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Abstract—Regenerating codes were designed to achieve an
optimal trade-off between minimum node repair bandwidth
and the amount of data stored per node for distributed data
storage. There are two extreme points on the optimal trade-off
curve, corresponding to minimum-storage regenerating (MSR)
and minimum-bandwidth regenerating (MBR). The application
scenarios of regenerating codes include providing reliable and
efficient repair of failed nodes in distributed storage systems
and peer-to-peer network storage systems. Storing data using
regenerating code with node repair capability requires less
redundancy while ensuring much high data availability than
simple replication for the same level of reliability. Recently,
Reed-Solomon (RS) code-based regenerating codes have been
constructed under the product-matrix framework to achieve the
maximum distance separable (MDS) property in code regener-
ation and reconstruction. Unfortunately, in cases where node
compromising exists in the network, the storage capacity and data
availability can both be significantly reduced. In this paper, we
provide our detailed construction of the m-layer MSR code and
analyze the theoretical bounds of m-layer codes in node repair
capability and also storage while achieving minimum storage
regeneration.

Index Terms—regenerating code, Reed-Solomon code, optimal
node repair.

I. INTRODUCTION

Distributed storage (DS) is an important data storage and
access paradigm that can achieve an efficient trade-off between
storage efficiency and data availability, surpassing replication-
based approaches significantly. An analysis conducted in [1]
has demonstrated that, in addition to its flexibility, DS is also
much more flexible and can double the storage efficiency
compared to typical cloud storage solutions offered in a
replicated fashion, while still achieving about the same level
of data availability. Furthermore, erasure code-based DS can
also provide secure and reliable data storage without requiring
data encryption or any secure key management, making it an
excellent solution for data centers where security is a critical
requirement.

The most representative erasure coding-based technique
works by encoding the data using an (n, k) Reed-
Solomon (RS) code into n components in such a way that the
original data can be reconstructed by any k ≤ n components.
However, the originally stored data remains information the-

oretically secure for anyone who can access up to k − 1 data
components. In particular, it is infeasible to derive anything
meaningful from any of the individual data components. As a
result, the n data components can be stored anywhere, such as
peer-to-peer networks and other types of on-demand network
data storage, instead of storing the data in one single server.
This approach offers an elegant trade-off between storage
reliability and efficiency through adjusting of the parameter n.
When individual components are stored distributively across
multiple cloud storage servers, no costly data encryption and
secure key management is required for any data component.
The storage servers only need to ensure data availability and
integrity. Furthermore, DS can increase data availability and
reduce network congestion by distributing data across multiple
nodes, which helps alleviate the load on individual network
links and servers, leading to increased resiliency.

However, the data availability of DS heavily relies on the
availability and integrity the data components. It is crucial to
be able to detect and repair node failure to sustain the orig-
inally designed data availability. The concept of regenerating
code was introduced to achieve optimal trade-off between min-
imum storage regenerating (MSR) and minimum bandwidth
regenerating (MBR) [2], where a replacement node is allowed
to connect to some individual nodes directly to regenerate a
substitute of the failed node, instead of first recovering the
original data then regenerating the failed component. Unfortu-
nately, when malicious behaviors exist in the network, both the
regeneration of the failed node and the reconstruction of the
original file may fail [3]. In our previous work, we proposed a
multi-layer (m-layer) code-based regenerating code [1], [4]–
[6] to provide better error correction capability compared to
the Reed-Solomon code based approach.

In this paper, we will the detailed design and present various
design trade-offs and optimization of the multi-layer MSR
code. The main contributions of this paper include:

• We propose the detailed construction of the m-layer code
in encoding, and node regeneration and data construction
with possible bogus nodes.

• We provide optimizations of the proposed m-layer code
with respect to node repair and storage efficiency.
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• We conduct theoretical and numerical analysis of the pro-
posal m-layer MSR code. Our analysis and performance
evaluation show that this code can double the node repair
capability compared to that of the universally resilient
regenerating code proposed in [3].

• The optimal construction of m-layer MSR regenerating
code can also achieve optimal storage efficiency, which
is much higher than that of the code proposed in [3].

The rest of this paper is organized as follows: Section II
discusses the related work. The preliminary of this paper is
presented in Section III. n Section IV, our proposed optimal
m-layer code is presented. In Section V, various optimizations
are discussed. We conduct performance analysis in Section VI.
The paper is concluded in Section VII.

II. RELATED WORK

When a storage node in the distributed storage network
that employs the conventional (n, k) RS code fails, typically
the replacement node first connects to k nodes and recovers
the entire file, then regenerates the symbols stored in the
failed node. Unfortunately, this approach is very bandwidth
inefficient because the entire file has to be recovered to
reproduce a fraction of it. To overcome this drawback, Dimakis
et al. introduced a regenerating code based on network coding,
denoted by {n, k, d,α,β, B} [2]. In the context of regenerating
code, a data collector (DC) can reconstruct the original file
stored in the network by downloading α symbols from each
of k storage nodes. A replacement node can be regenerated
by downloading β help symbols from each of d helper nodes.
This gives the total bandwidth required to regenerate a failed
node, γ = dβ, which can be far less than the entire file B.
In their paper, Dimakis et al. demonstrated that a trade-off
exists between the bandwidth γ and per-node storage α. They
found two optimal points on the optimal trade-off curve: min-
imum storage regeneration (MSR) and minimum bandwidth
regeneration (MBR) points. Existing work has largely focused
on the optimal design of regenerating codes [7]–[11], and
implementation of the regenerating code.

The regenerating code can be divided into functional regen-
eration and exact regeneration. In the functional regeneration,
the replacement node regenerates a new component that can
functionally replace a failed component instead of being the
same as the originally stored component [12]–[15]. In [12],
the data regeneration was formulated as a multicast network
coding problem. A random linear regenerating code for dis-
tributed storage systems was implemented in [13]. In [14],
it has been proved that by allowing data exchange among the
replacement nodes, a better trade-off between repair bandwidth
γ and per node storage α can be achieved. In [15], a functional
regenerating code with less computational complexity through
binary operations was proposed. In the exact regeneration, the
replacement node regenerates the exact symbols of a failed
node [16]–[20]. In [16], the authors proposed to reduce the

regeneration bandwidth through algebraic alignment. A code
structure for exact regeneration using interference alignment
technique was provided in [17]. In [18], an optimal exact
constructions of MBR codes and MSR codes under product-
matrix framework was presented. This is the first work that
allows independent selection of the node number n in the
network. In [19], repair performance of the Reed-Solomon
codes was studied. A code construction that could achieve
performance better than space-sharing between the minimum
storage regenerating codes and the minimum bandwidth re-
generating codes was proposed in [20].

However, none of these works considered code regeneration
under possible node corruption or adversarial manipulation
attacks in hostile networks. In fact, all these schemes would
fail in both regeneration and reconstruction if some storage
nodes could provide incorrect responses to the requests.

For general verification of the contents stored in dis-
tributed storage, several schemes have been proposed [21]–
[24]. In [21], the authors amnalyzed the verification cost for
both client read and write operations in workloads with idle
periods. In [22], erasure coding and threshold cryptography
were proposed to achieve storage efficiency and resilience.
To check data integrity of the regenerating codes in hostile
networks, CRC codes were adopted in [23]. Unfortunately,
CRC checks can be easily manipulated by malicious nodes,
resulting in regeneration and reconstruction failures. In [24],
data integrity protection (DIP) was designed under a mobile
Byzantine adversarial model to enable a client to verify
the integrity of outsourced data against general or malicious
corruptions in distributed storage.

There are some publications that discussed corrupted node
detection and correction in regenerating codes [25]–[31].
In [25], the Byzantine fault tolerance of regenerating codes
was studied. The amount of information that can be safely
stored against passive eavesdropping and active adversarial
attacks based on the regeneration structure was discussed
in [26]. In [27], the universally secure regenerating code was
developed to achieve information theoretic data confidentiality.
However, the paper did not consider the extra computational
cost and bandwidth for this code. In [28], the authors discussed
the optimal trade-off between the storage space and the repair
bandwidth in presence of two types of wiretapper. In [29], the
authors revealed some general properties of MSR codes and
a generally applicable upper bound on secrecy capacity with
passive eavesdroppers in the storage network. A secure MSR
coding scheme that could overcome the limitations of previous
eavesdropper model was proposed in [30]. The achievable
trade-off regions between the normalized storage capacity and
repair bandwidth for the secure exact-repair regenerating codes
against an eavesdropper were studied in [31].

There are many other research publications focusing on
the security of the decentralized storage networks [32]–[36].
Nevertheless, since regenerating codes in these works are all an
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extension of the maximum distance separable (MDS) code, the
error correction capability is constrained by the MDS bound.
Moreover, none of the schemes presented is able to determine
whether the errors in network are successfully corrected.

III. PRELIMINARY AND ASSUMPTIONS

A. Regenerating Code
Regenerating code was first introduced in [2]. It is a linear

network code over the finite field Fq with 5 parameters
{n, k, d,α,β, B}, where q is a prime number or some power
of a prime number. A file of size B = αk is stored in
n storage nodes, each of which stores α symbols. The file
can be reconstructed from any k randomly selected storage
nodes. A replacement node can regenerate the contents of a
failed node by downloading β ≤ α symbols from each of
d ≥ k randomly selected storage nodes, which makes the total
bandwidth needed to regenerate a failed node γ = dβ. In [2],
the following theoretical bound was derived for regenerating
codes:

B ≤
k−1∑

i=0

min{α, (d− i)β}. (1)

From equation (1), a trade-off between the regeneration band-
width γ and the per node storage α was derived, shown in
Fig. 1. There are two special cases: the minimum storage
regeneration (MSR) point, where the storage parameter α is
minimized:

(αMSR, γMSR) =

(
B

k
,

Bd

k(d− k + 1)

)
, (2)

and the minimum bandwidth regeneration (MBR) point, where
the regeneration bandwidth γ is minimized:

(αMBR, γMBR) =

(
2Bd

2kd− k2 + k
,

2Bd

2kd− k2 + k

)
. (3)

B. Adversarial Model
In this paper, our adversarial model is similar to the one

adopted in [3]. We assume that some network nodes may
be corrupted due to hardware failure or communication er-
rors, and/or be controlled by malicious users. As a result,
upon request, these nodes may provide incorrect responses to
disrupt data regeneration and reconstruction. These incorrect
responses are described as errors/erasures in [3]. We assume
that malicious users can take full control of up to τ (τ ≤ n)
storage nodes and perform possible collusion attacks. Other
than the information stored in the compromised nodes, the
adversary is unable to obtain the contents or the distribution
of the encoding vectors in other intact nodes.

We will refer the corrupted and the compromised symbols
as bogus symbols. We will also use corrupted nodes, bogus
nodes, malicious nodes and compromised nodes interchange-
ably throughout the paper. The maximum number of bogus
node from which errors can be corrected is referred to as the
node correction capability.

MBR

MSR

Bandwidth to repair one node γ

St
or
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e
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r
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α

Fig. 1: MSR and MBR tradeoff in regenerating code.

In this paper, we assume the existence of a secure server
that is responsible for encoding and distributing data to storage
nodes. The secure server initialize replacement nodes. The DC
and the secure server can be implemented on the same com-
puter. We assume that this server will never be compromised.

IV. PROPOSED m-LAYER REGENERATING CODE (O-MSR)

In this section, we present the construction of the m-layer
MSR code from m layers of MSR codes with symbols from
the Galois field Fq , where q is a prime number of some
power of a prime number, and n = q or q − 1. For each
i = 1, · · · ,m, the ith layer MSR code Li is represented by
(n, ki, di,αi,βi, Bi). It can be viewed as an (n, di, n−di+1)
MDS code, where αi = ki− 1, di = 2ki− 2, and di ≤ dj for
all 1 ≤ i ≤ j ≤ m.

A. Encoding

The MSR code {n, ki, di,αi,βi, Bi} is encoded based on
the product-matrix code framework proposed in [18]. Accord-
ing to equation (2), we have αi = di/2, βi = 1 for one block
of data with the size Bi = kiαi = (αi + 1)αi. The di × αi

message matrix Mi is defined as

Mi =

[
Si,1

Si,2

]
, i = 1, · · · ,m, (4)

where Si,1 and Si,2 are both αi×αi symmetric matrices, each
of which will contain αi(αi + 1) data symbols. We further
define the n× di encoding matrix

Ψ = [Φ ΛΦ],
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where

Φ =





1 1 1 . . . 1
1 g g2 . . . gαi−1

...
...

...
. . .

...
1 gn−1 (gn−1)2 . . . (gn−1)αi−1




(5)

is an n × αi Vandermonde matrix and Λ = diag[λ1, · · · ,λn]
is an n × n diagonal matrix such that λi ∈ Fq and λi &= λj

for 1 ≤ i, j ≤ n, i &= j, g is a primitive element in Fq , and
any di rows of Ψ are linearly independent.

The codeword Fi is defined as

Fi = ΨMi = [Φ ΛΦ]

[
Si,1

Si,2

]
=




ψ1Mi

...
ψnMi



 =




fi,1

...
fi,n



 . (6)

Each row fi,j = ψjMi (1 ≤ i ≤ n) of the codeword matrix
Fi will be stored in storage node j, where the encoding vector
ψj is the jth row of Ψ.

To encode a file with size B =
m∑
i=1

αi(αi + 1) using the

m-layer MSR code, the file will first be divided into message
matrices Mi with file sizes αi(αi + 1), for i = 1, · · · ,m,
respectively. Then we encode message matrices Mi into the
codeword matrices Fi based on equation (6).

To conceal the layer information and prevent malicious
attackers from selectively corrupting the MSR code, the secure
server will randomly concatenate all the matrices together to
form the final n× (α1 + · · ·+ αm) codeword matrix:

C = [Perm(F1, . . . , Fm)], (7)

where Perm denotes a random matrix permutation operation.
The secure sever will also record the order of the permutation
for future code regeneration and reconstruction. For simplicity
of the presentation, we will ignore the permutation operation
in the subsequent sections of the paper. Then each row fi =
[f1,i, · · · , fm,i], for 1 ≤ i ≤ n, of the codeword matrix C will
be stored in storage node i, where fj,i represents the ith row
of codeword Fj (1 ≤ j ≤ m). The total number of symbols
stored in each node is α1 + · · ·+ αm.

We have the following Theorem.

Theorem 1. The encoding of the m-layer code presented
from equations (4) to (7) can achieve the MSR point in
defined in equation (2), since all the sublayer codes defined
in equation (6) are RS-MSR codes [4], [5].

Remark 1. The permutation operation is designed to prevent
adversaries from identifying individual layers. For application
scenarios where node failure can only be caused by hardware
failures or communication errors, we can directly concatenate
all the codeword matrices without the permutation operation.

B. Node Repair and Regeneration

Suppose node z fails, the security server with the permuta-
tion information of the m layers of MSR code will initialize
a replacement node z′. The replacement node z′ will send
regeneration requests to the rest of the n − 1 helper nodes.
Upon receiving the regeneration request, helper node i will
calculate and send out the help symbols

hi = [f1,iφ
t
z, · · · , fm,iφ

t
z] = [ψiM1φ

t
z, · · · ,ψiMmφ

t
z],

where φz is the zth row of Φ and φt
z is the transpose of φz .

Let Ψi→j =
[
ψt

i,ψ
t
i+1 · · · ,ψ

t
j

]t
, for 1 ≤ i ≤ j ≤ m,

and x(l)
i be the vector containing the first l symbols of Miφ

t
z ,

where l = 1, · · · ,m.
Suppose h′i = hi+ei = [h1,i+e1,i, · · · , hm,i+em,i] is the

response from helper node i, where hi = [h1,i, · · · , hm,i] and
ei = [e1,i, · · · , em,i]. If ei = [e1,i, · · · , em,i] ∈ Fm

q \{0}, then
node i is corrupted since the response hi has been modified.

Without loss of generality, we may assume that i = n, and
define

h′l = hl + el = [hl,1 + el,1, · · · , hl,n−1 + el,n−1],

where hl = [hl,1, · · · , hl,n−1] and el = [el,1, · · · , el,n−1], for
l = 1, · · · ,m.

To regenerate the symbols of the failed node z, we will
regenerate the symbols layer by layer, starting from layer 1
to derive h1,i and e1,i. We can successfully regenerate the
symbol in node h1,i when the total number of received help
symbols h′1,i being modified from the n helper nodes is less
than '(n − 2α1 − 1)/2(, where 'x( is the floor operation of
x, which represents the greatest integer less than or equal to
x. In other words, we can correct

t1 = '(n− 2α1)/2( = (n− 2α1 − ε1)/2, (8)

where ε1 = 0 or 1 depending on whether n is even or odd.
Then we move to the jth layer to derive hj,i and ej,i, for j =

2, · · · ,m. By treating the symbols from the hj layer where
errors have been found by hj−1 as erasures, the jth layer code
hj can correct tj − 1 erasures and '(n− 2αi − ti−1)/2( new
errors [37]:

tj = '(n− 2αj − tj−1)/2(+ tj−1

= (n− 2αj − tj−1 − εj)/2 + tj−1

=

(
j∑

l=1

2l−1(n− 2αl)−
j∑

l=1

2l−1εl

)
/2j ,

(9)

where εi = 0 or 1, with the restriction that n − 2αi ≥ ti−1,
which can be written as:

−
j−1∑

l=1

2lαl + 2jαj ≤ n+
j−1∑

l=1

2l−1εl. (10)

Without loss of generality, we assume 1 ≤ i ≤ n. z′ will
perform Algorithm 1 to regenerate the contents of the failed
node z.
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Algorithm 1. z′ regenerates symbols of the failed node z.
Step 1: Let h′i = [h1,i + e1,i, · · · , hm,i + em,i], for i =

1, · · · , n − 1 be the response from helper nodes i.
Define h′i = [h1,i + e1,i, · · · , hn−1,i + en−1,i].

Step 2: Decode h′1 using the decoding algorithm for RS code
to h1 [38], where h′1 = [h′1,1, · · · , h′n−1,1]

t can be
viewed as an MDS code with parameters (n, 2α1, n−
2α1) since Ψ1|1→(n−1) · x(n−1) = h′1. Suppose the
error locations are ⊗1,1, · · · ,⊗1,j1 .

Step 3: Decode h′i using the erasure decoding algorithm for
RS code with parameters described in equation (9)
for i = 2, · · · ,m, where h′i = [h′1,i, · · · , h′n−1,i]

t can
be viewed as an MDS code with parameters (n −
1, di, n−d1) since Ψi|1→(n−1) ·x(n−1) = h′i. Suppose
the error locations are ⊗j,1, · · · ,⊗j,ji .

Step 4: Compute fz = [f1,z, · · · , fm,z] = [ΦzS1,1 +
λzΦzS1,2, · · · ,ΦzSm,1 + λzΦzSm,2] as described
in [18].

Proposition 1. For the m-layer regenerating code, if αi ≤ αj ,
for all 1 ≤ i ≤ j ≤ m and n − 2αi ≥ ti−1 as defined in
equation (9), then the m-layer code can correct errors from
'(n− 2αm)/2( corrupted nodes in data regenerating, where
'x( is the floor operation.

C. Node Repair and Data Reconstruction

When the DC needs to reconstruct the original file, it
will send reconstruction requests to n storage nodes. Upon
receiving the request, node i will send out the symbol vector
h′i = hi + ei = [h1,i + e1,i, · · · , hm,i + em,i] to the DC. If
ei ∈ Fm

q \{0}, then node i is corrupted since the response
h′i &= hi.

The DC will reconstruct the file as follows: Let

R′ =




f1,1 · · · fm,1

...
. . .

...
f1,n · · · fm,n



 = [Φ ΛΦ]

[
S′1,1 · · · S′m,1

S′1,2 · · · S′m,2

]
,

we have

R′ = [ΦS′1,1 + ΛΦS′1,2, · · · ,ΦS′m,1 + ΛΦS′m,2].

Let R′Φt = [R̂′1, · · · , R̂′m], and C(i) = ΦS′i,1Φ
t, D(i) =

ΦS′i,2Φ
t, i = 1, · · · ,m, then

C(i) + ΛD(i) = R̂′i.

Since C(i), D(i) are both symmetric, we can solve the non-
diagonal elements of C(l), D(l) as follows:

{
C(i)

j,k + λi ·D(i)
j,k = R̂′j,k

C(i)
j,k + λj ·D(i)

j,k = R̂′k,j .

Because matrices C(i) and D(i) have the same structure, we
only need to focus on C(i), which corresponds to S′i,1.

It is straightforward to see that if node i is corrupted and
there are errors in the ith row of R′, there will be errors in

the ith row of R̂′. As a result, there will be errors in the ith

row and ith column of C(i).
We can view each column of C(i) as an (n,αi, n−αi +1)

MDS code because Φ is a Vandermonde matrix. The length of
the code is n since the diagonal elements of C(i) is unknown.
Suppose node j is a legitimate node, we can decode the MDS
code to recover the jth column of C(i) and locate the corrupted
nodes. The decoding algorithm is similar to Algorithm 1 for
symbol regenerating. We can correct

t1 = '(n− α1)/2( = (n− α1 − ε1)/2, (11)

where ε1 = 0 or 1 depending on whether n−α1 even or odd.
For i = 2, · · · ,m, by treating the symbols that the ti−1

node where errors are found by C(i−1) as erasures, the ith

layer can correct ti−1 erasures and '(n− αi − ti−1)/2( new
errors:

ti = '(n− αi − ti−1)/2(+ ti−1

= (n− αi − ti−1 − εi)/2 + ti−1

=




i∑

j=1

2j−1(n− αj)−
i∑

j=1

2j−1εj



 /2i,

(12)

In this way, C(i), i = 1, · · · ,m, can be recovered. So the
DC can reconstruct Si,1 using the method similar to [4], [5].
For Si,2, the recovering process is similar.

Proposition 2. For the m-layer regenerating code, if αi ≤ αj ,
for 1 ≤ i ≤ j ≤ m, and n−αi ≥ ti−1, then the m-layer code
can correct errors from '(n− α)/2( corrupted nodes in data
reconstruction.

V. OPTIMIZATIONS

The optimization problem for bogus node repair has been
discussed in [1], [6]. In this paper, we will continue the
research along this line and provide refined considerations.

A. Optimizing Node Repair and Regeneration Capability

According to Section IV-B, the ith layer MSR code Fi can
be viewed as an (n, di, n − di + 1) MDS code for 1 ≤ i ≤
m during regenerating. In the optimization, we can set the
summation of the αi’s of all the layers to a constant α0:

m∑

i=1

αi = α0,

and

αi−1 − αi ≤ 0, for 2 ≤ i ≤ m.

We can then maximize the number of the bogus node regen-
erating capability of the m-layer MSR code by maximizing
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tm. With all the constrains listed above, the optimization
problem can be written as:

maximize tm =
1

2m

(
m∑

i=1

2i−1(n− 2αi)−
m∑

i=1

2i−1εi

)
,

subject to
m∑

i=1

αi = α0,

αi−1 − αi ≤ 0, i = 2, · · · ,m,

0 ≤ εi ≤ 1, i = 1, · · · ,m,

−
i−1∑

j=1

2jαj + 2jαi ≤ n+
i−1∑

j=1

2j−1εj ,

2 ≤ i ≤ m.
(13)

For this optimization, we can introduce slack variables
εi, i = 1, · · · ,m to convert it into a linear programming
optimization. The optimization result can be summarized as
follows:

Theorem 2. For the m-layer MSR regeneration code, when

αi = round(α0/m) = α̃, for 1 ≤ i ≤ m, (14)

it can achieve maximum node repair capability, which is

tm =

(
(2m − 1)(n− 2α̃)−

m∑

i=1

2i−1εi

)
/2m (15)

corrupted nodes.

In fact, by selecting n to be even, we can make n− 2α̃ even,
we can ensure that εi = 0 for i = 1, · · · ,m, thereby maxi-
mizing the corrupt node detection and regenerating capability
while maintaining the given storage efficiency as follows:

tm = ((2m − 1)(n− 2α̃)) /2m

=

(
1− 1

2m

)
(n− 2α̂).

Furthermore, we have

lim
m→∞

tm = lim
m→∞

(
1− 1

2m

)
(n− 2α̂)

= n− 2α̂.

(16)

In the worst case scenario, when εi = 1, i = 1, · · · ,m, then

tm = ((2m − 1)(n− 2α̃− 1)) /2m.

Similar to equation (16), we have

lim
m→∞

tm = lim
m→∞

(
1− 1

2m

)
(n− 2α̂− 1)

= n− 2α̂− 1.

(17)

In both scenarios, the node repair capability for the O-MSR
doubles that of the RS-MSR, which is summarized in the
following theorem.

Theorem 3. The node repair capability of the m-layer O-MSR
code converges to twice that of the RS-MSR as m increases.

Theorem 3 states that the overhead required to repair
random node failure for the O-MSR code approaches only
the overhead required for erasure correction, which is only
half the overhead required to repair random errors.

From now on, the MSR code generated this way will be
referred to as the optimal m-layer MSR regenerating code,
and denoted as O-MSR.

B. Optimizing Code Rate Given Node Repair Capability
In the previous optimization, we set the code rate of the

O-MSR code to a constant and then maximize the node repair
node capability in node regeneration. Alternatively, we can
also optimize the storage efficiency of the MSR code, given
the node repair capability in node regeneration defined through
tm in equation (9), to a constant value t0, while maximizing
the code rate of the MSR regenerating code. The optimization
problem can be presented as follows:

maximize
m∑

i=1

αi,

subject to −
i−1∑

j=1

2jαj+2jαi≤n+
i−1∑

j=1

2j−1εj ,

2≤ i≤m,

αi−1−αi≤0, 2≤ i≤m,

tm=
m∑

j=1

2j−1−m(n−2αj)−
m∑

j=1

2j−1−mεj .

(18)

The optimization result shows that when m is sufficiently
large, then easy layer can roughly store t0 more symbols.

Remark 2. We can also optimize the proposed O-MSR per-
formance based on any particular attack scenarios to achieve
optimum performance.

C. Overhead of MSR Code
The concept of the overhead of an MSR code δMSR is de-

fined as the amount of information that needs to be transferred
compared to the fragment size B/k. In our proposed O-MSR
design, we have

δMSR =
dβMSR

α
=

2α

α
= 2. (19)

The performance gain of the O-MSR for node regenerating,
compared to data reconstruction and then regenerate the node
is defined as:

gain =
B

γMSR
=

k(d− k + 1)

d
=

k

2
. (20)

This is true regardless of the k and d values and node repair
capability of the MSR code as long as they are selected to
satisfy the following requirements:

1 ≤ di = 2ki − 2 ≤ n.
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TABLE I: Comparison of node repair capability for n = 16,
with the number of layers m varying from 1 to 4.
❳❳❳❳❳❳❳❳k/d

Layers Gain Node repair capability
δS

m = 1 m = 2 m = 3 m = 4

k = 2 α = 1 d = 2 1 7 10 12 13 1/8
k = 3 α = 2 d = 4 3/2 6 9 10 11 3/16
k = 4 α = 3 d = 6 2 5 7 8 9 1/4
k = 5 α = 4 d = 8 5/2 4 6 7 7 5/16
k = 6 α = 5 d = 10 3 3 5 5 5 3/8
k = 7 α = 6 d = 12 7/2 2 3 3 3 7/16
k = 8 α = 7 d = 14 4 1 1 1 1 1/2

Therefore, we have

2 ≤ ki ≤
n

2
+ 1, 1 ≤ αi ≤

n

2
,

for i = 1, · · · ,m. The corresponding MDS codes for node
repair and node reconstruction are (n, di, n− di + 1) and
(n,αi, n− αi + 1), respectively.

We can also analyze the storage efficiency δS , which is
defined as the ratio between the actual size of data to be stored
and the total storage space needed by the encoded data in [6].
Then we have:

δS =
B

nα
=

m∑
i=1

αi(αi + 1)

n
m∑
i=1

αi

.

Table I compares the node repair capability for n = q =
24, with the number of layers m varying from 1 to 4 and
1 ≤ ki ≤ 7, i = 1, · · · ,m. Table I also provides the number of
symbols that will be stored in each node and the total number
of symbols stored. From the table, it is evident that as m
increases, the node repair capability approaches twice that of
when m = 1. This trend works also holds true to other n and
m cases.

We also observed that as n increases, the number of layers
required to reach the optimal node repair capability may also
increase.

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the m-layer
O-MSR code and compare it with the performance of the
RS-MSR code regarding the repair capability and the storage
efficiency.

A. Number of Layers and Node Repair Capability

To demonstrate the improvement in node repair capability
with the increasing number of layers, we select q = 26, n =
q − 1 = 63, and the code dimension k = 30 for a single layer.
We compare the maximum number fo bogus node from which
errors can be corrected when the number of layers m increase
from 1 to 6 while maintaining the overall code rate. The node
repair capability is shown in Fig. 2. From this figure, we can
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ir
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lit

y

O-MSR
RS-MSR

Fig. 2: Node repair capability increases with the number of
layers.

see that when m = 6, the m-layer O-MSR can double the
corrupted node detection and corrected capability compared
to the single layer RS-MSR, which represents the theoretical
optimal upper bound.

Fig. 3 compares the bogus node regeneration capability
between O-MSR and RS-MSR when the total number of
symbols stored in the m-layer code is 32 symbols and in the
single-layer RS-MSR code is '32/m(, respectively, with m
ranging from 1 to 16. This simulation again shows that the
performance of the m-layer code doubles that of the single
layer RS-MSR code.

B. Code Length and Node Repair Capability

In this simulation, we choose n = q2, m = 6, and code
rates of 3/4 and 1/2. As q increases from 4 to 16, in both
cases, the node regenerating capability for the O-MSR code
increases, reaching nearly double that of the RS-MSR code,
as demonstrated in Fig. 4. We also found that this trend holds
for all code rates.

From Fig. 4, we can also observe that the node regenerating
capability for O-MSR at a code rate of 3/4 nearly overlaps with
the RS-MSR at a code rate of 1/2. This observation suggests
that by maintaining the same node regenerating capability, O-
MSR can increase storage efficiency by 50%. This alternative
approach demonstrates the performance improvement achiev-
able with O-MSR codes.

C. Storage Capacity Improvement over Varying Node Repair
Capability

We also conducted simulations to compare the reliable data
storage capacity under varying given node failure and repair
capability. Specifically, we compared the storage capacity of
m-layer O-MSR codes and RS-MSR codes in two different
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Fig. 3: Comparison of bogus node regenerating capability
across varying layers between O-MSR and RS-MSR, where
each single-layer node stores '32/m( symbols and m variess
from 1 to 16.
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Fig. 4: Comparison of bogus node repair capability for m = 6,
n = q2 with q values from 4 to 16.

settings: (i) with n = q = 25, m = 4, and the number of nodes
that need to be repaired varies from 3 to 15, and (ii) with
n = q = 26, and m = 4, and the number of nodes that need
to be repaired varies from 3 to 31. The results are illustrated in
Fig. 6. It can observed from Fig. 6 that as the number of node
failures approaches 50% of the nodes, the reliable data storage
capacity of RS-MSR approaches 0, whereas the m-layer O-
MSR can still reliably store about 50% of data symbols in each
layer, which is consistent with the theoretical results provided
in Section V-B.
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Fig. 5: Bogus node repair capability comparison.
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Fig. 6: Node repair capability increases with the number of
layers.

VII. CONCLUSION

In this paper, we present the detailed construction of our
proposed m-layer minimum storage regenerating (MSR) code
for distributed storage. We discuss optimizations of the con-
struction, focusing on both node repair capability and storage
efficiency. Theoretical analysis shows that the optimal m-layer
MSR code can nearly double the capacity in node repair
for node regeneration while maintaining the same storage
efficiency. Alternatively, we can increase the data storage
efficiency by nearly 50% when the number of failed nodes
approaches close to 50%.
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