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A superoptimizing compiler—one that performs a meaningful search of the program space as part of the
optimization process—can find optimization opportunities that are missed by even the best existing optimizing
compilers. We created Minotaur: a superoptimizer for LLVM that uses program synthesis to improve its code
generation, focusing on integer and floating-point SIMD code. On an Intel Cascade Lake processor, Minotaur
achieves an average speedup of 7.3% on the GNU Multiple Precision library (GMP)’s benchmark suite, with a
maximum speedup of 13%. On SPEC CPU 2017, our superoptimizer produces an average speedup of 1.5%, with
a maximum speedup of 4.5% for 638.imagick. Every optimization produced by Minotaur has been formally
verified, and several optimizations that it has discovered have been implemented in LLVM as a result of our
work.
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1 Introduction

Optimizing compilers emit better code than non-optimizing compilers do, but even so their output
is usually far from optimal. Our work started when we noticed substantial opportunities for
improvement in the output of LLVM’s autovectorizer. As a step towards fixing these, we created
Minotaur: a synthesis-based superoptimizer for the LLVM intermediate representation [17] that
focuses on LLVM’s portable vector operations as well as its x86-64-specific SIMD intrinsics. Our
goal is to automatically discover useful optimizations that are missed by LLVM.

Minotaur works on code fragments that do not span multiple loop iterations; it is based on the
assumption that existing compiler optimization passes such as loop unrolling, software pipelining,
and automatic vectorization will create the necessary opportunities for its optimizations to work
effectively. For example, consider this loop, in C, from the compression/decompression utility gzip,
where name is the base address of a string and p is a pointer into the string:

do {
if (k=mp == ') xp = 'Y
} while (p != name);

When it is compiled by LLVM 18 for a target supporting AVX2 vector extensions, this code is

found inside the loop:
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Fig. 1. Overview of how Minotaur works, and how it fits into the LLVM optimization pipeline

%1 = shufflevector <32 x i8> %0, poison, <31, 30, 29, 28, 27, .4, 3,2,1, 0>
%2 = icmp eq <32 x i8> %1, <46, 46, 46, 46, 46, ... 46, 46, 46, 46, 46>
%3 = shufflevector <32 x i1> %2, poison, <31, 30, 29, 28, 27, ... 4, 3, 2, 1, 0>

The first shufflevector reverses a 32-byte chunk of the string, the icmp instruction checks which
elements of the chunk are equal to 46 (ASCII for the period character), and then the second
shufflevector reverses the vector containing the results of the computation. This code cannot be
optimized further by LLVM 18; when it is lowered to object code and executed on an Intel Cascade
Lake processor, it requires 13 uOps, or “micro-operations,” processor-internal RISC-like instructions
that modern x86 implementations actually execute. Minotaur, on the other hand, automatically
determines that the vector reversals are unnecessary, and rewrites the code in this equivalent, but
significantly cheaper (three uOps), form:

%3 = icmp eq <32 x 18> %0, <46, 46, 46, 46, 46, . 46, 46, 46, 46, 46>

Although SIMD operations are Minotaur’s main focus, it also discovers optimizations for scalar
code. For example, this code, from the SPEC CPU 2017 benchmark 619.Jbm, computes the difference
between two floating-point values, and then checks if the result is greater than zero:

%0 = fsub float %x, %y
%1 = fcmp ogt float %0, ©.000000e+00

Minotaur found that this code is equivalent to checking if the second value is less than the first:
%1 = fcmp ogt float %x, %y

It is perhaps surprising that LLVM, in 2024, could not perform this simple rewrite, which reduces
the computation cost from seven uOps to five. However, it has now been implemented in upstream
LLVM as a result of our work.

Figure 1 illustrates Minotaur’s high-level structure, and how it fits into LLVM. It works by
extracting many different cuts from an LLVM function. Each cut serves as the specification for a
program synthesis problem, where the objective is to synthesize a new cut that refines the old one
and is cheaper. When such a cut is found, Minotaur uses it to rewrite the original LLVM function,
and also caches the rewrite.

Reasoning about the correctness of optimizations at the level of LLVM IR can be very difficult;
we have repurposed Alive2 [22] to serve as a verification backend. To Alive2, we added formal
semantics for Intel-architecture-specific SIMD intrinsics. Reasoning about the relative costs of code
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sequences is another difficult problem; the solution adopted by Minotaur is to reuse the LLVM
Machine Code Analyzer [10], which has adequately accurate pipeline models for various modern
processors. These tools, along with the LLVM compiler itself, form the foundation upon which
Minotaur is built.

Research contributions: First, we designed and implemented a domain-specific program
transformer that extracts an SSA value from an LLVM function, along with context about how
that value was computed. Extracting enough context to permit interesting optimizations, without
extracting so much context that the underlying SMT solver was overwhelmed, was an interesting
empirical problem. Second, we created a synthesis engine that searches for cheaper code sequences;
it enumerates partially symbolic candidates where the instructions are concrete, but constants are
symbolic. For this part of our work, we created formal semantics for 165 LLVM intrinsic functions
that correspond to SIMD operations supported by x86-64 processors, and added these to Alive2.
We also modified Alive2 to support synthesis of literal constants. Third, to mitigate the large
performance overhead of running program synthesis at compile time, we developed infrastructure
for caching optimizations. Thus, while Minotaur can be hundreds of times slower than clang -03
when its cache is cold, with a warm cache it is just 3% slower, when building the SPEC CPU 2017
benchmarks.

We performed a detailed evaluation of Minotaur’s ability to speed up code, showing that it can
find numerous optimizations that LLVM fails to perform, and also that it can achieve speedups on a
variety of real-world libraries and benchmarks. Minotaur is also useful for compiler developers, and
in fact several optimizations it has discovered have now been implemented in upstream LLVM.

2 Cutting LLVM Functions

Using a typical function in LLVM IR as the specification, it is not practical to directly synthesize an
optimized version of that function. The state of the art in program synthesis simply does not scale
up to the size of LLVM functions found in the wild. Instead, Minotaur takes a divide-and-conquer
approach: we individually attempt to optimize each instruction in an LLVM function by extracting a
cut—a subset of that instruction’s dependencies. If this cut of LLVM instructions can be optimized by
program synthesis then, by the compositionality of refinement, so can the original LLVM function.
The rest of this section describes this process in more detail.

2.1 Problem Statement

Given a function F, an instruction I within F, and a depth bound B, our goal is to create a new
LLVM function C that:

(1) is loop-free,

(2) returns the value computed by I, and

(3) contains every instruction in F that can be reached by following up to B backwards data,
control, and memory dependency edges.

Informally, we can think of C as summarizing a subcomputation in F, that is (hopefully) tractable
for an SMT solver to reason about.

When an instruction is part of C but its inputs are not, they become free inputs—these are
implemented by adding them as parameters to C. We can think of every instruction that is not part
of the cut as being part of a residual function R. However, note that Minotaur does not explicitly
construct R—it computes and optimizes C, and then applies the discovered optimization, if any,
directly to F using a rewrite mechanism described in Section 4.4.
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Fig. 2. Example of cutting an LLVM function

2.2 Example

Consider this LLVM function that takes three 64-bit arguments and returns a 64-bit value, where
sdiv is signed integer division and srem is the signed integer modulus operator:
define i64 @f(i64 %x, i64 %y, i64 %z) {
%a = sdiv 164 %x, %y
%b = xor 164 %a, -1
%C = xor i64 %b, -1
%d = srem i64 %c, %z
ret 164 %d
}
Figure 2 illustrates various cuts of this function. If we cut this function with respect to %c with
B = 0 then we get the following decomposition (however, again, please bear in mind that Minotaur
does not actually construct R—we show it here to make the explanation concrete):

define 164 @ro(i64 %x, 164 %y, i64 %z) { define 164 @co(i64 %t1) {
%m = sdiv 164 %x, %y %t2 = xor i64 %t1, -1
%n = xor 164 %m, -1 ret i64 %t2
%0 = call 164 %c@(i64 %n) 3

%p = srem i64 %o, %z
ret i64 %p

This is not useful, the cut c@ contains too little context to support any optimizations. If we cut f
with respect to %c with B = 1 then we get:

define 164 @r1(i64 %x, 164 %y, 164 %z) { define i64 @c1(i64 %t1) {
%m = sdiv 164 %x, %y %t2 = xor i64 %t1, -1
%0 = call i64 @c1(i64 %m) %t3 = xor i64 %t2, -1
%p = srem i64 %o, %z ret i64 %t3
ret i64 %p 3

}
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This decomposition is useful: c1 can be optimized to simply return its argument. If we increase
the depth bound to two, then we would get:

define 164 @r2(i64 %x, 164 %y, 164 %z) { define 164 @c2(i64 %t1, i64 %t2) {
%0 = call 164 @c2(i64 %x, 164 %y) %t3 = sdiv i64 %t1, %t2
%p = srem i64 %0, %z %t4 = xor i64 %t3, -1
ret i64 %p %t5 = xor 164 %t4, -1
} ret i64 %t5
3

Here the cut c2 can again be optimized (it can just return %t3), but now the solver must reason
about a 64-bit signed division—operations like this are difficult and frequently lead to timeouts.
Choosing an appropriate depth bound is an empirical problem that we address in Section 5.2.

2.3 Correctness Argument

The composition of R and C is equivalent to the original function: F = R o C. In other words, the
decomposition of F into R and C preserves the behavior of the original function—the difference is
simply that some dependency edges that were previously internal to F now cross the boundary
between R and C.

Next, if Minotaur can synthesize C’, an optimized function that refines C, then we can compose
that with the residual function to get a new function F’ = R o C’. Since refinement is compositional,
it follows that F’ refines F, which is the property that we need for Minotaur to be a correct optimizer.
The details of establishing a refinement relation between functions in LLVM IR were presented by
Lopes et al. [22].

Alive? is intended to be a sound refinement checker for LLVM IR for LLVM functions that do
not contain loops. We avoid this potential unsoundness by ensuring that C is loop-free, in which
case C’ is also loop-free since Minotaur never synthesizes a loop.

2.4 Detailed Solution

Algorithm 1 shows the procedure that Minotaur uses to extract a cut. It works in two phases. In the
first, Minotaur determines which instructions will be part of the cut, using a depth-bounded depth-
first search. During the search, two sets, Harvest and Unknown, are propagated which will be used
in the second phase for constructing the cut. Minotaur uses LLVM’s LoopInfo pass [18] to identify
loops in the source function. If instruction I is in a loop, Minotaur will only extract instructions
that are defined inside the loop. If the loop is nested, Minotaur will only extract instructions that
are defined inside the innermost loop. Minotaur gives up if the loop is irregular. If I is not in a loop,
Minotaur will skip the instructions that are in a loop. Minotaur marks non-intrinsic function calls,
operations on global variables, and operations that are not recognized by Alive2 as unsupported.
All unsupported operations, operations that are beyond the depth limit, and operations that are
outside the loop are discarded and replaced with free inputs.

For each conditional branch instruction, Minotaur extracts the branch condition, since these
carry control flow information that is useful during synthesis. Similarly, when it extracts a load from
memory, Minotaur consults LLVM’s MemorySSA pass [19] to get a list of stores that potentially
influence the loaded value. MemorySSA marks memory operations with one of the three memory
access tags: MemoryDef, MemoryUse, and MemoryPhi. Each memory operation is associated with a
version of the memory state. A MemoryDef can be a store, a memory fence, or any operation that
creates a new version of the memory state. A MemoryPhi combines multiple MemoryDefs when
control flow edges merge. A MemoryUse is a memory instruction that does not modify memory;, it
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Algorithm 1 Extract a cut from an LLVM function

1: function EXTRACTCUT(F: Function, I: Instruction, B: N)
2 if I is in a loop then
3 AllowedBasicBlocks «— all basic blocks in I’s loop (innermost loop if nested)
4 else
5: AllowedBasicBlocks «— all basic blocks in F that is not in a loop
6 Harvested « 0
7 Unknown « 0
8 Visited < 0
9: WorkList « { (I, 0) }
10:
11: > Phase 1: Instruction extraction
12: while WorkList is not empty do
13: (W1, Depth) « WorkList.pop()
14: if WI € Visited then
15: continue
16: Insert W1 into Visited
17: if Depth > B then
18: Insert WI into Unknown
19: continue
20: if W1 is not supported then
21: Insert WI into Unknown
22: continue
23: BB < WTI’s basic block
24: if BB ¢ AllowedBasicBlocks then
25: Insert WI into Unknown
26: continue
27: Insert W1 into Harvested
28: if Wl is a Load instruction then
29: M < WT’s linked MemoryPhi or MemoryDef
30: if M is a MemoryDef A M is a store then
31: MI « M’s stored value
32: Push (MI, Depth + 1) into WorkList
33: else
34: for all operand Op in WI do
35: Push (Op, Depth + 1) into WorkList
36: T « terminator of WI’s basic block
37: if T is a conditional branch instruction then
38: TI « T’s condition value
39: Push (TL, Depth + 1) into WorkList
40: Insert every terminator instruction in F to Harvested
41:
42: > Phase 2: Construct a loop-free LLVM function
43: Clone F into C
44: Delete instructions in C except those in Harvested
45: Delete all back-edges in C
46: Add values in Unknown to C as function arguments
47: Create return instruction for I in C
48: return C
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first visit: beyond depth limit, push into Unknown and Visited. second visit: skipped ‘

%load = load <4 x 132>, ptr %sv_flags, !tbaa !24

first visit: beyond depth limit, push into Unknown and Visited. second visit: skipped ‘

and = and <4 x 132> %shuf0, <i32 255, i32 65280, 132 16826623, 132 2097152>

** + | push into Visited and Harvested | | push into worklist push into worklist

= icmp eq <4 x i32> %and, %load

** + | push into Visited and Harvested | | push into worklist push into worklist

%ne = icmp ne <4 x 132> %and, %load

. @m Visited and Harvested ‘ ‘ push into worklist ‘ push into wo{hs’ﬂ

$shufl = shufflevector <4 x il> %eq, <4 x il> %ne, <4 x 132> <i32 0, 132 5, i32 2, 132 7>

&

extract

define <4 x il> @src(<4 x 132> %x, <4 x 132> %y) {
entry:

%0 icmp eq <4 x 132> %x, %y
%1 icmp ne <4 x 132> %$x, %y
%2 shufflevector <4 x il> %0, <4 x il> %1, <4 x i32> <i32 0, i32 5, i32 2, 132 7>
ret <4 x 11> %2

Fig. 3. Example of cut extraction

only reads the memory state created by MemoryDef or MemoryPhi; a load instruction is always a
MemoryUse. Because it must overapproximate, Minotaur is conservative when finding load-affecting
stores: it starts from the loads in MemoryUse’s memory version and walks along the MemorySSA’s
def-use chain. When the associated memory operation is a MemoryDef, it checks if the operation is
a store and pushes the stored value into the worklist, to provide Minotaur a more specific context
to optimize the load instruction.

In the second phase, Minotaur builds the extracted function; it does this by cloning the original
function and then deleting all instructions that are not in the cut. Minotaur then deletes all loop
backedges, so that the extracted function is loop-free. Finally, a return instruction is added to return
the value computed by the instruction that is the basis for the cut.

Figure 3 shows an example of cut extraction for value %shuf1. The cutting algorithm starts
on %shuf1 and walks along the def-use chain to extract the instructions that are involved in the
computation of %shuf1. A new function is created to hold the extracted instructions shown in the
bottom of the figure.

2.5 Relation to Previous Cut-Based Superoptimizers

Minotaur’s cut extraction algorithm is fundamentally more aggressive than Bansal and Aiken’s
approach [4], which extracted a small window of sequential instructions. It is also considerably
more aggressive than Souper [27], which had a very limited view of control flow and refused to
consider memory operations, vector operations, and floating-point operations.

3 Formalizing Vector Intrinsics in Alive2
In order for Minotaur to use Alive2 as a verification backend, we had to modify Alive2 to support a

number of x86-64-specific vector intrinsics.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 326. Publication date: October 2024.



326:8 Zhengyang Liu, Stefan Mada, and John Regehr

Algorithm 2 Semantics of @11vm.x86.{avx|avx2|avx512}.pavg.{b|w}

1: PAVG<LANES, BITS, MASKED>(S,, Sp,, PassThrough, Mask)
2: for each i in range [0 to LANES - 1]
3: if MASKED A— Mask[i] then
Sret[i].val «— PassThrough[i].val
Sret[i].poison « PassThrough[i].poison
else
Sret[i]'val — (Sa [i].val +arrs Sb [i].val +arrs l) [orrs 2
Sret[i]-poison « S,[i].poison V Sy [i].poison

PP oR

Algorithm 3 Semantics of @11vm.x86.{sse2|avx2|avx512}.pmadd.wd

1: PMADD.WD<LANES, MASKED>(Sy, Sp, PassThrough, Mask)
2: for each i in range [0 to LANES - 1]
3: if MASKED A— Mask[i] then
Sret[i].val «— PassThrough[i].val
Sret[i].poison «— PassThrough[i].poison
else
Sret[i]-vale—sext(Sg[2-i].val X6 Sp[2-i].val) +3, sext(S,[2-i + 1].val X4 Sp[2-i + 1].val)
Sret[i].poisoneS,[2-i].poison V Sp[2-i].poison V S4[2-i + 1].poison V Sp[2-i + 1].poison

AN A

3.1 Background: Vectors in LLVM

LLVM uses a typed, SSA-based intermediate representation (IR). It supports a derived vector type;
for example, a vector with eight lanes, where each element is a 64-bit integer, would have type <8
x 164>. Many LLVM instructions, such as arithmetic operations, logical operations, and pointer
arithmetic, can operate on vectors as well as scalars. IR-level vectors are target-independent;
backends attempt to lower vector operations to native SIMD instructions, if available.

Beyond the vertical ALU instructions that are element-wise vector versions of scalar instructions,
LLVM supports a variety of horizontal vector reduction intrinsics and an assortment of memory
intrinsics such as vector load and store, strided load and store, and scatter/gather. Additionally,
there are three vector-specific data movement instructions: extractelement retrieves the element at
a specified index from a vector; insertelement non-destructively creates a new vector where one
element of an old vector has been replaced with a specified value; and, shufflevector returns a new
vector that is a permutation of two input vectors using elements whose indices are specified by a
constant mask vector. Finally, to provide direct access to platform-specific vector instructions, LLVM
provides numerous intrinsic functions such as @11vm.x86.avx512.mask.cvttps2dqg.512, aka
“convert with truncation packed single-precision floating-point values to packed signed doubleword
integer values”

3.2 Assigning a Formal Semantics to Vector Intrinsics

The version of Alive2 that we started with supports most of the core LLVM intermediate representa-
tion, including its target-independent vector operations. However, Alive2 did not have a semantics
for any of the numerous LLVM-level intrinsic functions that provide predictable, low-level access
to target-specific vector instructions.

We added semantics for 165 x86-64 vector intrinsics to Alive2; these come from the SSE, AVX,
AVX2, and AVX-512 ISA extensions. The resulting version of Alive2 supports the x86 vector intrinsics
that are widely used and that an SMT solver can reason about fairly efficiently. This includes special
vertical operations that do not overlap with LLVM’s platform-independent vector instructions
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(such as @11vm.x86.avx2.psign.b), special data movement intrinsics that operate differently
than LLVM’s shufflevector (such as @11vm. x86.avx512.packsswb.512), and special horizontal
operations that are only available in x86 processors (such as @L1vm.x86.avx512.vpdpbusd.512).
We have not supported dedicated cryptographic operations (that an SMT solver is unlikely to be able
to make use of within a reasonable amount of CPU time), nor have we supported some unpopular
SIMD intrinsics that we have not observed being used in programs that we have compiled with
Minotaur.

There is significant overlapping functionality between vector instructions; for example, there
are eight different variants of the pavg instruction that computes a vertical (element-wise) average
of two input vectors. To exploit this overlap, our implementation is parameterized by vector width,
vector element size, and by the presence of a masking feature that, when present, uses a bitvector to
suppress the output of vector results in some lanes. Algorithms 2 and 3 show our implementations
of the pavg (packed average) and pmadd.wd (packed multiply and add) families of instructions.
This parameterized implementation enabled a high level of code reuse, and our implementation
of these semantics is only 660 lines of C++. Our semantics differ slightly from the semantics of
the corresponding processor instructions because, at the LLVM level, we must account for poison
values—a form of deferred undefined behavior. Our strategy for dealing with poison follows the one
used by existing LLVM vector instructions: poison propagates lane-wise, but does not contaminate
non-dependent vector elements.

3.3 Validating our Changes to Alive2

We made heavy use of randomized differential testing to ensure that our new intrinsics correctly
implement the intended semantics. Each iteration of our tester randomly chooses constant inputs
to a single vector intrinsic and then:

(1) Creates a small LLVM function passing the chosen inputs to the intrinsic.

(2) Evaluates the effect of the function using LLVM’s JIT compilation infrastructure [20]. The
effect is always to produce a concrete value, since the inputs are concrete.

(3) Converts the LLVM function into Alive2 IR and then asks Alive2 whether this is refined by
the output of the JITted code.

Any failure of refinement indicates a bug. When we fielded this tester, it rapidly found 11 cases
where our semantics produced an incorrect result, usually for some edge case. For example, the
semantics for pavg were incorrect when the sum overflowed. It also found three cases where
Minotaur generated SMT queries that failed to typecheck. For example, we set the wrong lane
size when parameterizing the semantics for psra.w and psra.d, causing the solver to reject our
malformed queries. After we fixed these 14 bugs, extensive testing failed to find additional defects.

4 Synthesizing Optimizations

For every cut extracted from an LLVM function, Minotaur’s goal is to synthesize a cheaper way to
compute the value returned by that cut. It does this by enumerating candidates—code fragments
that potentially refine the current cut. When a candidate is found that refines the original cut,
Minotaur consults a cost model. If the new code is cheaper than the original cut, Minotaur applies
the rewrite to the function that is being optimized.

4.1 Designing an Appropriate Synthesis Procedure

A delicate part of designing a practical program synthesis algorithm is determining how much of
the search is pushed to the solver, and how much searching gets done by code outside the solver. At
one extreme, as the Denali paper [15] points out, we could simply give the SMT solver a conjecture
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Operation Type | Instructions
Unary integer | ctpop, ctlz, cttz, bitreverse, bswap
Unary floating point | fneg, fabs, fceil, flloor, frint, fround, fnearbyint, froundeven
Binary integer | add, sub, mul, udiv, sdiv, umax, umin, smax, smin
Binary floating point | fadd, fsub, fmul, fdiv, frem, fmaximum, fminimum, fmaxnum, fminnum
Bitwise | and, or, xor, shl, Ishr, ashr
Comparison | icmp, fcmp, select
Conversion | zext, sext, trunc, fptrunc, fpext, fptosi, sitofp, fptoui, uitofp
Data movement | extractelement, insertelement, shufflevector
SIMD intrinsics | 165 vector intrinsics mapping to SSE, AVX, AVX2, and AVX-512 instructions
Table 1. Operations that Minotaur can synthesize. The data movement and SIMD intrinsic instructions
require vector operands. The rest of the operations apply to both scalar and vector values.

of the form “No program of the target architecture computes P in at most eight cycles.” If the solver
can disprove this conjecture, then its counterexample will tell us how to compute P in eight or
fewer cycles. This kind of query is asking the solver to do all of the work of finding a program that
disproves the conjecture, including reasoning about the costs of various alternatives, in a single,
complicated query—this is very heavy lifting. At the other extreme, we could enumerate completely
concrete candidates, and use the SMT solver only to perform the necessary refinement checks. The
problem with this approach is literal constants: even a single 64-bit constant in the synthesized
code will require us to enumerate and check 2%4 alternatives; this is clearly infeasible.

We spent a considerable amount of time investigating different points between these extremes,
and finally settled on a design that makes things as easy as possible for the solver, but without
exploring all possible choices of values for literal constants. Minotaur creates partially symbolic
candidates where instructions are represented concretely, but constants are symbolic. This gives a
reasonably tractable enumeration space without giving up synthesis power. Our rationale for this
design is that, based on extensive experience with LLVM and Alive2, a lot of individual refinement
checks that we want to perform—especially those that contain multiplications, divisions, floating
point operations, and pointer indirections—are already very difficult.

4.2 Synthesis in Minotaur

Algorithm 4 describes Minotaur’s synthesis procedure. In Phase 1, it creates a pool of instructions
whose operands are selected from the available SSA values in the current cut (a dominance check is
not required since cuts are constructed in such a way that every existing SSA definition dominates
the synthesized portion of the function), from symbolic constants, and from holes that represent
instructions that have not yet been enumerated. The list of instructions that Minotaur can synthesize
is shown in Table 1. The description in Algorithm 4 only shows the case for instructions taking
two operands, and it also omits a number of simple pruning strategies that are useful in practice,
such as avoiding enumeration of redundant versions of commutative operations. In Phase 2 of the
synthesis procedure, instructions from the pool are used to recursively fill holes; this procedure
terminates when all holes are filled (in which case a complete candidate has been generated) or
when at least one hole remains, but there is no remaining instruction budget to fill it (in which case
the incomplete candidate is discarded). A subtlety here is that LLVM’s bitcast instruction, which
changes the type of an SSA value without changing its representation, does not count towards the
instruction limit. This is because Minotaur takes a low-level, untyped view of values. For example,
it internally treats a 16-way vector of 8-bit values the same as an 8-way vector of 16-bit values:
both of these are simply 128-bit quantities. This lack of type enforcement allows Minotaur to find
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Algorithm 4 Minotaur’s Synthesis Procedure

1: function SYNTHESIZEREFINEMENTS(Cut: Function, InstLimit: N, TimeLimit: N)

2 > Phase 1: Populate the instruction pool
3 Inputs « all the SSA definitions in Cut

4 InstPool « 0

5: for all op in binary operations listed in Table 1
6 InstPool « InstPool U { (op hole, hole), (op sym-const, hole), (op hole, sym-const) }
7 for all input1 in Inputs

8 InstPool « InstPool U { (op inputl, sym-const), (op sym-const, input1) }

9 InstPool « InstPool U { (op inputl, hole), (op hole, input1) }

10: for all input2 in Inputs

11: InstPool « InstPool U { (op inputl, input2) }

12: for all other operations in Table 1 > omitted for brevity
13:

14:

15: > Phase 2: Generate partially-symbolic candidates
16: WorkList « { (ret hole), (ret sym-const) }

17: Candidates « Inputs

18: while WorkList # 0

19: I « WorkList.pop()

20: if I does not contain holes then

21: Candidates « Candidates U {1}

22: continue

23: for all Hole in I

24: if CountNewlInsts(I) > InstLimit then

25: continue

26: for all Inst in InstPool

27: J « I with Hole substituted by Inst

28: if TargetTransformInfoCost(J) > TargetTransformInfoCost(Cut) then

29: continue

30: WorkList « WorkList U {]}

31:

32: > Phase 3: Refinement checking and constant synthesis
33: Sort Candidates by TargetTransformInfoCost

34: StartTime « time()

35: Refinements « 0

36: for all C in Candidates

37: if C does not contain symbolic constants then

38: if Alive2 claims that C refines Cut then

39: Refinements « Refinements U { C }

40: else

41: Build exists-forall query to get a model for symbolic constants

42: if satisfiable then

43: C’ « C with symbolic constants substituted by the constants in the model
44: Refinements « Refinements U { C’ }

45: if time() - StartTime > TimeLimit then

46: break

47: return Refinements
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A cut of an LLVM function that serves as the specification in Minotaur's synthesis procedure

entry:

%0 = icmp eq <4 x 132> %x, %y
%1 icmp ne <4 x 132> %x, %y
%2 shufflevector <4 x il1> %
ret <4 x il1> %2

define <4 x il> @src(<4 x 132> %x,

’

<4 x 132> 3y) {

<4 x il> %1, <4 x 132> <i32 0, i32 5, 132 2, 132 7>

'
C—~

oo

x

oe
L

-

N
A Y

A}
N

>

generate candidate
-

no literal constants

<«

return value mismatch
candidate is discarded

run translation validation !

many more candidates

literal

has literal constant

emit exist-forall query

3 sliteral, V %x, $y. src => tgt

find model

<«

$literal = <il 0, il 1, il 0, il 1>

Synthesized LLVM function that refines the original cut

rewrite

<«

define <4 x il> @tgt (<4 x 132> %x,
entry:
%0 icmp eq <4 x 132> %x, %y
%1 xor <4 x il> %1, <il1 0, i1 1, il 0, il 1>
ret <4 x 11> %1

<4 x 132> %y) {

Fig. 4. Example of synthesizing a rewrite that contains literal constants. Purple nodes are instructions reused
from the original cut; blue and orange nodes are synthesized instructions and literal constants.

interesting, low-level optimizations such as those that use bitwise operations to rapidly perform
certain floating point operations.

In Phase 3 of Algorithm 4, Minotaur uses Alive2 to eliminate every candidate that does not
refine the specification. First, we sort the candidates in order of increasing cost using LLVM’s
TargetTransformInfo [21]: a cost model that roughly captures execution cost on the target, and is
cheap to compute. We do this to ensure that likely-beneficial rewrites are tested first, before the
synthesis time limit is reached. For candidates that do not contain symbolic constants, we can use
Alive2 as-is. To support symbolic constants, we modified Alive2 to wrap its refinement check in an
exists-forall query. In other words, Minotaur asks the question: “Does there exist a valuation of
the symbolic constants such that the synthesis candidate refines the specification for all possible
values of the inputs?” When such a query is satisfiable, the model returned by the solver can be
inspected to find satisfying values of the symbolic constants in the candidate, which now become
literal constants, giving a complete, sound optimization. To avoid potentially-expensive exists-forall
queries, we experimented with various techniques such as generalization by substitution [11].
However, these failed to outperform exists-forall queries, in the version of Z3 that we used (4.12.4).
Figure 4 illustrates Minotaur’s synthesis procedure.
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4.3 Identifying Profitable Rewrites

The output of Algorithm 4 is a list of candidates that all refine the cut. Of these, we want to
choose the best one—but predicting throughput of code running on modern microprocessors is not
straightforward. We leverage the LLVM Machine Code Analyzer (LLVM-MCA) [10], which was
created to help developers improve performance-critical code. It is an interactive tool that emits a
graphical depiction of pipeline behavior, but its functionality can also be accessed programmatically,
and this is what Minotaur does, after lowering each candidate to x86-64 object code. Then, Minotaur
only applies a rewrite if its estimated cost, using LLVM-MCA, is lower than that of the original cut,
and lower than that of any other synthesized refinement of the original cut.

Although LLVM-MCA can estimate the cycle cost of LLVM functions, we instead use the number
of uOps (“micro-operations,” a modern x86-64 processor’s internal instruction set) as the estimated
cost. This choice was driven by empirical data: after extensive experimentation, we determined
that, for our purposes, uOps are a better performance predictor than cycles.

4.4 Representing and Caching Rewrites

Minotaur stores each potential rewrite as a pair: (C, S) where C is a cut, represented by a function in
LLVM Intermediate Representation (IR), and S is a rewrite description—an expression in Minotaur’s
own intermediate representation that describes a different way to compute the return value of C.
Rewrite descriptions are directed acyclic graphs containing nodes that represent operations, and
edges representing data flow. Although the elements found in Minotaur IR are similar to those
found in LLVM IR, we could not reuse LLVM IR to represent rewrites since LLVM IR does not
support incomplete code fragments, and also rewrites must contain enough information to support
connecting the new code in the rewrite to code in the unoptimized function.

To support caching, rewrites must be serializable. The cut C can be serialized using existing
LLVM functionality, and we created a simple S-expression syntax for serializing the S part. Figure 5
shows the syntax of the IR. For example, if the returning value of C, a 32-bit instruction is replaced
by left shift by one bit position, the textual format for the expression is (shl (val i32 %),
(const i32 1), i32).

Rewrites are cached in a Redis instance: this implementation choice allows the cache to be
persistent across multiple Minotaur runs and also makes the cache network-accessible. Synthesis
can be done online—during compilation—but also offline, in a mode where Minotaur extracts cuts
into the Redis cache but does not perform synthesis. In this mode, compilation is only slowed down
by a few percent. Minotaur’s offline mode is designed for batch processing. In this mode, a separate
program called cache-infer retrieves cuts from the cache, runs synthesis on them, and stores any
optimizations that it discovers back into the cache. Unlike the online mode, which runs synthesis
tasks one after the other, offline mode can run all synthesis jobs in parallel.

4.5 Integration with LLVM

Minotaur is loaded into LLVM as a shared library where it runs as an optimization pass. We
arranged for it to run at the end of LLVM’s auto-vectorization pipeline. We invoke LLVM’s Dead
Code Elimination pass after Minotaur to clean up the resulting code.

5 Evaluation

Our primary evaluation metric for Minotaur is its ability to speed up legacy application code,
compared to an optimized build using LLVM 18. Secondarily, we look at Minotaur’s impact on
compile time, optimizations that have been integrated into upstream LLVM based on our work,
and other issues.
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Op == Inst| Constant | Value
Inst == (UnaryOp Op, Type) | (BinaryOp Op, Op, Type) | (Conversion Op, Type) |
insertelement Op, Op, Op) | (extractelement Op, Op) | (shufflevector Op, Op, Constant) |

(
(
(Comparison Op Op) | (select Op, Op, Op) | (Intrinsic Op, Op)
(

Constant ::= (const Type number-literal)
Value == (val Type llvm-identifier)
Type = ScalarType | <elements X ScalarType>
ScalarType == 1i1]i8]i16|1i32|i64 | half | float | double | fp128
BinaryOp == xor |and|or|add|sub|mul|udiv |sdiv | ashr | Ishr | shl | umax | umin | smax | smin
fadd | fsub | fmul | fdiv | copysign | fmaximum | fminimum | fmaxnum | fminnum
UnaryOp == ctpop | ctlz | cttz | bswap | bitreverse | ret

fneg | fabs | fceil | flloor | frint | fround | ftrunc | fnearbyint | froundeven
Conversion == zext|sext|trunc |
fptrunc | fpext | fptosi | sitofp | fptoui | uitofp

Comparison = eq|ne|ult|ule|slt]sle]|
oeq | ogt | oge | olt | ole | one | ord | ueq | ugt | uge | ult | ule | une | uno
Intrinsic == ssse3.phadd.d.128 | avx2.pavg.b | avx512.pmaddubs.w.512 | ... (165 intrinsics in total)

Fig. 5. Syntax for Minotaur rewrites

5.1 Correctness

Every optimization discovered by Minotaur has been formally verified by Alive2. Even so, bugs
might remain in the instruction semantics that we have added to Alive2, in our cut extractor, in
our rewrite mechanism, in Alive2, or in Z3. To defend against implementation errors, we have
compiled numerous open source applications using Minotaur, and then run those applications’ test
suites, to ensure that they were not miscompiled. Furthermore, we have compiled SPEC CPU 2017
using Minotaur and used the SPEC drivers to ensure that all of its benchmarks behave as expected.

5.2 Effect of Depth Bounds in the Cut Extractor

It is important for Minotaur to extract cuts that are of an appropriate size. If they are too large,
compile times suffer and also the SMT solver can be overwhelmed, leading to timeouts; if cuts
are too small, then they form an insufficient basis for driving an optimization. To determine a
good value for B, the depth parameter to the cut extraction procedure shown in Algorithm 1, we
performed an empirical study. We started with FlexC’s benchmark suite [36], a collection of 2,386
compilable, non-trivial C functions containing loops from FFMPEG, Freelmage, DarkNet, xz, bzip2,
and the LivermoreC benchmark. When compiled to LLVM IR, these functions contain a total of
123,062 instructions; thus, our cut extractor was invoked 123,062 times for each depth bound. We
chose this code as the basis for our experiment because it is derived from real applications while
also being small enough to keep compile times manageable (compared to, e.g., SPEC CPU 2017,
which is much larger).

We then ran Minotaur on these functions with all depth bounds from 0-7, measuring the number
of unique cuts that were extracted, the number of optimizations found, and the compilation time.
We used a one-minute timeout for individual Z3 queries, and we also gave Minotaur a total of up to
five minutes to synthesize an optimized version of each cut. Figure 6 summarizes the results of this
experiment. The number of unique cuts that are extracted grows quickly with B, but eventually
begins to saturate simply because the functions being compiled do not always have very long
dependency chains. The number of synthesized optimizations also grows quickly, but it peaks when
B = 6 and then it decreases because the size of the cuts causes many solver timeouts. Finally, the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 326. Publication date: October 2024.



Minotaur: A SIMD-Oriented Synthesizing Superoptimizer 326:15

Cut count
Compilation time (minutes)

0 1 2 5 6 7 0 1 2 5 6 7 0 1 2 5 6 7

3 a 3 a 3 0
Depth bound Depth bound Depth bound

(a) Unique cuts extracted (b) Unique opts. synthesized (c) Compilation time

Fig. 6. Evaluating the effect of varying B, the depth bound for cut extraction

‘ memory FP vector FPscalar integer vector integer scalar  overall

Number of rewrites 3 17 4 191 109 324
Geomean speedup 1.0605x 1.0600x 1.0572x 1.0142x 1.0506x  1.0610x
Contribution to speedup 0.65% 1.64% 5.90% 75.57% 16.23% 100%

Table 2. Results of an ablation study based on optimization categories

total compile time increases smoothly with the depth bound, eventually leveling off as most solver
queries time out.

For the experiments in the rest of the evaluation section, we chose B = 4 because this gets
close to the maximum observed number of optimizations without requiring exorbitant compile
times. It seems likely that there is room for improvement in this aspect of Minotaur: perhaps the
depth bound should be determined adaptively. In this scenario, we would extract more and more
components into the cut, until either an optimization is found or else the solver begins to time out.
We leave explorations of this nature for future work.

5.3 What Kind of Optimizations Matter Most?

To determine which of Minotaur’s optimizations matter most, we performed an ablation study, again
using the FlexC benchmark suite that we described in Section 5.2. We split the optimizations that
Minotaur found into five categories: memory, floating-point vector, floating-point scalar, integer
vector, and integer scalar. Then, we ran Minotaur in a way that omitted each of these categories of
optimizations. As shown in Table 2, integer vector optimizations produce the most rewrites, and
also produce the majority of the observed speedup.

5.4 Speedups for Benchmarks and Applications

In this section, we show how Minotaur speeds up real-world benchmarks and applications.

Experimental setup. We used two machines for our evaluation. The first has an Intel Xeon
Gold 6210U processor running at 2.5 GHz, and has 20 cores; this implements the Cascade Lake
microarchitecture [13] and supports the AVX-512 instruction set. The second has an AMD Ryzen
5950X processor running at 3.4 GHz, and has 16 cores; this processor implements the Zen 3
microarchitecture [2]. Both machines run Linux and were idle except for a single core running our
benchmarks (however, when measuring compile times, as reported in Table 3, we used all cores).
To reduce the performance variation caused by frequency scaling, we disabled turbo boost on the
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Intel Cascade Lake AMD Zen 3
Compilation time (minutes) Stats Compilation time (minutes) Stats
Benchmarks | Cold cache Warm Clang ‘ #Cuts #Opts. | Cold cache Warm Clang ‘ #Cuts  # Opts.
SPEC CPU 2017 2,337 3 3 | 109,177 2,683 2,580 3 3 1 114,612 2,820
gmp-6.2.1 440 <1 <1 9,170 336 445 <1 <1 9,265 387
libYUV 2,196 <1 <1 6,849 334 2,193 <1 <1 6,809 357

Table 3. Minotaur’s effect on compilation time

Intel machine and core performance boost on the AMD machine. We also disabled simultaneous
multithreading on both machines.

We invoked LLVM with the -march=native compilation flag to ask it to take maximum advan-
tage of processor features; we left other compilation flags unchanged, except where noted. All
benchmarks are compiled at the -03 optimization level. We set the timeout for Z3 [9] queries to
one minute. Finally, for each instruction that it tries to optimize, Minotaur gives up if no solution is
found within five minutes.

Benchmark selection. We evaluate on SPEC CPU 2017' because it is a widely accepted standard
benchmark. We only evaluate on the speed subset of the SPEC suite, and we omit 648.exchange,
607.cactuBSSN, 621.wrf, 627.cam4, 628.pop2, 649.fotonik3d, and 654.roms as they contain Fortran
code. We additionally use GMP, the GNU Multiple Precision Library,” and libYUV,® which is used by
Google Chrome/Chromium for manipulating images in the YUV format. We chose these libraries
because they have been heavily tuned for performance, they are loop-intensive, and they come
with performance benchmark suites that we could simply reuse.

Compile times. Table 3 shows how long it takes Minotaur to build our benchmarks, along with the
number of potentially optimizable values and the number of optimizations found. The compile times
are for parallel builds; we set the MAKE’s -J flag and SPEC CPU 2017’s build_ncpus configuration
to the number of cores on the machine. Minotaur is very slow when it runs with a cold cache
because it performs many solver queries. However, with a warm cache, it is only 3% slower than
baseline clang.

In most cases, Minotaur found more optimizations when targeting the AMD processor. We
believe this is because LLVM is more mature targeting AVX2 than AVX-512. Queries with 256-bit
vectors are also less likely to timeout in Z3 than are queries with 512-bit vectors.

Optimizing GMP with Minotaur. GMP provides a portable C-language implementation and then,
for several platforms, a faster assembly language implementation. For this evaluation, we selected
the C implementation, because Minotaur works on LLVM IR and cannot process assembly code
at all. The benchmark suite that we used is GMPbench.* Figure 7 summarizes the results. When
Minotaur targets the Intel Cascade Lake processor, and when the resulting executables are run on
that same microarchitecture, all the benchmarks sped up; across all of the benchmarks, the mean
speedup was 7.3%. The analogous experiment using the AMD Zen 3 microarchitecture resulted
in one benchmark slowing down, and the rest of benchmarks speeding up, for an overall mean
speedup of 6.5%.

Thttps://www.spec.org/cpu2017/
Zhttps://gmplib.org/
Shttps://chromium.googlesource.com/libyuv/libyuv/
4https://gmplib.org/gmpbench
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Fig. 7. GNU Multiple Precision Library (GMP) speedups, on a logarithmic scale

Optimizing libYUV with Minotaur. This library has an extensive test suite, part of which is
explicitly intended for performance testing; we used this part as a benchmark. Each test program
scales, rotates, or converts a 1280 x 728 pixel image 1,000 times. Figure 8 shows the results of
this experiment. When Minotaur targets an Intel processor, 148 programs slowed down, 72 did
not change performance, and 2,312 sped up, for an overall speedup of 2.2%. Targeting an AMD
processor, 188 programs slowed down, 85 did not change performance, and 2,259 sped up, for
an overall speedup of 2.9%. Minotaur can make code slower because it looks at optimizations in
isolation; it does not attempt to model interactions between optimizations.

libYUV is portable code, but it has already been heavily tuned for performance; most commits to
its repository over the last several years have been performance-related. Our hypothesis is that this
manual tuning has already eaten up most of the performance gains that we would have hoped to
gain from Minotaur. For some time now, Google’s released versions of Chrome have been compiled
using LLVM; the Chrome engineers have had ample time to ensure that this compiler achieves
decent code generation for performance-critical libraries.

Optimizing SPEC CPU 2017 with Minotaur. Figure 9 shows the effect of optimizing the benchmarks
from SPEC CPU2017 using Minotaur. When optimizing for, and running on, the Intel processor, we
observed a mean speedup of 1.5%. When optimizing for, and running on, the AMD processor, we
observed a mean speedup of 1.2%. It is notoriously difficult to speed up the SPEC CPU benchmarks
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Fig. 9. SPEC CPU2017 benchmark performance, on a logarithmic scale

because compiler engineers have already put considerable effort into achieving good code generation
for them.

5.5 Impact on Upstream LLVM

In several cases where an optimization discovered by Minotaur seemed to be simple and broadly

applicable, we have reported its absence as an LLVM defect, using the project’s issue tracker. This
section summarizes the results of this informal LLVM-improvement project.
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We reported ten missing floating-point optimizations. Five of these (including the one we
presented in Section 1) have now been implemented in LLVM. Three of them are in the code review
phase: a patch exists and is being discussed by developers. Finally, two of them are being discussed,
but a candidate patch does not yet exist.

We also reported five missing vector optimizations. One of these has been fixed, one has a patch
that is under review, and three are still being discussed.

5.6 Optimizations Discovered by Minotaur

The purpose of this section is to examine Minotaur’s strengths by presenting some optimizations that
it found while compiling benchmark programs. None of these optimizations can be performed by the
version of LLVM that Minotaur is based on,’ at its -03 optimization level. We present optimizations
in an SSA format that is close to LLVM IR, but we have edited it slightly for compactness and
legibility.

Example 1. This code is from perlbench in SPEC:

%0 = zext <16 x i8> %x to <16 x i16>
%1 = zext <16 x 18> %y to <16 x 116>
%2 = call @llvm.x86.avx2.pavg.w(%0, %1)
%3 = trunc <16 x 116> %2 to <16 x i8>
ret <16 x i8> %3
=>

%0 = call @llvm.x86.sse2.pavg.b(%x, %y)
ret <16 x 18> %@

The unoptimized code zero-extends each 8-bit element of the two input vectors to 16 bits, calls
the AVX2 variant of pavg to perform element-wise averaging of the extended vectors, and then
truncates elements of the resulting vector back to eight bits. The optimized code simply calls an
SSE2 version of the pavg instruction that operates on 8-bit elements, reducing the uOp cost of the
operation from four to one.

Example 2. This code is from libYUV:

%0 = call @llvm.x86.avx2.pmadd.wd(%x, <0,1,0,1, ...>)
%1 = call @llvm.x86.avx2.pmadd.wd(%x, <1,0,1,0, ...>)
%2 = sub nsw <8 x 132> %1, %0
ret <8 x 132> %2

=>
%0 = call @llvm.x86.avx2.pmadd.wd(%x,<1,-1,1,-1, ...>)
ret <8 x 132> %0

The pmadd.wd (multiply and add packed integers) instruction multiplies signed 16-bit integers
element-wise from two input vectors, and then computes its output by adding adjacent pairs
of elements from the resulting vector. Thus, the input to this instruction is two 16-way vectors
containing 16-bit elements, and its output is a single 8-way vector of 32-bit elements.

In this example, the second argument to each pmadd.wd instruction in the unoptimized code is
a vector of alternating zeroes and ones, which has the effect of selecting odd-indexed elements
into %0 and even-indexed elements into %1. Then, after the sub instruction, which simply performs
element-wise subtraction of %@ and %1, the overall effect of this code is to compute the difference
between adjacent pairs of elements of %x. Minotaur is able to perform this same computation using
a single pmadd. wd instruction which negates odd-numbered elements of %x before performing the
addition. The optimized code requires 5 uOps to execute whereas the original code requires 8.

>Minotaur uses LLVM 18.1.0 for all results in this paper.
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Example 3. This code is from libYUV:

%0 = shufflevector <32 x i8> %x, poison, <3, 7, 11, 15, 19, 23, 27, 31>
%1 = 1lshr %0, <6, 6, 6, 6, 6, 6, 6, 6>
%2 = zext 8 x i8> %1 to <8 x 132>
ret <8 x i32> %2
=>

%0 = bitcast <32 x i8> %x to <8 x i32>
%1 = call @llvm.x86.avx2.psrli.d(<8 x i32> %0, 30)
ret <8 x i32> %1

The shufflevector instruction in the unoptimized code selects every fourth byte-sized element
from the input %x. The resulting 8-way vector is right-shifted element-wise by six bit positions,
and that result is zero-extended to an 8-way vector of 32-bit elements. Minotaur’s optimized
version (which executes in 4 uOps instead of 11) first reinterprets the input vector’s data as 32-bit
elements; this bitcast is relevant to LLVM’s type system, but it is a nop at the CPU level. Then, the
prsli instruction shifts each 32-bit element to the right by 30 bit positions. This right-shift-by-30
achieves the same effect as the unoptimized code, where the shufflevector can be seen as a
right-shift-by-24, followed by an explicit right-shift-by-6.

Example 4. This code, from compiling perlbench from SPEC CPU 2017, illustrates Minotaur’s
ability to reason about control flow:

entry:

br i1 %c, label %body, label %if.end
body :

br label %if.end
if.end:

%1 = phi [ %a, %body 1, [ %b, %entry ]
%p2 = phi [ %b, %body 1, [ %a, %entry 1]
%r = call @llvm.x86.avx2.pavg.b(%pl1, %p2)
ret <32 x i8> %r

=>
%r = call @llvm.x86.avx2.pavg.b(%a, %b)
ret <32 x i8> %r

The intent of the code is to compute the element-wise average of input vectors %a and %b, with
a Boolean value %c determining the order in which the input vectors are presented to the pavg
instruction. However, the order of arguments to this instruction does not matter, and Minotaur’s
version executes in 4 uOps while the original code requires 10. Note that Minotaur was not explicitly
taught that pavg is commutative; the necessary information was inferred naturally from the formal
specification.

Example 5. This is an optimization discovered by Minotaur when it was used to compile GMP:

%0 = 1lshr i64 %x, 1

%1 = and 164 %0, 0x5555555555555555
%2 = sub 164 %x, %1

%3 = lshr 164 %2, 2

%4 = and 164 %2, 0x3333333333333333
%5 = and 164 %3, ©x3333333333333333
%6 = add nuw nsw i64 %4, %3

%7 = lshr i64 %6, 4

%8 = add nuw nsw 164 %7, %6

%9 = and 164 %8, oxfofefefefofofeof
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ret i64 %9

=>
%0 = bitcast i64 %x to <8 x i8>
%1 = call @llvm.ctpop(<8 x i8> %0@)
%2 = bitcast <8 x i8> %1 to i64
ret i64 %2

The original code performs a series of bit-level manipulations on a 64-bit integer value, with
the net result of performing an 8-way vectorized 8-bit popcount operation.® The optimized code
simply calls an intrinsic function to do the popcount; it costs 13 uOps instead of the original code’s
19. Although robust recognition of open-coded idioms is not the focus of our work, Minotaur does
sometimes manage to achieve this.

Taking a strict view of types in the synthesis process could help prune the search space, but
it would also cause us to miss optimizations that require a flexible view of types. This example
illustrates the latter case: the original code contains no indication that a good optimization can
be found using a vector of type <8 x i8>, and therefore a strictly type-guided synthesis procedure
would miss this one.

Example 6. This code comes from 644.nab in SPEC CPU 2017:

%0 = fcmp oge float %x, 0.000000e+00
%1 fneg float %x
%2 = select i1 %0, float %@, float %2
%3 = fcmp oeq float %2, 0.000000e+00
ret i1 %3

=>
%1 = fcmp oeq float %x, 0.000000e+00
ret i1 %oeq

The original code computes the absolute value of a floating-point number %x and then checks if
the result is zero. Minotaur found that that the original code is equivalent to simply checking if %x
is zero.

Example 7. This code comes from 619.1bm in SPEC CPU 2017:
%0 = fmul float %x, @x3FFOCCCCCQ000000
%1 = fcmp olt float %t1, Ox3FE20418A0000000
ret i1 %1
=
%0 = fcmp ole float %x, Ox3FE12878E0000000
ret i1 %0

The original code multiplies a floating-point value %x by a constant, and then checks if the result
is less than another constant. Minotaur found that this code is equivalent to checking if %x is

less than or equal to a third constant. This example shows that Minotaur can reason about and
synthesize floating point literals.

Example 8. This code comes from 638.imagick in SPEC CPU 2017:
%0 = fmul float %x, 0.000000e+00
%1 = fmul float %0, 3.000000e+00
ret float %1
=
%0 = fmul float %x, 0.000000e+00
ret i1 %0

The popcount, or Hamming weight, of a bitvector is the number of “1” bits in it.
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The original code multiplies a floating-point value %x by zero, and then multiplies the result by
3.0. Minotaur found that this code is equivalent to multiplying %x by zero directly. Note the original
code cannot be optimized to 0.0 directly, because of the NaN and signed zero propagation rules in
floating-point arithmetic. This example shows that Minotaur is able to reason about these corner
cases and synthesize the correct code.

Example 9. This code comes from FlexC’s benchmark suite:
%0 = extractelement <4 x ptr> %0, i32 @
%1 = extractelement <4 x ptr> %0, i32 3
%2 = load i32, ptr %0
%3 = load i32, ptr %1
%4 = insertelement <4 x i32> zeroinitializer, i32 %2, i32 @
%5 = insertelement <4 x i32> %4, 132 %3, i32 3
ret <4 x 132> %5
=>
%0 = call @llvm.masked.gather(%0, 4, <true, false, false, true>, zeroinitializer)
ret <4 x i32> %0
The original code extracts two pointers from a vector of pointers, loads the values from these
pointers, and then inserts these values into a vector of integers. Minotaur found that this code is
equivalent to performing a masked gather operation, which loads values from memory using a
vector of pointers and a mask.

6 Related Work

A superoptimizer is a program optimizer that meaningfully relies on search to generate better code,
in contrast with traditional compilers that attempt a fixed (but perhaps very large) sequence of
transformations. The eponymous superoptimizer [23] exhaustively generated machine instruction
sequences, using various strategies to prune the search space, and using testing to weed out infeasi-
ble candidates. Also predating modern solver-based methods, Davidson and Fraser [8] constructed
peephole optimizations from machine description files. In contrast, modern superoptimizers rely
on solvers to perform automated reasoning about program semantics.

Souper [27] is a synthesizing superoptimizer that works on LLVM IR; it is the most directly
connected previous work to Minotaur. Souper’s slicing strategy is similar to Minotaur’s in that it
extracts a DAG of LLVM instructions that overapproximates how a given SSA value is computed.
However, unlike Souper, Minotaur extracts memory operations and multiple basic blocks, so it is
capable of (we believe) strictly more transformations than Souper is able to perform. Additionally,
Souper’s undefined behavior model does not capture all of the subtleties of undefined behavior in
LLVM, whereas we reuse Alive2’s model, which is the most widely used formalization of these
semantics, and the one that is most widely recognized as being correct. Finally, Minotaur focuses on
vector-related transformations, whereas Souper supports neither LLVM’s portable vector instruction
set nor its platform-specific intrinsics. It is worth noting that, over the years, the LLVM developers
have implemented numerous optimizations discovered by Souper. These are all, of course, present
in LLVM 18, the compiler that is the baseline for our experimental evaluation. In other words,
Minotaur is an effective superoptimizer on top of a previous solver-based superoptimizer (and
Souper was effective on top of an even earlier LLVM superoptimizer [26]).

Minotaur is also strongly inspired by Bansal and Aiken’s work [4]; their superoptimizer operated
on x86 assembly code and was able to make interesting use of vector instructions. Starting from
unoptimized assembly produced by GCC, it was able to produce code competitive with higher
optimization levels. The overall structure of this superoptimizer, where program slices are extracted,
canonicalized, checked against a cache, and then optimized in the case of a cache miss, is very similar
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to Minotaur, but there are many differences in the details, particularly in Minotaur’s slice extractor
which allows its synthesis specification to approximate the original code’s effect much more closely.
Another assembly superoptimizer, STOKE [28-30], is not as closely related; it is based on randomly
perturbing assembly-language functions. STOKE can potentially perform transformations that
Minotaur cannot, but we believe that its results are more difficult to translate into standard peephole
optimizations than are Minotaur’s.

Several recent projects have focused not on optimizing individual programs but rather on
generating program rewrite rules. OptGen [5] finds scalar peephole optimizations that meet a
specified syntactic form. Even at small rewrite sizes, it was able to find numerous optimizations
that were missing from the 2015 versions of GCC and LLVM. VeGen [6] generates SLP vectorization
rules—an SLP vectorizer [16] merges a set of scalar operations into vector instructions. VeGen parses
the Intel Intrinsics Guide [14] and uses this to build pattern matchers for x86 vector instructions.
VeGen applies the pattern matchers to an input scalar program, and replaces scalar expressions
with vector instructions when it finds a profitable match. VeGen uses syntactic pattern matching
rather than solver-based equivalence/refinement checking. Diospyros [35] is another vector rewrite
rule generator, it takes an equality saturation [32] approach and uses a translation validator to
reject unsuitable candidates. As an equality saturation-based tool, Diospyros builds its search space
with existing rewrite rules.

Program synthesis—generating implementations that conform to a given specification—is in-
timately related to superoptimization. Rake [1] performs instruction selection for vectorized
Halide [25] expressions using a two stage synthesis algorithm. First, Rake synthesizes a data-
movement-free sketch [31], and then in the second stage it concretizes data movement for the
sketch via another synthesis query. Rake targets Hexagon DSP processors [33] which share some
functionally similar SIMD instructions with x86. Cowan et al. [7] synthesized quantized machine
learning kernels. Their work introduces two sketches: a compute sketch, which computes a matrix
multiplication, and a reduction sketch that collects the computation result to the correct registers.
It relies on Rosette [34] to generate an efficient NEON [3] implementation that satisfies the specifi-
cations for those two sketches. Swizzle Inventor [24] is another tool built on Rosette; it synthesizes
data movement instructions for a GPU compute kernel, and it requires user-defined sketches de-
scribing the non-swizzle part of the program. MACVETH [12] generates high-performance vector
packings of regular strided-access loops, by searching for a SIMD expression that is equivalent
to a gather specification. All of these works show good performance results, but they focus on
relatively narrow tasks, whereas Minotaur attempts to improve SIMD programs in general.

Most previous superoptimizers and program synthesizers use simple cost models. For example,
Souper [27] assigns each kind of instruction a weight and uses the weighted sum as the cost
of a rewrite. This kind of cost model is not a very good predictor of performance on a modern
out-of-order processor. Minotaur and MACVETH [12] use the LLVM-MCA [10] microarchitectural
performance analyzer, which can still lead to mispredictions, but it is generally more accurate than
simple approaches are.

7 Conclusion

We created Minotaur because we noticed that LLVM appeared to be missing relatively obvious
optimizations in code containing both its portable vector instructions and also its platform-specific
intrinsic functions that provide direct access to hardware-level primitives. Minotaur cuts loop-free
DAG:s of instructions—including branches and memory operations—out of LLVM functions and
then attempts to synthesize better implementations for them. When improved code is found, the
optimization is performed and also the synthesis result is cached. On the libYUV test suite, Minotaur
gives speedups up to 1.64x, with an average speedup of 2.2%.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 326. Publication date: October 2024.



326:24 Zhengyang Liu, Stefan Mada, and John Regehr

Acknowledgments

The authors are indebted to Nuno P. Lopes for creating Alive2, for structuring it in such a way
that we could programmatically access its functionality, and for helping us to use it effectively.
Alexander Brauckmann and Michael O’Boyle generously provided access to a collection of loop
kernels extracted using their tool, FlexC. Alastair Reid, Fabian Giesen, Sam Elliott, Raimondas
Sasnauskas, Pavel Panchekha, Manasij Mukherjee, Tanmay Tirpankar, and anonymous reviewers
all provided invaluable feedback on drafts of this paper. This material is based upon work supported
by the National Science Foundation under Grant No. 1955688.

References

[1] Maaz Bin Safeer Ahmad, Alexander J. Root, Andrew Adams, Shoaib Kamil, and Alvin Cheung. Vector Instruction
Selection for Digital Signal Processors Using Program Synthesis. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2022, page 1004-1016, 2022.
AMD. AMD Zen 3, 2023. https://www.amd.com/en/technologies/zen-core.

ARM. ARM NEON Architecture, 2023. https://developer.arm.com/Architectures/Neon.

Sorav Bansal and Alex Aiken. Automatic Generation of Peephole Superoptimizers. In Proceedings of the 12th

International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XII, page

394-403, 2006.

[5] Sebastian Buchwald. Optgen: A generator for local optimizations. In International Conference on Compiler Construction,
pages 171-189. Springer, 2015.

[6] Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe. VeGen: A Vectorizer Generator for SIMD and
Beyond, page 902-914. 2021.

[7] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and Luis Ceze. Automatic Generation of High-
Performance Quantized Machine Learning Kernels. In Proceedings of the 18th ACM/IEEE International Symposium on
Code Generation and Optimization, CGO 2020, page 305-316, 2020.

[8] Jack W. Davidson and Christopher W. Fraser. Automatic Generation of Peephole Optimizations. In Proceedings of the

1984 SIGPLAN Symposium on Compiler Construction, SIGPLAN °84, pages 111-116, 1984.

Leonardo De Moura and Nikolaj Bjerner. Z3: An efficient smt solver. In Tools and Algorithms for the Construction

and Analysis of Systems: 14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings 14, pages 337-340.

Springer, 2008.

[10] LLVM Developers. LLVM Machine Code Analyzer, 2023. https://llvm.org/docs/CommandGuide/llvm-mca.html.

[11] Bruno Dutertre. Solving exists/forall problems with yices. In The 13th International Workshop on Satisfiability Modulo
Theories, 2015.

[12] Marcos Horro, Louis-Noél Pouchet, Gabriel Rodriguez, and Juan Tourino. Custom High-Performance Vector Code
Generation for Data-Specific Sparse Computations. In Proceedings of the 31st International Conference on Parallel
Architectures and Compilation Techniques, 2022.

[13] Intel. Cascade Lake: Overview, 2023. https://www.intel.com/content/www/us/en/products/platforms/details/cascade-

lake html.

Intel. Intel Intrinsics Guide, 2023. https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html.

Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: a goal-directed superoptimizer. SIGPLAN Notices, 37(5):304-314,

May 2002.

[16] Samuel Larsen and Saman Amarasinghe. Exploiting Superword Level Parallelism with Multimedia Instruction Sets. In
Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation, PLDI *00,
page 145-156, 2000.

[17] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.

In Proceedings of the 2004 International Symposium on Code Generation and Optimization (CGO’04), Palo Alto, California,

Mar 2004.

LLVM Developers. LoopInfo, 2023. https://llvm.org/doxygen/classllvm_1_1LoopInfo.html.

LLVM Developers. MemorySSA, 2023. https://llvm.org/docs/MemorySSA.html.

LLVM Developers. ORC Design and Implementation, 2023. https://llvm.org/docs/ORCv2.html.

LLVM Developers. TargetTransformInfo Class Reference, 2023. https://llvm.org/doxygen/classllvm_1_

1TargetTransformInfo.html.

[22] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. Alive2: Bounded Translation Validation
for LLVM, page 65-79. 2021.

— r—_—
W DN
[lani i R}

[9

—

[14
[15

—_

[18
[19
[20

]
]
]
[21]

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 326. Publication date: October 2024.


https://www.amd.com/en/technologies/zen-core
https://developer.arm.com/Architectures/Neon
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://www.intel.com/content/www/us/en/products/platforms/details/cascade-lake.html
https://www.intel.com/content/www/us/en/products/platforms/details/cascade-lake.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://llvm.org/doxygen/classllvm_1_1LoopInfo.html
https://llvm.org/docs/MemorySSA.html
https://llvm.org/docs/ORCv2.html
https://llvm.org/doxygen/classllvm_1_1TargetTransformInfo.html
https://llvm.org/doxygen/classllvm_1_1TargetTransformInfo.html

Minotaur: A SIMD-Oriented Synthesizing Superoptimizer 326:25

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

Henry Massalin. Superoptimizer: A look at the smallest program. In Proceedings of the Second International Conference
on Architectual Support for Programming Languages and Operating Systems, ASPLOS II, page 122-126, 1987.
Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav Jangda, Bastian Hagedorn, Henrik
Barthels, Samuel J. Kaufman, Vinod Grover, Emina Torlak, and Rastislav Bodik. Swizzle Inventor: Data Movement
Synthesis for GPU Kernels. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 19, page 65-78, 2019.

Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Sylvain Paris, Marc Levoy, Saman Amaras-
inghe, and Frédo Durand. Halide: Decoupling Algorithms from Schedules for High-Performance Image Processing.
Commun. ACM, 61(1):106—115, dec 2017.

Duncan Sands. Super-optimizing LLVM IR, November 2011. Presentation at the 2011 LLVM Developers’ Meeting.
Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian Lup, Jubi Taneja, and John Regehr.
Souper: A synthesizing superoptimizer. arXiv preprint arXiv:1711.04422, 2017.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic Superoptimization. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’13, page
305-316, 2013.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic optimization of floating-point programs with tunable
precision. ACM SIGPLAN Notices, 49(6):53-64, 2014.

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. Conditionally correct superoptimization. ACM
SIGPLAN Notices, 50(10):147-162, 2015.

Armando Solar-Lezama. The Sketching Approach to Program Synthesis. In Proceedings of the 7th Asian Symposium on
Programming Languages and Systems, APLAS 09, page 4-13, Berlin, Heidelberg, 2009. Springer-Verlag.

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality Saturation: A New Approach to Optimization.
In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
09, page 264-276, 2009.

Qualcomm Technologies. Hexagon dsp sdk. https://developer.qualcomm.com/software/hexagon-dsp-sdk.

Emina Torlak and Rastislav Bodik. Growing Solver-Aided Languages with Rosette. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software, Onward! 2013,
page 135-152, 2013.

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson. Vectorization for Digital
Signal Processors via Equality Saturation. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’21, page 874-886, 2021.

[36] Jackson Woodruff, Thomas Koehler, Alexander Brauckmann, Chris Cummins, Sam Ainsworth, and Michael FP O’Boyle.

Rewriting history: Repurposing domain-specific cgras. arXiv preprint arXiv:2309.09112, 2023.

Received 2024-04-03; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 326. Publication date: October 2024.


https://developer.qualcomm.com/software/hexagon-dsp-sdk

	Abstract
	1 Introduction
	2 Cutting LLVM Functions
	2.1 Problem Statement
	2.2 Example
	2.3 Correctness Argument
	2.4 Detailed Solution
	2.5 Relation to Previous Cut-Based Superoptimizers

	3 Formalizing Vector Intrinsics in Alive2
	3.1 Background: Vectors in LLVM
	3.2 Assigning a Formal Semantics to Vector Intrinsics
	3.3 Validating our Changes to Alive2

	4 Synthesizing Optimizations
	4.1 Designing an Appropriate Synthesis Procedure
	4.2 Synthesis in Minotaur
	4.3 Identifying Profitable Rewrites
	4.4 Representing and Caching Rewrites
	4.5 Integration with LLVM

	5 Evaluation
	5.1 Correctness
	5.2 Effect of Depth Bounds in the Cut Extractor
	5.3 What Kind of Optimizations Matter Most?
	5.4 Speedups for Benchmarks and Applications
	5.5 Impact on Upstream LLVM
	5.6 Optimizations Discovered by Minotaur

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

