
High-Confidence Computing 4 (2024) 100224

Contents lists available at ScienceDirect

High-Confidence Computing

journal homepage: www.sciencedirect.com/journal/high-confidence-computing

Research article

Graph isomorphism—Characterization and efficient algorithms

Jian Ren →, Tongtong Li
Department of Electrical and Computer Engineering, Michigan State University, East Lansing 48824, USA

a r t i c l e i n f o

Article history:

Received 7 November 2023
Revised 15 January 2024
Accepted 20 February 2024
Available online 26 March 2024

Keywords:

Undirected graph
Characterization
Isomorphism
Algorithm
Polynomial time complexity

a b s t r a c t

The Graph isomorphism problem involves determining whether two graphs are isomorphic and the
computational complexity required for this determination. In general, the problem is not known to be
solvable in polynomial time, nor to be NP-complete. In this paper, by analyzing the algebraic properties
of the adjacency matrices of the undirected graph, we first established the connection between graph
isomorphism and matrix row and column interchanging operations. Then, we prove that for undirected
graphs, the complexity in determining whether two graphs are isomorphic is at most O(n3).
© 2024 The Author(s). Published by Elsevier B.V. on behalf of ShandongUniversity. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Graphs are data structures used to represent objects and their
relationships [1]. The objects are also sometimes referred to as
nodes or vertices, while the relationships are known as edges.
Essentially, graphs provide descriptions of items that are inter-
connected by relations.

Graphs are widely used in machine learning as a tool to predict
links and classify nodes [2]. By loading the data into the graph
database, the data science library can be used to train a machine
learning model and make predictions.

Deciding whether two graphs are isomorphic is a classical al-
gorithmic problem that has been researched since the early days
of computing. Graph isomorphism involves determining when
two graphs possess the same data structures and data connec-
tions [3]. It is widely used in various areas such as social net-
works, computer information system, image processing, protein
structure, chemical bond structure, etc.

Unfortunately, the general graph isomorphism problem is not
known to be solvable in polynomial time nor to be NP-complete,
and therefore may be in the computational complexity class NP-
intermediate [3–5]. An excellent literature review in this area can
be found in [3] and also in [4]. In fact, this problem was even
viewed as an open problem [6,7].

In this paper, we investigate the graph isomorphism of undi-
rected graphs using the eigenvalues and eigenvectors of the ad-
jacency matrices of the graphs. Eigenvalues and eigenvectors of
square matrices have been widely used in many areas.

→ Corresponding author.
E-mail address: renjian@msu.edu (J. Ren).

Eigenvalues are used in computer graphics to perform trans-
formations on objects, such as rotating or scaling. For example,
when an image is resized, the eigenvalues of its covariance matrix
can be used to preserve its principal components and avoid
distortion, because the eigenvectors of the covariance matrix are
actually the directions of the axes of the principals components,
while eigenvalues are simply the coefficients attached to eigen-
vectors, which given the amount of variance carried in each
principal component [8]. Eigenvalues have also been widely used
in signal processing to extract meaningful features from large
datasets. For example, in image processing, the eigenvalues of
a matrix of pixel intensities can be used to identify the most
significant patterns and structures in the image [9]. Google’s
extraordinary success as a search engine was due to their clever
use of eigenvalues and eigenvectors [10]. Claude Shannon utilized
eigenvalues to calculate the theoretical limit of channel capacity.
The eigenvalues are then essentially the gains of the channel’s
fundamental modes, which are recorded by the eigenvectors.
Eigenvalues have also been employed to analyze the stability
of structures and machines, such as determining the natural
frequency of a bridge and assessing the likelihood of bridge
oscillations or even collapse under specific conditions.

The rest of this paper is organized as follows: In Section 2,
the preliminary is provided. Our main results are presented in
Section 3. We conclude in Section 4.

2. Preliminary

2.1. Undirected graph and adjacency matrix

An undirected graph is generally represented as a pair G =

(V , E), where V is the set of vertices, and E ↑ V ↓ V is the set of

https://doi.org/10.1016/j.hcc.2024.100224
2667-2952/© 2024 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.hcc.2024.100224
https://www.sciencedirect.com/journal/high-confidence-computing
https://www.sciencedirect.com/journal/high-confidence-computing
http://crossmark.crossref.org/dialog/?doi=10.1016/j.hcc.2024.100224&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:renjian@msu.edu
https://doi.org/10.1016/j.hcc.2024.100224
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Ren and T. Li High-Confidence Computing 4 (2024) 100224

edges satisfying (u, v) ↔ E if and only if (v, u) ↔ E. The neighbors
of a vertex v is N(v) = {w : (v, w) ↔ E}.

In graph theory, we say that G1 = (V1, E1) and G2 = (V2, E2)
are isomorphic if there exists a bijection between the vertex sets
of V1 and V2

f : V1 ↗ V2

such that any two vertices u and v of G1 are connected in G1 if
and only if f (u) and f (v) are connected in G2, i.e., (u, v) ↔ E1 if
and only if (f (u), f (v)) ↔ E2. If an isomorphism exists between
two graphs, then the graphs are called isomorphic and denoted
as G1 ↘ G2, and f is call an isomorphic function between G1 and G2.

In graph theory, the degree of a vertex v is the number of
edges connecting it and denoted as deg(v). It is obvious that
deg(v) = |N(v)|. From the definition of isomorphism, we must
have deg(v) = deg(f (v)), which implies that if deg(v) ≃= deg(f (v)),
then we cannot match up the two vertices.

In many applications, each edge E of a graph is associated with
a numerical value called a weight, denoted as w(E), which might
represent for example costs, lengths or capacities, depending on
the problem at hand. In this paper, we consider the weight of all
edges to be 1.

For a graph with vertex set V = {v1, . . . , vn}, the adjacency
matrix, sometimes also called the connection matrix, is a square
n ↓ n (0, 1)-matrix A such that its element Aij = Aji = 1 if there
is an edge from vertex vi to vertex vj, and 0 if there is no edge,
and also Aii = 1 for all i, that is 1’s on its diagonal elements [11].
The elements of the matrix indicate whether pairs of vertices are
adjacent or connected in the graph. If the graph is undirected
(i.e., all of its edges are bidirectional), the adjacency matrix is
symmetric, that is Aij = Aji.

Example 1. For the graph given below, the corresponding adja-
cency matrix is shown to the right.

1

2

3

4

5

6

7

8

⇐⇒

)

[[[[[[[[[[[[]

1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌈

Definition 1. Let A be an adjacency matrix of a graph G. We
represent the matrix obtained by interchanging the ith and the
jth rows and the ith and the jth columns of matrix A as A[i ⇑

j]. We will refer to this operation as the (i, j) interchanging for
simplicity.

The A[i ⇑ j] operation defined in Definition 1 can be repre-
sented in matrix multiplication form as follows:

A[i⇑ j] = EijAE
T

ij

where Eij is the matrix derived by interchanging the ith and jth
rows of the identity matrix In, that is

Eij =

1 i j n

)

[[[[[[[[[]

⌊

⌋⌋⌋⌋⌋⌋⌋⌋⌋⌈

1 1
. . .

0 · · · 1 i

...
. . .

...
1 · · · 0 j

. . .

1 n

The number of 1’s in a row or column of matrix A is referred
as the weight of that row or column.

2.2. Eigenvalues and eigenvectors

For a square matrix A, a scale ω is called an eigenvalue [12] if
there exists a vector u such that

Au = ωu (1)

In this case, u is called an eigenvector of matrix A associated with
eigenvalue ω.

Let A be an n ↓ n matrix, then the expression

det(xI ⇓ A) (2)

is a polynomial, called the characteristic polynomial of matrix A,
and

det(xI ⇓ A) = 0 (3)

is called the characteristic equation. The eigenvalues ω’s of A

defined in Eq. (1) are solutions of the characteristic equation (3).
It follows from Eq. (3) that if ω is an eigenvalue of A, then there

exists a nonzero eigenvector u such that Au = ωu.
For an n ↓ n matrix A with characteristic polynomial given

by Eq. (2), the multiplicity of an eigenvalue ω of A is the number
of times ω occurs as a root of that characteristic polynomial.

If A be a real symmetric matrix, then the eigenvalues of A are
real numbers and eigenvectors corresponding to distinct eigen-
values are orthogonal.

If A is a real n ↓ n symmetric matrix, then there exists an
orthonormal (orthogonal and unit vector) set of eigenvectors that
forms the basis of the n dimensional vector space.

3. Our main results

In this section, we provide theoretical proofs of our main
results. Theorem 1 states that the adjacency matrices have the
same column and row weights. Based on Theorem 1, we prove
in Theorem 2 that two graphs are isomorphic if and only if their
corresponding adjacency matrices can be transformed from one
to the other through a sequence of column and row interchanging
operations. Theorem 3 shows that two graphs are isomorphic if
and only if their corresponding adjacency matrices have the same
set of eigenvalues.

Theorem 1. The interchange operations on adjacency matrices will

not alter the weight of the columns or rows of the matrix.

Proof. Let A be an n ↓ n adjacency matrix of a graph and 1 ⇔

i, j ⇔ n are two integers, i ≃= j. The matrix A[i ⇑ j] is derived
from matrix A by interchanging the ith and jth rows and columns
of A, resulting in the interchanging Aii with Ajj, and Aij with Aji.

2

J. Ren and T. Li High-Confidence Computing 4 (2024) 100224

Since A is a symmetric matrix with diagonal elements equal to 1,
these four elements in A remain unchanged. Therefore, the weight
of the ith row or column is simply exchanged with the jth row
or column. Therefore, the overall weight of the matrix A remains
unchanged.

Note that this theorem holds due to the special structure of
the adjacency matrix, and it does not hold true in general even
for symmetric matrices.

Theorem 2. Let A1 and A2 be the adjacency matrices of graphs G1
and G2, respectively. Then G1 and G2 are isomorphic if and only if

there exists a sequence of interchange operations (i.e., a permutation

matrix) that transforms the adjacency matrix A1 to A2.

Proof. Assuming that graph G1 is isomorphic to graph G2. Denote
their vertices and adjacency matrices as V1, A1 and V2, A2, respec-
tively. According to the definition of graphic isomorphism, there
is an injection f : V1 ↗ V2 such that f (V1) = V2.

Let the vertices of G1 be V1 = {1, . . . , n}, then the vertex
of G2 can be expressed as V2 = {f (1), . . . , f (n)}. Define g(i) =

f
t (i) where t = max{t | f

t⇓1(i) < i}. Then we can convert
the adjacency matrix A1 of G1 to the adjacency matrix A2 of G2
through the following sequence of interchanging operations:

A2 ↖ A2[i⇑g(i)], g(i) < i, i = 1, . . . , n

On the other hand, assume there is a sequence of interchang-
ing operations A[j, h(j)]⇑ j ⇔ n that transforms A1 to A2.

Define f : V1 ↗ V2 as follows:

f (i) = h
t (i)

where t = max{t | h
t⇓1(i) > i}. Then f is an isomorphic function

between G1 and G2.

In addition to bridge isomorphism and interchange operations,
Theorem 2 also provides an efficient algorithm to transform graph
V1 into its isomorphic counterpart V2, as presented in Algorithm
1.

Algorithm 1 Transform graph G1 to its isomorphic counterpart G2
by transforming adjacency matrices A1 to A2

1: Let V1 = {1, 2, · · · , n}, V2 = {f (1), f (2), · · · , f (n)}
2: for i = 1 to n do

3: t = f (i)
4: for j = 1 to n do

5: while t < i do

6: t = f (t)
7: end while

8: end for

9: g(i) = t

10: A1 = A1[i, g(i)]
11: end for

Example 2. In this example, we will demonstrate how to
construct a sequence of interchanging operations to convert one
graph into another.

The following two graphs are isomorphic.

1

2

345

6

1

2

3

4

5

6

The adjacency matrices of the two graphs A and B are given
below:

A =

)

[[[[[[[]

1 1 0 0 0 1
1 1 1 1 0 1
0 1 1 1 0 0
0 1 1 1 1 1
0 0 0 1 1 1
1 1 0 1 1 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌈

, B =

)

[[[[[[[]

1 0 1 1 1 1
0 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 0 1
1 0 1 0 1 0
1 0 0 1 0 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌈

Suppose we want to transfer the vertices of V1 to V2 =

{2, 5, 3, 4, 1, 6}. Based on Algorithm 1, we can transform the
graph with matrix A to the graph with matrix B through the
following sequence of interchanging operations.

(1) A[1 ⇑ 2], which transforms the graph with adjacency
matrix A and the following graph and adjacency matrix:

1

2

345

6

)

[[[[[[[]

1 1 1 1 0 1
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 1 1 1
0 0 0 1 1 1
1 1 0 1 1 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌈

(2) A[2 ⇑ 5], which further transforms the graph with ad-
jacency matrix A and the following graph and adjacency
matrix:

1

2

345

6

)

[[[[[[[]

1 0 1 1 1 1
0 1 0 1 0 1
1 0 1 1 0 0
1 1 1 1 0 1
1 0 0 0 1 1
1 1 0 1 1 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌈

(3) A[3 ⇑ 6], which finally transforms the graph and the
corresponding adjacency matrix from A to B:

1

2

3

4

5

6

)

[[[[[[[]

1 0 1 1 1 1
0 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 0 1
1 0 1 0 1 0
1 0 0 1 0 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌈

Algorithm 2 Transform graph G2 back to its isomorphic graph G1
by transforming adjacency matrices A2 to A1

1: Let V1 = {1, 2, · · · , n}, V2 = {f (1), f (2), · · · , f (n)}
2: for i = 1 to n do

3: t = f (i)
4: for j = 1 to n do

5: while t > i do

6: t = f (t)
7: end while

8: end for

9: h(i) = t

10: A21 = A2[i, h(i)]
11: end for

3

J. Ren and T. Li High-Confidence Computing 4 (2024) 100224

Example 3. In this example, we illustrate how to construct the
inverse sequence of operations that maps vertices of V2 in graph
G2 back to the vertices in V1 of graph G1.

Based on Algorithm 2, we can transform matrix B to matrix
A, which transform the vertices V2 = {1, 2, 3, 4, 5, 6} to V1 =

{5, 1, 6, 4, 2, 3}, through the following interchanging operations:

(1) B[2⇑1], which transforms B to

B1 =

)

[[[[[[[]

1 0 1 1 0 0
0 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 0 1
0 1 1 0 1 0
0 1 0 1 0 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌈

(2) B[5⇑1], which transforms B1 to

B2 =

)

[[[[[[[]

1 1 1 0 0 0
1 1 1 1 0 1
1 1 1 1 1 0
0 1 1 1 1 1
0 0 1 1 1 0
0 1 0 1 0 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌈

(3) B[6⇑3], which transforms B2 to A.

Since the interchange operation is an elementary matrix op-
eration, it does not alter the eigenvalues of the adjacency matrix.
Therefore, we have the following corollaries.

Corollary 1. Let A1 and A2 be the adjacency matrices of graphs

G1 and G2, respectively. If G1 and G2 are isomorphic, then their

eigenvalues are the same.

Corollary 2. Let A1 and A2 be the adjacency matrices of graphs G1
and G2, respectively. If the eigenvalues of A1 and A2 are different,

then they are not isomorphic.

Corollary 3. Let A and B be n ↓ n adjacency matrices of two

graphs. If the two graphs are isomorphic, then the total number of

1’s (corresponding to the edges in the graphs) in the two matrices

should be the same.

From Corollary 3, we can conclude that if the number of
1’s of two matrices are different, then the two graphs are not
isomorphic.

However, the inverse of Corollary 3 is not true. In other words,
even if two matrices have the same number of 1’s, they may not
be isomorphic, as shown in the following example.

Example 4. For the following two graphs,

1 2

34

5 6

78

1 2

34

5 6

78

their adjacency matrices are

G =

)

[[[[[[[[[[[[]

1 1 0 1 1 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 0 0 1 0
1 0 1 1 0 0 0 0
1 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0
0 0 1 0 0 1 1 1
0 0 0 0 1 0 1 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌈

H =

)

[[[[[[[[[[[[]

1 1 0 1 1 0 0 0
1 1 1 0 0 1 0 0
0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 0 1 1 0 1
0 1 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌈

Matrices G and H contain the same number of 1’s. However, due
to 0 being an eigenvalue of G but not of H , the two graphs are
not isomorphic.

Next, suppose two graphs are isomorphic, based on the defi-
nition of graph isomorphism, the corresponding vertices should
have the same degree. Moreover, the subsequent vertex should
also have the same degree and structure. The vertex and the
associated structure are refereed to as the vertex tree. Therefore,
the corresponding vertices should have the same vertex trees.

Based on this discovery, we can derive Algorithm 3.

Algorithm 3 Derive an isomorphic function to transform graph
G1 to graph G2

1: Let G1 and G2 be two graphs and their vertex sets are V1 =

{v1, · · · , vn} and V2 = {v̄1, · · · , v̄n}, respectively.
2: Derive the degree tree of all the vertex of both graph G1 and

graph G2.
3: repeat

4: Select a vertex v ↔ V1.
5: if no vertex in V2 has the same vertex tree as v then

6: G1 ≃↘ G2 and stop

7: else

8: Select a vertex v̄ ↔ V2, that has the same vertex tree as v
and map f : v ↗ v̄.

9: V1 ↖ V1\{v} and V2 ↖ V2\{v̄}.
10: end if

11: until V1 = ↙, or no v̄ ↔ V2 for the selected v.

This following example shows how Algorithm 3 can be used
to define an isomorphic mapping between two graphs.

Example 5. For the two graphs given in Example 2, the degrees
for the 6 vertices of graphs A and B are given below:

A : {2, 4, 2, 4, 2, 4}, B : {4, 2, 4, 4, 2, 2}.

Based on the degree information, we can derive the following
mapping g , which transforms graph B to graph A:

(1) Since the degree of node 1B is 4, it can only be mapped to
one of the nodes in {2A, 4A, 6A}. Let us map node 1B to node
2A, i.e., define g(1B) = 2A.

(2) Node 2B has degree 2, so it can only be mapped to a node
in {1A, 3A, 5A}. Define f (2B) = 5A.

4

J. Ren and T. Li High-Confidence Computing 4 (2024) 100224

(3) Similarly, node 3B has degree 4, and can only be mapped
to the remaining nodes that have degree 2, {2A, 4A, 6A}.
However, since we have mapped node 1B to 2A, we can only
map node 3B to 4A or 6A. Let us select 6A, i.e., g(3B) = 6A.

(4) Finally, we define g(4B) = 4A, g(5B) = 1A, g(6B) = 3A.

The above process can be demonstrated through the following
figure:

1B

2B

3B

4B

5B

6B

2B

5B

6B

4B

1B

3B

1A

2A

3A4A5A

6A
g

⇐⇒ ∝

Corollary 4. The corresponding rows and columns of the adjacency

matrices of two isomorphic graphs have the same distribution of 0’s

and 1’s.

Example 6. Let

A =

)

[[]

1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

⌊

⌋⌋⌈ , B =

)

[[]

1 1 0 1
1 1 0 1
0 0 1 1
1 1 1 1

⌊

⌋⌋⌈

The corresponding graphs are

1 2

34

1 2

34

Since the weight sequence of the rows for matrix A is 3, 3,
3, 3, and for matrix B is 3, 3, 2, 4, which are different, therefore,
the graphs corresponding to matrices A and B are not isomorphic.
In fact, it can also be verified that the characteristic polynomials
for matrix A is x

4
⇓ 4x3 + 2x2 + 4x ⇓ 3 and for matrix B is

x
4
⇓ 4x3 + 2x2 + 2x, which is different from that of A. Therefore,

the two graphs cannot be isomorphic, and there does not exist an
orthogonal matrix P that satisfies the equation PAP

T
= B to make

matrices A and B equivalent.
The inequivalence of these two graphs can also be confirmed

because the weights of the rows and columns in their adjacency
matrices are different.

Theorem 3. Let A and B, the adjacency matrices of graphs G1 and

G2, respectively, have the same column/row weight. Then G1 and G2
are isomorphic if and only if their adjacency matrices have the same

characteristic polynomial (the same eigenvalues).

Sketch of Proof. The necessity of this theorem is straightfor-
ward based on Theorem 2. Therefore, we only need to prove the
sufficiency part.

We will use the induction method to prove this theorem. For
n = 2, if A and B have the same characteristic polynomial, then it
is apparent that A = B; therefore, P = I is sufficient.

Suppose the result holds true for n⇓ 1, we need to prove that
it is also true for n.

Without loss of generality, we may assume that the first
rows/columns of A and B have the same weight since, otherwise,

we only need a single interchange operation, denoted as P1, such
that the weight of the first row/column of matrix P1AP

T

1 is the
same as that of matrix B.

Let

P1AP
T

1 =

⌉
1 A12

A
T

12 A22

{
, B =

⌉
1 B12

B
T

12 B22

{
(4)

Based on our assumption, it can be easily derived from Eq. (4)
that A12 and B12 have the same weight, which implies that A22
and B22 also have the same row/column weight sequence.

Since both A22 and B22 are matrices of order n⇓1, there exists
a (n ⇓ 1) ↓ (n ⇓ 1) permutation matrix P2 such that

P2A22P
T

2 = B22.

Define

P =

⌉
1 0
0 P2

{
P1

then we have

PAP
T

=

⌉
1 0
0 P2

{
P1AP

T

1

⌉
1 0
0 P

T

2

{

=

⌉
1 0
0 P2

{⌉
1 A12

A
T

12 A22

{⌉
1 0
0 P

T

2

{

=

⌉
1 A12

P2A
T

12 P2A22

{⌉
1 0
0 P

T

2

{

=

⌉
1 A12P

T

2

P2A
T

12 P2A22P
T

2

{

=

⌉
1 A12P

T

2

P2A
T

12 B22

{

Since the weight sequence of A is the same as the B and B22
is the same as that of A22, it implies that A12P

T

2 = B12. Therefore,
we have

PAP
T

=

⌉
1 B12

B
T

12 B22

{
= B (5)

and P is a permutation matrix, which concludes the proof of the
theorem.

Corollary 5. Let A and B be n ↓ n adjacency matrices of two

graphs that have the same set of eigenvalues ω1, ω2, . . . , ωn, all with

single multiplicity. Let ui and vi be the normalized (length equal to

1) eigenvector corresponding to eigenvalue ωi with respect to matrix

A and B, respectively. Let U = [u1 · · · un], V = [v1 · · · vn],

i = 1, . . . , n, and P = V
T
U, then P is a permutation matrix such

that

PAP
T

= B (6)

Proof. Without loss of generality, we may assume ω1 > ω2 >
· · · > ωn. It is well-known that the normalized eigenvectors ui and
vi are both bases of their corresponding 1-dimensional subgroups.
Therefore, both U and V are unique. Therefore, P = V

T
U is also

unique. Based on Theorem 3, we have

PAP
T

= B

It follows from Theorem 2 that P is a permutation matrix. ↭

The following two examples demonstrate how to derive a
permutation matrix P for matrices A and B that satisfies Eq. (6)
using Corollary 5.

Example 7. For the following two graphs:

5

J. Ren and T. Li High-Confidence Computing 4 (2024) 100224

1 2

34

1 2

43

their corresponding adjacency matrices are

A =

)

[[[[]

1 0 1 1

0 1 1 1

1 1 1 1

1 1 1 1

⌊

⌋⌋⌋⌋⌈
, B =

)

[[[[]

1 1 1 1

1 1 1 0

1 1 1 1

1 0 1 1

⌊

⌋⌋⌋⌋⌈

The eigenvalues for the two matrices are 0, 1, 3⇓
′

17
2 , 3+

′

17
2 . Ba-

sed on Corollary 5, there exists a permutation matrix P such that
PAP

T
= B.

To derive such a permutation matrix P , we first construct
the orthonormal matrices from eigenvectors corresponding to the
eivenvalues sequence listed above for matrices A and B as follows:

U =

)

[[[[[[[[]

′

17+
′

17(
′

17⇓1)
8
′

17
⇓

′

2
2 0

′

17⇓
′

17(
′

17+1)
8
′

17
′

17+
′

17(
′

17⇓1)
8
′

17

′

2
2 0

′

17⇓
′

17(
′

17+1)
8
′

17
′

17+
′

17
2
′

17
0 ⇓

′

2
2 ⇓

′

17⇓
′

17
2
′

17
′

17+
′

17
2
′

17
0

′

2
2

′

17+
′

17
2
′

17

⌊

⌋⌋⌋⌋⌋⌋⌋⌋⌈

V =

)

[[[[[[[[]

⇓

′

2
2 0 ⇓

′

17⇓
′

17
2
′

17

′

17+
′

17
2
′

17

0 ⇓

′

2
2

′

17⇓
′

17(
′

17+1)
8
′

17

′

17+
′

17(
′

17⇓1)
8
′

17

0
′

2
2

′

17⇓
′

17(
′

17+1)
8
′

17

′

17+
′

17(
′

17⇓1)
8
′

17
′

2
2 0 ⇓

′

17⇓
′

17
2
′

17

′

17+
′

17
2
′

17

⌊

⌋⌋⌋⌋⌋⌋⌋⌋⌈

While neither of these two matrices is close to a permutation
matrix, we have

P = VU
T

=

)

[[[[]

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

⌊

⌋⌋⌋⌋⌈

which is the permutation matrix such that

PAP
T

= B

Similar to the previous example, in the next example, we can
easily derive a permutation matrix for matrices A and B that
satisfies Eq. (6).

Example 8. Let

A =

)

]
1 1 0
1 1 1
0 1 1

⌊

⌈ , B =

)

]
1 1 1
1 1 0
1 0 1

⌊

⌈

The eigenvalues for A and B are 1, 1 ⇓

′

2, 1 +

′

2. The corre-
sponding orthonormal matrices generated from the eigenvectors
of matrices A and B are:

U =

)

[[]

⇓

′

2
2

1
2

1
2

0 ⇓

′

2
2

′

2
2

′

2
2

1
2

1
2

⌊

⌋⌋⌈ , V =

)

[[]

0 ⇓

′

2
2

′

2
2

⇓

′

2
2

1
2

1
2

′

2
2

1
2

1
2

⌊

⌋⌋⌈

While neither of these two matrices is a permutation matrix, we
can derive a permutation matrix

P = VU
T

=

)

]
0 1 0
1 0 0
0 0 1

⌊

⌈

such that

PAP
T

= B

Corollary 5 provides an efficient algorithm to derive a permu-
tation matrix P for matrices A and B such that PAPT

= B, where A

and B have the same set of eigenvalues with single multiplicity.
In case that the multiplicity of some eigenvalues is not single,
even though the existence of such a permutation is known, the
matrix derived this way may or may not be a permutation matrix
anymore. Example 9 below shows that matrix derived this way
is a permutation matrix that satisfies Eq. (6), while the matrix
derived in Example 10 is not even a permutation matrix.

Example 9. Consider the following two graphs:

1

2

34

5

a

b

cd

e

There corresponding adjacency matrices are:

A =

)

[[[[[]

1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

⌊

⌋⌋⌋⌋⌋⌈
, B =

)

[[[[[]

1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1

⌊

⌋⌋⌋⌋⌋⌈

The two adjacency matrices have the same set of eigenvalues:
3, 1+

′

5
2 , 1+

′

5
2 , 1⇓

′

5
2 , 1⇓

′

5
2 , where both 1+

′

5
2 and 1⇓

′

5
2 are du-

plicate eigenvalues. The corresponding orthonormal matrices de-
rived from the eigenvectors for matrices A and B are

U =

)

[[[[[[[[[[[]

′

5
5

′

5⇓
′

5
′

20

′

5⇓
′

5
2
′

5
⇓

5
′

2+
′

10
20 ⇓

5
′

2+
′

10
20

′

5
5

′

5+
′

5
2
′

5
⇓

′

5+
′

5
2
′

5
⇓

5
′

2+
′

10
20

5
′

2⇓
′

10
20

′

5
5 ⇓

′

5+
′

5
2
′

5
⇓

′

5⇓
′

5
′

20
5
′

2⇓
′

10
20

5
′

2⇓
′

10
20

′

5
5

′

5⇓
′

5
′

20
0

′

10
5 ⇓

5
′

2+
′

10
20

′

5
5 0

′

5⇓
′

5
′

20
5
′

2⇓
′

10
20

′

10
5

⌊

⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌈

and

V =

)

[[[[[[[[[[[]

′

5
5

′

5+
′

5
2
′

2
⇓

′

5⇓
′

5
2
′

5
⇓

5
′

2+
′

10
20

5
′

2⇓
′

10
20

′

5
5

′

5⇓
′

5
′

20
0

′

10
5 ⇓

5
′

2+
′

10
20

′

5
5 ⇓

′

5⇓
′

5
′

20

′

5⇓
′

5
2
′

2
⇓

5
′

2+
′

10
20 ⇓

5
′

2+
′

10
20

′

5
5 ⇓

′

5+
′

5
2
′

5
⇓

′

5+
′

5
′

20
5
′

2⇓
′

10
20

5
′

2⇓
′

10
20

′

5
5 0

′

5+
′

5
′

20
5
′

2⇓
′

10
20

′

10
5

⌊

⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌈

6

J. Ren and T. Li High-Confidence Computing 4 (2024) 100224

respectively. It can be clearly seen that neither U nor V is even
an integer matrix. However, it can be verified that

P = VU
T

=

)

[[[[[]

0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

⌊

⌋⌋⌋⌋⌋⌈

is a permutation matrix such that

PAP
T

= B

However, when the multiplicities of some eigenvectors are
not single, the result presented in Example 9 may not always
be true. In other words, we may not always be able to derive
a permutation matrix that transforms matrix A to matrix B, as
shown in the following example.

Example 10. For the following two graphs

1 2

3

45

5

1 2

3

45

6

their corresponding adjacency matrices are given below:

A =

)

[[[[[[[]

1 1 0 1 1 0
1 1 1 0 0 1
0 1 1 1 0 1
1 0 1 1 1 0
1 0 0 1 1 1
0 1 1 0 1 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌈

, B =

)

[[[[[[[]

1 1 1 1 0 0
1 1 1 0 1 0
1 1 1 0 0 1
1 0 0 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌈

The eigenvalues of these two matrices are ⇓1, ⇓1, 1, 1, 4, 2,
where both ⇓1 and 1 are eigenvalues of multiplicity 2. Based
on this order, we derive the orthonormal matrices from the
eigenvectors of matrices A and B as follows:

U =

)

[[[[[[[[[[]

⇓

′

6
6

′

6
6 ⇓

1
2 ⇓

′

3
6 ⇓

1
2

′

3
6

′

6
6

′

6
6 ⇓

1
2 ⇓

′

3
6

1
2 ⇓

′

3
6

′

6
6

′

6
6

1
2 ⇓

′

3
6 ⇓

1
2 ⇓

′

3
6

⇓

′

6
6

′

6
6

1
2 ⇓

′

3
6

1
2

′

3
6

⇓

′

6
6

′

6
6 0

′

3
3 0 ⇓

′

3
3

′

6
6

′

6
6 0

′

3
3 0

′

3
3

⌊

⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌈

V =

)

[[[[[[[[[[]

⇓

′

6
6

′

6
6 ⇓

1
2 ⇓

′

3
6

1
2

′

3
6

⇓

′

6
6

′

6
6

1
2 ⇓

′

3
6 ⇓

1
2

′

3
6

⇓

′

6
6

′

6
6 0

′

3
3 0 ⇓

′

3
3

′

6
6

′

6
6 ⇓

1
2 ⇓

′

3
6 ⇓

1
2 ⇓

′

3
6

′

6
6

′

6
6

1
2 ⇓

′

3
6

1
2 ⇓

′

3
6

′

6
6

′

6
6 0

′

3
3 0

′

3
3

⌊

⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌈

It can be verified that

VU
T

=

)

[[[[[[[[]

1
2

1
2 0 1

2 ⇓
1
2 0

1
2 ⇓

1
2 0 1

2
1
2 0

⇓
1
2

1
2 0 1

2
1
2 0

1
2

1
2 0 ⇓

1
2

1
2 0

0 0 1 0 0 0
0 0 0 0 0 1

⌊

⌋⌋⌋⌋⌋⌋⌋⌋⌈

is not even an integer matrix, let alone a permutation matrix.
However, it is easy to verify that we can construct a permu-

tation matrix P from the 6 ↓ 6 identity matrix through 3 con-
secutive row interchanging operations: (3, 5), (3, 6), (1, 5), that is
for

P =

)

[[[[[[[]

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0

⌊

⌋⌋⌋⌋⌋⌋⌋⌈

we have

PAP
T

= B

Based on Theorem 3, we can derive the following corollary.

Corollary 6. The complexity in determining whether two undirected

graphs are isomorphic is at most O(n3).

Proof. The proof of this corollary follows from the well-known
result, which says that the complexity in finding the eigenvalues
of each matrix is at most O(n3).

4. Conclusion

In this paper, we analyzed the isomorphic problem of undi-
rected graphs and presented two major theorems to characterize
it. Specifically, we proved that determining whether two undi-
rected graphs are isomorphic has a complexity of at most O(n3).
Additionally, we also designed algorithms to convert between
isomorphic graphs along with multiple examples.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was supported in part by the U.S. National Science
Foundation (CCF1919154 and ECCS-1923409).

References

[1] Graph (discrete mathematics). [Online]. Available: https://en.wikipedia.org/
wiki/Graph_(discrete_mathematics).

[2] Z. Blumenfeld, Graph machine learning: An overview – key concepts for
getting started. [Online]. Available: https://towardsdatascience.com/graph-
machine-learning-an-overview-c996e53fab90.

[3] M. Grohe, P. Schweitzer, The graph isomorphism problem, Commun. ACM
63 (11) (2020) 128–134, [Online]. Available: http://dx.doi.org/10.1145/
3372123.

7

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://towardsdatascience.com/graph-machine-learning-an-overview-c996e53fab90
https://towardsdatascience.com/graph-machine-learning-an-overview-c996e53fab90
https://towardsdatascience.com/graph-machine-learning-an-overview-c996e53fab90
http://dx.doi.org/10.1145/3372123
http://dx.doi.org/10.1145/3372123
http://dx.doi.org/10.1145/3372123

J. Ren and T. Li High-Confidence Computing 4 (2024) 100224

[4] B.D. McKay, A. Piperno, Practical graph isomorphism, ii, J. Symbolic
Comput. (2014) 94–112, [Online]. Available: http://dx.doi.org/10.1016/j.jsc.
2013.09.003.

[5] Graph isomorphism problem. [Online]. Available: https://en.wikipedia.org/
wiki/Graph_isomorphism_problem.

[6] R. Karp, Reducibilities among combinatorial problems, in: R. Miller, J.
Thatcher (Eds.), Complexity of Computer Computations, Plenum Press, New
York, 1972, pp. 85–103.

[7] M. Garey, D. Johnson, Computers and Intractability: A Guide To the Theory
of NP-Completeness, Freeman, 1979.

[8] Principal component analysis part 1: The different formulations. [Online].
Available: https://towardsdatascience.com/principal-component-analysis-
part-1-the-different-formulations-6508f63a5553.

[9] How are eigenvalues used in real life?.
[10] Applications of eigenvalues and eigenvectors. [Online]. Available:

https://www.intmath.com/matrices-determinants/8-applications-
eigenvalues-eigenvectors.php.

[11] Adjacency matrix. [Online]. Available: https://mathworld.wolfram.com/
AdjacencyMatrix.html.

[12] D. Margalit, J. Rabinoff, Interactive linear algebra. [Online]. Available: https:
//textbooks.math.gatech.edu/ila/ila.pdf.

8

http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1016/j.jsc.2013.09.003
https://en.wikipedia.org/wiki/Graph_isomorphism_problem
https://en.wikipedia.org/wiki/Graph_isomorphism_problem
https://en.wikipedia.org/wiki/Graph_isomorphism_problem
http://refhub.elsevier.com/S2667-2952(24)00027-8/sb6
http://refhub.elsevier.com/S2667-2952(24)00027-8/sb6
http://refhub.elsevier.com/S2667-2952(24)00027-8/sb6
http://refhub.elsevier.com/S2667-2952(24)00027-8/sb6
http://refhub.elsevier.com/S2667-2952(24)00027-8/sb6
http://refhub.elsevier.com/S2667-2952(24)00027-8/sb7
http://refhub.elsevier.com/S2667-2952(24)00027-8/sb7
http://refhub.elsevier.com/S2667-2952(24)00027-8/sb7
https://towardsdatascience.com/principal-component-analysis-part-1-the-different-formulations-6508f63a5553
https://towardsdatascience.com/principal-component-analysis-part-1-the-different-formulations-6508f63a5553
https://towardsdatascience.com/principal-component-analysis-part-1-the-different-formulations-6508f63a5553
https://www.intmath.com/matrices-determinants/8-applications-eigenvalues-eigenvectors.php
https://www.intmath.com/matrices-determinants/8-applications-eigenvalues-eigenvectors.php
https://www.intmath.com/matrices-determinants/8-applications-eigenvalues-eigenvectors.php
https://mathworld.wolfram.com/AdjacencyMatrix.html
https://mathworld.wolfram.com/AdjacencyMatrix.html
https://mathworld.wolfram.com/AdjacencyMatrix.html
https://textbooks.math.gatech.edu/ila/ila.pdf
https://textbooks.math.gatech.edu/ila/ila.pdf
https://textbooks.math.gatech.edu/ila/ila.pdf

	Graph isomorphism—Characterization and efficient algorithms
	Introduction
	Preliminary
	Undirected Graph and Adjacency Matrix
	Eigenvalues and Eigenvectors

	Our Main Results
	Conclusion
	Declaration of competing interest
	Acknowledgements
	References

