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ABSTRACT

In this work, we find a closed form formula for the braid index of an n-bridge braid,
a class of positive braid knots which simultaneously generalizes torus knots, 1-bridge
braids, and twisted torus knots. Our proof is elementary, effective, and self-contained,
and partially recovers work of Birman—Kofman. Along the way, we show that the dis-
parate definitions of twisted torus knots in the literature agree.
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1. Introduction
1.1. Motwation and summary

Knots and links play an important role in low-dimensional topology. One simple
way to measure the complexity of a link L in S® is the braid index, i(L), which is
the minimum number of strands required to represent L as the closure of a braid
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on as many strands. As every link is realized as the closure of some braid [1],
the braid index is a well-defined link invariant. Even for knots, the braid index is
often quite difficult to compute. The simplest infinite family for which the braid
index is computed are the T(p,q) torus knots for which i(T(p,q)) = min{p, ¢}.
Analogous formulas in the literature are rare.

It is natural to hope that generalizations of torus knots lend themselves to
closed braid index formulas. One axis along which we can generalize comes from the
Dehn surgery perspective. Dehn surgery is a powerful operation within 3-manifold
topology: every 3-manifold is obtained by Dehn surgery along some link in S3
[21, 29]. Despite the ubiquity of this technique, some of the most basic questions
about Dehn surgery remain open. For example, the infamous Berge Conjecture pre-
dicts exactly which knots in S® admit a Dehn surgery to lens spaces, the rational
homology 3-spheres admitting genus-1 Heegaard splittings [3]. Moser [25] showed
that torus knots always admit Dehn surgeries to lens spaces. Lens spaces are exam-
ples of L-spaces: the closed, connected, oriented 3-manifolds with “small” Heegaard
Floer homology [27]. It immediately follows that torus knots are examples of knots
admitting a Dehn surgery to L-spaces. Thus, one way to generalize torus knots
would be to identify other knots which also admit Dehn surgeries to L-spaces.

Perhaps surprisingly, there are infinitely many hyperbolic knots which admits
surgeries to lens spaces: the first examples were identified by Fintushel and Stern
a decade after Moser’s work [12]. A decade later still, work of Berge and Gabai
showed that an infinite sub-family of 1-bridge braids admit a Dehn surgery to a lens
space [2, 14, 15] (a precise definition of these knots appears later in this paper).
In fact, all 1-bridge braids admit a Dehn surgery to L-spaces [18]. Therefore, we
see that 1-bridge braids are a generalization of torus knots from the Dehn surgery
perspective — moreover, they are a natural extension from a braid-theoretic point
of view as well (see Sec. 2 for more details). Besides 1-bridge braids, there are other
braid theoretic ways to generalize torus knots, including n-bridge braids [15], twisted
torus knots [4, 20, 28], and T-links [4]. Section 2 contains the definitions of these
various families, and the relationships between them.

Braid theoretic definitions are valuable, in part, because they are explicit and
concrete — however, it can be remarkably difficult to determine whether different
braid theoretic definitions coincide. For example, twisted torus knots have received
a lot of attention over the past few years [4, 8, 9, 19, 20, 28], yet there are multiple
different braid theoretic definitions of twisted torus knots scattered throughout the
literature. In this paper, on route to proving our main result, we prove that these
various definitions of twisted torus knots coincide; see Sec. 3.

As mentioned above, n-bridge braids (which we define in Sec. 2) are one natural
generalization of twisted torus knots from a braid theoretic standpoint. Torus knots
are defined by using two parameters; in contrast, n-bridge braids are defined using
four parameters. In this work, we compute the braid index of any n-bridge braid.
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Theorem 1.1. The braid index of an n-bridge braid, K(w,b,t,n), is determined
by the defining parameters; namely,

w t>w, n>1,

t, w>t>b, n>1,
i(K(w,bt,n))=<t+1, w>b>t, n=1,

b+1, w>b>t, n+t>b+1, n>1,

n+t, w>b>t, n+t<b+1, n>1.
As an immediate consequence, we determine the braid index of a 1-bridge braid.

Corollary 1.2. The braid index of a 1-bridge braid K(w,b,t) is

w, t > w,
i(K(w,b,t)) =< t, w>1t>b,
t+1, b>t.

The main proof strategy for Theorem 1.1, and Corollary 1.2 is elementary: we
use the well-known Markov moves to manipulate the presentation of the braid, and
then apply a result of Morton and Franks—Williams [13, 23, 24]. Their theorem says
that if a positive braid 8 on k strands contains a positive full twist, then in fact,
i(8) = k. Our proof is completely effective: we concretely apply Markov moves to
produce an explicit positive braid which contains a full twist; we then apply the
Morton—Franks—Williams result to this braid to know the braid index.

Theorem 1.1 partially recovers — using very different techniques — a result of
Birman—Kofman [4]. In [4], the authors define T-links (these links are the closures of
particular positive braids), and prove that the set of T-links coincides with the well
studied Lorenz links, i.e. the set of links which can be embedded onto the “Lorenz
template”, which is seen in Fig. 1. Lorenz links are interesting in their own right as
they exhibit rich dynamical and geometric properties [4, 5, 7, 8, 10, 11]. Notably,
Birman—Kofman show that over half of the “simplest” hyperbolic knots are Lorenz
knots [4].

We coarsely summarize the Birman—Kofman strategy for computing the braid
index for T-links and then contrast it with the methods used in this paper. Birman—
Williams [7] proved that Lorenz knots can always be realized as the closures of
positive braids which contain a positive full twist — therefore, one can apply
the Morton—Franks—Williams theorem to determine the braid index. So, Birman—
Kofman first prove that T-links coincide with Lorenz knots, and then adapt the
T-link presentation to a Lorenz presentation; applying Birman—Williams yields the
final result. In contrast to their combinatorial and dynamical proof, our proof is
self-contained, elementary, and explicit, as we bypass the Lorenz template and
only utilize Markov moves. Moreover, unlike Birman—Kofman, our proof produces
an ezplicit braid which is Markov equivalent to an n-bridge braid. This itself has
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Fig. 1. In this figure, we see the Lorenz template, which is a 2-complex with some extra dynamical
information. The arrows on the template dictate how a simple curve (or collection thereof) should
flow around the surface. For example, a curve can flow from the left to the right by passing in
the “front” of the branch locus, and it can flow from the right to the left by passing “behind”
the branch locus. Simple closed curves that can be embedded on the Lorenz template are called
Lorenz links.

value, and was utilized by Krishna—Morton to study 4-dimensional properties of
Lorenz knots [19]; next, we briefly describe some of their works, and the ties to this
paper.

Recently, Krishna—Morton showed that if a knot K can be realized as the closure
of a positive braid with a full twist, then the braid index of K appears as the third
exponent in the Alexander polynomial for K [19, Theorem 1.2]. This already yields
applications for 1-bridge braids: in the proof of Corollary 1.2, we show that 1-bridge
braids can be realized as the closure of a positive braid with a full twist and thus, by
[19, Theorem 1.2], the third exponent of the Alexander polynomial for a 1-bridge
braid can be determined directly from the braid index formula in Corollary 1.2.
(We note that, in general, it is very hard to determine non-trivial terms in the
Alexander polynomial of a positive braid knot.) Prior to our work, if one wanted to
compute the braid index of a 1-bridge braid, one would have to do the following: (1)
Show that a 1-bridge braid is a T-link (from Gabai’s definition of 1-bridge braids,
and Birman-Kofman’s definition of T-links, this is not clear), and then (2) apply
Birman-Kofman (and Birman-Williams) to determine the braid index.

Therefore, in addition to identifying a closed formula for the braid index, our
paper accomplishes a few important goals: it unifies multiple viewpoints and def-
initions in the literature, and it is elementary and effective (and could be imple-
mented by a computer for more complicated links). Perhaps most importantly, it
produces an explicit positive braid word to which the Morton—Franks—Williams
theorem applies.

1.2. Outline of the paper

In Sec. 2, we outline the definitions and foundational results that we will use
throughout the paper and set some notational conventions for the remainder of
the paper. In Sec. 3, we prove that the different definitions of twisted torus knots
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in the literature agree, and also show that n-bridge braids (as we defined them) are
Lorenz knots. In Sec. 4, we establish a series of lemmas and propositions to be used
in the proof of Theorem 1.1. The proof of Theorem 1.1 is contained in Sec. 5.

2. Background

We begin with some preliminaries.

Definition 2.1. The braid group on n strands, denoted B,,, is the group with
the following presentation:

B, = (01,02,...,0n-1|R),
where R denotes the following set of braid relations:

(1) 0,05 = 004 if |Z —]| > 1,
(2) 0;0i4+10; = 0;410;0;41, where 1 S ) S n—2.

This is also known as Artin’s presentation for the braid group, and the generating
set 01, ...,0,_1 are typically referred to as the Artin generators for the braid group.
There are other group presentations for the braid group. The interested reader can
consult [6] for a survey, and to discover some of the many connections between the
braid group and topology, geometry, algebra, and dynamics.

Remark 2.2. In [16], Garside proves that the center of B,, is generated by the
full twist; that is, the element (o102...0,-1)" = (0p—1...0201)" commutes with
every other element in B,. In the same work, Garside defines the Garside el-
ement: for the braid group B,, the Garside element A, is defined as follows:
A, = (o102 04_1)(01...04_2)...(0102)(01). He notes that (A,)? is the full
twist, and that 0;A,, = A,o,—;. These facts about the braid group will be use-
ful in our proofs. For more about the Garside element, we recommend [17] as a
reference.

Definition 2.3. A braid 5 € B, is a positive braid, or braid positive, if it
contains only positive Artin generators. A knot or link is braid positive if it can
be realized as the closure of a positive braid.

Definition 2.4. A T-link is a link which is realized as the closure of a positive
braid 7, where

T=(0102...0p,-1)0(0102...0p,—1)" ... (0102...0p,—1)%. (1)
Here, 2 <p; <pa <--- < ps, 0 < ¢; for all 4, and 7 is a braid in B,_.

Definition 2.5 (a la Vafaee [28]). A twisted torus knot is realized as the
closure of a positive braid w on n strands, where

w=(op—10n—2...0201)P(0p—10n—2... Un,k+1)qk. (2)
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Here,3<n,2<p,2<k<n-—1,and ¢ > 1. That is, adding ¢ many positive full
twists into k£ adjacent strands of a positive torus knot yields a twisted torus knot.

We note that we do not want to consider the case where k = n: if k = n, then
the definition of w in Definition 2.5 simplifies to the standard braid word for the
torus link T'(n,p + gk) = T'(n,p+ qn).

Definition 2.6. An n-bridge braid, denoted K(w,b,t,n), is the link realized as
the closure of the positive braid

(O'bUb—l .. .01)"(0w_1 . ..Ugol)t.

Here, 3 <w, 1 <b<w-—2,t<2 and 1 < n. Qualitatively, w is the number of
strands on which the braid is presented, b is the bridge length, ¢ is the number of
twists, and n is the number of bridges.

Note: We do not want b = w — 1: if this were permitted, then the braid word in
Definition 2.6 would simplify to the torus knot T'(w,n + t).

The family of 1-bridge braids (e.g. where n = 1 in Definition 2.6) are espe-
cially well studied: as we noted in Sec. 1, 1-bridge braids have been studied by
Berge, Gabai, and Greene-Lewallen-Vafaee [2, 14, 15, 18], amongst others. Figure 2
organizes how 1-bridge braids, twisted torus knots, n-bridge braids, and T-links are
related.

Note that we will use K(w,b,t,n) to denote both the link and the associated
braid word

n t
— w—
(O'bUb 1...0’1) (0’ 1...020'1) .

Lorenz
knots
twisted
1-bridge torus n-bridge I
braids knots braids
T-links

Fig. 2. A schematic explaining how the relevant families of knots are related. We emphasize that
n-bridge braids can be viewed as a generalization of twisted torus knots: the hypothesis that there
are ¢ full twists on k adjacent strands is weakened to partial twists.
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Fig. 3. The n-bridge braid K (5,4, 2,2) is realized as the closure of this braid.
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To compute the braid index of a link L, we need a method for decreasing the
number of strands in the braided presentation of L. This method is called destabi-
lization.

Definition 2.7. Let w be a braid word on n strands. A stabilization replaces
—1 a braid word on n + 1 strands. The reverse operation (of

n

replacing wa,, or wo,, !, where w has no 0! letters) is called destabilization.

w with wo,, or wo

If two braids have the same closure, then the braids must be related in a par-
ticular way.

Theorem 2.8 (Markov [22]). Let 81 and B2 be two braid words. Then, their
braid closures are isotopic if and only if 51 and B2 are related by any combination
of : (1) braid relations, (2) conjugations, and (3) (de)stabilizations.

In particular, Markov’s theorem tells us the following: if @ and S are braids in
B, then the braids ao, S and o (which are braids in B,,41) have isotopic closures
as links in S3. We will use this observation at various points throughout the proof
of our main theorem.

Finally, to determine the braid index, we will use a result independently obtained
by Morton and Franks-Williams.

Theorem 2.9 (Morton [23, 24]; Franks—Williams [13]). Suppose 5 € By, is
a positive braid, and f = w(op—1...01)", where w is a positive braid word. Then

the braid index of B is m, i.e. i(8) = n.

As noted in Remark 2.2, Garside proved that the positive full twist commutes
with every other element in the braid group. In particular, combining with the
Morton—Franks—Williams result, we see the following: if a, 8 € B,,, and « and (8
are both positive braid words, then a(cy,—1 ...01)"8 has braid index n.

2.1. Conwventions

Throughout the paper, we will indicate how the braid word changes by underlining
the letters of the braid word as they are changed by braid relations, conjugations, or
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de-stabilizations. When we draw our braids vertically, we read them top-to-bottom.
When we draw our braids horizontally, we read them from left-to-right. For us, o;
corresponds to strand (¢4 1) crossing over strand (¢). Given a braid £, the notation

“

B will denote its closure. Finally, we will use “=" to denote that two sides of an
equation are isotopic as braid closures and so are equal up to braid relations and

Markov moves.

3. n-Bridge Braids are Lorenz Knots

Birman—Kofman [4] showed that the class of Lorenz links coincides with that of
T-links. By the Birman—Kofman conventions [4, Eq. 1], a twisted torus knot on ¢
strands is realized as the closure of the following braid:

BBK = (0'10'2 . O’T)kT(O'la'Q A Ug,l)s.

However, our definition of twisted torus knots (in Definition 2.5) follows Vafaee’s
conventions [28]; he defines a twisted torus knot on n strands to be obtained by
taking the braid closure of

6{/ = (O'n_lo'n_g N Ugdl)p(on_lo'n_g e Un_k)qk.

It is not immediate that these braid words are Markov equivalent (and hence
that their closures are isotopic knots in S%). Given this discrepancy in the litera-
ture, we explicitly show that the Vafaee and Birman—Kofman twisted torus knots
are Markov equivalent. The remainder of this section is devoted to this proof: we
explicitly use Markov moves to put twisted torus knots and n-bridge braids into
T-link form.

Lemma 3.1. Fiz some w > 3. Lett > 2,a > 2, and ¢ > 1. Let ay =

(0aOai1--Oare)(0102...00p_1)  and let ag = (04104 ... Carc—1)(0102 ... 0w_1)t,
where o1 and as are both elements of the braid group B,,. Then a1 and ag are
conjugate braids. In particular, &y and &z are isotopic links in S3.

Proof. We do some explicit braid moves to verify the claim. For clarity, we un-
derline the portions of the braid that are being transformed from one line to the
next. We set 7, := (6102 ...04-1), a braid word in B,,. We begin by pushing some
terms to the right:

a1 = (040at1 - Oate10arc)(0102 ... 0p_1)"
= (Uao'a+1 cee o'a+cflo'a+c) 'qu
= (Ua0a+1 <. 0g4c—1 0a+c)(0102 ce 0a+c720a+cflga+c)

X (Ua+c+1 ) Uw—2Uw—1) 7:;1

2350090-8
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= (0a0at1---Oate—1)(0102 ... Oatc—2 OatcOate—10a+c)
X (Catesl - Ow20w_1) Yot

= (0a0at1 - Oatc-1)(0102 ... Oatc—2 Oate—10a+cTatc—1)
X (Catesl - Ow20w_1) Yot

- (0a0a+1 v Ua+c—2)(0102 v Ua+c—1aa+c—2aa+c—1)

X (Ua+caa+c—1)<aa+c+1 e Uw—20w—1) 773;_1

= (0a0at1---Oate—2)(0102 ... Oatc—20at+c—10atc—2)(TatcTate—1)
X (Catesl - Ow20w_1) Yot

= (0a0at1 - Oate—2)(0102. .. 0atc—2)(Tatc—10atc—2)

X (CateOate1)(Tates - Ow_20w—1) Vig *

- (0a0a+1 ) Ua+c—3)(01 (R Ua+c—2aa+c—3oa+c—2)(Ua+c—1aa+c—2)

X (Ua+caa+c—1)<aa+c+1 e Uw—20w—1) 773;_1
= (0a0a+1 ) Ua+c—3)(01 (R Ua+c—3)(Ua+c—2aa+c—3)(0a+c—1oa+c—2)
X (Ua+caa+c—1)<aa+c+1 e Uw—2ow—1) P)/vi;_l'

We repeat this process — of moving the last term of the left-most parenthetical
as far into the braid as possible using commutation, and then applying the other
braid relation — until we reach o,. Note that at the end of each iteration of this
process, we produce a pair of adjacent terms of the form (0atc k0ayc—(kt1))- At
the penultimate stage, we have

= (04)(0102 ...04-204-1)(0a0a+10a)(Tar20a+1) - - - (CatecTate—1)
X (Catetl - Ow—20w—1) 'yf;l
= (0102...04-2)(0000-104)(0a1104)(0ar20a11) - - - (TatcTate—1)
X (Catetl - Ow—20w—1) 'yf;l
= (0102 ...04-2)(00-1000a-1)(0a+10a)(Cat+20a+1) - - - (OatcTate—1)
X (O'a+c+1 e O'w_QO'w_l) 'yfufl.
Reassigning some parenthesis, we obtain
= (0102...04-204-104)(0a-1)(0a+104)(0ar20at1) - - - (CatcOatc—1)
X (Catetl - Ow—20w—1) 'yfu_l.

We observe that in each parenthetical of the form (044 c— 104 c—(k41)), the left term
has a larger index than the right term. Moreover, as we read the parentheticals

2350090-9
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from left to right, the index of the first term uniformly increases until we hit
(Catet1 - - Ow—20w—1) 'yfv. Therefore, we can rewrite our braid by collecting terms
towards the front of the braid. In the following set of moves, we push the underlined
terms to the left:

= (0102...04-204-100)(0a—1)(0a+10a)(0at20a+1) - - - (TatcOatc—1)
X (Catetl - Ow-20w—1) Ve

= (0102...04-20a-10a0011)(0a-104)(Cat200+1) - - - (TatcOate—1)
X (a’a+c+1 - O’w—QO'wfl) ’Yifl

= (0102 ...04-200-10a0a+410a+2)(0a—-10a0a+1) - - - (TatcOatc—1)
X (Catetl - Ow-20w—1) Ve

Repeating this leftwards operation eventually yields:

= (0102...004104+2 -+ . Oatc)(0a—10a0a+1 - - - Oate—20a+c—1)

X (O’a+c+1 . Uw720'w71) ’qui

= (Ul cee O'wfl)(o'aflo'aa'aqu ce Ua+c720'a+c71) ’Yz;l

t
= (Ua—loaaa+1 cee Ua+c—2aa+c—1) Yw

9.

In the last step, we conjugated by (o7 ...04-1). We conclude that a; and ag are
conjugate. O

Proposition 3.2. 1-bridge braids are Lorenz knots.

Proof. To prove that 1-bridge braids are Lorenz knots, it suffices to show that
some sequence of Markov moves transforms 5 to a braid 7, as in Eq. (1).

Let 8 = (0p0p_1..-0201)(0w_10w_2...0201)" denote the standard braid pre-
sentation of a l- brldge braid. Let 8’ = (0460w —bt1---Ow_1)(0102 ... 0p_1)t. We
claim that 3 and 3 are isotopic knots in S3: view S3 as R3 U{oo}, and fix the circle
C = z-axis U{oo}; we represent the z-axis by the purple dotted line in Fig. 4. We
draw the braid 8 on the “left” side of C, and then rotate 8 about the purple line;
this produces (’, which is seen on the “right” side of C. In particular, if we take
B\ and follow it through the rotation isotopy, we will get BA’ . Therefore, B = ﬁA’ as
knots in S3. Alternatively, one can use some standard results in braid theory: if we
conjugate 5 by the Garside element A € B,,, we produce 3’ (see [16, 17] for more
details); since conjugation preserves the link type of the closure, 3 and BA’ present
the same knot.

2350090-10
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Fig. 4. Rotating the left braid about the purple line produces the right braid.

Next, we perform (w — b — 1) many applications of Lemma 3.1:

Ob0p—1 - ..0901)(0p—10w—2...0201)"

Ow—bTw—bi1 - Ow—1)(0102 ... Op_1)"

Cw—b-10w—b - - Op—2) (0102 ... Opy—1)"

=
(
(
= (010...04)(0102 .. .oy_1)".

Thus, the 1-bridge braid g admits a T-link presentation. O
Lemma 3.3. Twisted torus knots and n-bridge braids are Lorenz knots.

Proof. Twisted torus knots are the closures of positive braids on w strands with
the following form:
p = (O'w_ldw_g ce Ul)t(ow_lo'w_g N Uw_k)Sk.

Rotating p as in Fig. 4 yields p’ = (0109...0w_1)! (0102 ...01)%*. We know that p
and p’ are isotopic knots; since p’ is presented as a T-link braid, we deduce that
twisted torus knots are T-links.

Indeed, the braided presentation for n-bridge braids appears very similar to
those of twisted torus knots (however, there is not required that b divides n). We
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quickly show that these, too, are T-links:

n= (UbUb—l . Ul)n(Uw—lUw—2 N 0,1)15

= (Uw—baw—b+1 N O'w_l)n(0'102 e O'w_l)t

= (Uw—baw—b+1 cee Uw—l)n_l(aw—baw—b+1 cee Uw—l)

X (0’10’2 .. .Uw_l)(0'102 .. .O'w_l)t_l.

In the proof of Lemma 3.1, we only performed braid relationships — the only place
we conjugated our braid is in the last step. Thus, applying the proof of Lemma 3.1,
we see

= (Uw—baw—b+1 e Uw_l)n_l(alog .. -Uw—l)

X (Coyeb—10w—b - - . Oy—2) (0102 . .. ow_l)t_l

= (010'2 .. Uw—1)<Uw—b—1Uw—b ce O'w_g)n(0'102 ce O'w_l)t_l
= (Uw—b—law—b e Uw_Q)n(Ulo'g ce Uw_l)t.
We repeat this process an additional w — b — 2 times, yielding;:

== (010'2 .. .Ub)n(dlo'g e O'w_l)t.

Thus, n-bridge braids are more general than twisted torus knots, and they are
T-links. O

4. Preliminaries for the Proof of the Main Theorem

Remark. After this paper was posted to the arXiv, the author of [26] informed us
that the results in this section are sketched in the body of the proof of Theorem
1.1 in [26]. This work contains the full proofs.

Definition 4.1. We define §,, and ~, to be the positive braid words §, :=

(op...0201) and 7, := (0102...0,) in B,, the braid group on r strands, where
r>n+4+1.
Remark 4.2. Note that K(w,b,t) = 6,0!,_;.

Lemma 4.3. Let §;, € Biy1. Then 6k 0 = 0x—1 O 01 as braid words in By41.

Proof. We begin by expanding the left-hand side.
Ok Ok = (0K Ok—1 Ok—2 ... 03 02 01)(0k ...01) (3)

= (0f Okx—1 Ok Of—2 ... 03 02 01)(0k—1...01) (4)
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= (Ok—1 Ok Ok—1 Ok—2 Ok—3 ... O3 O Uﬂ(m. ..01) (5)
= (Ok—1 Ok Okx—1 O)x—2 Ok—1 Ok—3 ... 03 02 01)(0k—2...01) (6)
= (0k—1 0% Ok—2 Ok—1 Ok—2 Ok—3 ... 03 O2 01)(0k—2...01) (7)
= (0k—1 Ok—2 Ok Ok—1 Ok—2 Ok—3 ... O3 02 oﬂ(w ..01) (8)
= (Ok—1 Ok—2 Ok Ok—1 Ok—2 Ok—3 Of—2... 03 02 01)(0k—3...01) 9)
= (0k—1 Ok—2 Ok Ok—1 Ok—3 Of—2 Ok—3... 03 02 01)(0k—3...01) (10)
= (Ok—1 Ok—2 Ok—3 O Ok—1 Of—2 Ok—3... 03 03 01)(0k—3...01). (11)

We describe the operations at play: in line (3), we identify the o letter that
is furthest to the right, and apply k& — 2 commuting relations to push it as much
to the left as possible. This creates the underlined subword oioj—10% in line (4);
applying the braid relation yields line (5). We repeat this procedure (of finding the
largest letter in the right parenthetical subword, applying commuting relations to
push it as far to the left as possible, and then applying a braid relation in lines
(5)—(7). From lines (7) to (8), we identify and execute another commuting relation.
We call this 4-step procedure a left push, and say that we perform a left push on
or when oy is the largest letter in the second parenthetical braid word. Note that
after executing the left push operation on o,41, the braid word decomposes into
the three subwords ((ok—1 ...07)(0% ...01))(0r . .. 01); this is seen explicitly in lines
(8) and (11). After repeating the left push operation another k — 5 times from line
(11) onwards, we get

= ((ok—1 Ok—2 Ok—3...03 02) (O) Ok—1 Okp—2 Ok—3... 03 02 01))(02 01) (12)
= (0p—1 Ok—2 Ok—3...03 O3 Ok Ok—1 Ok—2 Of—3 ... O3 O3 01 O3 01) (13)
= (Ok—1 Okr—2 Okx—3...03 02 Of Okp_1 Okx—2 Ok—3... 03 01 02 01 O1) (14)
= ((ok—-1 Ok—2 O—3...03 02 01) (Ok Og—1 Ok—2 Ok—3... O3 02 01)) 01 (15)
=0p_1 O O1. (16)
This is exactly what we wanted to show. O

Lemma 4.4. Let 0y, € Biy1. Then o1 0 = 0 02.

Proof. We begin by expanding the left-hand side.
01 0k = 01 O Ok—1 Ok—2...03 02 01
:ﬂ Ok Ok—1 Og—2 ...03 02 01

=0k Ok—1 Ok—2...03 01 02 01
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= (0 Og—1 Ok—2...03 02 01) O3
= (SkO'Q.

This is what we wanted to prove. O
Lemma 4.5. Let 6;, € Byy1. Then o 6 =6 0541 when 1 < j <k.

Proof. Suppose 1 < j < k. We begin by expanding o;dy:

O'j(sk:ﬁ(O'kUk,l...O'ijQ 0j4+10505-1 ...0'1)
= 0k0k—1..-0442 050441040451 ...01
= O0kOk—1.--0542 O’j+10’j%0’j,1 ...01
= (O’kO'k,1 <0442 054104051 ...0'1)0'j+1
which is 6,041, as desired. O

Lemma 4.6. Let 6;, € Byy1. When s < k, we have 01 6}, = 6} 0s41.

Proof. We see that
016" = 016k0,°
= 0,020,0;° % by Lemma 4.4
= 0,%03050,°"% by Lemma 4.5.
Applying Lemma 4.5 a total of s — 1 times, we get
05 Ost1-
Thus, o1 65 = 0} Tst1- O
Note that Lemma 4.5 generalizes Lemmas 4.4 and 4.6 combines Lemmas 4.4
and 4.5.
Proposition 4.7. Let 6; € Bjy1. Then 65 = §;1 5;71 ot—1, where t < j.
Proof. We see that
5;- = (5j5j)5;72
= (0;-16;01)85 ? by Lemma 4.3
= 6;18;(01057%)
= j,15j(5;720(t_2)+1) by Lemma 4.6
= j715j5;‘720't71
= j,15§710t,1.

Thus, (S; =051 5;-_1 O¢_1. O
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Proposition 4.8. Let d;,vi—1 € Brt1. Then, 5,tC = 5,2:11 Ok Vi—1, where t < k.
Proof. Note that
6t = 6,_1(0x""Noy_1 by Proposition 4.7
= (5;6_1(5;@_1(5;6’5720,5_2)0,5_1 by Proposition 4.7

= 51%71 (51@#2) 0t—20¢t—1-

Iteratively apply Proposition 4.7 an additional ¢ — 3 times to the rightmost (5}2_* to

obtain
6t =670 6} (0102 .. 04—1)
=078 Ok vt
This yields the desired conclusion. O

Proposition 4.9. Let 6x € Bri1. Then, 5,@ = 51@71(52_1)01@71-
Proof.
ok = (6 ")
= (5;6,15,]:72(7;6,2)5;C by Proposition 4.7
= 010} 2 (o—20%)
= 5;6,15]]:72(5;6%,1) by Lemma 4.5
= 65—1(67 Hog_1.
This is what we wanted to show. |

Proposition 4.10. Let 0, € Bj41, and suppose a € By, (so, in particular, o is a
braid word on strictly fewer strands than dx). Then « (5,’5 =« (5’;_1%_1.

Proof. The proof requires straightforward applications of Propositions 4.8 and 4.9.

adf =a (61 6’;‘1 ox—1) by Propositions 4.9

o 0p_1 ((5}5:% Ok Yi—2) ok—1 by Proposition 4.8
= 6F o
=aoF L op Spo1 et

Since « is a braid in By, there is a unique oy letter in this braid. So, we can
destabilize to get

k
= 0p_1 k-1

This is what we wanted to show. O
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5. Proof of the Main Theorem
Theorem 1.1. The braid index of an n-bridge braid

K(w,b,t,n)
18
w, t>w, n>1,
t, w>t>b n>1,

i(/C(w,b,t,n)): t+17 w>b2ta ’N,Zl,

b+1, w>b>t, n4+t>b+1, n>1,

n+t, w>b>t, n+t<b+1, n>1.

Proof. We use Propositions 4.7 and 4.8 and destabilizations to find a presentation
of the knot which allows us to apply Theorem 2.9.

Case 1: t > w,n > 1.
Let t > w and n > 1. Then, we know

K(w, b, t,n) = 56!,

w—1

— aps_,al.
Since (0y—10w—2...01)" is a full twist on w strands, by applying Theorem 2.9,
i(K(w,b,t,n)) = w.

Case 2: w>t>bn>1.
Suppose w >t >band n> 1. If w—1=1t> b, then we have

K(wa b7 ta TL) = 61’?65}—1
- oyt
=0y 551’:; Yw—2 by Proposition 4.10
=6 0f_ | -1 sincet =w — 1.
Therefore, the braid can be written to contain §!_;, which is a full twist on ¢ strands.
By Theorem 2.9, i(K(w,b,t,n)) =tifw—1=1¢t>bn > 1.
We now study what happens if w —1 > ¢t > b. We know

K(w,b,t,n) = 56,4
= 5{]5;__125w,1%,1 by Proposition 4.8
= 0 0,y 50w-10w_27t-1.
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Since w >t > b, then w—1 >t > b, hence there is a single o,,_1 in the braid word,
which is currently in B,,_1. Thus, we can destabilize the braid to produce a new
braid in B, _o:

K(w,b,t,n) :51’?5t 2Uw 15w 27t—1
= 6760 100 Ow—2Yt—1
= 030021

We iteratively: (1) apply Proposition 4.8 to the rightmost 6¢,_, term, and (2) desta-
bilize the largest remaining Artin generator. Since w > t > b we can repeat the
above process a total of w — ¢ times, after which we have

K:(w’ bvt) = 62’716: 1’7:) 1t

As t > b, we know that ¢ — 1 > b, hence J;' contains no o, letters, where s > ¢ — 1.
Moreover, this is a braid word in By, and it contains a full twist on ¢ strands. By
Theorem 2.9, i(K(w,b,t,n)) = t.

Case 3: w>b>t,n=1.
Our definition of a 1-bridge braid requires that w — 2 > b, so we may revise our
assumptions to be w — 2 > b > t. In particular, note that t < w — 1. We have

K(w,b,t) = 6b(5w 1
= (5b(5w 2(5w 17t—1 by Proposition 4.8
= 5b5 2wa 10— 2Vt—1-
Since w — 2 > b, there is a single 0,1, and we can destabilize the braid:
K(w,b,t) = 51,52;12m5w,2%,1
= 0505 50w—2Ve-1
= 0p01, _oYt-1-

We iteratively: (1) apply Proposition 4.8 to the rightmost 6¢, _, term, and (2) desta-
bilize the largest remaining Artin generator. Since w > b > t, we can repeat the
above process a total of w — b — 1 times, after which we have

K(w, b, t) = 6,0, 971
R
This braid word is in Bp41, the braid group on b+ 1 strands. If b = ¢, then
K(w, bt)_5t+1 Zulb Lo gt ;ulb 1

Applying Theorem 2.9 allows us to conclude that i(K(w,b,t)) =t + 1.
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Otherwise, b > ¢ and we iteratively: (1) apply Proposition 4.8 to the 5?:1 term
(note that x = 0 to start), and (2) destabilize the largest remaining Artin generator.
Since b > t, we can repeat this process a total of b — ¢ times to obtain

K(w,b,t) = 5t+1'ytw:1b71

t+1 b—t _w—b—1
=0 'Y 1 -

Once again, by Theorem 2.9, we deduce i(C(w, b, t)) =t + 1.

Case 4: w>b>t,n+t>b+1,n>1.

Suppose w >b>t,n+t>b+ 1, and n > 1. Our definition of a 1-bridge braid
requires that w — 2 > b, so we may revise our assumptions to be w —2 > b>1t¢. In
particular, note that ¢ < w — 1. We have

IC(’LU, bvtvn) - 6b (511) 1)
= 5?5:;12(5w,1)’yt,1 by Proposition 4.8
=600 5 (Tw_10w—2)Vt—1.
Since w — 2 > b, there is a single o,,—1, and we can destabilize the braid:
K(w,b,t) = 665 (0w—1)0w—2%-1
= 66t 50w 271
= 0 Ou—2Vt-1-
We iteratively: (1) apply Proposition 4.8 to the rightmost 6!, _, term, and (2) desta-

bilize the largest remaining Artin generator. Since w > b > t, we can repeat the
above process a total of w — b — 1 times, after which we have

KC(w, 1) = 676, s
= pat

This is a braid word on b+ 1 strands. Asn+1¢ > b+ 1, we get
K(w,b,t) = 51?5157? 1b '

_n+twb1
=0, 1

Applying Theorem 2.9, we deduce i(K(w,b,t,n)) = b+ 1.
Case 5: w>b>t,n+t<b+ 1.

Our definition of a 1-bridge braid requires that w — 2 > b, so we may revise our
assumptions to be w — 2 > b > t. In particular, ¢ < w — 1. We begin by applying
Proposition 4.8 to the standard braided presentation of K(w,b,t,n):

K(w,b,t,n) —6§6w 1
= 5?M by Proposition 4.8

=000t o 10w—2Yi—1-
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Our definition of n-bridge braid required that w—2 > b. Therefore, there is a single
ow—1, and we can destabilize the braid:

K(w, b, t,n) = 6765 0w —10w—ave—1
= 51?52)_,12574)727@71

= 0 0y—2Ve-1-

We iteratively: (1) apply Proposition 4.8 to the rightmost 8¢, _, term, and (2) desta-
bilize the largest remaining Artin generator. Since w > b > ¢, we can repeat the
above process a total of w — b — 1 times, after which we have

K(w,b,t,n) = 665 oy 1
= Spope (17)

This braid word is on b + 1 strands. We assumed that n +¢ < b+ 1, so namely,
n+t < b. Suppose n + ¢t = b. In this case,

K(w,b,t,n) = 675470

_ b _w—b—-1
= 0pVi1

= 6;,,15571%,17;”:1”1 by Proposition 4.9

+1

= 6p_10p " 20y p—20p-17"7"T" by Proposition 4.8

_ b—2 b1
= 0b—10p_106Vb—20b-1Y41

_ b—2 —b+1
= 0p—10,_10606—17b—206—1Y4-1

+1

= (51,_155:%%_201,_17,5”_ Eb by destabilizing the unique oy letter

_ b w—b+1
=0 1171 -

This braid word on b strands contains a full twist; thus, by Theorem 2.9,
i(K(w,b,t,n)) =b=n+t. Now suppose n + ¢t < b. In particular, n+¢ <b—1.In
this case, as in Eq. (17),
K (w,b,t,n) = 66175
= oy Ty

= 6gff_16b'yn+t_w§”__1b_l by Proposition 4.8

_ sn+t—1 w—b—1
=0, O Yntt—1Y 1

b—1

+t—1 —b—
=0, 00— 1Yntt—1Y41

= 6;;"1'5_15;,,17"“,17;{_11’_1 by destabilizing the unique o} letter

_ sn+tt w—b—1
= 5b_17n+t717t—1 .
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To simplify the right-hand side, we will need to (1) apply Proposition 4.8 to the 5g’ff
term, and then (2) destabilize the largest remaining Artin generator. We will need
to repeat this process (b — 1) — (n + ¢) many times. Below, we write out explicitly
what happens after applying steps (1) and (2) once, and then suppress the word for
the remaining (b— 1) — (n +t) — 1 applications Proposition 4.8 and destabilization.
We note: implicitly, we really are using that n+¢ <b— 1.

K(w,b,t,n) = 67y o170

1

= (6?:?7151,_17”“_1)'yn+t_1'y;”:1b7 by Proposition 4.8

= 6?:?71O'b_léb_2'772l+t71')/zu_71b71 by the definition of §,_1

1

= (523’57151,_2%21“717;”:1{’7 by destabilizing the o,_1 term

n w—b—1
5b27n+t 1 V-1

b—1—(ntt)+1 _w— . .
621: 7n+t7§"+ )+ 'y;“‘ilb"’l after repeating this process another

x(b—1)—(n+1t)—1 times

b+1 o
= Ont—100 L o1 A0 Pt by Proposition 4.9
w—b+1
= Optt— 15n+t On+t—1 ’Yn+t 1 Yi—1
_ +t—2 brl "
= Ont—10,1 ¢ 1 OnttVntt—20n+i— 1'7n+t ot by Proposition 4.8

_ n+t— —n—t _w—b+1
= Ontt—10, ¢ 15n+t7n+t 20n+t—1 Vn+t 1 Vi1

n+t—2 —n—t _w—b+1
:5n+t715n+t710n+t5n+t 1Yn+t—20n+t—1 'Yn+t 1 V-1

. n+t—2 — w—b+1
*5n+t*15n+t715n+t*17ﬂ«+t 20n+t—1 7n+t 1 Yi—1

x by destablizing the 0,4 term

_ sn+ —n—t _w—b+1
=4 +t 1 In+t—20n+t—1 'Yn+t 1 V-1

w—b+1
*5n+t 1Yn+t—1 'Yn+t 1 Yi—1

_ sn+ bnt+1wb+1
=4 +t 1Tn4+t—1 Vt—1

This braid word in B,,+ contains a full twist; applying Theorem 2.9, we deduce
the braid index is n + . O

6. Future Directions

Our proof of Theorem 1.1 is self-contained and effective: we started with the def-
inition of an n-bridge braid, and we produced a Markov equivalent positive braid
containing a full twist. The algorithm we produce could be extended to all T-links.
However, the computations are significantly more tedious, so we do not include them
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here. An interesting future direction would be to write a computer implementation
of our algorithm for all T-links.
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