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ABSTRACT 

Optical resource management and path reconfiguration have become increasingly paramount in the era of 

dynamic and flexible optical networks. This paper presents machine learning-based optical resource assignment 

for highly efficient resource utilization in Spatial Division Multiplexing (SDM) networks. We also demonstrate a 

network orchestration with a Whitebox-based optical network and failure prediction in an SDM network. 
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1. INTRODUCTION 

In the B5G/6G era, in addition to the ever-increasing capacity, various network characteristics other than 

increased communication capacity, such as low-latency communication and multiple terminal connections, are 

required. To accommodate the ever-increasing traffic and to provide a communication infrastructure that can 

meet these new demands, it is essential that the optical network also has a further increase in capacity. To realize 

all-optical networks, in addition to developing various devices, research and development are also being 

conducted on technologies closely related to network control, such as super-channel switching, wavelength 
assignment, wavelength/waveband conversion, etc. In contrast to the conventional method, which sets the 

wavelength according to a fixed grid, which effectively sets an excessive margin, an approach represented [1], 

which adaptively assigns bandwidth of different widths according to the transmission distance and transmission 

rate, thereby reducing the frequency margin, has become generally considered. Furthermore, in recent years, 

multi-core and multi-mode fibers have attracted attention, and several studies report a large network capacity 

transmission using a single fiber of space division multiplexing (SDM) technology [2,3]. From a network 

perspective, SDM-based elastic optical networks (SDM-EONs) have become an active research topic. 

In network control in SDM-EONs, when setting up each optical path, the transmission route, spatial channel 

(core or mode, etc.), modulation format, and assigned frequency slots are determined by some algorithms, and 

optical signals are transmitted using the assigned channel. In addition, if necessary, prior to actually transmitting 

optical signals, advance verification may be performed, such as estimating the Quality of Transmission (QoT) 
using GNPy [4]. To assign spectrum resources of various bandwidths to individual lightpaths while satisfying 

the continuity constraint, it is known that setting up lightpaths on demand sequentially results in the existence of 

narrow bands that do not meet the required bandwidth, leading to a decrease in the efficiency of frequency 

utilization. Many studies propose heuristic routing and spectrum assignment methods before machine learning 

becomes popular. 

  Recently, machine learning is commonly used in various systems. Since the emergence of AlphaGo and the 

significant improvement in image processing recognition performance, the application of machine learning, 

particularly deep learning, has been actively explored from various perspectives in the field of optical 

communication networks. This has drawn significant attention as one of the promising technologies. Key 

examples of machine learning applications in the optical network field include nonlinear compensation, QoT 

estimation, device parameter optimization, monitoring, resource allocation for high-frequency demands, traffic 
forecasting, fault detection and identification, equipment life estimation, automatic control, and orchestration. 

Additionally, to use optical networks themselves as optical reservoir computing is considered. Among them, 

network automation and failure management are expected solutions for future SDM networks. We 

experimentally demonstrate a closed-loop control of Whitebox-based optical network. In addition, we propose a 

machine learning model for failure prediction in SDM networks with crosstalk issues. 

2. RELATED WORKS 

In EONs, the spectrum can be flexibly set while considering the requirements of each optical path and physical 

factors such as optical reach, and the number of optical paths that can be accommodated in the entire network 

can be increased by allocating only the required frequency slots with low margin to each optical path. Various 

Routing and Spectrum Assignment (RSA) algorithms have been proposed, including those in the literature [5, 6], 

as research on the RSA problem in EONs. The authors have previously proposed a signaling and dynamic 

frequency resource allocation method for distributed EON and a frequency allocation method for reducing 

crosstalk in multi-core fiber [7, 8]. 

  While research and development about SDM technology has been actively conducted in recent years, there is a 

physical limit to the number of signals that can be multiplexed, and it is difficult to increase the degree of 

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on November 06,2025 at 11:04:04 UTC from IEEE Xplore.  Restrictions apply. 



 2 

multiplexing further. In addition, further study is required on relay node architecture to perform appropriate 

demultiplexing and multiplexing. Meanwhile, in recent years, the use of machine learning has been progressing 

in various fields to efficiently use of spectrum resources. The use of machine learning in optical network control 

has also been considered. The scope of its applicability is wide, including the RSA problem targeting dynamic 

traffic demand. In reference [9], deep learning determines which resources are best to allocate.  

3. REINFORCEMENT LEARNING-BASED SPECTRUM RESOURCE ASSIGNMENT 

In this study, we focus on multi-fiber SDM optical networks in which multiple optical fibers are connected in 

parallel in links between nodes, and propose a frequency resource allocation method that significantly reduces 

switching processing by performing fiber-based switching in addition to spatial and wavelength channel-based 

demultiplexing at relay nodes. Normally, relay nodes demultiplex each fiber into core channel units and then into 

frequency channels before switching processing, so an exchange node configuration is used with a number of 

ports corresponding to these. Assuming that switching processing is performed at the fiber granularity, it can be 

said that some of the core channel demultiplexing and other functions can be reduced, but for simplicity in this 

paper, we do not set a constraint on the number of fibers that can demultiplex core channels, and assume that 

inputs from all fibers can be demultiplexed by core and frequency units if necessary. 

3.1. Direct Path Configuration 

At the relay node, a direct fiber path is designed that can transmit to the desired destination node by only 

switching processing at the fiber level, without separating and multiplexing at the core channel or wavelength 

channel level. The direct fiber path is set as the shortest route to accommodate more traffic (light paths) between 

specific nodes. When a light path setting request arrives, it is confirmed whether an existing direct fiber path 

exists between the same transmitting and receiving nodes, and if not, it attempts to set up a direct fiber path as 

follows. Specifically, it is confirmed whether fiber switching is possible on the shortest route, and if it is possible 

at all relay nodes, an arbitrary fiber is selected at each link to construct a virtual direct fiber path. The input fiber 

and the output fiber at each relay node are directly connected at the fiber level, and thereafter, light path setting 

requests at the same transmitting and receiving nodes will preferentially use the resources of this direct fiber 

path. Note that only one direct fiber path can be set up between each transmitting and receiving node. This is to 

prevent a significant decrease in flexibly usable frequency resources by increasing the number of direct fiber 
paths themselves. 

3.2. Machine Learning-based Optical Resource Assignment Method 

Figure 1 shows an overview of the lightpath setting process in the proposed method. When setting up a 

lightpath on demand, first, fiber switching is set at the relay node, and it is confirmed whether there is a direct 

fiber path that can transmit to the destination node by fiber switching alone. If there is a direct fiber path, it is 

confirmed whether a channel is available to add a new lightpath to the direct fiber path, and if so, an arbitrary 

channel is assigned. On the other hand, if a direct fiber path is not available, the frequency resource allocation 

method using reinforcement learning is executed in the following procedure, and if a solution is found, the 

spatial and frequency channels are assigned. If no solution is found, the new lightpath is blocked. 

The frequency resource allocation method using reinforcement learning is described below. As a pre-

processing step for creating a reinforcement learning model, k candidate routes are calculated using the k-

shortest path algorithm. Next, a Q value is set for each combination of transmitting node, receiving node, 
candidate route ID, spatial channel ID, and frequency slot ID. After that, when new request arrives, the Q value 

is updated, and the transmission route, spatial channel ID (fiber-core pair), frequency, etc. are selected. In 

addition, instead of making all frequency slots selectable for each route and spatial channel of a certain 

transmitting/receiving node pair, we assume that there is a virtual grid for each multiple of the number of 

required frequency slots determined by the transmission distance of the candidate route calculated in advance. 

  
Fig. 1: Outline of proposed resource assignment Fig. 2: Result of loss probability 

3.3. Simulation Results 

The JPN12 model (number of nodes N = 12, number of links L = 34) [10] was adopted as the target network 
topology in a multi-fiber SDM optical network. The evaluation was performed assuming that the links between 
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each node are equipped with a maximum of F = 25 optical fibers in one direction. The number of frequencies per 

spatial channel was set to 80. The routes were calculated in advance using the k-shortest path algorithm and used 

as candidate routes. The first-fit allocation method was used for comparing frequency allocation. In this 

comparison method, first, an allocatable frequency slot is searched for by first-fit on the shortest route. If no 

allocatable frequency slot exists that satisfies the continuity constraint, the second shortest route among the 

candidate routes is searched for again. After that, the search continues until a solution is found (allocation 

successful) or the search for all candidates is completed (rejected). The reinforcement learning-related 

parameters in the proposed method are set as α = 0.9, γ = 0.1, ε = 0.01. The positive reward given to the learning 

unit is the value obtained by multiplying rewardsuccess = 1.0 by the number of input fibers for which 

demultiplexing/multiplexing is performed on a core-by-core basis. A uniform traffic model was adopted for the 
traffic between each lightpath's source and destination nodes. In the uniform traffic model, traffic was assumed 

to occur at intervals following an exponential distribution with an occurrence rate of λ = 20560 throughout the 

entire network, and the sending and receiving nodes of each traffic were assumed to be selected randomly. The 

average holding time per connection was assumed to be given by an exponential distribution with a mean of 1.0, 

and the results were obtained for 107 lightpaths (excluding transient states) for each trial. For comparison, we 

adopted a benchmark method that uses the shortest path or k-shortest path (k = 3, 10) for route selection and 

allocates frequency resources according to the first-fit policy. 

  Figure 2 shows the results of loss probability of optical paths. In the proposed reinforcement learning method, 

the performance is worse than that of the first-fit method because it actively distributes the load, but the 

performance difference is smaller than that of the shortest path only. By using direct fiber paths, about half of the 

traffic is transmitted over the direct fiber paths, which partially enables ideal resource utilization without the 
effects of fragmentation and reduces the loss probability. When the k-shortest path is used in the proposed 

reinforcement learning method, it is clear that a very low loss probability can be achieved. 

4. MACHINE LEARNING-BASED CLOSED-LOOP CONTROL 

Considering network automation and zero-touch operation, monitoring optical network information and closed-

loop control using machine learning are essential functions for future optical network control systems. We 

constructed an experimental system using white-box transponders and demonstrated the closed-loop control 
functions, including the cooperation between the orchestrator and the ML server. Figure 3 shows the 

experimental system. Figure 4 shows the experimental results. Performance monitor data such as OSNR and Pre-

FEC BER are acquired at the receiving side of the monitoring signal, and the results are stored in an orchestrator 

database. The stored data is periodically acquired by API access, and when further deterioration of signal quality 

is expected in the next time slot, a workflow is started to change the FXC connection by connecting to the 

orchestrator via API. When the signal quality improves, the FXC is changed back to the original connection 

configuration, and the operation of the closed-loop control was successfully verified.  

 

 
Fig. 3: Overview of experimental setup Fig. 4: Result of FXC closed-control 

5. MACHINE LEARNING-BASED FAILURE PREDICTION IN MCF NETWORKS 

In this section, we introduce a model for predicting transmission quality degradation using machine learning as a 

research topic related to the resiliency of optical networks. As the programmability of optical fiber networks 

improves due to disaggregation, fault management in optical networks is one of the most important issues. In 

recent years, various research and development efforts have been actively conducted on fault detection and fault 
location identification technologies using machine learning. However, these fault detection and identification 

technologies are mainly for single-core optical fibers, and there has been little research on multi-core fiber 

optical networks. In this paper, we focus on the degradation of transmission quality due to crosstalk from 

adjacent cores, which is unique to multi-core fibers, as an elemental technology for fault management in multi-

core optical fiber networks, and propose a machine learning model that predicts instantaneous and temporary 

optical path outages due to changes in crosstalk over time. In this study, we construct multiple datasets using a 

small-scale experimental network and use these datasets to develop and evaluate machine learning models. 

  Figure 5 shows the experimental setup. A router tester for generating background traffic was connected to a 

commercial 100G transponder, which was then connected to a 32 km 4-core optical fiber. An optical path signal 
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generated by ROADM-A was also inserted into the multi-core fiber, and a part of this optical path was cut off by 

the AOM switch in the middle stage to simulate a sudden decrease in the number of optical paths. Even if the 

network throughput keeps the same level immediately after the hardware failure, the transmission quality of the 

optical path deteriorates, and the optical path link becomes temporarily unavailable due to changes in the amount 

of crosstalk over time. The network throughput also decreases. To suppress this cascading failure of performance 

degradation in multicore fiber networks, we propose a machine learning model that predicts the occurrence of 

instantaneous and temporary link outages. Figure 6 shows the predicted status and actual state results of the 

proposed machine learning model. Using the information on OSNR and Pre-FEC BER measured in the 

throughput measurement experiment, it is predicted that a link failure may occur before a temporary link outage 

occurs. After the failure event, no link outage occurred until around time 3300, so the learning model determined 
that no failure would occur. On the other hand, due to QoT fluctuation, it can be seen that the proposed machine 

learning model outputs the possibility of a link failure as high when the Pre-FEC BER becomes relatively high. 

  
Fig. 5: Experimental setup for cascading failure Fig. 6: Prediction result 

6. CONCLUSIONS 

While attempts are being made to transmit more information by increasing the degree of multiplexing in optical 

fibers, in this paper, we mainly focused on the multi-fiber optical networks and Whitebox-based networks. We 

proposed an optical resource assignment method using direct fiber paths that simplifies switching processing at 

relay nodes and confirmed its effectiveness through simulation. In addition, we experimentally demonstrate a 

machine learning-assisted closed-loop control in an optical network with Whitebox transponders and a machine 
learning model of failure prediction based on several performance monitor data of multi-core network datasets. 
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