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ABSTRACT

In this work, we find a closed form formula for the braid index of an n-bridge braid,
a class of positive braid knots which simultaneously generalizes torus knots, 1-bridge
braids, and twisted torus knots. Our proof is elementary, effective, and self-contained,
and partially recovers work of Birman–Kofman. Along the way, we show that the dis-
parate definitions of twisted torus knots in the literature agree.
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1. Introduction

1.1. Motivation and summary

Knots and links play an important role in low-dimensional topology. One simple

way to measure the complexity of a link L in S3 is the braid index, i(L), which is

the minimum number of strands required to represent L as the closure of a braid

††Corresponding author.
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D. Gollero et al

on as many strands. As every link is realized as the closure of some braid [1],

the braid index is a well-defined link invariant. Even for knots, the braid index is

often quite difficult to compute. The simplest infinite family for which the braid

index is computed are the T (p, q) torus knots for which i(T (p, q)) = min{p, q}.

Analogous formulas in the literature are rare.

It is natural to hope that generalizations of torus knots lend themselves to

closed braid index formulas. One axis along which we can generalize comes from the

Dehn surgery perspective. Dehn surgery is a powerful operation within 3-manifold

topology: every 3-manifold is obtained by Dehn surgery along some link in S3

[21, 29]. Despite the ubiquity of this technique, some of the most basic questions

about Dehn surgery remain open. For example, the infamous Berge Conjecture pre-

dicts exactly which knots in S3 admit a Dehn surgery to lens spaces, the rational

homology 3-spheres admitting genus-1 Heegaard splittings [3]. Moser [25] showed

that torus knots always admit Dehn surgeries to lens spaces. Lens spaces are exam-

ples of L-spaces : the closed, connected, oriented 3-manifolds with “small” Heegaard

Floer homology [27]. It immediately follows that torus knots are examples of knots

admitting a Dehn surgery to L-spaces. Thus, one way to generalize torus knots

would be to identify other knots which also admit Dehn surgeries to L-spaces.

Perhaps surprisingly, there are infinitely many hyperbolic knots which admits

surgeries to lens spaces: the first examples were identified by Fintushel and Stern

a decade after Moser’s work [12]. A decade later still, work of Berge and Gabai

showed that an infinite sub-family of 1-bridge braids admit a Dehn surgery to a lens

space [2, 14, 15] (a precise definition of these knots appears later in this paper).

In fact, all 1-bridge braids admit a Dehn surgery to L-spaces [18]. Therefore, we

see that 1-bridge braids are a generalization of torus knots from the Dehn surgery

perspective — moreover, they are a natural extension from a braid-theoretic point

of view as well (see Sec. 2 for more details). Besides 1-bridge braids, there are other

braid theoretic ways to generalize torus knots, including n-bridge braids [15], twisted

torus knots [4, 20, 28], and T-links [4]. Section 2 contains the definitions of these

various families, and the relationships between them.

Braid theoretic definitions are valuable, in part, because they are explicit and

concrete — however, it can be remarkably difficult to determine whether different

braid theoretic definitions coincide. For example, twisted torus knots have received

a lot of attention over the past few years [4, 8, 9, 19, 20, 28], yet there are multiple

different braid theoretic definitions of twisted torus knots scattered throughout the

literature. In this paper, on route to proving our main result, we prove that these

various definitions of twisted torus knots coincide; see Sec. 3.

As mentioned above, n-bridge braids (which we define in Sec. 2) are one natural

generalization of twisted torus knots from a braid theoretic standpoint. Torus knots

are defined by using two parameters; in contrast, n-bridge braids are defined using

four parameters. In this work, we compute the braid index of any n-bridge braid.
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n-Bridge braids and the braid index

Theorem 1.1. The braid index of an n-bridge braid, K(w, b, t, n), is determined

by the defining parameters ; namely,

i(K(w, b, t, n)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w, t ≥ w, n ≥ 1,

t, w > t > b, n ≥ 1,

t+ 1, w > b ≥ t, n = 1,

b + 1, w > b ≥ t, n+ t ≥ b+ 1, n > 1,

n+ t, w > b ≥ t, n+ t < b+ 1, n > 1.

As an immediate consequence, we determine the braid index of a 1-bridge braid.

Corollary 1.2. The braid index of a 1-bridge braid K(w, b, t) is

i(K(w, b, t)) =

⎧
⎪⎪⎨
⎪⎪⎩

w, t ≥ w,

t, w > t > b,

t+ 1, b ≥ t.

The main proof strategy for Theorem 1.1, and Corollary 1.2 is elementary: we

use the well-known Markov moves to manipulate the presentation of the braid, and

then apply a result of Morton and Franks–Williams [13, 23, 24]. Their theorem says

that if a positive braid β on k strands contains a positive full twist, then in fact,

i(β) = k. Our proof is completely effective: we concretely apply Markov moves to

produce an explicit positive braid which contains a full twist; we then apply the

Morton–Franks–Williams result to this braid to know the braid index.

Theorem 1.1 partially recovers — using very different techniques — a result of

Birman–Kofman [4]. In [4], the authors define T-links (these links are the closures of

particular positive braids), and prove that the set of T-links coincides with the well

studied Lorenz links, i.e. the set of links which can be embedded onto the “Lorenz

template”, which is seen in Fig. 1. Lorenz links are interesting in their own right as

they exhibit rich dynamical and geometric properties [4, 5, 7, 8, 10, 11]. Notably,

Birman–Kofman show that over half of the “simplest” hyperbolic knots are Lorenz

knots [4].

We coarsely summarize the Birman–Kofman strategy for computing the braid

index for T-links and then contrast it with the methods used in this paper. Birman–

Williams [7] proved that Lorenz knots can always be realized as the closures of

positive braids which contain a positive full twist — therefore, one can apply

the Morton–Franks–Williams theorem to determine the braid index. So, Birman–

Kofman first prove that T-links coincide with Lorenz knots, and then adapt the

T-link presentation to a Lorenz presentation; applying Birman–Williams yields the

final result. In contrast to their combinatorial and dynamical proof, our proof is

self-contained, elementary, and explicit, as we bypass the Lorenz template and

only utilize Markov moves. Moreover, unlike Birman–Kofman, our proof produces

an explicit braid which is Markov equivalent to an n-bridge braid. This itself has
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D. Gollero et al

Fig. 1. In this figure, we see the Lorenz template, which is a 2-complex with some extra dynamical
information. The arrows on the template dictate how a simple curve (or collection thereof) should
flow around the surface. For example, a curve can flow from the left to the right by passing in
the “front” of the branch locus, and it can flow from the right to the left by passing “behind”
the branch locus. Simple closed curves that can be embedded on the Lorenz template are called
Lorenz links.

value, and was utilized by Krishna–Morton to study 4-dimensional properties of

Lorenz knots [19]; next, we briefly describe some of their works, and the ties to this

paper.

Recently, Krishna–Morton showed that if a knotK can be realized as the closure

of a positive braid with a full twist, then the braid index of K appears as the third

exponent in the Alexander polynomial for K [19, Theorem 1.2]. This already yields

applications for 1-bridge braids: in the proof of Corollary 1.2, we show that 1-bridge

braids can be realized as the closure of a positive braid with a full twist and thus, by

[19, Theorem 1.2], the third exponent of the Alexander polynomial for a 1-bridge

braid can be determined directly from the braid index formula in Corollary 1.2.

(We note that, in general, it is very hard to determine non-trivial terms in the

Alexander polynomial of a positive braid knot.) Prior to our work, if one wanted to

compute the braid index of a 1-bridge braid, one would have to do the following: (1)

Show that a 1-bridge braid is a T-link (from Gabai’s definition of 1-bridge braids,

and Birman–Kofman’s definition of T-links, this is not clear), and then (2) apply

Birman–Kofman (and Birman–Williams) to determine the braid index.

Therefore, in addition to identifying a closed formula for the braid index, our

paper accomplishes a few important goals: it unifies multiple viewpoints and def-

initions in the literature, and it is elementary and effective (and could be imple-

mented by a computer for more complicated links). Perhaps most importantly, it

produces an explicit positive braid word to which the Morton–Franks–Williams

theorem applies.

1.2. Outline of the paper

In Sec. 2, we outline the definitions and foundational results that we will use

throughout the paper and set some notational conventions for the remainder of

the paper. In Sec. 3, we prove that the different definitions of twisted torus knots
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n-Bridge braids and the braid index

in the literature agree, and also show that n-bridge braids (as we defined them) are

Lorenz knots. In Sec. 4, we establish a series of lemmas and propositions to be used

in the proof of Theorem 1.1. The proof of Theorem 1.1 is contained in Sec. 5.

2. Background

We begin with some preliminaries.

Definition 2.1. The braid group on n strands, denoted Bn, is the group with

the following presentation:

Bn := 〈σ1, σ2, . . . , σn−1 | R〉,

where R denotes the following set of braid relations:

(1) σiσj = σjσi if |i− j| > 1,

(2) σiσi+1σi = σi+1σiσi+1, where 1 ≤ i ≤ n− 2.

This is also known as Artin’s presentation for the braid group, and the generating

set σ1, . . . , σn−1 are typically referred to as the Artin generators for the braid group.

There are other group presentations for the braid group. The interested reader can

consult [6] for a survey, and to discover some of the many connections between the

braid group and topology, geometry, algebra, and dynamics.

Remark 2.2. In [16], Garside proves that the center of Bn is generated by the

full twist; that is, the element (σ1σ2 . . . σn−1)
n = (σn−1 . . . σ2σ1)

n commutes with

every other element in Bn. In the same work, Garside defines the Garside el-

ement: for the braid group Bn, the Garside element Δn is defined as follows:

Δn = (σ1σ2 · · ·σn−1)(σ1 . . . σn−2) . . . (σ1σ2)(σ1). He notes that (Δn)
2 is the full

twist, and that σiΔn = Δnσn−i. These facts about the braid group will be use-

ful in our proofs. For more about the Garside element, we recommend [17] as a

reference.

Definition 2.3. A braid β ∈ Bn is a positive braid, or braid positive, if it

contains only positive Artin generators. A knot or link is braid positive if it can

be realized as the closure of a positive braid.

Definition 2.4. A T-link is a link which is realized as the closure of a positive

braid τ , where

τ = (σ1σ2 . . . σp1−1)
q1(σ1σ2 . . . σp2−1)

q2 . . . (σ1σ2 . . . σps−1)
qs . (1)

Here, 2 ≤ p1 ≤ p2 ≤ · · · ≤ ps, 0 < qi for all i, and τ is a braid in Bps
.

Definition 2.5 (à la Vafaee [28]). A twisted torus knot is realized as the

closure of a positive braid ω on n strands, where

ω = (σn−1σn−2 . . . σ2σ1)
p(σn−1σn−2 . . . σn−k+1)

qk. (2)
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Here, 3 ≤ n, 2 ≤ p, 2 ≤ k ≤ n− 1, and q ≥ 1. That is, adding q many positive full

twists into k adjacent strands of a positive torus knot yields a twisted torus knot.

We note that we do not want to consider the case where k = n: if k = n, then

the definition of ω in Definition 2.5 simplifies to the standard braid word for the

torus link T (n, p+ qk) = T (n, p+ qn).

Definition 2.6. An n-bridge braid, denoted K(w, b, t, n), is the link realized as

the closure of the positive braid

(σbσb−1 . . . σ1)
n(σw−1 . . . σ2σ1)

t.

Here, 3 ≤ w, 1 ≤ b ≤ w − 2, t ≤ 2, and 1 ≤ n. Qualitatively, w is the number of

strands on which the braid is presented, b is the bridge length, t is the number of

twists, and n is the number of bridges.

Note: We do not want b = w− 1: if this were permitted, then the braid word in

Definition 2.6 would simplify to the torus knot T (w, n+ t).

The family of 1-bridge braids (e.g. where n = 1 in Definition 2.6) are espe-

cially well studied: as we noted in Sec. 1, 1-bridge braids have been studied by

Berge, Gabai, and Greene-Lewallen-Vafaee [2, 14, 15, 18], amongst others. Figure 2

organizes how 1-bridge braids, twisted torus knots, n-bridge braids, and T-links are

related.

Note that we will use K(w, b, t, n) to denote both the link and the associated

braid word

(σbσb−1 . . . σ1)
n(σw−1 . . . σ2σ1)

t.

Fig. 2. A schematic explaining how the relevant families of knots are related. We emphasize that
n-bridge braids can be viewed as a generalization of twisted torus knots: the hypothesis that there
are q full twists on k adjacent strands is weakened to partial twists.
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n-Bridge braids and the braid index

Fig. 3. The n-bridge braid K(5, 4, 2, 2) is realized as the closure of this braid.

To compute the braid index of a link L, we need a method for decreasing the

number of strands in the braided presentation of L. This method is called destabi-

lization.

Definition 2.7. Let ω be a braid word on n strands. A stabilization replaces

ω with ωσn or ωσ−1
n , a braid word on n + 1 strands. The reverse operation (of

replacing ωσn or ωσ−1
n , where ω has no σ±1

n letters) is called destabilization.

If two braids have the same closure, then the braids must be related in a par-

ticular way.

Theorem 2.8 (Markov [22]). Let β1 and β2 be two braid words. Then, their

braid closures are isotopic if and only if β1 and β2 are related by any combination

of : (1) braid relations, (2) conjugations, and (3) (de)stabilizations.

In particular, Markov’s theorem tells us the following: if α and β are braids in

Bn, then the braids ασnβ and αβ (which are braids in Bn+1) have isotopic closures

as links in S3. We will use this observation at various points throughout the proof

of our main theorem.

Finally, to determine the braid index, we will use a result independently obtained

by Morton and Franks–Williams.

Theorem 2.9 (Morton [23, 24]; Franks–Williams [13]). Suppose β ∈ Bn is

a positive braid, and β = ω(σn−1 . . . σ1)
n, where ω is a positive braid word. Then

the braid index of β is n, i.e. i(β) = n.

As noted in Remark 2.2, Garside proved that the positive full twist commutes

with every other element in the braid group. In particular, combining with the

Morton–Franks–Williams result, we see the following: if α, β ∈ Bn, and α and β

are both positive braid words, then α(σn−1 . . . σ1)
nβ has braid index n.

2.1. Conventions

Throughout the paper, we will indicate how the braid word changes by underlining

the letters of the braid word as they are changed by braid relations, conjugations, or
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de-stabilizations. When we draw our braids vertically, we read them top-to-bottom.

When we draw our braids horizontally, we read them from left-to-right. For us, σi

corresponds to strand (i+1) crossing over strand (i). Given a braid β, the notation

β̂ will denote its closure. Finally, we will use “=” to denote that two sides of an

equation are isotopic as braid closures and so are equal up to braid relations and

Markov moves.

3. n-Bridge Braids are Lorenz Knots

Birman–Kofman [4] showed that the class of Lorenz links coincides with that of

T-links. By the Birman–Kofman conventions [4, Eq. 1], a twisted torus knot on �

strands is realized as the closure of the following braid:

βBK = (σ1σ2 . . . σr)
kr(σ1σ2 . . . σ�−1)

s.

However, our definition of twisted torus knots (in Definition 2.5) follows Vafaee’s

conventions [28]; he defines a twisted torus knot on n strands to be obtained by

taking the braid closure of

βV = (σn−1σn−2 . . . σ2σ1)
p(σn−1σn−2 . . . σn−k)

qk.

It is not immediate that these braid words are Markov equivalent (and hence

that their closures are isotopic knots in S3). Given this discrepancy in the litera-

ture, we explicitly show that the Vafaee and Birman–Kofman twisted torus knots

are Markov equivalent. The remainder of this section is devoted to this proof: we

explicitly use Markov moves to put twisted torus knots and n-bridge braids into

T-link form.

Lemma 3.1. Fix some w ≥ 3. Let t ≥ 2, a ≥ 2, and c ≥ 1. Let α1 =

(σaσa+1 . . . σa+c)(σ1σ2 . . . σw−1)
t and let α2 = (σa−1σa . . . σa+c−1)(σ1σ2 . . . σw−1)

t,

where α1 and α2 are both elements of the braid group Bw. Then α1 and α2 are

conjugate braids. In particular, α̂1 and α̂2 are isotopic links in S3.

Proof. We do some explicit braid moves to verify the claim. For clarity, we un-

derline the portions of the braid that are being transformed from one line to the

next. We set γw := (σ1σ2 . . . σw−1), a braid word in Bw. We begin by pushing some

terms to the right:

α1 = (σaσa+1 . . . σa+c−1σa+c)(σ1σ2 . . . σw−1)
t

= (σaσa+1 . . . σa+c−1σa+c) γ
t
w

= (σaσa+1 . . . σa+c−1 σa+c)(σ1σ2 . . . σa+c−2σa+c−1σa+c)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w
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n-Bridge braids and the braid index

= (σaσa+1 . . . σa+c−1)(σ1σ2 . . . σa+c−2 σa+cσa+c−1σa+c)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w

= (σaσa+1 . . . σa+c−1)(σ1σ2 . . . σa+c−2 σa+c−1σa+cσa+c−1)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w

= (σaσa+1 . . . σa+c−2)(σ1σ2 . . . σa+c−1σa+c−2σa+c−1)

× (σa+cσa+c−1)(σa+c+1 . . . σw−2σw−1) γ
t−1
w

= (σaσa+1 . . . σa+c−2)(σ1σ2 . . . σa+c−2σa+c−1σa+c−2)(σa+cσa+c−1)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w

= (σaσa+1 . . . σa+c−2)(σ1σ2 . . . σa+c−2)(σa+c−1σa+c−2)

× (σa+cσa+c−1)(σa+c+1 . . . σw−2σw−1) γ
t−1
w

= (σaσa+1 . . . σa+c−3)(σ1 . . . σa+c−2σa+c−3σa+c−2)(σa+c−1σa+c−2)

× (σa+cσa+c−1)(σa+c+1 . . . σw−2σw−1) γ
t−1
w

= (σaσa+1 . . . σa+c−3)(σ1 . . . σa+c−3)(σa+c−2σa+c−3)(σa+c−1σa+c−2)

× (σa+cσa+c−1)(σa+c+1 . . . σw−2σw−1) γ
t−1
w .

We repeat this process — of moving the last term of the left-most parenthetical

as far into the braid as possible using commutation, and then applying the other

braid relation — until we reach σa. Note that at the end of each iteration of this

process, we produce a pair of adjacent terms of the form (σa+c−kσa+c−(k+1)). At

the penultimate stage, we have

= (σa)(σ1σ2 . . . σa−2σa−1)(σaσa+1σa)(σa+2σa+1) . . . (σa+cσa+c−1)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w

= (σ1σ2 . . . σa−2)(σaσa−1σa)(σa+1σa)(σa+2σa+1) . . . (σa+cσa+c−1)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w

= (σ1σ2 . . . σa−2)(σa−1σaσa−1)(σa+1σa)(σa+2σa+1) . . . (σa+cσa+c−1)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w .

Reassigning some parenthesis, we obtain

= (σ1σ2 . . . σa−2σa−1σa)(σa−1)(σa+1σa)(σa+2σa+1) . . . (σa+cσa+c−1)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w .

We observe that in each parenthetical of the form (σa+c−kσa+c−(k+1)), the left term

has a larger index than the right term. Moreover, as we read the parentheticals

2350090-9

J.
 K

n
o
t 

T
h
eo

ry
 R

am
if

ic
at

io
n
s 

2
0
2
3
.3

2
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 C

A
L

IF
O

R
N

IA
 @

 B
E

R
K

E
L

E
Y

 o
n
 1

1
/1

0
/2

5
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



D. Gollero et al

from left to right, the index of the first term uniformly increases until we hit

(σa+c+1 . . . σw−2σw−1) γ
t
w. Therefore, we can rewrite our braid by collecting terms

towards the front of the braid. In the following set of moves, we push the underlined

terms to the left:

= (σ1σ2 . . . σa−2σa−1σa)(σa−1)(σa+1σa)(σa+2σa+1) . . . (σa+cσa+c−1)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w

= (σ1σ2 . . . σa−2σa−1σaσa+1)(σa−1σa)(σa+2σa+1) . . . (σa+cσa+c−1)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w

= (σ1σ2 . . . σa−2σa−1σaσa+1σa+2)(σa−1σaσa+1) . . . (σa+cσa+c−1)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w .

Repeating this leftwards operation eventually yields:

= (σ1σ2 . . . σa+1σa+2 . . . σa+c)(σa−1σaσa+1 . . . σa+c−2σa+c−1)

× (σa+c+1 . . . σw−2σw−1) γ
t−1
w

= (σ1 . . . σw−1)(σa−1σaσa+1 . . . σa+c−2σa+c−1) γ
t−1
w

= (σa−1σaσa+1 . . . σa+c−2σa+c−1) γ
t
w

= α2.

In the last step, we conjugated by (σ1 . . . σw−1). We conclude that α1 and α2 are

conjugate.

Proposition 3.2. 1-bridge braids are Lorenz knots.

Proof. To prove that 1-bridge braids are Lorenz knots, it suffices to show that

some sequence of Markov moves transforms β to a braid τ , as in Eq. (1).

Let β = (σbσb−1 . . . σ2σ1)(σw−1σw−2 . . . σ2σ1)
t denote the standard braid pre-

sentation of a 1-bridge braid. Let β′ = (σw−bσw−b+1 . . . σw−1)(σ1σ2 . . . σw−1)
t. We

claim that β̂ and β̂′ are isotopic knots in S3: view S3 as R3∪{∞}, and fix the circle

C = z-axis ∪{∞}; we represent the z-axis by the purple dotted line in Fig. 4. We

draw the braid β on the “left” side of C, and then rotate β about the purple line;

this produces β′, which is seen on the “right” side of C. In particular, if we take

β̂ and follow it through the rotation isotopy, we will get β̂′. Therefore, β̂ = β̂′ as

knots in S3. Alternatively, one can use some standard results in braid theory: if we

conjugate β by the Garside element Δ ∈ Bw, we produce β′ (see [16, 17] for more

details); since conjugation preserves the link type of the closure, β̂ and β̂′ present

the same knot.
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n-Bridge braids and the braid index

Fig. 4. Rotating the left braid about the purple line produces the right braid.

Next, we perform (w − b− 1) many applications of Lemma 3.1:

β = (σbσb−1 . . . σ2σ1)(σw−1σw−2 . . . σ2σ1)
t

= (σw−bσw−b+1 . . . σw−1)(σ1σ2 . . . σw−1)
t

= (σw−b−1σw−b . . . σw−2)(σ1σ2 . . . σw−1)
t

= (σ1σ2 . . . σb)(σ1σ2 . . . σw−1)
t.

Thus, the 1-bridge braid β admits a T-link presentation.

Lemma 3.3. Twisted torus knots and n-bridge braids are Lorenz knots.

Proof. Twisted torus knots are the closures of positive braids on w strands with

the following form:

ρ = (σw−1σw−2 . . . σ1)
t(σw−1σw−2 . . . σw−k)

sk.

Rotating ρ as in Fig. 4 yields ρ′ = (σ1σ2 . . . σw−1)
t(σ1σ2 . . . σk)

sk. We know that ρ̂

and ρ̂′ are isotopic knots; since ρ′ is presented as a T-link braid, we deduce that

twisted torus knots are T-links.

Indeed, the braided presentation for n-bridge braids appears very similar to

those of twisted torus knots (however, there is not required that b divides n). We
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D. Gollero et al

quickly show that these, too, are T-links:

η = (σbσb−1 . . . σ1)
n(σw−1σw−2 . . . σ1)

t

= (σw−bσw−b+1 . . . σw−1)
n(σ1σ2 . . . σw−1)

t

= (σw−bσw−b+1 . . . σw−1)
n−1(σw−bσw−b+1 . . . σw−1)

× (σ1σ2 . . . σw−1)(σ1σ2 . . . σw−1)
t−1.

In the proof of Lemma 3.1, we only performed braid relationships — the only place

we conjugated our braid is in the last step. Thus, applying the proof of Lemma 3.1,

we see

= (σw−bσw−b+1 . . . σw−1)
n−1(σ1σ2 . . . σw−1)

× (σw−b−1σw−b . . . σw−2)(σ1σ2 . . . σw−1)
t−1

= (σ1σ2 . . . σw−1)(σw−b−1σw−b . . . σw−2)
n(σ1σ2 . . . σw−1)

t−1

= (σw−b−1σw−b . . . σw−2)
n(σ1σ2 . . . σw−1)

t.

We repeat this process an additional w − b− 2 times, yielding:

= (σ1σ2 . . . σb)
n(σ1σ2 . . . σw−1)

t.

Thus, n-bridge braids are more general than twisted torus knots, and they are

T-links.

4. Preliminaries for the Proof of the Main Theorem

Remark. After this paper was posted to the arXiv, the author of [26] informed us

that the results in this section are sketched in the body of the proof of Theorem

1.1 in [26]. This work contains the full proofs.

Definition 4.1. We define δn and γn to be the positive braid words δn :=

(σn . . . σ2σ1) and γn := (σ1σ2 . . . σn) in Br, the braid group on r strands, where

r ≥ n+ 1.

Remark 4.2. Note that K(w, b, t) = δ̂bδ
t
w−1.

Lemma 4.3. Let δk ∈ Bk+1. Then δk δk = δk−1 δk σ1 as braid words in Bk+1.

Proof. We begin by expanding the left-hand side.

δk δk = (σk σk−1 σk−2 . . . σ3 σ2 σ1)(σk . . . σ1) (3)

= (σk σk−1 σk σk−2 . . . σ3 σ2 σ1)(σk−1 . . . σ1) (4)
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n-Bridge braids and the braid index

= (σk−1 σk σk−1 σk−2 σk−3 . . . σ3 σ2 σ1)(σk−1 . . . σ1) (5)

= (σk−1 σk σk−1 σk−2 σk−1 σk−3 . . . σ3 σ2 σ1)(σk−2 . . . σ1) (6)

= (σk−1 σk σk−2 σk−1 σk−2 σk−3 . . . σ3 σ2 σ1)(σk−2 . . . σ1) (7)

= (σk−1 σk−2 σk σk−1 σk−2 σk−3 . . . σ3 σ2 σ1)(σk−2 . . . σ1) (8)

= (σk−1 σk−2 σk σk−1 σk−2 σk−3 σk−2 . . . σ3 σ2 σ1)(σk−3 . . . σ1) (9)

= (σk−1 σk−2 σk σk−1 σk−3 σk−2 σk−3 . . . σ3 σ2 σ1)(σk−3 . . . σ1) (10)

= (σk−1 σk−2 σk−3 σk σk−1 σk−2 σk−3 . . . σ3 σ2 σ1)(σk−3 . . . σ1). (11)

We describe the operations at play: in line (3), we identify the σk letter that

is furthest to the right, and apply k − 2 commuting relations to push it as much

to the left as possible. This creates the underlined subword σkσk−1σk in line (4);

applying the braid relation yields line (5). We repeat this procedure (of finding the

largest letter in the right parenthetical subword, applying commuting relations to

push it as far to the left as possible, and then applying a braid relation in lines

(5)–(7). From lines (7) to (8), we identify and execute another commuting relation.

We call this 4-step procedure a left push, and say that we perform a left push on

σt when σt is the largest letter in the second parenthetical braid word. Note that

after executing the left push operation on σr+1, the braid word decomposes into

the three subwords ((σk−1 . . . σr)(σk . . . σ1))(σr . . . σ1); this is seen explicitly in lines

(8) and (11). After repeating the left push operation another k − 5 times from line

(11) onwards, we get

= ((σk−1 σk−2 σk−3 . . . σ3 σ2) (σk σk−1 σk−2 σk−3 . . . σ3 σ2 σ1))(σ2 σ1) (12)

= (σk−1 σk−2 σk−3 . . . σ3 σ2 σk σk−1 σk−2 σk−3 . . . σ3 σ2 σ1 σ2 σ1) (13)

= (σk−1 σk−2 σk−3 . . . σ3 σ2 σk σk−1 σk−2 σk−3 . . . σ3 σ1 σ2 σ1 σ1) (14)

= ((σk−1 σk−2 σk−3 . . . σ3 σ2 σ1) (σk σk−1 σk−2 σk−3 . . . σ3 σ2 σ1)) σ1 (15)

= δk−1 δk σ1. (16)

This is exactly what we wanted to show.

Lemma 4.4. Let δk ∈ Bk+1. Then σ1 δk = δk σ2.

Proof. We begin by expanding the left-hand side.

σ1 δk = σ1 σk σk−1 σk−2 . . . σ3 σ2 σ1

= σ1 σk σk−1 σk−2 . . . σ3 σ2 σ1

= σk σk−1 σk−2 . . . σ3 σ1 σ2 σ1
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D. Gollero et al

= (σk σk−1 σk−2 . . . σ3 σ2 σ1) σ2

= δkσ2.

This is what we wanted to prove.

Lemma 4.5. Let δk ∈ Bk+1. Then σj δk = δk σj+1 when 1 < j < k.

Proof. Suppose 1 < j < k. We begin by expanding σjδk:

σjδk = σj(σkσk−1 . . . σj+2 σj+1σjσj−1 . . . σ1)

= σkσk−1 . . . σj+2 σjσj+1σjσj−1 . . . σ1

= σkσk−1 . . . σj+2 σj+1σjσj+1σj−1 . . . σ1

= (σkσk−1 . . . σj+2 σj+1σjσj−1 . . . σ1)σj+1

which is δkσj+1, as desired.

Lemma 4.6. Let δk ∈ Bk+1. When s < k, we have σ1 δsk = δsk σs+1.

Proof. We see that

σ1δk
s = σ1δkδk

s−1

= δkσ2δkδk
s−2 by Lemma 4.4

= δk
2σ3δkδk

s−3 by Lemma 4.5.

Applying Lemma 4.5 a total of s− 1 times, we get

δsk σs+1.

Thus, σ1 δsk = δsk σs+1.

Note that Lemma 4.5 generalizes Lemmas 4.4 and 4.6 combines Lemmas 4.4

and 4.5.

Proposition 4.7. Let δj ∈ Bj+1. Then δtj = δj−1 δt−1
j σt−1, where t < j.

Proof. We see that

δtj = (δjδj)δ
t−2
j

= (δj−1δjσ1)δ
t−2
j by Lemma 4.3

= δj−1δj(σ1δ
t−2
j )

= δj−1δj(δ
t−2
j σ(t−2)+1) by Lemma 4.6

= δj−1δjδ
t−2
j σt−1

= δj−1δ
t−1
j σt−1.

Thus, δtj = δj−1 δt−1
j σt−1.
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n-Bridge braids and the braid index

Proposition 4.8. Let δk, γt−1 ∈ Bk+1. Then, δ
t
k = δt−1

k−1 δk γt−1, where t < k.

Proof. Note that

δtk = δk−1(δk
t−1)σt−1 by Proposition 4.7

= δk−1(δk−1δk
t−2σt−2)σt−1 by Proposition 4.7

= δ2k−1 (δk
t−2) σt−2σt−1.

Iteratively apply Proposition 4.7 an additional t− 3 times to the rightmost δt−�
k to

obtain

δtk = δt−1
k−1 δ1k (σ1σ2 . . . σt−1)

= δt−1
k−1 δk γt−1.

This yields the desired conclusion.

Proposition 4.9. Let δk ∈ Bk+1. Then, δ
k
k = δk−1(δ

k−1
k )σk−1.

Proof.

δkk = (δk−1
k )δk

= (δk−1δ
k−2
k σk−2)δk by Proposition 4.7

= δk−1δ
k−2
k (σk−2δk)

= δk−1δ
k−2
k (δkσk−1) by Lemma 4.5

= δk−1(δ
k−1
k )σk−1.

This is what we wanted to show.

Proposition 4.10. Let δk ∈ Bk+1, and suppose α ∈ Bk (so, in particular, α is a

braid word on strictly fewer strands than δk). Then α δkk = α δkk−1γk−1.

Proof. The proof requires straightforward applications of Propositions 4.8 and 4.9.

α δkk = α (δk−1 δk−1
k σk−1) by Propositions 4.9

= α δk−1 (δk−2
k−1 δk γk−2) σk−1 by Proposition 4.8

= α δk−1
k−1 δk γk−1

= α δk−1
k−1 σk δk−1 γk−1.

Since α is a braid in Bk, there is a unique σk letter in this braid. So, we can

destabilize to get

= α δkk−1 γk−1.

This is what we wanted to show.
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5. Proof of the Main Theorem

Theorem 1.1. The braid index of an n-bridge braid

K(w, b, t, n)

is

i(K(w, b, t, n)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w, t ≥ w, n ≥ 1,

t, w > t > b, n ≥ 1,

t+ 1, w > b ≥ t, n = 1,

b+ 1, w > b ≥ t, n+ t ≥ b+ 1, n > 1,

n+ t, w > b ≥ t, n+ t < b+ 1, n > 1.

Proof. We use Propositions 4.7 and 4.8 and destabilizations to find a presentation

of the knot which allows us to apply Theorem 2.9.

Case 1: t ≥ w, n ≥ 1.

Let t ≥ w and n ≥ 1. Then, we know

K(w, b, t, n) = δnb δ
t
w−1

= δnb δ
w
w−1δ

t−w
w−1.

Since (σw−1σw−2 . . . σ1)
w is a full twist on w strands, by applying Theorem 2.9,

i(K(w, b, t, n)) = w.

Case 2: w > t > b, n ≥ 1.

Suppose w > t > b and n ≥ 1. If w − 1 = t > b, then we have

K(w, b, t, n) = δnb δ
t
w−1

= δnb δ
w−1
w−1

= δnb δw−1
w−2 γw−2 by Proposition 4.10

= δnb δtt−1 γt−1 since t = w − 1.

Therefore, the braid can be written to contain δtt−1, which is a full twist on t strands.

By Theorem 2.9, i(K(w, b, t, n)) = t if w − 1 = t > b, n ≥ 1.

We now study what happens if w − 1 > t > b. We know

K(w, b, t, n) = δnb δ
t
w−1

= δnb δ
t−1
w−2δw−1γt−1 by Proposition 4.8

= δnb δ
t−1
w−2σw−1δw−2γt−1.
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n-Bridge braids and the braid index

Since w > t > b, then w− 1 ≥ t > b, hence there is a single σw−1 in the braid word,

which is currently in Bw−1. Thus, we can destabilize the braid to produce a new

braid in Bw−2:

K(w, b, t, n) = δnb δ
t−1
w−2σw−1δw−2γt−1

= δnb δ
t−1
w−2δw−2γt−1

= δnb δ
t
w−2γt−1.

We iteratively: (1) apply Proposition 4.8 to the rightmost δtw−� term, and (2) desta-

bilize the largest remaining Artin generator. Since w > t > b we can repeat the

above process a total of w − t times, after which we have

K(w, b, t) = δnb δ
t
t−1γ

w−t
t−1 .

As t > b, we know that t− 1 ≥ b, hence δnb contains no σs letters, where s ≥ t− 1.

Moreover, this is a braid word in Bt, and it contains a full twist on t strands. By

Theorem 2.9, i(K(w, b, t, n)) = t.

Case 3: w > b ≥ t, n = 1.

Our definition of a 1-bridge braid requires that w− 2 ≥ b, so we may revise our

assumptions to be w − 2 ≥ b ≥ t. In particular, note that t < w − 1. We have

K(w, b, t) = δbδ
t
w−1

= δbδ
t−1
w−2δw−1γt−1 by Proposition 4.8

= δbδ
t−1
w−2σw−1δw−2γt−1.

Since w − 2 ≥ b, there is a single σw−1, and we can destabilize the braid:

K(w, b, t) = δbδ
t−1
w−2σw−1δw−2γt−1

= δbδ
t−1
w−2δw−2γt−1

= δbδ
t
w−2γt−1.

We iteratively: (1) apply Proposition 4.8 to the rightmost δtw−� term, and (2) desta-

bilize the largest remaining Artin generator. Since w > b ≥ t, we can repeat the

above process a total of w − b− 1 times, after which we have

K(w, b, t) = δbδ
t
w−2γt−1

= δbδ
t
bγ

w−b−1
t−1 .

This braid word is in Bb+1, the braid group on b+ 1 strands. If b = t, then

K(w, b, t) = δt+1
b γw−b−1

t−1 = δt+1
t γw−b−1

t−1 .

Applying Theorem 2.9 allows us to conclude that i(K(w, b, t)) = t+ 1.
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Otherwise, b > t and we iteratively: (1) apply Proposition 4.8 to the δt+1
b−� term

(note that � = 0 to start), and (2) destabilize the largest remaining Artin generator.

Since b > t, we can repeat this process a total of b− t times to obtain

K(w, b, t) = δt+1
b γw−b−1

t−1

= δt+1
t γb−t

t γw−b−1
t−1 .

Once again, by Theorem 2.9, we deduce i(K(w, b, t)) = t+ 1.

Case 4: w > b ≥ t, n+ t ≥ b+ 1, n > 1.

Suppose w > b ≥ t, n+ t ≥ b+ 1, and n > 1. Our definition of a 1-bridge braid

requires that w − 2 ≥ b, so we may revise our assumptions to be w − 2 ≥ b ≥ t. In

particular, note that t < w − 1. We have

K(w, b, t, n) = δnb (δ
t
w−1)

= δnb δ
t−1
w−2(δw−1)γt−1 by Proposition 4.8

= δnb δ
t−1
w−2(σw−1δw−2)γt−1.

Since w − 2 ≥ b, there is a single σw−1, and we can destabilize the braid:

K(w, b, t) = δnb δ
t−1
w−2(σw−1)δw−2γt−1

= δnb δ
t−1
w−2δw−2γt−1

= δnb δ
t
w−2γt−1.

We iteratively: (1) apply Proposition 4.8 to the rightmost δtw−� term, and (2) desta-

bilize the largest remaining Artin generator. Since w > b ≥ t, we can repeat the

above process a total of w − b− 1 times, after which we have

K(w, b, t) = δnb δ
t
w−2γt−1

= δnb δ
t
bγ

w−b−1
t−1 .

This is a braid word on b+ 1 strands. As n+ t ≥ b+ 1, we get

K(w, b, t) = δnb δ
t
bγ

w−b−1
t−1

= δn+t
b γw−b−1

t−1 .

Applying Theorem 2.9, we deduce i(K(w, b, t, n)) = b+ 1.

Case 5: w > b ≥ t, n+ t < b+ 1.

Our definition of a 1-bridge braid requires that w− 2 ≥ b, so we may revise our

assumptions to be w − 2 ≥ b ≥ t. In particular, t < w − 1. We begin by applying

Proposition 4.8 to the standard braided presentation of K(w, b, t, n):

K(w, b, t, n) = δnb δ
t
w−1

= δnb δ
t−1
w−2(δw−1)γt−1 by Proposition 4.8

= δnb δ
t−1
w−2σw−1δw−2γt−1.
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n-Bridge braids and the braid index

Our definition of n-bridge braid required that w−2 ≥ b. Therefore, there is a single

σw−1, and we can destabilize the braid:

K(w, b, t, n) = δnb δ
t−1
w−2σw−1δw−2γt−1

= δnb δ
t−1
w−2δw−2γt−1

= δnb δ
t
w−2γt−1.

We iteratively: (1) apply Proposition 4.8 to the rightmost δtw−� term, and (2) desta-

bilize the largest remaining Artin generator. Since w > b ≥ t, we can repeat the

above process a total of w − b− 1 times, after which we have

K(w, b, t, n) = δnb δ
t
w−2γt−1

= δnb δ
t
bγ

w−b−1
t−1 . (17)

This braid word is on b + 1 strands. We assumed that n + t < b + 1, so namely,

n+ t ≤ b. Suppose n+ t = b. In this case,

K(w, b, t, n) = δnb δ
t
bγ

w−b−1
t−1

= δbbγ
w−b−1
t−1

= δb−1δ
b−1
b σb−1γ

w−b+1
t−1 by Proposition 4.9

= δb−1δ
b−2
b−1δbγb−2σb−1γ

w−b+1
t−1 by Proposition 4.8

= δb−1δ
b−2
b−1δbγb−2σb−1γ

w−b+1
t−1

= δb−1δ
b−2
b−1σbδb−1γb−2σb−1γ

w−b+1
t−1

= δb−1δ
b−1
b−1γb−2σb−1γ

w−b+1
t−1 by destabilizing the unique σb letter

= δbb−1γb−1γ
w−b+1
t−1 .

This braid word on b strands contains a full twist; thus, by Theorem 2.9,

i(K(w, b, t, n)) = b = n+ t. Now suppose n+ t < b. In particular, n+ t ≤ b− 1. In

this case, as in Eq. (17),

K(w, b, t, n) = δnb δ
t
bγ

w−b−1
t−1

= δn+t
b γw−b−1

t−1

= δn+t−1
b−1 δbγn+t−1γ

w−b−1
t−1 by Proposition 4.8

= δn+t−1
b−1 δbγn+t−1γ

w−b−1
t−1

= δn+t−1
b−1 σbδb−1γn+t−1γ

w−b−1
t−1

= δn+t−1
b−1 δb−1γn+t−1γ

w−b−1
t−1 by destabilizing the unique σb letter

= δn+t
b−1γn+t−1γ

w−b−1
t−1 .
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To simplify the right-hand side, we will need to (1) apply Proposition 4.8 to the δn+t
b−�

term, and then (2) destabilize the largest remaining Artin generator. We will need

to repeat this process (b − 1)− (n+ t) many times. Below, we write out explicitly

what happens after applying steps (1) and (2) once, and then suppress the word for

the remaining (b− 1)− (n+ t)− 1 applications Proposition 4.8 and destabilization.

We note: implicitly, we really are using that n+ t ≤ b− 1.

K(w, b, t, n) = δn+t
b−1γn+t−1γ

w−b−1
t−1

= (δn+t−1
b−2 δb−1γn+t−1)γn+t−1γ

w−b−1
t−1 by Proposition 4.8

= δn+t−1
b−2 σb−1δb−2γ

2
n+t−1γ

w−b−1
t−1 by the definition of δb−1

= δn+t−1
b−2 δb−2γ

2
n+t−1γ

w−b−1
t−1 by destabilizing the σb−1 term

= δn+t
b−2 γ2

n+t−1 γw−b−1
t−1

= δn+t
n+t γ

b−1−(n+t)+1
n+t−1 γw−b+1

t−1 after repeating this process another

× (b− 1)− (n+ t)− 1 times

= δn+t−1δ
n+t−1
n+t σn+t−1 γb−n−t

n+t−1 γw−b+1
t−1 by Proposition 4.9

= δn+t−1δ
n+t−1
n+t σn+t−1 γb−n−t

n+t−1 γw−b+1
t−1

= δn+t−1δ
n+t−2
n+t−1δn+tγn+t−2σn+t−1 γ

b−n−t
n+t−1 γ

w−b+1
t−1 by Proposition 4.8

= δn+t−1δ
n+t−2
n+t−1δn+tγn+t−2σn+t−1 γb−n−t

n+t−1 γw−b+1
t−1

= δn+t−1δ
n+t−2
n+t−1σn+tδn+t−1γn+t−2σn+t−1 γb−n−t

n+t−1 γw−b+1
t−1

= δn+t−1δ
n+t−2
n+t−1δn+t−1γn+t−2σn+t−1 γb−n−t

n+t−1 γw−b+1
t−1

× by destablizing the σn+t term

= δn+t
n+t−1γn+t−2σn+t−1 γb−n−t

n+t−1 γw−b+1
t−1

= δn+t
n+t−1γn+t−1 γb−n−t

n+t−1 γw−b+1
t−1

= δn+t
n+t−1γ

b−n−t+1
n+t−1 γw−b+1

t−1 .

This braid word in Bn+t contains a full twist; applying Theorem 2.9, we deduce

the braid index is n+ t.

6. Future Directions

Our proof of Theorem 1.1 is self-contained and effective: we started with the def-

inition of an n-bridge braid, and we produced a Markov equivalent positive braid

containing a full twist. The algorithm we produce could be extended to all T-links.

However, the computations are significantly more tedious, so we do not include them
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n-Bridge braids and the braid index

here. An interesting future direction would be to write a computer implementation

of our algorithm for all T-links.
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