive. The confidence score of the prediction
is also at least 0., r> 0.25, filtering out predictions that
could inflate the False Positive rate. Figure 4 visualizes the
detection results of different models across diverse weather
scenarios.

The final evaluation metric, mean Average Precision
(mAP), is used to evaluate the overall performance of the
model. It is computed as the mean of the AP values across
all classes:

C
1
AP = = N AP,
m % ; (5)

where C is the total number of classes, and AP; is the AP
score for the i-th class.

4.2 Experimental setups

In this work, we focus on transportation-related objects,
particularly performing predictions on six classes, namely,
car, truck, bicycle, motorcycle, person, and traffic light. The
distribution of the base dataset is provided in Table 2. We
utilize pretrained state-of-the-art object detection models
and proceed with two main experiments.

First, we hypothesize that these models, which are pri-
marily trained under clear-weather data, will experience a
performance drop when exposed to adverse effects. They
are initially tested on the clear-weather dataset to estab-
lish reference performance. Then the models are evalu-
ated on augmented datasets in ADCD, including single and
mixed conditions, to assess robustness to environmental
challenges.

Second, we investigate whether the proposed ADCD
dataset can meaningfully support the future development
of object detection models in adverse weather conditions.
Specifically, we analyze if restoration techniques can suffi-
ciently recover detection performance to match that of non-
affected images.

@ Springer
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Fig. 4 Visualization of the object detection results in different weather
conditions. Different objects are highlighted using different colors:
cars (blue), trucks (red), persons (green), bicycles (purple), motor-

Table 2 Distribution of transportation-related classes in our dataset

Class Count
Car 199,840
Truck 34,145
Bicycle 5167
Motorcycle 32,050
Person 93,319
Traffic light 23,736
5 Results

5.1 Overall performance under weather effects

Table 3 summarizes the mAP score of each model across
all weather conditions, and the accompanying heatmap
visualization in Table 4 shows the percentage decrease in
mAP scores compared to the baseline. In general, all mod-
els experience a performance decrease when weather effects
are applied, especially under mixed-weather datasets.
YOLO variants perform competitively with minimal
differences among them. YOLOv5-x6 and Yolov6-16, in
particular, are the most robust and stable, consistently out-
performing others with both high mAP scores and low drop
rates. RCNN-based models also perform well and closely to
one another, though less robust than the YOLOs. RetinaNet

@ Springer

Raindrop Snow

Sunset Night Rain

cycles (yellow), and traffic lights (pink). (For a better viewing experi-
ence, please zoom to at least 400%)

follows a similar pattern but delivers below-average per-
formance. In contrast, SDD struggles in all scenarios with
scores below usable levels, while DETR show significant
mAP degradation under mixed conditions, with performance
drops reaching over 70% despite moderate performances
under a few cases, indicating its instability in environments
that reduce visibility.

Regarding adverse effects, some single ones such as
Crack, Rain, and Night cause noticeable performance drops
than others in the same group. Mixed weather conditions
result in the most significant degradation overall. Even the
best-performing YOLO models are affected; for example,
YOLOV6-16 suffers a 30% drop under Haze + Night. These
results show that while some models maintain reasonable
accuracy under isolated effects, mixed conditions remain
a major challenge, emphasizing the importance of datasets
like ADCD for improving detection in real-world scenarios.

5.2 Class impact on detection performance in
adverse weather

The mAP of models was influenced by the AP score of each
class, as illustrated in Tables 5 and 6. Each class achieves
its highest score on the base dataset and experiences vary-
ing degrees of performance drop under different conditions.
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Table 3 Overall mAP scores (for six classes) under all weather conditions

Base Crack Flare Haze Raindrop Snow Sunset Night Rain
Yolov5-x6 43.52 35.99 41.45 38.92 41.28 41.72 40.16 35.30 35.23
Yolov6-16 46.91 39.70 45.00 42.99 45.02 45.68 44.63 39.43 39.46
Yolov7-e6e 37.74 31.32 35.01 34.15 36.19 36.91 35.77 30.28 32.82
Yolov8-x 38.35 31.53 36.09 34.93 36.64 37.53 36.45 30.14 33.27
Yolov9-e 39.23 32.01 35.98 34.62 37.24 37.95 37.27 31.11 33.59
Yolov10-x 37.17 3091 34.81 33.45 35.58 36.36 35.19 28.46 31.90
Yolov11-x 38.82 32.00 36.48 34.62 36.80 37.74 36.17 29.60 32.84
DETR 34.91 27.10 16.25 15.95 29.60 33.00 32.65 11.65 21.43
RCNN 40.32 34.45 33.54 31.69 38.05 35.94 38.18 30.88 32.90
Faster-RCNN 39.69 33.78 32.70 31.29 37.35 36.30 37.54 30.58 32.38
RetinaNet 32.00 26.44 24.95 23.66 29.20 26.47 28.70 22.08 24.42
SSD 5.44 4.81 3.13 3.07 5.19 4.04 4.82 3.84 4.50
Base  Haze Haze Rain Crack
raindrop night  raindrop flare
Yolov5-x6 43.52  39.25 3391 3295 30.40
Yolov6-16 4691 4323 3840 37.42 33.74
Yolov7-e6e 3774  34.52 28.98  30.91 24.89
Yolov8-x 3835 35.12 28.19  30.87 25.25
Yolov9-e 39.23 3494 29.15  31.30 24.83
Yolov10-x 37.17  33.80 26.67 29.47 24.85
Yolov11-x 38.82  27.35 2831 30.27 26.41
DETR 3491 16.38 7.89 15.42 8.43
RCNN 4032 33.11 2796 29.17 21.60
Faster-RCNN 39.69  32.57 27.26  28.16 20.93
RetinaNet 32.00 24.36 19.77  20.35 15.20
SSD 5.44 3.37 2.39 4.14 2.07
The top performance for each condition is highlighted in bold
Table 4 Overall mAP scores (for six classes) under all weather conditions
Crack ‘ Flare ‘ Haze Raindrop Snow ‘ Sunset Night Rain Haze Haze Rain Crack
Raindrop Night Raindrop Flare
Yolov5-x6
Yolové-16
Yolov7-e6e
Yolov8-x
Yolov9-e
Yolov10-x
Yolov11-x
DETR 75.27
RCNN
Faster-RCNN
RetinaNet
ssp

*Lower values, or brighter colors, indicate better * robustness

Additionally, most models follow a similar class-wise pat-
tern: high scores for cars, average performance for trucks,
motorcycles, persons, and traffic lights, while bicycles show
the lowest scores.

Under single weather effects, cars are correctly detected
across almost all models, with AP scores around 60. Their
stability is comparable to that of persons, but the latter tends
to have lower accuracy. Trucks and motorcycles, scoring
from 30 to 35, decline moderately under Crack and Night
conditions. Night also slightly affects bicycles, while traf-
fic lights experience a noticeable drop in performance com-
pared to other effects, possibly due to bright light spots being

misidentified as traffic signals. In terms of models, DETR,
as mentioned above, performs well under certain conditions
but struggles significantly under others—a pattern clearly
reflected in class-wise scores. Furthermore, R-CNN out-
performs YOLOV6-16 in detecting traffic lights under some
conditions. There are also anomalies, such as YOLOv10-
x performing unusually poorly on persons under the Night
compared to other YOLO variants and effects.

Under mixed effects, nearly all models witness a
noticeably lower score across all classes, especially with
Crack+Flare. Similar patterns observed under single effects
persist, such as the stability of cars and persons, as well as

@ Springer
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Table 5 Class-wise AP scores under single conditions

Model Base Crack Flare Haze Raindrop Snow Sunset Night Rain
Car Yolov5-x6 65.45 59.15 64.89 62.66 64.10 62.78 64.48 62.52 61.40
Yolov6-16 69.12 63.45 68.90 67.10 68.27 67.37 68.69 66.67 66.10
Yolov7-e6e 65.09 57.83 64.00 62.49 63.59 62.72 64.67 61.47 59.89
Yolov8-x 64.25 56.97 63.57 61.37 62.63 61.84 63.85 60.03 58.80
Yolov9-e 64.10 57.16 63.68 61.42 62.57 62.05 63.89 60.72 59.10
Yolov10-x 63.05 56.43 62.48 59.82 61.61 60.66 62.74 58.26 57.48
Yolov11-x 64.07 57.11 63.50 60.96 62.33 61.94 63.59 59.92 58.31
DETR 60.32 51.04 40.18 37.27 56.05 59.02 58.28 27.01 49.54
RCNN 62.54 55.87 61.14 58.32 60.61 56.22 62.24 63.14 57.39
Faster-RCNN 62.90 56.29 61.81 59.60 61.14 58.26 62.41 62.50 57.78
RetinaNet 60.35 51.28 56.11 54.08 57.30 51.05 58.32 54.34 50.41
SSD 16.14 14.75 12.41 11.91 15.55 13.66 15.21 14.08 14.30
Truck Yolov5-x6 39.82 31.87 38.75 37.35 38.29 37.73 34.65 30.89 33.02
Yolov6-16 42.12 34.92 40.74 40.01 40.77 40.09 38.14 35.24 36.91
Yolov7-e6e 37.24 29.33 35.98 35.24 36.37 35.06 34.64 29.55 32.58
Yolov8-x 36.41 28.20 35.88 35.13 35.37 35.74 32.73 27.84 31.41
Yolov9-e 37.71 28.78 34.73 34.05 36.22 35.10 34.29 28.57 32.02
Yolov10-x 35.89 28.10 34.87 34.28 34.68 34.46 32.32 27.70 31.47
Yolov11-x 36.51 28.33 35.96 34.44 35.69 34.44 32.02 29.05 30.65
DETR 27.01 17.71 5.38 7.59 21.49 22.73 21.40 5.61 11.36
RCNN 37.79 29.90 31.34 31.28 36.49 33.18 33.83 23.64 31.08
Faster-RCNN 38.18 29.83 31.20 31.69 36.81 34.14 33.93 26.21 32.69
RetinaNet 31.54 23.72 24.52 25.42 30.19 27.22 26.38 18.15 26.16
SSD 7.44 6.12 2.68 2.73 7.29 4.00 5.98 3.77 5.37
Bicycle Yolov5-x6 25.62 20.82 24.02 22.47 25.15 25.43 20.89 21.74 18.04
Yolov6-16 24.77 20.71 23.21 22.36 24.71 25.81 21.37 21.37 19.00
Yolov7-e6e 17.95 14.67 16.34 15.87 17.10 18.16 13.73 12.41 14.67
Yolov8-x 17.97 14.79 16.87 16.69 17.51 18.70 14.65 13.25 15.72
Yolov9-e 18.83 15.06 17.61 16.89 17.87 19.93 15.45 13.89 15.05
Yolov10-x 17.19 14.36 16.48 15.87 16.91 18.25 13.89 12.32 14.68
Yolov11-x 18.55 15.48 17.71 17.02 18.27 19.57 14.78 13.03 15.63
DETR 18.18 15.58 6.76 6.94 15.68 16.86 12.20 4.52 4.70
RCNN 19.33 17.60 15.94 15.37 19.53 18.96 15.14 12.30 15.69
Faster-RCNN 17.60 16.06 14.17 13.36 17.55 18.00 13.38 11.28 13.87
RetinaNet 13.89 12.70 10.40 8.94 13.49 13.03 9.01 7.27 10.16
SSD 1.14 1.01 0.29 0.38 1.12 0.90 0.83 0.55 0.92
Motorcycle Yolov5-x6 47.14 35.09 44.45 39.87 42.89 44.67 41.48 38.45 34.57
Yolov6-16 51.85 39.71 48.58 45.07 48.11 49.36 46.70 42.65 38.95
Yolov7-e6e 35.28 26.98 31.97 30.46 33.32 35.32 33.11 29.81 29.43
Yolov8-x 38.27 28.60 34.82 32.89 36.22 37.38 35.21 30.70 31.28
Yolov9-e 39.11 29.36 35.33 33.00 36.83 38.10 36.69 32.92 32.26
Yolov10-x 35.79 27.54 33.07 30.83 34.09 35.24 33.52 29.08 28.93
Yolov1l-x 38.95 29.38 36.01 33.16 35.93 37.59 35.27 3091 31.27
DETR 32.88 23.12 6.78 7.80 24.36 24.07 33.46 10.01 14.46
RCNN 35.26 29.09 26.38 23.20 31.62 29.44 32.05 29.79 26.33
Faster-RCNN 34.67 28.15 24.96 22.86 31.19 30.94 30.86 29.57 24.93
RetinaNet 23.12 18.78 15.43 13.24 20.13 18.88 20.22 17.86 16.44
SSD 3.98 3.49 0.86 0.92 3.53 2.44 3.54 2.56 2.78
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Table 5 (continued)

Model Base Crack Flare Haze Raindrop Snow Sunset Night Rain
Person Yolov5-x6 49.60 40.90 46.61 42.85 45.71 45.56 45.00 36.39 38.10
Yolov6-16 55.51 46.89 53.17 49.31 52.12 52.72 53.17 43.13 44.36
Yolov7-e6e 41.08 34.33 37.17 36.12 39.13 39.87 39.13 30.36 35.35
Yolov8-x 42.50 35.40 38.92 37.32 39.72 40.40 40.17 30.87 35.56
Yolov9-e 42.51 35.18 38.57 36.61 39.73 39.64 39.81 31.01 36.51
Yolov10-x 39.64 33.28 36.06 34.28 37.31 37.92 37.21 27.70 33.29
Yolovl1-x 41.67 34.44 37.97 35.88 38.65 39.36 38.66 29.14 34.48
DETR 42.61 33.83 25.93 23.22 37.32 43.43 39.80 19.27 31.36
RCNN 46.86 40.18 39.32 35.53 43.18 42.94 44.51 34.38 38.77
Faster-RCNN 46.76 39.96 38.83 35.10 42.98 42.72 44.61 33.81 38.33
RetinaNet 33.55 27.97 27.02 24.44 29.87 27.70 29.79 21.41 27.33
SSD 3.89 3.38 2.54 2.49 3.57 3.21 3.34 2.09 3.50
Traffic light Yolov5-x6 33.48 28.12 29.98 28.33 31.55 34.17 34.43 21.83 26.22
Yolov6-16 38.06 32.51 35.42 34.12 36.14 38.75 39.73 2752 31.44
Yolov7-e6e 29.78 24.78 24.62 24.74 27.61 30.32 29.31 18.05 25.03
Yolov8-x 30.72 25.25 26.48 26.18 28.39 31.13 32.12 18.14 26.86
Yolov9-e 33.12 26.51 25.96 25.77 30.25 32.90 33.49 19.58 26.61
Yolov10-x 31.44 25.75 25.92 25.63 28.89 31.63 31.47 15.72 25.53
Yolovl1-x 33.20 27.23 27.72 26.28 29.92 33.55 32.68 15.54 26.69
DETR 28.44 21.31 12.49 12.85 22.72 31.89 30.73 3.46 17.13
RCNN 40.16 34.08 27.14 26.45 36.90 34.88 41.31 22.04 28.14
Faster-RCNN 38.00 32.37 25.22 25.14 34.42 33.77 40.03 20.14 26.69
RetinaNet 29.52 24.16 16.20 15.82 24.25 20.97 28.50 13.44 16.03
SSD 0.06 0.13 0.00 0.00 0.07 0.04 0.02 0.01 0.14

The top performance for each condition is highlighted in bold

the high false detection rate of traffic lights under Night
(with Haze). In terms of models, DETR and SSD per-
form significantly worse across all conditions. Meanwhile,
YOLOV6-16 and YOLOvV5-x6 show a substantial difference
from other YOLO variants in certain classes, particularly
bicycles and motorcycles.

5.3 Comparison between non-effect and restored
images

We further compare the performance of object detection
methods on non-effect images and restored images. We aim
to restore the hazy images to a state resembling the Base
dataset. In particular, we utilized state-of-the-art dehazing
models, SFNet [62] and CORUN [63], on the Haze dataset
(generated from the original non-effect images).

Then, we assess model performance across three settings,
namely Base (non-effect images), Haze, and Dehazing. As
shown in Fig. 5, restoring the Haze images with SFNet and
CORUN does yield a clear improvement over the Haze
input. However, both methods still fall short of the results
on “Base”, remaining much closer to the Haze baseline than
to the clean images. This may be attributed to information
loss during the dehazing process, domain shifts introduced
by restoration artifacts, and visual inconsistencies such as
unnatural lighting or contrast. These results indicate that

image restoration alone is insufficient to bridge the gap in
our task, underscoring the value of comprehensive datasets
like ADCD for both training and evaluation under diverse
weather conditions.

5.4 Discussion

The aforementioned experiments emphasize the critical
impact of weather effects on the evaluation of the model.
All models experience performance degradation compared
to the base dataset’s score, emphasizing the need for rein-
forcing the dual importance of advanced architectures and
high-quality datasets in developing robust object detection
systems in the real world. It also reveals that certain weather
effects can cause specific models to degrade significantly,
even if those models perform well under other condi-
tions, indicating that performance may be condition-spe-
cific. Moreover, the need to examine class-wise AP scores
becomes evident, as it helps identify bottlenecks in model
performance under specific effects. For example, under
night conditions, models may falsely detect light spots, such
as headlights or reflections, revealing class-specific vulnera-
bilities that could be masked when only considering overall
metrics. Furthermore, the imbalance in performance across
different classes suggests that certain categories are more
prone to degradation than others, pointing to a potential
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Table 6 Class-wise AP scores under mixed conditions

Model Base Haze raindrop Haze night Rain raindrop Crack flare
Car Yolov5-x6 65.45 63.11 61.06 58.58 53.38
Yolov6-16 69.12 67.72 65.92 64.43 57.93
Yolov7-e6e 65.09 62.84 59.30 57.43 50.03
Yolov8-x 64.25 61.66 56.80 55.88 48.99
Yolov9-e 64.10 61.73 58.29 55.99 49.10
Yolov10-x 63.05 60.27 55.42 54.28 49.21
Yolov11-x 64.07 51.31 57.55 55.29 51.02
DETR 60.32 41.10 20.83 39.62 24.69
RCNN 62.54 58.88 57.43 52.82 44.01
Faster-RCNN 62.90 60.17 56.94 52.64 44.24
RetinaNet 60.35 54.23 48.71 44.44 36.99
SSD 16.14 12.55 9.86 13.30 8.75
Truck Yolov5-x6 39.82 37.75 30.44 31.55 26.60
Yolov6-16 42.12 40.38 34.39 35.24 28.73
Yolov7-e6e 37.24 35.78 28.23 30.35 2221
Yolov8-x 36.41 35.34 26.97 29.00 21.66
Yolov9-e 37.71 34.63 27.16 29.38 20.07
Yolov10-x 35.89 34.96 26.72 29.38 21.25
Yolov11-x 36.51 30.62 28.20 28.46 22.62
DETR 27.01 6.58 3.28 597 1.74
RCNN 37.79 33.67 22.86 28.00 15.62
Faster-RCNN 38.18 34.28 23.82 28.31 15.37
RetinaNet 31.54 27.40 18.65 20.48 10.82
SSD 7.44 3.65 1.71 5.05 1.55
Bicycle Yolov5-x6 25.62 22.76 19.96 17.00 17.64
Yolov6-16 24.77 22.75 20.21 18.04 17.55
Yolov7-e6e 17.95 15.51 11.61 13.57 12.26
Yolov8-x 17.97 16.38 12.38 14.08 12.45
Yolov9-e 18.83 16.74 12.54 13.84 12.57
Yolov10-x 17.19 15.94 10.94 13.41 12.31
Yolov11-x 18.55 13.72 11.97 14.36 13.64
DETR 18.18 6.28 3.08 2.20 4.00
RCNN 19.33 16.33 10.64 13.63 11.93
Faster-RCNN 17.60 14.16 9.37 11.79 10.80
RetinaNet 13.89 9.42 5.81 791 7.99
SSD 1.14 0.31 0.15 0.84 0.13
Motorcycle Yolov5-x6 47.14 40.20 36.36 31.47 29.41
Yolov6-16 51.85 45.16 40.88 35.71 32.73
Yolov7-e6e 35.28 31.32 28.38 27.29 21.03
Yolov8-x 38.27 33.97 28.44 28.36 22.49
Yolov9-e 39.11 33.72 30.58 29.44 22.88
Yolov10-x 35.79 31.90 26.93 25.94 21.67
Yolov11-x 38.95 18.45 28.98 28.19 24.30
DETR 32.88 6.65 3.88 7.49 1.85
RCNN 35.26 25.89 27.63 21.01 15.52
Faster-RCNN 34.67 25.07 26.91 19.68 14.48
RetinaNet 23.12 14.72 15.03 12.73 8.90
SSD 3.98 1.00 1.02 2.24 0.38
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Table 6 (continued)

Model Base Haze raindrop Haze night Rain raindrop Crack flare
Person Yolov5-x6 49.60 42.88 3491 34.89 34.46
Yolov6-16 55.51 49.33 42.19 41.92 40.53
Yolov7-e6e 41.08 36.78 29.43 33.67 27.65
Yolov8-x 42.50 37.59 29.03 33.20 28.83
Yolov9-e 42.51 36.77 29.47 34.15 28.15
Yolov10-x 39.64 34.67 26.27 30.66 26.93
Yolov11-x 41.67 24.43 27.71 31.45 28.27
DETR 42.61 24.63 14.40 25.63 13.62
RCNN 46.86 37.85 31.72 35.04 27.10
Faster-RCNN 46.76 37.55 30.71 34.63 26.54
RetinaNet 33.55 26.00 20.02 23.91 17.77
SSD 3.89 2.68 1.62 3.20 1.59
Traffic light Yolov5-x6 33.48 28.79 20.74 24.18 20.91
Yolov6-16 38.06 34.05 26.78 29.17 24.98
Yolov7-e6e 29.78 24.91 16.95 23.16 16.17
Yolov8-x 30.72 25.80 15.55 24.68 17.09
Yolov9-e 33.12 26.07 16.84 24.98 16.23
Yolov10-x 31.44 25.03 13.72 23.17 17.72
Yolov11-x 33.20 25.58 15.43 23.86 18.59
DETR 28.44 13.05 1.87 11.59 4.66
RCNN 40.16 26.06 17.46 24.50 15.44
Faster-RCNN 38.00 24.22 15.83 21.89 14.17
RetinaNet 29.52 14.41 10.39 12.62 8.75
SSD 0.06 0.00 0.00 0.18 0.00
The top performance for each condition is highlighted in bold
Fig. 5 Comparison of object 48
detection performance on Base, .7 1\ -@-Base m-Haze —A-SFNet ©+-CORUN
Haze, and the dehazed images ’ \
from two dehazing models, 43 L 7 ’Q\ \
SFNet [62] and CORUN [63]. 44 v AR
SSD is excluded for clearer 8 \\ \ - _ -0 / e
visualization, as its low mAP 5;( 38 \\\ - i 2 Sle” g \\ /l \\
~0-5%) would compress the £ o = = \
gcale relz:tive to otherpmodels (~ g B 8— ] o= ~8 - g\ \\ ,I ,ﬁ ﬁ \\
20-50%) 3 33 \\ \V/ // \\ \.
\ @ / - H \\
\ / \
2 \\ /I Q
!
23 L
Yolov5-x6 Yolov6-l6 Yolov7-e6e Yolov8-x Yolov9-e Yolov10-x Yolov11-x DETR RCNN I;ag:\le’\rl RetinaNet
Base 43.52 46.91 37.74 38.35 39.23 37.17 38.82 31.91 40.92 39.69 32
Haze 38.92 42.99 35.01 34.93 34.57 33.58 34.26 25.95 31.69 31.29 23.66
SFNet  39.42 43.47 35.14 35.68 36.17 34.5 35.54 26.23 35.52 34.99 27.16
CORUN  39.85 43.55 35.58 35.86 36.64 35.12 36.13 30.34 36.2 35.64 27.85

need for class-balanced training or evaluation strategies. In
short, all these insights suggest that training models on more
targeted, condition-specific data could improve their robust-
ness and mitigate such failure cases.

Regarding the restoration approach, although improving
model performance is essential, single-purpose restoration
may be impractical under mixed effects, where multiple
types of noise co-occur, while most models are designed

to address a specific kind of visual degradation (e.g., Haze,
Snow, Rain), which limits their generalizability. Meanwhile,
combining multiple restoration models can add complexity,
especially in real-time applications where rapid perception
is critical. Moreover, some visual effects, such as Crack
and Flares, still remain challenging to restore. These limi-
tations highlight the need for more robust object detection
systems that can handle degraded inputs. In this context,
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comprehensive datasets like ADCD are valuable for both
training and evaluation under diverse conditions.

For future work, beyond the dataset itself, the proposed
work presents promising opportunities for broader impact.
While expanding with additional effects, such as sand to
simulate dusty conditions, snow-covered vehicles, or com-
plex combinations such as snow at night, can help challenge
object detection models further, a transferable construction
approach opens even broader possibilities. Instead of being
confined to a specific domain, such methods can be adapted
to build diverse datasets for other real-world challenges. For
example, wildlife object detection often involve capturing
images under adverse conditions such as rain, haze, or night
surveillance. These conditions may cause data imbalance,
as there is typically less available data for these scenarios
compared to clear images. The work we propose can help
diversify and balance such datasets, making it possible to
build more robust models.

6 Conclusion

In this paper, we assessed the robustness of state-of-the-
art object detection models under adverse weather con-
ditions. To this end, we collected the Adverse Driving
Conditions Dataset (ADCD) which comprises 50,000
images augmented with 12 unique weather effects. Through
experiments, YOLOs consistently demonstrated superior
performance across most weather scenarios among the
evaluated models. However, all models experienced notable
performance degradation under adverse conditions, which
was evidenced through detailed analysis, including per-
centage drops in mAP and class-wise AP, emphasizes the
need for more resilient architectures capable of addressing
multiple environmental challenges. Moreover, while image
restoration methods have shown some promise, their impact
remains limited, especially in cases involving mixed or
severe effects. By identifying specific gaps in model per-
formance and proposing adaptable methodology for dataset
construction, our work contributes to advancing the safety
and reliability of computer vision systems in critical appli-
cations such as autonomous vehicles and traffic monitoring.
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