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Optimizing compilers rely on peephole optimizations to simplify combinations of instructions and remove

redundant instructions. Typically, a new peephole optimization is added when a compiler developer notices

an optimization opportunity—a collection of dependent instructions that can be improved—and manually

derives a more general rewrite rule that optimizes not only the original code, but also other, similar collections

of instructions. In this paper, we present Hydra, a tool that automates the process of generalizing peephole

optimizations using a collection of techniques centered on program synthesis. One of the most important

problems we have solved is finding a version of each optimization that is independent of the bitwidths of the

optimization’s inputs (when this version exists). We show that Hydra can generalize 75% of the ungeneralized

missed peephole optimizations that LLVM developers have posted to the LLVM project’s issue tracker. All of

Hydra’s generalized peephole optimizations have been formally verified, and furthermore we can automatically

turn them into C++ code that is suitable for inclusion in an LLVM pass.
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1 INTRODUCTION
Peephole optimizers perform local rewrites: they identify inefficient combinations of instructions

and transform them into instructions that perform the same job more cheaply, often without

changing the program’s control flow. For example, following a De Morgan law, ¬𝐴 ∧ ¬𝐵 can be

rewritten as ¬(𝐴 ∨ 𝐵), reducing the computation cost by one operation.

Peephole optimizers are ubiquitous in optimizing compilers, and yet they can be somewhat

dissatisfying artifacts: rather than implementing a coherent algorithm, they are typically little more

than a collection of pattern matchers. Each such pattern represents an independent opportunity

to be incorrect or unprofitable, and moreover there is a very long tail of patterns that we might

wish to optimize: a peephole optimizer can never considered to be finished. The LLVM compiler

includes more than 40,000 lines of C++ code implementing peephole optimizations, and a fuzzing

campaign found it to be the single buggiest component of this compiler [Yang et al. 2011].
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if (y != 0)
  return (y - 42) * 2048

if (match(I, m_c_Mul(m_Value(x),
             m_Constant(C))) && pow2(C))
  return CreateShl(x, CreateLogB(C));

while (i < n)
  a[i] = i * 32 

if (y != 0)
  return (y - 42) << 11

foo(a * 7, a * 8)  

while (i < n)
  a[i] = i << 5 

foo(a * 7, a << 3)  

Ungeneralized optimization

Speci�c to this snippet 

Fast

Generate C++ LLVM Pass
Discussed in Section 7

Broadly applicable

Requires a solver - slow
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Primary contribution of this paper
Intermediate steps in Table 1
Discussed in Sections 2-6

Fig. 1. Hydra transforms an ungeneralized optimization (top/left) from a developer or a superoptimizer into a
generalized version that is often suitable for inclusion in a compiler (bottom/right)

The typical workflow for adding a new peephole optimization is:

(1) Someone notices a computation, either in optimized intermediate representation (IR) or in

optimized object code, that could be rewritten to be more efficient.

(2) A compiler developer manually generalizes the rewrite, making it apply to more situations

than just the single example that they originally intended to fix. Often this necessitates

protecting the new optimization with precondition checks.

(3) The developer implements the generalized optimization in the compiler’s implementation

language.

After spending more than a decade watching compiler developers following this process, we

have come to believe that step (2), the process of generalizing an optimization, is particularly error-

prone. It should be automated, and supported by formal methods. This automation is the primary

contribution of our paper, but we also automate step (3). Step (1), discovering unimplemented

local rewrites, is not addressed by our work. Optimization discovery can be automated using a

superoptimizer [Bansal and Aiken 2006; Sands 2011; Sasnauskas et al. 2017], and we have also found

the LLVM project’s issue tracker to be a fruitful source of desirable, ungeneralized optimizations.

We created Hydra, a tool that generalizes these.

Let us look at a simple example of generalization. Assume that a developer notices code equivalent

to 𝑧×2048 in a compiler’s output. Since multiplying an integer by 2048 is (on many platforms) more

efficiently expressed as a left shift, 𝑧 ≪ 11, this is a good candidate for a new peephole optimization.

The compiler developer will readily observe that this pattern can be used to optimize multiplication

by constants other than 2048; for example, 𝑧 × 32 should be optimized to 𝑧 ≪ 5. On the other

hand, of course, there are many constants for which this pattern does not apply: 𝑧 × 23 cannot
be implemented using any single shift instruction. Thus, the generalized optimization requires a

precondition check; we write it as:

IsPowerOf2(𝐶) |= 𝑧 ×𝐶 ⇒ 𝑧 ≪ log
2
(𝐶)

Throughout this paper, we will refer to the three parts of a peephole optimization as the precon-
dition (a predicate guarding the optimization, to the left of the |=), the left-hand side (a potentially
optimizable collection of instructions, between the |= and the⇒), and the right-hand side (a more

efficient collection of instructions that refines the left-hand side when the precondition holds).
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The example above illustrates another feature that is common in generalized optimizations:

the optimized code contains a constant that is not found in the unoptimized code, but rather is a

function of values found in the unoptimized code. To generalize an optimization, these functions

must be discovered. To make this peephole optimization ready for inclusion in a real compiler, we

might also wish to make it apply to the commuted version 2048 × 𝑧, and finally we would want it

to apply to integer values of any bitwidth, not only to the width of the original, unoptimized code

that someone noticed.

Bitwidth-independence ended up being a central concern; getting all of the parts to fit together

cost us about a year in terms of getting Hydra working seamlessly. One interesting challenge that

we faced was finding bitwidth-independent versions of optimizations whose preconditions involve

the results of dataflow analyses. For example, if the compiler can prove that the bottom two bits of

a value 𝑥 are always set, then the expression 𝑥 | 3 can be simplified to 𝑥 . We introduce the notion

of dataflow variables that make implementation-level elements of dataflow analyses available as

synthesis components. For example, given a dataflow variable KnownBits(𝑥).ones—a bitvector that
contains a one in every bit position where 𝑥 provably has a one in all executions—Hydra generalizes

this optimization to:

𝐶 = (𝐶 & KnownBits(𝑥) .ones) |= 𝑥 | 𝐶 ⇒ 𝑥

In other words, if the provable-ones in 𝑥 are a superset of the ones in 𝐶 , then the bitwise-or

instruction is unnecessary.

Research goal: We are creating basic technologies that will make it

unnecessary for future compiler developers to implement peephole

optimizations by hand. Rather, these optimizations will be automati-

cally generated and automatically formally verified.

Our generalization toolchain (Sections 2–6) starts out with a peephole optimization expressed

in Souper’s [Sasnauskas et al. 2017] intermediate representation, which can be automatically

extracted from a pair of LLVM functions exemplifying an optimization. Hydra’s output, a generalized

optimization, is then input to a code generator (Section 7), and the resulting code can be compiled

into a shared library and loaded into LLVM 17 as an optimization pass; Figure 1 shows an example

of how these pieces fit together. The generated code is correct by construction.

Our top-level result is that generalization works. For example, we took a collection of opti-

mizations from Souper and used them to optimize the integer benchmarks from SPEC CPU 2017.

The 10 optimizations that matched the most times fired a total of 18,695 times. We then ran the

optimizations from Souper through Hydra and used its output to optimize the SPEC CPU 2017

integer benchmarks; in this case the top 10 optimizations matched a total of 442,860 times: a 23.7×
increase. We also applied Hydra to ungeneralized optimizations that we found in the LLVM project’s

issue tracker; it was able to generalize 75% of these.

2 GENERALIZING PEEPHOLE OPTIMIZATIONS
This section gives an overview of our work and provides some context.

Hydra’s approach to generalizing optimizations. Given two peephole optimizations, one of them is

more general if its transformation can be applied in a proper superset of the situations in which the

other one applies. Broadly speaking, our approach is greedy, attacking the generalization problem

from different angles until no further improvements are possible. Table 1 shows an overview of

this process, along with an example for each step.

Recall that a peephole optimization can be decomposed into three parts: Precondition |= LHS⇒
RHS. The parts are interdependent and all of them must be modified during generalization. We start
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Table 1. This example illustrates most generalization steps described in this paper, beginning with the sort of
ungeneralized optimization that Souper typically emits. 𝑦 : i64 indicates that 𝑦 is a 64-bit integer and 𝑧 : i4
indicates that 𝑧 is a 4-bit integer; we omit redundant bitwidth constraints. Text in red indicates something
that is going away in the next step; green indicates something the current step introduces. These steps are
largely sequential, except for the two rows marked Invalid—it is usually necessary to try multiple options
before we can return to a Valid state.

Step Peephole Optimization Valid? Section

Original 𝑦 ≠ 0 |= (𝑦 : i64 − 42) × 2048 ⇒ (𝑦 − 42) ≪ 11 ✓ Sec 2

Pruning 𝑧 : i64 × 2048 ⇒ 𝑧 ≪ 11 ✓ Sec 3

Narrowing 𝑧 : i4 × 2 ⇒ 𝑧 ≪ 1 ✓ Sec 3.2

Symbolic Constants 𝑧 : i4 ×𝐶 ⇒ 𝑧 ≪ 𝐷 × Sec 4

Expression Synthesis 𝑧 : i4 ×𝐶 ⇒ 𝑧 ≪ 𝑙𝑜𝑔2 (𝐶) × Sec 4

Precondition Synthesis IsPowerOf2(C) |= 𝑧 : i4 ×𝐶 ⇒ 𝑧 ≪ 𝑙𝑜𝑔2 (𝐶) ✓ Sec 5

Width Independence IsPowerOf2(C) |= 𝑧 ×𝐶 ⇒ 𝑧 ≪ 𝑙𝑜𝑔2 (𝐶) ✓ Sec 6

with a pruning step that removes inessential elements from the optimization. Second, we try to

rewrite the entire optimization to work at a narrow bitwidth; if successful, this significantly speeds

up the numerous solver calls that we will subsequently need to make. Next, we try to express all

remaining preconditions in terms of dataflow facts, which we weaken as much as possible. After

that, we try to replace literals with synthesized constant expressions; this potentially requires

additional preconditions to be synthesized. Finally, we attempt to prove that the optimization is

bitwidth-independent.

Acquiring ungeneralized optimizations. Hydra’s input—an ungeneralized peephole optimization—

typically starts out as a concrete pair of unoptimized and optimized LLVM IR. For example, we have

found a number of desirable, but unimplemented, optimizations described this way in the LLVM

project’s issue tracker. We then (automatically) convert these into Souper’s IR. Alternatively, we

can use Souper to extract a LHS from LLVM IR into its own IR, and then use Souper to synthesize

a RHS. In either case, the optimization that we start with is completely specific: it applies to a

particular collection of instructions, containing specific literal constants, at specific bitwidths.

Estimating profitability. An optimization only makes sense when it is profitable: when the RHS is

cheaper than the LHS for some cost model of interest. Figuring out the right cost model for LLVM

IR is not totally straightforward because LLVM’s backends are quite sophisticated and perform

numerous optimizations of their own. Therefore, we have gone with a simple code model: most

instructions have cost one; the ternary “select” instruction and some simple intrinsics such as

funnel shifts have cost three, and then more complex intrinsics such as “reverse bits” and “count

leading zeroes,” as well as the division and remainder instructions, have cost five. This is roughly

compatible with the observed behavior of LLVM’s existing peephole optimizations.

Scope. Our current Hydra implementation targets LLVM and uses Alive2 [Lopes et al. 2021] as a

verification engine. We support control-flow-free DAGs of arbitrary-width integer operations in

the static single assignment (SSA) form. The instructions involved in a peephole optimization do

not need to be located near each other, and can even live in different basic blocks—they only need

to be connected by dataflow edges. We have avoided supporting floating point operations because,

in our experience, many non-trivial queries about them cause SMT solvers to timeout. We have not

supported memory operations because we judged them to be orthogonal to most of the techniques

that we wanted to explore.
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Simpli�ed optimization

Pruning: replace
an expression with
a fresh variable

Verify with Alive2

Original optimization

Fig. 2. Pruning an optimization. (𝑦 − 42) is replaced with the fresh variable 𝑧 that can match any expression.
A subtraction of 42 is no longer necessary for the optimization to apply.

Applicability beyond LLVM. Although the details obviously differ, there is considerable over-

lapping functionality between the peephole optimizers in the various SSA-based compilers that

we have looked at. Simplifications such as removing a pair of operators that undo each other, or

applying a DeMorgan law, are ubiquitously useful. Even so, we must be extremely cautious when

reusing peephole optimizations across compilers: details such as the undefined behavior model can

invalidate apparently innocuous transformations. By reusing Alive2 as a black-box verification

engine, Hydra’s core remains independent of most of this kind of tricky, LLVM-specific reasoning.

Our hypothesis is that if an Alive2-like tool existed for the internal representation of compilers

such as MSVC, Intel CC, and GCC, then we could support generalizing peephole optimizations for

these other compilers with relatively modest implementation effort. This hypothesis has not been

tested, our current work remains specific to LLVM.

3 PREPROCESSING
This section describes two relatively lightweight steps that we take before moving on to proper

generalization. The first one (pruning) is a simple generalization strategy on its own, and the second

one (narrowing) makes generalization faster.

3.1 Pruning
Ungeneralized optimizations written by hand tend to not contain extraneous elements, but those

emitted by tools can contain garbage that we want to eliminate prior to generalization. In particular,

optimizations from Souper often contain irrelevant instructions and unnecessary preconditions. For

preconditions, we greedily remove anything that can be removed without breaking the optimization.

For instructions, we greedily replace them with fresh variables—when this results in an invalid

optimization, we back out the change and try to remove a different instruction. Pruning results

in an optimization that is more general than the original one, and is easier to generalize further.

Consider the original optimization in Figure 2. It cannot optimize expressions like (𝑦 − 43) × 2048,
or (𝑎 + 𝑏) × 2048, whereas the pruned version can.

We also try to remove LLVM’s undefined-behavior-related flags from instructions, when this can

be done without breaking the optimization. For example, if the LHS of an optimization contains

an add nsw instruction (addition, with signed overflow being undefined) but this undefinedness is

not necessary to drive the optimization, then we can remove this flag. Removing these flags gains

generality: every optimization with an add on the LHS is also valid for add nsw. The converse does
not hold.

3.2 Narrowing Bitwidth, to Make Generalization Faster
We can make generalization faster and more likely to succeed by performing it on an equivalent

optimization where individual SSA values have a narrower bitwidth than they do in the original
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Shrink optimization to 4 bits

Generalize 4-bit problem (fast)

Prove width independence

Generalize at original width (slow)

Width-independent peephole Peephole requiring width checks 

Success
Failure

Prove width independence

fast

happy

path

Fig. 3. Generalization pipeline with width reduction

optimization. Consider this ungeneralized optimization:
1

𝑥 : i64 /𝑢 2
51 ⇒ 𝑥 ≫𝑢 51

Generalizing this at its full width is challenging because wide divisions result in slow solver queries

and timeouts. On the other hand, a narrower version of the same optimization, such as

𝑥 : i4 /𝑢 2
2 ⇒ 𝑥 ≫𝑢 2

would result in much faster queries, and few or no timeouts. Narrowing the width of an optimization

is not always possible, but when it is, it can be a powerful technique. We define a narrow version

of an optimization as one where at least one SSA value has a narrower bitwidth than it does in the

original optimization and the LHS, RHS, and precondition expressions are structurally identical,

differing only in the values of literal constants. If narrowing fails, we fall back to generalizing the

original optimization as-is, at its native width. Figure 3 illustrates this augmented generalization

workflow. Besides making solver invocations faster, narrowing the width of an optimization made

it practical for us to utilize brute-force model counting for ranking synthesized preconditions

(Section 4.3).

Type assignments. To create a narrow version of an optimization, we replace all SSA values

with narrower versions of themselves. Although this is straightforward in many cases, it is more

interesting when an optimization involves values with different widths. We fix the widths of

the inputs to the optimization and then ask Alive2 to generate widths for internal nodes in the

optimization, in such a way that the type system for LLVM IR is respected. This is a simple type

system based on constraints that insist, for example, that both operands and also the result of a

binary operator have the same width, that a sign-extend or zero-extend operation increases the

width by at least one, and that the result of an integer comparison instruction is a Boolean value

(i.e., it has a width of one). To these constraints we add two more:

• Do not exceed a configurable limit for any width

• Do not reduce the width of any variable to one (single-bit integers often behave quite

differently than wider values)

Constant synthesis. Next, we synthesize fresh literal constants on both the LHS and RHS, at

the narrowed width, under the constraint that the optimization still works. This is a standard

exists-forall problem; Z3 can solve these natively but we have found that a custom CEGIS loop

employing generalization by substitution [Dutertre 2015] performs better.

A problem that we observed in practice is that, sometimes, particular choices of synthesized

constants can change the nature of the optimization. For example, if we end up synthesizing

1
Throughout this paper we follow LLVM’s convention of attaching signedness to operators instead of values. Thus, /𝑢 is

unsigned division and ≫𝑢 is unsigned (logical) right shift; their signed equivalents are /𝑠 and ≫𝑠 .
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Candidate solutions Formal veri�cation

Invalid

Invalid

Valid

Original ungeneralized optimization

Generalized with top-down Inductive Synthesis

Inductive Synthesis
formulation

Recursive invocation

Fig. 4. Synthesizing expressions from input-output examples

addition by zero or multiplication by one, the resulting code trivially folds away. We addressed this

issue by constraining constant synthesis to avoid the identity elements, if any, for the operations in

the LHS and RHS.

4 MAKING CONSTANTS SYMBOLIC
One of the most important parts of generalization is weakening literal constants on the LHS to

symbolic constants. For example, consider this (contrived) rewrite:
2

(𝑥 + 5) − (𝑦 + 1) ⇒ 𝑥 − 𝑦 + 4
A more general form is

(𝑥 +𝐶1) − (𝑦 +𝐶2) ⇒ 𝑥 − 𝑦 +𝐶3

In some cases, replacing literal constants with symbolic constants will require protecting the

optimization with one or more preconditions; we address this issue starting in Section 4.3 and then

Section 5. Here, no precondition is required, but we need to figure out how to compute 𝐶3 as a

function of 𝐶1, and 𝐶2. We do this by solving a synthesis problem:

Find an expression, using the standard arithmetic and bitwise operators, for computing

𝐶3 in terms of𝐶1 and𝐶2, thatmakes the refinement relation (𝑥+𝐶1)−(𝑦+𝐶2) ⇒ 𝑥−𝑦+𝐶3

hold.

The simplest satisfying expression is 𝐶3 = 𝐶1 −𝐶2. Substituting this expression, we get a complete,

generalized optimization, that reduces the computation cost by one arithmetic operation:

(𝑥 +𝐶1) − (𝑦 +𝐶2) ⇒ 𝑥 − 𝑦 + (𝐶1 −𝐶2)
We call 𝐶1 −𝐶2 a “constant expression.” We generate constant expressions using two strategies:

synthesis from input-output examples (which is roughly depth-first), and enumerative synthesis

(which is roughly breadth-first). Our approach here is inspired by LENS [Phothilimthana et al.

2016], which employs multiple synthesis techniques based on the insight that—so far at least—no

single synthesis technique appears to subsume all of the others.

4.1 Synthesizing Constant Expressions from Input-Output Examples
Synthesizing expressions from input-output examples—also known as inductive synthesis—is a well

researched problem [Abate et al. 2018; Gulwani 2011; Jha and Seshia 2017]. In our case, we start

with a single input-output example, created using the literal constants from the LHS and RHS of the

ungeneralized optimization. This form of synthesis produces candidates that are guaranteed to be

correct for the given input-output examples; a necessary but insufficient criterion for producing a

2
Instead of employing this sort of peephole optimization, a production compiler would be more likely to reassociate the

expression to 𝑥 − 𝑦 + 5 − 1 and then perform constant folding.
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Algorithm 1 Top-down inductive synthesis assuming commutative binary operators.

1: procedure Inductive-Synthesis(target, depth, context)
2: if depth = 1 then ⊲ Base case. Fall back to enumeration.

3: return Enumerative-Synthesis([expected=]target, [depth=]1) ⊲ Supports non-invertible operations.

4: Results← ∅
5: for𝐶 ∈ Components do
6: if target = Input-Examples[𝐶 ] then ⊲ Is there a direct match?

7: Results

append

←−−−− 𝐶

8: for ⊙ ∈ Operators do
9: if Detect-NOP(context, ⊙, C) then ⊲ Avoid expressions like𝐶 − 𝐶 .
10: Continue
11: x← Solve-Equation(𝐶 ⊙ 𝑥 = target) ⊲ Has to be fast. Can not use an SMT solver.

12: Continue if x not found or guessed. ⊲ Typically fails for some non-invertible operations.

13: for expr ∈ Inductive-Synthesis(𝑥, depth − 1, {𝐶, ⊙}) do
14: Results

append

←−−−− (𝐶 ⊙ expr)
15: Return Results

valid optimization. Establishing sufficiency requires a potentially-expensive solver invocation, so we

try to produce as few infeasible candidates as possible. This approach is illustrated in Algorithm 1.

Figure 4 shows some expressions that produce the correct result for the given example, but do not

satisfy the overall refinement relation.

We adopt a greedy top-down solution where we first choose a symbolic constant from the LHS

and a top level operation ⊙: 𝑓 (𝐶1,𝐶2, ...) = 𝐶𝑛 ⊙ 𝑥 . We solve this equation to find a unique 𝑥

whenever ⊙ is invertible. For bitwise operations like and, or, and shifts, we try to find any one value
that satisfies the equation—this is not guaranteed to work. We skip the non-invertible operations for

which we fail to solve this equation. Next, we recursively invoke the same procedure with 𝑥 as the

output example. For the base case, we check if the new output example is equal to one of the input

examples, or can be obtained by combining two input examples with a single operation—standard

enumerative synthesis. This is helpful for non-invertible operations where we might fail to find a

suitable 𝑥 .

We prune away nop expressions such as𝐶1+0,𝐶1×(𝐶2/𝐶2) by building some identity-recognition

rules into the operator selection logic, based on the last two tokens synthesized (“context,” in

Algorithm 1).

This avoids run-away chains like𝐶3 = 𝐶2 +𝑛 −𝑛 +𝑛 −𝑛 + . . ., because the first (𝑛 −𝑛) is blocked.
Pruning is helpful, but it is insufficient to tackle the large search space resulting from redundant

expressions. Hence, our search is bounded by a configurable depth limit, which restricts the total

number of synthesized operations.

We have found that this synthesis technique is effective in finding expressions consisting of

invertible arithmetic operations. State of the art synthesis tools such as FlashFill++ [Cambronero

et al. 2023] confirm this observation; this paper mentions that putting effectively invertible operations
closer to the root of the search tree is a key strategy for programming-by-example. Inductive

synthesis is a fast and effective first step in our synthesis pipeline; it succeeds about 70% of the

time; for the remaining 30%, we back off to enumeration.

4.2 Enumerative Synthesis, Sketching, and Components
Enumeration is a brute-force approach to synthesis. We have reused the building blocks of enumer-

ative synthesis from Souper [Sasnauskas et al. 2017], augmenting it in two ways that make it more

effective at solving the problems that we encounter.
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3. Find a weak
precondition

1. Extract sketch from LHS

2. Instantiate sketch in RHSUngeneralized Optimization
Sketch

Generalized Optimization

Fig. 5. Synthesizing expressions with sketching

First, we use sketching, where subexpressions from the LHS are used as templates for elements

of the constant expression on the RHS. For example, consider this ungeneralized optimization:

((𝑥 : i32 ≪ 8) ≫𝑢 16) ≪ 8⇒ 𝑥 & 0x00FFFF00

Both GCC and LLVM perform this optimization, which reduces the computation cost from three

operations to one. It can be generalized by making the constants symbolic and replacing 0x00FFFF00

with an expression. We can synthesize this expression using enumerative synthesis, but this is slow

because the search space is large.

Sketching helps us to reduce the search space. Notice that the constant expression ((−1 ≪
𝐶1) ≫𝑢 𝐶2) ≪ 𝐶3 is remarkably similar to the LHS computation ((𝑥 ≪ 𝐶1) ≫𝑢 𝐶2) ≪ 𝐶3.

This happens fairly frequently. To make use of this sketch, we extract a function 𝑓 (𝐴, 𝐵,𝐶, 𝐷) =
((𝐷 ≪ 𝐴) ≫𝑢 𝐵) ≪ 𝐶 . Then, given the symbolic constants 𝐶1, 𝐶2, and 𝐶3, we instantiate 𝑓

with all 4
4 = 256 combinations of the available LHS constants and three special constants 0, 1,−1:

𝑓 (𝐶1,𝐶1,𝐶1,𝐶1), 𝑓 (𝐶1,𝐶1,𝐶1,𝐶2), etc. These are then used as components for enumerative synthesis.

Additionally, this optimization has a precondition; we address synthesizing these in the following

section. Figure 5 illustrates this process.

The second way that we improved Souper’s synthesis algorithm is by adding a collection of

components that are frequently useful in our domain. These include a 𝑙𝑜𝑔2 component, a symbolic

width component (explained in more detail in Section 6), and several auxiliary operators such as

𝐶 ⊕−1; −1 ≪ 𝐶 ; −1 ≫𝑠 𝐶 ; −1 ≫𝑢 𝐶 ; min(𝐶1,𝐶2); and, max(𝐶1,𝐶2). With these two improvements,

we were able to synthesize constant expressions consisting of two new operations (not counting

the ones in the sketch or the components) within a ten minute timeout. This was sufficient for

most of the problems we encountered.

4.3 Synthesizing Preconditions Over Constants
It is frequently the case that an optimization only works for some choices of values for symbolic

constants on the LHS. For example, continuing with the optimization from the previous section, its

general form is:

𝐶1 = 𝐶3 ∧𝐶2 = 2 ×𝐶1 |= ((𝑥 ≪ 𝐶1) ≫𝑢 𝐶2) ≪ 𝐶3 ⇒ 𝑥 & ((−1 ≪ 𝐶1) ≫𝑢 𝐶2) ≪ 𝐶3

Generating preconditions over symbolic constants, such as 𝐶1 = 𝐶3 ∧ 𝐶2 = 2 × 𝐶1 is a core

problem solved by Alive-Infer [Menendez and Nagarakatte 2017]. Our approach is similar but

simpler; it is comprised of three phases: precondition generation, filtering and verification, and

combination. The goal is to synthesize a compact and weak precondition over symbolic constants

that is sufficient to render the optimization sound.

Generating preconditions by enumerative synthesis. We start by generating preconditions that use

the given symbolic constants; this is done by enumerative synthesis. The primary components for
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enumeration are symbolic constants and the standard arithmetic and bitwise operators, and (similar

to what we did in Section 4.2) we have augmented these components with sub-expressions from the

LHS, after replacing literal constants with symbolic constants. We have experimented with using

our inductive synthesis engine for synthesizing preconditions, but we found that enumerative

synthesis was faster, and found weaker preconditions earlier in the search.

Precondition filtering and verification. We use one positive example and multiple negative exam-

ples to rapidly filter out expressions that are not valid preconditions. The positive example comes

from the ungeneralized optimization itself, and the negative examples are obtained with fast solver

queries on the partially generalized optimization. We use a counterexample-driven loop to obtain

up to a configurable number of negative examples with solver queries. A valid precondition for

constructing a generalized optimization must evaluate to false for all the negative examples, and

true for the positive example. After filtering, a solver query is needed to verify that a candidate

precondition is actually a precondition. We have observed that we need more than one negative

example for effective filtering, but that the effectiveness has diminishing returns for more than

three negative examples.

Ranking and combining preconditions. Given a collection of valid preconditions, we want to create

a weak, compact disjunction of them. Alive-Infer [Menendez and Nagarakatte 2017] approaches

this problem by generating more than one positive example with a solver, and then defining the

weakest precondition as the one that evaluates to true for the largest number of positive examples.

PSyCO [Lopes and Monteiro 2014] goes one step further and utilizes unsat cores to find the relevant

subset of preconditions. We found that there are usually only a few candidates which pass through

the filtering stage, so we have taken a heavier-weight approach: we rank preconditions using

brute-force model counting when the total bitwidth of the symbolic constants is not greater than

12. This works well in conjunction with our bitwidth reduction strategy (Section 3.2). For larger

widths (i.e. when width reduction fails), we fall back to a heuristic that smaller preconditions,

which do not contain equality or constants, are weaker. Given a list of preconditions sorted in

order of increasing strength, we greedily choose a subset of preconditions that imply the weakest

precondition; Algorithm 2 shows how this works.

Algorithm 2 Combining preconditions to find a compact, weak precondition

1: procedure Combine-Preconditions(Preds)
2: WP = false

3: Rank Preds from weakest to strongest

4: for 𝑃 ∈ Preds do
5: if ¬(WP =⇒ 𝑃 ) then ⊲ Check with a solver

6: WP←WP ∨ 𝑃
7: Return WP

5 GENERATING AND WEAKENING DATAFLOW PRECONDITIONS
LLVM—like other compilers—runs a collection of dataflow analyses that compute invariants over

SSA values. These dataflow facts are the main way that it establishes preconditions over variables

that are involved in peephole optimizations. This section describes our approach to establishing

and weakening dataflow preconditions while generalizing optimizations.

5.1 Dataflow Preconditions
The major abstract domains that Hydra supports are:
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• Known bits, which attempts to prove that individual bits are zero or one in all executions;

for example, an 8-bit variable that is provably a multiple of four would be represented by

𝑥𝑥𝑥𝑥𝑥𝑥00, where each 𝑥 is a bit whose value is unknown;

• Integer ranges, which tries to prove that a given SSA value is within a range, such as [5..10],
in all executions of the program being compiled; and,

• Demanded bits, which attempts to prove that some bits of an SSA value are not used by

subsequent computations, for example because they are going to be masked off or truncated

away.

Known bits and integer ranges are forward analyses, while demanded bits is a backwards analysis.

We also support four single-bit forward dataflow analyses that LLVM uses to prove that an SSA

value is respectively a power of two, non-zero, non-negative, and negative. We have focused on

these for our prototype since they figure prominently in LLVM’s peephole optimizations and

also they are well-supported by Souper, which also uses them to prune its search space during

synthesis [Mukherjee et al. 2020]. These analyses have been carefully formalized [Taneja et al.

2020], and tested in LLVM.

Consider this optimization that removes an instruction that sets the bottom bit of a variable, in

the case where that bit is provably already set:

KnownBits(𝑣) ⊑ xxxxxxx1 |= 𝑣 | 1⇒ 𝑣

When this optimization is used by a compiler, checking its concrete dataflow precondition is a simple

matter of invoking the partial order check for the known bits lattice. In other words, ensuring that

the abstract value attached to the SSA value 𝑣 implies the precondition holds. For example, if the

compiler has proved that the bottom three bits of an 8-bit variable 𝑣 are set, then its known bits

representation would be 𝑥𝑥𝑥𝑥𝑥111, and this clearly implies that this optimization’s precondition

holds.

5.2 Dataflow Variables: Exposing Abstract Values as Synthesis Components
The optimization just above is a member of a large family of similar optimizations such as:

• KnownBits(𝑣) ⊑ xxxxxx1x |= 𝑣 | 2⇒ 𝑣 ,

• KnownBits(𝑣) ⊑ xxxxx1xx |= 𝑣 | 4⇒ 𝑣 ,

• KnownBits(𝑣) ⊑ xxx1xxx1 |= 𝑣 | 17⇒ 𝑣 , and so on.

Wewant to collapse this collection of 2
bitwidth

optimizations into a single, generalized optimization,

but this cannot be accomplished using a partial order check against a specific abstract value such

as xxxxxx1x. The problem is that the abstract value that we wish to compare against is a function

of the constant value found on the LHS.

The generalized optimization that we wish to generate is something like:

KnownBits(𝑣) ⊑ liftKB-Ones(𝐶) |= 𝑣 |𝐶 ⇒ 𝑣

where liftKB-Ones(𝐶) is a function that lifts the one bits found in the literal constant 𝐶 into an

abstract value in the known bits domain, leaving the zeroes as unknown bits.

Although it would not be difficult to add components to our precondition synthesis that support

lifting constants into abstract values, this by itself is not powerful enough to support all of the

optimizations that we wish to generalize. Consider this transformation:

(KnownBits(𝑣).ones | KnownBits(𝑣).zeroes | ∼DemandedBits) = −1
|= 𝑣 ⇒ KnownBits(𝑣).ones

Here KnownBits(𝑣).ones is a bitvector containing a one for every bit that was provably one in

the abstract value from the known bits domain (and zeroes elsewhere), KnownBits(𝑣).zeroes
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contains a one for every bit that is provably zero in the abstract value (and zeroes elsewhere),

and DemandedBits is a bit mask containing a one for every demanded bit of the root expression

(𝑣 , in this case). The effect of this optimization is to replace an SSA value with a specific literal

constant, which has ones corresponding to KnownBits(𝑣).ones, and has zeroes elsewhere. This can
be done when every bit of the original SSA value is either provably one, provably zero, or provably

not-demanded.

The key insight permitting this optimization to be generalized from a specific example is that

elements of abstract values must be exposed as synthesis components so that they can be used

in arbitrary computations, including those that produce an RHS value. This concept, which we

call dataflow variables, is implicitly present in the implementation of compilers such as LLVM and

GCC, in the sense that these compilers contain optimizations that involve parts of abstract values

in computations other than partial order checks.

We support the following dataflow variables:

• KnownBits(𝑣).ones — 𝑣 is guaranteed to contain a one in every bit position where this

dataflow variable contains a one

• KnownBits(𝑣).zeroes — 𝑣 is guaranteed to contain a zero in every bit position where this

dataflow variable contains a one

• IntegerRange(𝑣).sMin — 𝑣 is guaranteed to be at least as large as this dataflow variable, using

signed comparison

• IntegerRange(𝑣).sMax — 𝑣 is guaranteed to be no larger than this dataflow variable, using

signed comparison

• IntegerRange(𝑣).uMin — 𝑣 is guaranteed to be at least as large as this dataflow variable, using

unsigned comparison

• IntegerRange(𝑣).uMax — 𝑣 is guaranteed to be no larger than this dataflow variable, using

unsigned comparison

• DemandedBits — for every bit position where this dataflow variable contains a zero, the

corresponding bit in the root of the LHS is guaranteed to be a don’t-care: it can take either

value without affecting the computation

Why these specific dataflow variables? We have two answers. First, some of these were suggested

by reading existing LLVM optimization code, where we saw hand-written optimizations using

something effectively equivalent to the known bits and demanded bits dataflow variables. Second,

for integer ranges (which are not heavily used by LLVM’s peephole optimizers, for reasons that

are not entirely clear to us), the four dataflow variables listed here seemed intuitively likely to be

useful. We could not, for example, find uses for dataflow variables that represent the midpoint of

the range, or the width of the range. This aspect of our work remains more of an art than a science

and we are still working to understand it better.

One might ask: Why is it legal to perform arbitrary computations on values that are derived from

implementation-level aspects of dataflow facts? This works because, regardless of the presence of

any dataflow variables, we fully formally verify each optimization under the assumption that its

preconditions (including dataflow preconditions) hold. Then, separately, dataflow variables serve

as additional synthesis components.

5.3 Normalizing Preconditions to Dataflow Preconditions
Hydra’s inputs are ungeneralized peephole optimizations with preconditions that are expressed

in three different ways. First, the explicit dataflow preconditions that we have already described.

Second, implicit preconditions that are established by instructions that are part of the left-hand

side of a peephole optimization, but that are not rewritten by the transformation. For example,
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consider the expression (𝑥 : i8&127) /𝑠 16. Recall that 𝑥 : i8 means that 𝑥 is an 8-bit integer, & is the

bitwise-and operator, and /𝑠 is the signed division operator. Although signed division cannot, in

general, be reduced to a single shift operator, this specific example can be reduced to a right-shift

by four bit positions because the dividend is non-negative: its sign bit has been cleared by the

masking operation. The and instruction acts as an implicit precondition: the optimization does not

work without it, but it is not otherwise involved in the transformation.

The third kind of precondition is the path condition—an arbitrary predicate over variables in the

left-hand side. Path conditions are found in ungeneralized optimizations from Souper, which gets

them by analyzing control flow in the program being optimized. For example, consider this C code,

where x is a signed integer:

if (x < 0) {
// doesn't matter

} else {
return x / 16;

}

In the then-branch, the path condition 𝑥 < 0 would be available, and in the else-branch, the

path condition 𝑥 ≥ 0 would be available when dividing 𝑥 by 16. This fact provides an alternative

justification for the optimizationwe discussed above, where a signed division by 16 of a non-negative

integer can be turned into a right-shift by four bit positions.

In the normalization step of peephole generalization, our goal is to turn every precondition

into a dataflow precondition. Dataflow preconditions are a sweet spot because they concisely and

abstractly capture facts about values in a program, they can be computed efficiently, and because

LLVM already supports them and uses them heavily to drive its peephole optimizations. On the

other hand, preconditions that are established by concrete instructions are undesirable because

there are typically many different syntactical forms that this kind of precondition can take, and

it would be impractical and inefficient to try to pattern match all of them. Path conditions are

undesirable because they are too expressive; a compiler like LLVM has no machinery for matching

arbitrary predicates, and it is not clear that such a mechanism could be added without slowing

down the compiler unacceptably.

Turning implicit preconditions into dataflow preconditions. We first identify a subexpression that is

present on both the LHS and the RHS of the optimization. If a subexpression is present on both sides,

then none of its instructions are going to be rewritten by the optimization, making it a candidate for

replacement by dataflow facts. We visit these eligible subexpressions in order of decreasing size. For

each candidate subexpression, we replace it—on both the LHS and RHS—with a fresh free variable,

and then attempt to synthesize a dataflow precondition that makes the new optimization valid. The

synthesis procedure that we use here is designed to be fast and reliable: we synthesize a singleton
abstract value whose concretization set contains only a single element. Thus, these fresh dataflow

preconditions are undesirably strong—weakening them is a separate step (Section 5.4). If synthesis

fails, we move on to a different subexpression. When we run out of eligible subexpressions, any

remaining instructions (that cannot be turned into dataflow preconditions) are left in place.

Turning path conditions into dataflow preconditions. We first remove trivial path conditions—

those that can be removed without breaking the optimization. The remaining path conditions are

required for the optimization to be valid, and can be turned into dataflow preconditions using the

same procedure that we use when turning instructions into dataflow preconditions. That is, for

each non-trivial path condition that we remove, we attempt to replace it with a maximally strong

dataflow condition that we will subsequently weaken. If this synthesis step fails for any given path

condition, generalization fails. When this sort of failure occurs, it is generally because the path
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condition expressed a fact that the non-relational dataflow analyses that we support are too weak

to capture. Fixing this issue—for example by adding relational abstract domains to LLVM—is not

within the scope of our work.

5.4 Generalizing Dataflow Preconditions
Dataflow preconditions, regardless of whether they come from normalization or from the original,

ungeneralized optimization, should be as weak as possible, while still justifying the optimization.

Weakening concrete dataflow preconditions. For known bits and demanded bits, we incrementally

weaken the dataflow fact, one bit at a time, until no weakening is possible without breaking the

optimization. Since these domains are structured as separable collections of independent bits, this
process requires at most 𝑛 solver invocations for an 𝑛-bit SSA value. Moreover, since these abstract

domains are lattices, we are guaranteed to arrive at the globally unique weakest precondition.

Our procedure for weakening integer range preconditions is to use binary search to look for the

widest possible range that results in a valid optimization. Alas, the integer range abstract domain

that LLVM supports is not based on a lattice [Gange et al. 2013]; this stems from the way that it is

designed to model both signed and unsigned wraparound using a single representation. Therefore,

we are not guaranteed to find the weakest precondition for integer ranges, but rather only a locally

weakest precondition.

Generalizing dataflow preconditions with dataflow variables. Since concrete dataflowpreconditions—

as we have seen—can block generalization, we attempt to replace them with dataflow variables.

The process for doing this has the same structure as the process for turning concrete constants into

symbolic constants, from Section 4. First, we replace the concrete dataflow precondition with a fresh

unconstrained dataflow variable of the appropriate type. If this change breaks the optimization, we

attempt to constrain the dataflow variable with one or more predicates. We find these by the same

method described in Section 4.3.

Consider the following ungeneralized optimization:

Integer-Range(𝑥) ⊑ [7..42) |= 𝑥 <𝑢 7479⇒ true

This optimization is valid because all the possible values of 𝑥 are less than 7479, and hence the

expression 𝑥 <𝑢 7479 is always true. We generalize this optimization by replacing the concrete

constant (7479) with a fresh symbolic constant 𝐶 and adding a new predicate 𝐶 >𝑢 𝑥 .𝑢𝑀𝑎𝑥 . The

generalized form of this optimization is:

𝐶 >𝑢 𝑥 .uMax |= 𝑥 <𝑢 𝐶 ⇒ true

6 WIDTH INDEPENDENCE
Some compilers internally support a fixed set of types, such as 32-bit and 64-bit integers. LLVM,

however, internally supports—and encourages the use of—integer values of any width. Although

LLVM’s middle-end optimizers need to cope with integer values of arbitrary size, they are free

to assume that all code is well-typed. Correspondingly, they must ensure that optimized code is

still well-typed. (We briefly described the width-related aspects of LLVM’s internal type system in

Section 3.2.)

A width-independent peephole optimization is one that is correct regardless of the widths of the

SSA values on the LHS. For example, 𝑥 + (0 −𝑦) ⇒ 𝑥 −𝑦 is width-independent. On the other hand,

𝑥 × 𝑦 ⇒ 𝑥 & 𝑦 is only valid when 𝑥 and 𝑦 are one-bit integers.
3

3
Perhaps surprisingly, this optimization is performed by LLVM. https://gcc.godbolt.org/z/T4YsEnoo9
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Some optimizations are fundamentally width-dependent: no width-independent version exists.

For example, the width dependency of 𝑥 × 𝑦 ⇒ 𝑥 & 𝑦 emerges from the truth tables for the

multiplication and bitwise-and operators. The width dependency of an optimization involving

LLVM’s bswap intrinsic, that changes the endianness of a bitvector whose width is a multiple of 16,

comes from LLVM itself. Our goal with respect to fundamentally width-dependent optimizations

is simply to handle them properly by protecting them with appropriate width checks in their

preconditions.

Other optimizations are incidentally width-dependent: a width-independent form exists and our

goal is to find it. The most common source of incidental width dependency is the presence of literal

constants in optimizations, regardless of whether they are in the LHS, RHS, or in a precondition.

Fortunately, the process of turning literal constants into symbolic constants—which is something

that we need to do anyhow, because it is an important aspect of generalization—is often sufficient

to create a width-independent optimization.

6.1 An Indirect Approach to Synthesizing Bitwidth-Independent Optimizations
The output of our generalization pipeline up to this point is a peephole optimization that has

been proved correct at a single bitwidth. There is no guarantee that this optimization will work

at any other width. However, as we previously observed, the part of generalization where we

replace literal constants with symbolic constants goes a long way towards exposing the naturally

width-independent version of an optimization (if this exists).

Beyond relying on symbolic constants to make optimizations width-independent, we found it nec-

essary to make operand bitwidths available as synthesis components. Consider this ungeneralized

optimization:

(𝑥 : i32 ≪ 10) ≪ 14⇒ 𝑥 ≪ 24

It could be generalized to:

(𝐶1 +𝐶2 < 32) |= (𝑥 : i32 ≪ 𝐶1) ≪ 𝐶2 ⇒ 𝑥 ≪ (𝐶1 +𝐶2)

The precondition is required because, in LLVM, shifting a value past its bitwidth results in a poison

value (a form of undefined behavior). However, this precondition is problematic because it makes

the optimization bitwidth-dependent. A better generalization would be:

(𝐶1 +𝐶2 <𝑊𝑥 ) |= (𝑥 ≪ 𝐶1) ≪ 𝐶2 ⇒ 𝑥 ≪ (𝐶1 +𝐶2)

where𝑊𝑥 is a symbolic width constant that evaluates to the bitwidth of 𝑥 . This optimization is

width-independent.

The next problem is to ensure that the width-independent version gets synthesized. Our solution—

based on the insight that width-independent optimizations almost never contain non-trivial literal

constants—is to bias synthesis away from width-dependent expressions by blocking the synthesis of

literal constants other than zero and one (at this level the highly useful constant −1 is expressed as

sext(1): sign-extending a 1-bit value containing a one to whatever width is needed). It is evident that
the constant one can be used to construct other constants, defeating the purpose of this restriction.

We prevent that by disallowing sub-expressions that fold to other concrete constants—for example

we would prevent 1 + 1 from being synthesized, but allow𝑊𝑥 − 1.
In summary, we developed an indirect approach to width-independence based on making sure

that synthesis has access to a symbolic width variable, and then also biasing the search away from

parts of the space that we know are often incidentally width-dependent. This often finds the desired

result, but this is not guaranteed. Of course, a direct approach—that synthesizes width-independent

optimizations from first principles—would be preferable. We leave this for future research.
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6.2 Verifying Width Independence
We take the same brute-force approach to dealing with varying bitwidths that Alive [Lopes et al.

2015] and Alive2 [Lopes et al. 2021] have taken: instantiate and verify an optimization at all feasible

widths, up to a configurable maximum width, which we currently set to 64 bits. We do this by

erasing the concrete integer types in the optimization and then asking Alive2 to enumerate all

width assignments that respect LLVM’s type rules.

If an optimization is valid for all feasible widths of its inputs and its output, then it is width-

independent, and no width checking is required before applying the optimization. However, when

an optimization is valid for a subset of widths, we want synthesize a precondition over widths in

one of the following forms:

• a range of widths, e.g.: 1 ≤𝑊 ≤ 8

• a set of widths, e.g.:𝑊 ∈ {2, 4, 8}
• simple inequalities, e.g.:𝑊1 ≤𝑊2

• power of two, e.g.:𝑊 = 2
𝑛

• a single width, e.g.:𝑊 = 32

So far we have not seen optimizations that require width preconditions to be more expressive than

this.

As expected from a brute-force approach, verifying width-independence can be very slow for

some optimizations. Consider the expression

zero-extend(truncate(𝑥))

The width of 𝑥 , the width of the truncated value, and the width of the zero-extended value are all

constrained only loosely, and there are 124,992 feasible width assignments, considering bitvectors

of 64 bits or fewer. To cope with optimizations that have multiple width-changing instructions, we

support an optional shortcut mode that only checks widths that are powers of two. This provides,

in some cases, multiple orders of magnitude speedup; it does not sacrifice soundness since we

encode the power-of-2 restriction on widths into the preconditions of optimizations generated in

width-shortcut mode. In the longer term, we would like to avoid brute force and instead invoke

a decision procedure that directly supports bitwidth-independent bitvector reasoning; this is an

active field of research [Ekici et al. 2023; Niemetz et al. 2019].

7 MAKING OPTIMIZATIONS EXECUTABLE
One route to deployment for a generalized optimization is for a compiler developer to manually

translate it into the compiler’s implementation language. Although Hydra’s internal IR is not

particularly readable, we have implemented a pretty-printer whose output closely resembles the

format that we use for describing optimizations in this paper.

Another route to deployment, that we explore in this section, is to automate this process by

turning generalized optimizations into code. Mechanically-generated code has the advantages of

requiring less effort to create, and (presumably) being less error-prone than hand-written code.

Hydra’s internal IR supports significantly richer preconditions than does LLVM, meaning that

not every optimization in Hydra’s IR can be automatically converted into C++ code suitable for

inclusion in LLVM. For example, Hydra can easily express a non-linear predicate such as 𝑎 = 𝑏 ∗ 𝑐 ,
but LLVM has no mechanism for checking this (when 𝑎, 𝑏, and 𝑐 are arbitrary SSA values). In

our experience so far, about a quarter of optimizations generalized from Souper’s output are too

expressive to be included in LLVM. We hope to eventually encounter a compiler that lets us use

these more expressive preconditions.
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// Opt ID : 42
llvm::Value * , * ;
if (match(I, m_UDiv(m_Value( ), m_Constant(&  )))) {
    if (IsPowerOf2(  )) {
        return CreateLShr( , CreateLogB( ));
    }
}

Does I match the LHS :                    where        is any constant?

Create the RHS :   Is      a power of 2?

1:
2:
3:
4:
5:
6:
7:

Fig. 6. Example code generated from a peephole optimization

Generating code. Given an optimization, we need to convert it into C++ that inspects and trans-

forms instructions using LLVM’s internal APIs and also a small library of auxiliary code that we

wrote. Figure 6 shows an optimization that converts unsigned division by a power of two into a

right shift, and also its corresponding C++ code (cleaned up slightly, for legibility).

The match call in Line 3 invokes a pattern-matching LLVM subsystem that is heavily used by

its own peephole optimizations. This call returns true if the instruction I is an unsigned division,

where the divisor is a literal constant. If so, as a side effect, the dividend is stored in x and the divisor
is stored in C. Although it is not the case here, when trying to match a commutative operation in

the left hand side, we emit an LLVM matching primitive that matches the operands in either order.

Line 4 checks the optimization’s precondition. Finally, Line 5 creates the optimization’s RHS and

returns it. All uses of the original SSA value that was produced by the division instruction will

be replaced by this new value, and then a subsequent dead code elimination pass will remove the

divide and any other instructions that have been rendered dead.

An optimization pass. Wewrote an optimization pass template that roughly follows the high-level

design of LLVM’s InstCombine implementation. Given an LLVM function, it adds each instruction

into a queue, and then it processes the queue until empty. As each instruction is removed from

the queue, the pass attempts to apply each optimization to it; when an optimization fires, it is

replaced with a new instruction, and then each instruction that is an SSA use of the new instruction

is appended to the queue. When the queue is empty, a fixpoint has been reached and the pass

terminates.

8 EVALUATION
In this section we look at the following research questions:

(1) Are Hydra’s generalized optimizations sound?

(2) Do they match more often than their ungeneralized counterparts do?

(3) Can a Hydra-generated pass be competitive with a hand-written peephole optimizer?

(4) Can Hydra effectively automate the construction of executable optimizations given a pair of

snippets of LLVM IR that exemplify an ungeneralized optimization?

We answer these questions and then Section 8.7 shows a few additional examples of generalized

optimizations. All experiments in this section were run using a version of Hydra that works with

LLVM 17.

8.1 Creating an Optimization Pass using Hydra
Sections 8.2–8.4 look at different aspects of an optimization pass that we created using Hydra’s

output. To create this pass, we first used the Souper superoptimizer to synthesize peephole opti-

mizations for the C and C++ programs in the SPEC CPU 2017 integer benchmark suite, running
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Fig. 7. Generalization works: generalized optimizations match more often, when compiling the integer
benchmarks from SPEC CPU 2017

in a mode where InstCombine (LLVM’s primary peephole optimizer) was disabled. We directed

Souper to synthesize at most one new instruction per RHS, resulting in a set of 26,162 distinct

optimizations. Second, we fed these ungeneralized optimizations to Hydra, which—on a 32-core

Intel machine—generalized at least one aspect of 77% of them in about seven hours. Each Hydra

invocation ran single-threaded and was given 10 minutes of total CPU time before we declared a

timeout and killed it. After generalization, there were 7861 distinct optimizations. We discarded

those that have preconditions that are too expressive for LLVM to check (as described in Section 7)

and then greedily selected a subset of the remaining optimizations that do not subsume each other.

This final subset contained 196 optimizations that we converted these optimizations into C++.

8.2 Evaluating End-to-End Correctness
Hydra is a formal-methods-based tool: at almost every step of the way it invokes Z3, via Alive2, to

ensure that the optimizations it manipulates are sound. Even so, we want to ensure that Hydra

does not produce unsound optimizations, for example by misusing an internal Alive2 API or by

mis-translating optimizations from its internal IR to C++.

We compiled the C and C++ benchmarks in the SPEC 2017 integer benchmark suite using a

version of Clang/LLVMwith InstCombine disabled, and with the Hydra pass described in Section 8.1

running at every point where InstCombine would have run. Hydra’s optimizations fired 450,493

times while compiling these benchmarks. We then ran the SPEC benchmarks, using the SPEC

driver scripts to confirm that they produced the expected results for the inputs in all three of its

configurations (test, train, and ref).

8.3 Evaluating Whether Generalized Optimizations Fire More Often
Next, we again compiled the integer benchmarks from SPEC CPU 2017 using an LLVM with

InstCombine disabled, and calling the Hydra-generated pass at every point where InstCombine

would have been run. TheHydra-generated pass consists of generalized versions of the optimizations

found by Souper, as described in Section 8.1. We also compiled the same benchmarks using the

optimizations generated by Souper. Figure 7 shows that generalized optimizations fire much more

frequently than do the ungeneralized optimizations discovered by Souper. The top 10 generalized

optimizations cumulatively match 23.7x more times than the top 10 ungeneralized optimizations.
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8.4 Case Study: Comparison with InstCombine
This section makes a direct comparison between InstCombine and our Hydra-generated LLVM pass

(Section 8.1), in terms of their ability to optimize the integer parts of SPEC CPU 2017. InstCombine

sets a high bar: it is one of the most extensive collections of peephole optimizations that we have

ever seen. Since InstCombine was split out into its own directory in the LLVM source tree in 2010,

it has received more than 5000 commits by over 450 LLVM developers.

We compiled the SPEC CPU 2017 integer benchmarks in three ways:

• using LLVM/Clang 17 at its -O2 optimization level

• using LLVM/Clang 17 at its -O2 optimization level, but with the InstCombine pass disabled;

this configuration is our baseline

• using LLVM/Clang 17 at its -O2 optimization level, with InstCombine disabled, and with

our Hydra-generated pass running at every point in the optimization pass pipeline where

InstCombine would have run

We ran the resulting executables on a single core of an otherwise idle 32-core x86-64 machine

(AMD Ryzen 2990WX) with 128GB of RAM, running Ubuntu 20.04.

Effectiveness of generalized optimizations. Figures 8 and 9 respectively show the change in code

size, and the change in execution time, of the benchmark programs, due to the two compiler

configurations that we are evaluating, with respect to the baseline LLVM configuration. Lower

(more negative) numbers are better in both cases. Figure 9 does not contain 999.specrand because

its execution is not timed by the SPEC benchmark driver.
4

Figure 8 shows that, broadly speaking, the Hydra-generated pass appears to be comparable to,

or better than, InstCombine in terms of being able to reduce code size. Notice the significant (about

15%) code size regression for InstCombine on 605.mcf_s. This happens because, for this benchmark,

InstCombine happens to reduce the code size of several functions to the point that LLVM’s inlining

heuristic decides to inline them, which increases the code size by about 5 KB. Hydra does not trigger

this behavior, but this was a matter of luck.

4
https://www.spec.org/cpu2017/Docs/benchmarks/999.specrand_ir.html
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Figure 9 shows that, again broadly speaking, the Hydra pass appears to be comparable in power

to InstCombine. 625.x264 is an exception: the performance due to Hydra falls far short of the

performance when optimized by InstCombine. We looked into this and found that a large part

of InstCombine’s speedup is due to just one optimization: replacing a call to the abs() function
in libc with an inlined absolute value implementation. Specializing library calls is not within the

current scope of our work. However, to verify that this was the only major factor holding Hydra

back, we manually added a call from the Hydra pass to LLVM’s library call simplifier. The resulting

benchmark performance, shown in a lighter red color in Figure 9, is comparable with InstCombine’s.

Effect on compile time. Our Hydra pass slows down the Clang/LLVM compiler by about 4%,

compared to its native -O2 optimization level. The matching code generated by Hydra is simply

not as efficient as is the hand-written code in InstCombine, which has been tweaked for speed

over a number of years by LLVM engineers, and which uses techniques such as sharing common

sub-matching problems across a family of related optimizations. Hydra is a research prototype and

we have not yet tuned its output for speed.

Note that unlike InstCombine, a Hydra-generated pass can be easily tuned for speed, simply by

selecting fewer optimizations, or it can be tuned to maximum effectiveness by selecting many or

all generalized optimizations. We have empirically found that—even in its current, unoptimized

state—we can create an optimizer that slows down clang -O2 by less than 0.5% by selecting only

the top 100 optimizations. We leave a full evaluation of the tunability of automatically generated

peephole optimizers for future work.

8.5 Evaluating Hydra’s Ability to Generalize an Old Superoptimizer’s Output
A talk at the LLVM Developers’ Meeting 13 years ago described an unsound superoptimizer that

worked by extracting fragments from optimized LLVM IR, enumerating potential optimizations,

and testing them stochastically [Sands 2011]. It describes (on slide seven) the goals of the work as

being:

(1) Automatically find simplifications missed by the LLVM optimizers

(2) And have a human implement them in LLVM

Hydra, of course, automates step (2). In the slides for this talk, we identified 17 optimizations; we

encoded each of them as a pair of small LLVM functions.
5

We generalized the optimizations implied by these pairs of functions; this succeeded in 14 cases,

timed out in two, and failed in one case. Alas, most of the generalizations weren’t particularly

interesting because the optimizations lacked interesting constants. For example, one of them was:

𝑥 : i32 − (𝑥 + 𝑦) ⇒ 0 − 𝑦
In cases like this, Hydra proved the optimization correct (recall that this superoptimizer was

unsound), proved that it was bitwidth-independent, and generated a C++ implementation suitable

for inclusion in LLVM. These things are valuable but do not really exercise Hydra to a significant

extent. We do not know if the relative simplicity of these optimizations is an indication of the

immaturity of LLVM in 2011, or whether they stem from limitations of this early superoptimizer.

The most interesting generalization from this batch of optimizations was turning this rewrite:

𝑥 : i32 = ((𝑦 + 𝑥) + 0xFFFFFFFF) ⇒ 𝑦 = 1

into:

5
These optimizations can be found at https://alive2.llvm.org/ce/z/JDFVxV
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𝑥 = (𝐶 + (𝑦 + 𝑥)) ⇒ 𝑦 = (0 −𝐶)

8.6 Evaluating Hydra’s Ability to Generalize Contemporary LLVM Issues
In September 2023 we ran a GitHub search for all issues in the official LLVM repository tagged

as both missed-optimization and llvm:instcombine. This yielded 98 issues, 41 open and 57

closed. Of these issues, 40 mentioned desirable optimizations that we judged to be appropriate for

our evaluation: they required at least one generalization besides proving width-independence, and

were within the scope of Hydra—they involved integer arithmetic instructions. These issues were

filed between 2019 and 2023: a period of time when LLVM’s peephole optimizers were already

quite mature. Thus, they are not low-hanging fruit: many of them are interesting and difficult.

Happily, many of these LLVM issues contained a link to the Compiler Explorer instance that

makes Alive2 available on the web. When possible, we used the unoptimized+optimized code found

there as the ungeneralized optimization. For most of the rest of the issues, we used Souper to

synthesize a valid optimization. In two cases, we had to manually identify and write down the

ungeneralized optimization. Some of the issues present a small family of peephole optimizations

instead of just one; in these cases we simply picked one of them, with an eye towards choosing the

one that seemed to be the defining problem, when this was possible.

Hydra is able to fully generalize 30 out of the 40 optimizations (75%). For the ones Hydra could

not generalize, we were able to use the width reduction technique described in Section 6 to find

a reduced-width version of the optimizations. This might be useful for compiler developers to

manually reason about the optimizations, given smaller constant values. Table 2 summarizes the

results of this evaluation, with links to the relevant issues.

We categorize Hydra’s failures into three categories:

(1) Synthesis Failure: Hydra is unable to generalize the optimization due to a limitation in its

synthesis engine. Typically this is because of complex preconditions involving more than

two conjunctions.

(2) Width Independence Failure: Hydra is unable to prove that the generalized optimization is

width independent, usually because the underlying SMT solver times out.

(3) Timeout: Hydra fails to generalize the optimization within 10 minutes.

8.7 Optimization Examples
Here we describe a few optimizations from the peephole pass from Section 8.1.

Converting unsigned division by a literal constant that is a power of two into a logical right-shift

is an absolutely canonical peephole that most optimizing compilers would support:

IsPowerOf2(𝐶) |= 𝑥/𝑢 𝐶 ⇒ 𝑥 ≫𝑢 log
2
(𝐶)

This related optimization converts an unsigned remainder operation into a bitwise and:

IsPowerOf2(𝐶) |= 𝑥 %𝑢 𝐶 ⇒ 𝑥 & (𝐶 − 1)
The ungeneralized version of this optimization used 64-bit values and was difficult for Z3 to reason

about; once Hydra reduced the bitwidth to eight, queries became about fifty times faster.

This optimization eliminates a conditional move instruction:

(𝐶1 −𝐶2) = 1 |= (𝑥 & 1) ≠ 0 ?𝐶1 : 𝐶2 ⇒ 𝐶2 + (𝑥 & 1)
These bitwidth-independent optimizations involve values of different widths:

trunc(𝐶 | zext(𝑥)) ⇒ 𝑥 | trunc(𝐶)
sext(𝑥 ?𝐶1 : 𝐶2) ⇒ 𝑥 ? sext(𝐶1) : sext(𝐶2)
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Table 2. Qualitative evaluation of Hydra’s ability to generalize desirable peephole optimizations mentioned
in LLVM’s issue tracker; these issues were filed from 2019–2023. We discarded the ones that were already
manually generalized, or if the only remaining aspect of generalization was width independence.𝑊𝑥 denotes
the width of 𝑥 ; sext and zext are the sign-extend and zero-extend operations, with sext(1) being a bitwidth-
independent way to express the all-ones value. sMin and sMax are bitwidth-independent versions of the
smallest and largest two’s complement integer values. cttz is the “count trailing zeroes” operator, ctlz is
“count leading zeroes,” and ctpop is the Hamming weight operator. The “nsw,” “nuw,” and “exact” qualifiers on
arithmetic instructions are related to undefined behavior [LLVM-LangRef 2023]

Issue Original Generalized

66733 ( (𝑥 : i32 ≫𝑢 15) ⊕ −1) & zext( (𝑥 = 0) ) ⇒ zext(𝑥 = 0) ∼(𝑥 ≫ 𝐶 ) & zext(𝑥 = 0) ⇒ 𝑥 = 0

65968

𝐶 = 0x80000000 |= ( (𝑥 : i32 &𝐶 ) ⊕ 𝐶 ) =
( ( (𝑦 : i32 ⊕ −1) &𝐶 ) ⊕ 𝐶 ) ⇒ (𝑦 ⊕ 𝑥 ) <𝑠 0

( (𝑥 & sMin) ⊕ sMin) =
( (∼𝑦 & sMin) ⊕ sMin) ⇒ (𝑦 ⊕ 𝑥 ) <𝑠 0

64305

( (𝑥 : i32 %𝑠 8) <𝑠 0) ? ( (𝑥 %𝑠 8) +nsw 8) : (𝑥 %𝑠 8)
⇒ 𝑥 & 7

IsPowerOf2(𝐶 ) |= (𝑥 %𝑠 𝐶 ) <𝑠 0 ?𝐶+
(𝑥 %𝑠 𝐶 ) : 𝑥 %𝑠 𝐶

⇒ 𝑥 & (𝐶 − 1)
63472 𝐶 : i1 ? 64 : 1 + sext( (𝐶 ⊕ 1) ) ⇒ 𝐶 ? 64 : 0 (𝑥 ?𝐶1 : 𝐶2 ) + sext(∼𝑥 ) ⇒ 𝑥 ?𝐶1 : (𝐶2 − 1)

62701

4 <𝑢 (4 <𝑢 𝑥 : i64) ? (𝑥 + −4) : 𝑥 ⇒
8 <𝑢 𝑥

Synthesis Failure

62263 ( (𝑥 : i32 | (𝑦 : i32 ⊕ −1) ) = 0) ? 𝑥 : 0⇒ 0 (𝑥 |𝑦) = 0 ? 𝑥 : 0⇒ 0

62163 (𝑥 : i32 ≫𝑠 1)/𝑠 (1 %𝑠 𝑥 ) ⇒ 𝑥 ≫𝑠 1 𝑥 /𝑠 (1 %𝑠 𝑥 ) ⇒ 𝑥

62155 ( (𝑥 : i32 & 0x7FFFFFFF) = 0) ? 0 : (𝑥 ≪ 1) ⇒ 𝑥 ≪ 1 (𝑥 & sMax) = 0 ? 0 : 𝑥 ≪ 1⇒ 𝑥 ≪ 1

61650

zext( (trunc(𝑎 : i32) ≪ 8) ) ⇒
(𝑎 ≪ 8) & 0xFF00

zext(trunc(𝑥 ) ≪ 𝐶 ) ⇒
(𝑥 ≪ zext(𝐶 ) ) & zext(∼𝐶 )

61644

1 ≪ ((ctpop(𝑥 : i32) = 1) ? 31 : 32 − ctlz(𝑥 ) )
⇒ 1 ≪ ((0 − ctlz( (𝑥 − 1) ) ) & 31) Width Independence Failure

61538

𝑎 : i8 ×nsw ( ( (𝑏 : i8 ×nsw (𝑎 ≪nsw 1) ) | 1) <𝑠 1) ?
𝑏 : 1⇒ ((𝑏 ×nsw 𝑎) <𝑠 0) ?

(𝑏 ×nsw 𝑎) : 𝑎

𝑎 × ( ( (𝑏 ×nsw (𝑎 ≪nsw 1) ) |1) <𝑠 1 ? 𝑏 : 1) ⇒
(𝑏 × 𝑎) <𝑠 0 ? (𝑏 × 𝑎) : 𝑎

61223

(𝑥 : i32 & 1) ≠ 0 |= (𝑥 + (−1) ) ≫𝑢 1⇒
𝑥 ≫𝑢 1

𝐶1 ≥ 0 ∧𝐶1 = −𝐶2 |= (𝑥 +𝐶1 ) ≫𝑢 𝐶2 ⇒
𝑥 ≫𝑢 𝐶2

61183

(𝑥 : i32 = 0) ? 0 : (1 ≪ (32 − ctlz( (𝑥 ≫𝑢 1) ) ) ) ⇒
(𝑥 = 0) ? 0 : (0x80000000 ≫𝑢 ctlz(𝑥 ) ) Width Independence Failure

60801

(𝑥 : i32 = 0) ? 0 : (𝑥 & ( (1 ≪nuw cttz(𝑥 ) )
⊕ − 1) ) ⇒ 𝑥 & (𝑥 + (−1) )

𝑥 = 0 ? 0 : (𝑥 & ∼(1 ≪ cttz(𝑥 ) ) )
⇒ 𝑥 & (𝑥 − 1)

60799 (𝑥 : i32 = 0) ? 0 : (1 ≪nuw cttz(𝑥 ) ) ⇒ 𝑥 & (0 − 𝑥 ) 𝑥 = 0 ? 0 : 1 ≪ cttz(𝑥 ) ⇒ 𝑥 & (0 − 𝑥 )

60242

(𝑥 : i32 ≫𝑢 31) = zext( (−1 <𝑠 𝑦 : i32) ) ⇒
(𝑥 <𝑢 0x80000000) ⊕ (−1 <𝑠 𝑦)

𝐶 = (𝑊𝑥 − 1) |= (𝑥 ≫𝑢 𝐶 ) = zext(𝑧 : i1) ⇒
𝑧 ⊕ (𝑥 <𝑢 ( (sext(1) ≫𝑢 1) ⊕ sext(1) ) )

60173

𝑥 : i32 + ( ( (𝑥 + 1) & 3) = 0) ? − 2 : 1⇒
(( (𝑥 + 1) & 3) = 0) ? (𝑥 + (−2) ) : (𝑥 + 1)

𝑥 + (𝐶4 = (𝐶2 & (𝐶3 + 𝑥 ) ) ?𝐶1 : 𝐶3 ) ⇒
𝐶4 = (𝐶2 & (𝐶3 + 𝑥 ) ) ? : 𝐶1 + 𝑥 : 𝐶3 + 𝑥

59680

( (𝑥 : i32 & 0xFFFF0000) = 0x11220000)
| ( (𝑥 & 0xFFFFFF00) = 0x11223300)
⇒ (𝑥 & 0xFFFF0000) = 0x11220000

𝐶4 <𝑢 𝐶3 |= (𝐶1 = (𝐶2 & 𝑥 ) ) | (𝐶3 = (𝐶4 & 𝑥 ) )
⇒ 𝐶1 = (𝐶2 & 𝑥 )

59519 zext( (𝑥 : i3 ⊕ 7) ) | sext(𝑥 ) ⇒ sext(𝑥 ) | 7 zext( (∼𝑥 ) ) | sext(𝑥 ) ⇒
zext(sext(1) to𝑊𝑥 ) | sext(𝑥 )

59482

(zext(𝑥 : i8) +nsw,nuw zext( (0xFF −nuw 𝑥 ) ) )
<𝑢 0x100⇒ 1

Timeout

59266

( (𝑐 : i1 & (𝑥 : i32 = 15) ) ⊕ (𝑐 | (𝑥 ≠ 0) ) ) ⊕ 1

⇒ 𝑥 = 𝑐 ? 15 : 0

∼( (𝑦 & (𝑥 = 𝐶1 ) ) ⊕ (𝑦 | (𝑥 ≠ 𝐶2 ) ) )
⇒ 𝑥 = 𝑦 ?𝐶1 : 𝐶2

58523 64 − ( (0x47 −nuw 𝑥 : i64) & − 8) ⇒ 𝑥 & 0x78 Timeout

58342 (𝑥 : i8 −u,saturating 2) = 5⇒ 𝑥 = 7

𝐶1 > 0 ∧𝐶2 > 0 |= (𝑥 −u,saturating 𝐶1 ) = 𝐶2 ⇒
𝑥 = (𝐶1 +𝐶2 )

58313 (𝑥 : i1 ? (𝑦 : i1 ⊕ 1) : 0) = 0 |= (𝑥 ⊕ 1) ? 𝑦 : 0⇒ 𝑦 ⊕ 𝑥 𝑥 ? ∼𝑦 : 𝐶 = 𝐶 |= ∼𝑥 ? 𝑦 : 𝐶 ⇒ 𝑦 ⊕ 𝑥
58137 (𝑦 : i32 ×nsw (𝑥 : i32 ×nsw 2) ) /s,exact (𝑥 ×nsw 2) ⇒ 𝑦 (𝑦 ×nsw 𝑧 ) /𝑠 𝑧 ⇒ 𝑦

Continued on next page
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Table 2 – continued from previous page

Issue Original Generalized

57666 (𝑥 : i1 ? 4 : 1 & 𝑦 : i1 ? 4 : 1) = 0⇒ 𝑦 ⊕ 𝑥 𝐶1 ≠ 0 ∧𝐶2 ≠ 0 ∧ (𝐶1 &𝐶2 ) = 0 |=
(𝑥 : i1 ?𝐶1 : 𝐶2 & 𝑦 : i1 ?𝐶1 : 𝐶2 ) = 0⇒ 𝑦 ⊕ 𝑥

57635 𝑥 : i8 ≠ 0 |= (𝑥 + 0xFF) <𝑢 7⇒ 𝑥 ≤𝑢 7 𝑥 ≠ 0 |= (𝑥 + sext(1) ) <𝑢 𝐶 ⇒ 𝑥 ≤𝑢 𝐶

57576 (𝑦 : i128 + (𝑥 : i128 × (−1) ≪𝑢 64) ) ≪ 64⇒ 𝑦 ≪ 64 Width Independence Failure

57542 (42 /𝑠 𝑥 : i8) = 0⇒ (𝑥 + 0xD5) <𝑢 0xAB 𝐶 ≥ 0 |= (𝐶 /𝑠 𝑥 ) = 0⇒ (𝑥 + ∼𝐶 ) <𝑢 ∼(𝐶 +𝐶 )
57532 𝑥 : i32 <𝑠 (𝑥 ⊕ (−1) ) ⇒ 𝑥 <𝑠 0 𝑥 <𝑠 ∼𝑥 ⇒ 𝑥 <𝑠 0

57531 𝑥 : i32 + (𝑥 | (0 − 𝑥 ) ) ⇒ 𝑥 & (𝑥 + (−1) ) 𝑥 + (𝑥 | (0 − 𝑥 ) ) ⇒ 𝑥 & (𝑥 + sext(1) )

57381

(0 −nsw zext( (𝑥 : i16 ≫𝑢 15) ) ) &
(0x3E8 −nsw sext(𝑥 ) ) ⇒

(𝑥 <𝑠 0) ? (0x3E8 −nsw sext(𝑥 ) ) : 0

𝐶2 = (𝑊𝑥 − 1) |= (0 − zext( (𝑥 ≫𝑢 𝐶2 ) ) ) &
(𝐶1 − sext(𝑥 ) ) ⇒

𝑥 <𝑠 1 ≪ (𝐶2 + 1) ? (𝐶1 − sext(𝑥 ) ) : 0

56562

(𝑣, 𝑜 ) = 𝑥 : i64 umul.with.overflow 5 |=
(0x07FFFFFFFFFFFFFFF <𝑢 𝑣) | 𝑜 ? − 1 : 𝑣

Timeout

56124 zext( ( ( (2 ≪ 𝑐 : i32) & 14) ≠ 0) ) ⇒ zext( (𝑐 <𝑢 3) ) Synthesis Failure

55739 ( (2 ≪ 𝑥 : i32) & 16) ≠ 0⇒ 𝑥 = 3

IsPowerOf2(𝐶1,𝐶2,𝐶3 ) ∧𝐶2 = (𝐶3 × 𝐶1 ) |=
(𝐶2 & (𝐶3 ≪ 𝑥 ) ) ≠ 0⇒ 𝑥 = log

2
(𝐶1 )

55016 −2 ≫s,exact (𝑥 : i32 + −1) ⇒ −3 ≫𝑠 𝑥 Synthesis Failure

54890 2 ≪nsw (𝑥 : i32 − 1) ⇒ 1 ≪nsw 𝑥 Synthesis Failure

54856 ( (𝑥 : i32 & 15) ≠ 15) & (𝑥 <𝑢 16) ⇒ 𝑥 <𝑢 15

IsPowerOf2(𝐶1 ) ∧ (𝐶1 − 𝐶2 ) = 1 |=
(𝐶2 ≠ (𝐶2 & 𝑥 ) ) & (𝑥 <𝑢 𝐶1) ⇒ 𝑥 <𝑢 𝐶2

51125

(𝑦 : i8 ×nsw ( (𝑥 : i8 /𝑠 𝑦) +nsw 1) ) −nsw 𝑥

⇒ 𝑦 − (𝑥 %𝑠 𝑦)
(𝑦 ×nsw ( (𝑥 /𝑠 𝑦) + 1) ) −nsw 𝑥 ⇒ 𝑦 − (𝑥 %𝑠 𝑦)

41801

(𝑥 : i32 & (−1 ≪ (32 − 𝑦 : i32) ) )
≫𝑠 (32 − 𝑦) ⇒ 𝑥 ≫𝑠 (32 − 𝑦) 𝑥 & (sext(1) ≪ 𝑦) ≫𝑠 𝑦 ⇒ 𝑥 ≫𝑠 𝑦

trunc(𝐶3 | (𝑥 ?𝐶1 : 𝐶2)) ⇒ 𝑥 ? trunc(𝐶3 | 𝐶1) : trunc(𝐶3 | 𝐶2)

Finally, this rewrite eliminates a bitwise-and instruction when it provably does not matter,

because every bit that it clears was not demanded:

DemandedBits = (𝐶 & DemandedBits) |= 𝑥 &𝐶 ⇒ 𝑥

9 RELATEDWORK
Hydra builds on the numerous research results from the last several decades that chip away at

difficult engineering problems that are encountered by compiler developers. In this section, we

survey this work going roughly from most directly related to Hydra, to least.

9.1 Generalizing Peephole Optimizations
We only know of a few papers that have tackled generalization of peephole optimizations as a

first-class concern. Perhaps most closely related to Hydra is Optgen [Buchwald 2015], which could

be viewed as combining a superoptimzer with a generalization tool. This integration might be a

strength (the entire space of integer peephole optimizations is covered) or a weakness (Optgen does

not appear to allow users to generalize a specific, ungeneralized optimization). Optgen works by

enumerating all possible preconditions and all possible constant expressions in order of increasing

cost. This approach is not guaranteed to find the weakest precondition; our approach of brute-force

model counting at reduced bitwidth is better. Optgen exploits the fact that symbolic constants are

superior to concrete ones because they are potentially bitwidth-independent, but it only supports

optimizations at 8 and 32 bits, while Hydra ensures that all widths up to 64 work. The Optgen

paper recognizes that dataflow facts would be useful in peephole optimizations, but does not

implement them; it also describes something very much like our dataflow variables, but these also

remain unimplemented. Overall, Optgen appears to only be capable of handling much simpler
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optimizations than those we have shown that we can handle, e.g. in Table 2. The Optgen work is

both practical and innovative, and it was one of the direct inspirations for Hydra.

Proofgen [Tate et al. 2010] takes a proof-centric approach to generalizing optimizations. This

approach is very different from ours; it gets a proof from the Peggy infrastructure [Tate et al. 2009],

whereas our proofs remain implicit; neither Alive2 nor Z3 represents proofs in an explicit form.

This work is, in principle, extremely powerful, but it has not yet been shown to scale to the kinds of

generalizations that Hydra can perform. The Proofgen paper contains a number of very interesting,

but unevaluated, ideas such as combining a superoptimizer with a generalization engine.

9.2 Synthesis and Peephole Optimizations
Peephole optimizations have existed for at least 60 years [McKeeman 1965], and automatically

generating peephole optimizations is, consequently, a well researched topic. PO [Davidson and

Fraser 1984] is one of the earliest efforts to generate peephole optimizations automatically. This

approach involved simulating all possible pairs and triples of machine instructions, abstracting the

register transfers, and searching for a cheaper instruction that produced the same result for a set of

tests. As an interesting bit of trivia, GCC and LLVM have inherited the nomenclature of calling a

peephole optimizer a combiner from PO.

A superoptimizer takes a collection of instructions and searches for a better (or, the best) set of

instructions that has the same effect. This relies either on testing or on solver-based verification.

The first superoptimizer [Massalin 1987] tested all possible alternative rewrites to find a potentially

correct one, which had to be checked by a human for correctness. More recent superoptimizers

[Bansal and Aiken 2006; Joshi et al. 2002; Sasnauskas et al. 2017; Schkufza et al. 2013] utilize

SMT solvers to provide a guarantee that the optimizations discovered are sound. A solver such as

Z3 [De Moura and Bjørner 2008] or CVC4 [Barrett et al. 2011] is typically used to solve queries in

the theory of quantified bitvectors.

There is a considerable amount of work on using synthesis to optimize bitvector programs. A

large fraction of these projects are based on the SyGuS [Alur et al. 2013] initiative, which provides a

common language platform for synthesis tools. This includes a divide and conquer approach [Alur

et al. 2017], a probabilistic approach [Lee et al. 2018], and one based on unification [Alur et al.

2015]. There are two meta-approaches for making program synthesis faster: pruning and guiding.

With pruning, the aim is to reduce an exponentially large search space to a size small enough for

enumeration. LENS [Phothilimthana et al. 2016], MCSYNTH [Srinivasan et al. 2016], and Souper

[Mukherjee et al. 2020] have distinct approaches for pruning the bit-vector synthesis search space.

The other approach, guiding, is about finding a good result early in the search. Type guided

synthesis [Guo et al. 2019] is an approach which scales for program synthesis in the presence of

polymorphic types and functions in modern programming languages. Sketching [Bornholt et al.

2016; Solar-Lezama 2008] and component-based synthesis [Shi et al. 2019; Tiwari et al. 2015] are

two other approaches to find good results faster. Hydra uses sketching by adapting subexpressions

from the left hand side to synthesize constant expressions on the right hand side. We also utilize

a limited form of component-based synthesis by adding some common bit-vector operations as

enumeration components.

9.3 Program Transformations Beyond Compilers
Program transformations are useful in many domains beyond compilers. There is a large body of

work on program transformation in the context of refactoring [Negara et al. 2013] and program

repair [Goues et al. 2019]. These use cases for program transformation are different from compilers

in the sense that they are not trying to optimize the program, but change it for achieving goals like

improving readability, filling in missing pieces of code, or fixing bugs.
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Table 3. A brief summary of how four contemporary production compilers express peephole optimizations,
and how they would implement 𝑥 × 1⇒ 𝑥

LLVM: 40,000 lines of C++with an embedded

pattern-matching DSL. Example:

if (match(I, m_c_Mul(
m_Value(x), m_SpecificInt(1))))
return x;

GCC: 8,200 lines of match.pd, compiled to

C++. Example:

(simplify
(mult:cs @0 integer_onep)
@0)

Go: 17,400 lines of DSL, compiled to Go. Ex-

ample:

(Mul(8|16|32|64)
(Const(8|16|32|64)[1]) x)
=> x

Cranelift: 2735 lines of ISLE, compiled to Rust.

Example:

(rule (simplify (imul ty
x (iconst ty (u64_from_imm64 1))))

(subsume x))

Program transformations—independent of the domain—are often required to be general, i.e., they

should work for a wide range of programs instead of just a specific program. SYDIT [Meng et al.

2011], REFAZER [Rolim et al. 2017], Genesis [Long et al. 2017], and GenPat [Jiang et al. 2020] are

tools that generate patches to transform programs. These tools have a notion of generalization that

is meant to ensure that the patches are applicable beyond the training set. SYDIT abstracts away

program locations and concrete identifiers to generalize the edit scripts. REFAZER and Genesis

deal with multiple input-output examples to identify the common transformation that is inherent

in the examples, thus producing a more general patch. GenPat starts from a single example and

generalizes it by learning from a large corpus of code. The hypothesis is that keeping the constructs

present more frequently in the corpus are likely to lead to a more general patch.

Hydra’s preprocessing step (Section 3) is a simpler form of the generalization step in these tools.

We can get away with this simpler, greedy technique because we have a specific domain where

smaller LHSs guarantee a more general transformation, and we have a fast verification phase that

makes it easy to try a large number of possibilities.

9.4 Finding Weakest Preconditions
Generalized peephole optimizations have symbolic constants and expressions involving (potentially

constrained) symbolic constants, as opposed to the concrete constants found in ungeneralized

peepholes. PSyCO [Lopes and Monteiro 2014] treats this problem as a weakest precondition

inference problem. Alive-Infer [Menendez and Nagarakatte 2017] extends Alive to provide a data-

driven approach to solve the precondition inference problem. Given several positive and negative

input examples, Alive-Infer utilizes a greedy set cover algorithm to find a predicate that rejects all

the negative examples and accepts as many positive examples as possible. This approach is similar

to PIE [Padhi et al. 2016], which is a tool for inferring general purpose weakest preconditions from

a set of test executions. Finding weakest preconditions is a well studied problem with a rich history;

here we describe only a subset that is closely related to compiler optimizations. Hydra, necessarily,

has to compromise on this aspect of generalization to make the problem tractable, as we have to

try and find a precondition for a large number of candidate constant expressions.

9.5 Peephole Optimizers in Contemporary Production Compilers
We looked in detail at how four open-source compilers—LLVM,GCC, theGo compiler, and Cranelift—

express peephole optimizations. Table 3 describes the major peephole optimizers found in these
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compilers, and shows how they would express a simple optimization. LLVM’s primary SSA-level

peephole optimizer is InstCombine—short for Instruction Combiner; it is implemented in C++,

making heavy use of pattern-matching primitives that effectively function as a simple embedded

DSL. The m_c_Mul call is a commutative matching primitive. Hydra generates code in this same

embedded DSL (Section 7). GCC has two intermediate representations on which peephole optimiza-

tions are performed: the higher level GIMPLE and the lower level RTL. Table 3 shows a rewrite in

the match.pd
6
DSL for optimizations on GIMPLE. GCC also has a significant number of peephole

optimizations written in C++. The Go compiler uses a DSL to express both middle-end and back-end

peephole optimizations; this optimizer is smaller in scope compared to GCC’s and LLVM’s, and

is geared towards fast compilation. Finally, Cranelift is a fast compiler that is used to translate

WebAssembly into native code, and is also gaining traction as an alternative backend for the Rust

compiler. It has a collection of peephole optimization rules, implemented in the ISLE DSL. The

majority of the rules in the Cranelift compiler are in its architecture specific backends. In all four

cases, the high-level goal is to enable compiler developers to produce readable, modifiable, general

purpose optimizations that are suitable for inclusion in production compilers. Ironically, of these

four compilers, LLVM has the best tool for formally verifying peephole optimizations [Lopes et al.

2021], but the worst implementation language for them. Regardless, we believe that techniques

like ours are complementary to modern peephole optimization implementation techniques, and

that tools like Hydra should be able to produce these rules automatically, given specific examples

produced by humans or by superoptimizers.

10 FUTURE WORK
While we have demonstrated a viable prototype for peephole optimization generalization, there

remain several avenues for future research.

Broadening the scope. LLVM’s optimization infrastructure automatically applies our generalized

scalar optimizations to vector instructions in element-wise fashion. However, we cannot yet

generalize operations that explicitly use vectors, such as permutations. Similarly, we have not

yet supported loads and stores, nor instructions that process floating point values. We are not

aware of conceptual difficulties in generalizing peephole optimizations that make use of these

program features, but more research and development work is needed to make this happen. Another

interesting direction is to generalize optimizations that work for multiple compilers. Although we

hope that others will be successful in adopting and improving the techniques described in this

paper, we believe that it should be possible to support multiple compilers using a single toolchain.

Richer preconditions. A tantalizing possibility is synthesizing transfer functions [Kalita et al.

2022] for interesting abstract domains, plugging these into a generic fixpoint iteration, and then

synthesizing peephole optimizations that make use of the resulting dataflow facts. This method

would seem to offer a relatively cheap way of discovering whether a compiler can make use of, for

example, arithmetic congruences [Granger 1989; King and Søndergaard 2010].

11 CONCLUSION
Compiler developers, and also compiler users, routinely identify situations where the compiler’s

output is suboptimal, but could be fixed by giving the compiler a local rewrite rule—a peephole

optimization—that removes the inefficiency. However, in practice, implementing a sound and

appropriately general rewrite rule is a highly skilled task, and even experts miss corner cases,

leading to compiler bugs. Our thesis is that compiler implementers would be well supported by

6
https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
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formal-methods-based automation for optimization generalization. We designed and implemented

Hydra, a tool that fills this gap using program synthesis. Among other benefits, Hydra provides a

direct path for superoptimization to be useful in improving a production compiler: the peephole

superoptimizer finds specific opportunities for improvement and generalization turns these into

broadly usable optimizations.
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