Unearthing Semantic Checks for Cloud
Infrastructure-as-Code Programs

Yiming Qiu Patrick Tser Jern Kon Ryan Beckett’ Ang Chen
University of Michigan TMicrosoft

Abstract

Cloud infrastructures are increasingly managed by Infrastruc-
ture-as-Code (IaC) frameworks (e.g., Terraform). IaC frame-
works enable cloud users to configure their resources in a
declarative manner, without having to directly work with
low-level cloud API calls. However, with today’s IaC tooling,
IaC programs that pass the compilation phase may still incur
errors at deployment time, resulting in significant disruption.
We observe that this stems from a fundamental semantic gap
between IaC-level programs and cloud-level requirements—
even a syntactically-correct IaC program may violate cloud-
level expectations. To bridge this gap, we develop Zodiac,
a tool that can unearth IaC-level semantic checks on cloud-
level requirements. It provides an automated pipeline to mine
these checks from online IaC repositories and validate them
using deployment-based testing. We have applied Zodiac
to Terraform resources offered by Microsoft Azure—a lead-
ing IaC framework and a leading cloud vendor—where it
found 500+ semantic checks where violation would produce
deployment failures. With these checks, we have identified
200+ buggy Terraform projects and helped fix errors within
official Azure provider usage examples.

CCS Concepts: - Networks — Cloud computing; - Soft-
ware and its engineering — Orchestration languages;
Software reliability.

Keywords: Infrastructure as code, cloud management, pro-
gram analysis, configuration mining

1 Introduction

Many enterprises host their I'T infrastructures in the cloud,
but configuring and provisioning the underlying cloud re-
sources remains a challenging task. Cloud datacenters are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP °24, November 4—6, 2024, Austin, TX, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695974

/* Simplified Terraform code snippet */

VPC.a

é 2 resource VPC a { // define resource type and ID

T 3 name = "a"; // specify resource attributes
/ \ 4 CIDR = "10.0.0.0/22";

SUBNETb|SUBNET.e | ° e = "USEsE gy

6 resource SUBNET b {name = "b"; CIDR = "10.0.1.0/24";
e 7 vpc_name = VPC.a.name; // reference other resoruces
l 8 sood)

9 resource NIC c {name = "c"; location = "US-west";

NIC.c |GATEWAYS |\ subnet_id = SUBNET.b.id;...}
_ a 11 resource VM d {name = "d"; location = "US-east";
\ 12 nic_ids = [NIC.c.id]; vpc_name = VPC.a.name;...}
13 resource SUBNET e {name = "e"; CIDR = "10.0.1.0/25";
vpc_name = VPC.a.name;...}

15 resource GATEWAY f {name = "f"; active_active = true;
16 subnet_id = SUBNET.e.id;... }

uVM.d

Figure 1. Example IaC cloud resource graph & code snippet.

built by providers like Amazon but intended for third-party
use (e.g., tenants like Electronic Arts). This user/owner split
means that cloud tenants have limited visibility and con-
trol beyond the cloud-level APIs exposed by providers to
tenants for resource management. Until recently, tenants
relied on ad-hoc API scripts to manage resources (e.g., vir-
tual machines, firewalls, gateways), which is a cumbersome
process due to the myriad API calls and complex inter-call
dependencies. Working directly with low-level APIs requires
deep cloud expertise, and also creates burden for the tenant
to track their cloud infrastructure state and updates. Hence,
managing cloud resources with API-level scripting has been
proven to be a daunting task.

Infrastructure-as-code (IaC) as a recent trend promises to
simplify cloud management by shielding tenants from low-
level APIs. Frameworks like Terraform [25], OpenTofu [20],
and Pulumi [22] expose a higher-level interface that abstracts
cloud resources as a set of configuration programs. As shown
in Figure 1, tenants codify their desired infrastructure in a
program: in this case, the Terraform snippet configures a
VPC (virtual private cloud) with two subnets on Microsoft
Azure—one for hosting a VM (virtual machine) and its NIC
(network interface card), and a gateway. IaC frameworks
then automatically construct the underlying cloud infras-
tructure by invoking cloud-level APIs based on the declared
resources. This frees tenants from the tedium of working
with API scripts, automating a large part of cloud manage-
ment for ease of use. For this reason, IaC has seen significant
uptake and gained wide popularity [2, 3, 20, 22, 25].

While IaC frameworks help automate provisioning tasks,
mere automation does not beget reliability. In fact, IaC infras-
tructures are especially brittle, because IaC abstractions hide
cloud-level complexities but fundamentally, do not remove

them. Eventually, [aC frameworks execute provisioning tasks
by handing them off to the cloud-level APIs, thereby sub-
jecting them to the same range of potential errors as before.
Worse, these errors are simply “out of sight” for the tenant at
the development phase, only to manifest later as deployment-
time issues. The Terraform snippet in Figure 1, for instance,
compiles successfully but has two deployment errors. Mi-
crosoft Azure regulates that a) a VM and its NIC must not
be located in different regions, and b) subnet CIDR ranges
cannot overlap with each other. These issues go much deeper
than the syntactic correctness of the IaC program.

We call this problem the semantic gap—even syntactically-
correct JaC programs can induce unexpected cloud behav-
ioral issues because, unbeknownst to the tenant, their IaC-
level declarations conflict with cloud-level expectations; this
is a fundamental problem caused by the tenant/provider split.
The resulting deployment failures could leave the cloud in-
frastructure in an undesirable state, where the infrastructure
provisioning process needs to be halted or rolled back for a
fix. This is exacerbated by the fact that cloud provisioning is
slow—even provisioning a single resource could take hours
in the worst case [4, 5]; hence, fixing a buggy deployment is
time-consuming as it may require destroying and/or recreat-
ing resources for the rollback. Rolling out a fix also requires
deep expertise into cloud-level details, negating the bene-
fits offered by declarative IaC platforms [27]. Furthermore,
runtime deployment failures not only jeopardize the initial
deployment of an IaC infrastructure, but also live updates
to an existing deployment while it is serving user requests.
Because of the potential damage of deployment errors, the
wisdom of the DevOps engineering community is to perform
reliability checks as early as possible, ideally at compilation
phase, so that errors are detected and eliminated before any
damage is done [24]. Because of all the above reasons, ad-
dressing this semantic gap is important to cloud reliability.

At first glance, the heart of the solution might seem clear—
we just need to strengthen the IaC frameworks so that their
compilation phase incorporates such semantic checks (e.g.,
on VM/NIC locations, and CIDR range requirements). While
this approach is correct, the challenge lies in identifying the
needed IaC checks in an automated manner. Cloud-level be-
haviors are opaque and poorly documented, so the required
checks often need an intricate understanding of cloud oper-
ations; they could also evolve over time. Our investigations
show that traces of such checks can be found in some of
today’s tools, but they are manually written by expert devel-
opers; this is a slow and tedious undertaking. Therefore, we
wish to develop support for unearthing semantic IaC checks
in an automated manner from public information.

Our roadmap is inspired by a line of work [60, 61, 70] that
automatically discovers “invariants” for software configura-
tions (e.g., MySQL) by mining open-source repositories to
find configuration checks. Nevertheless, Zodiac faces a set
of unique challenges in the IaC ecosystem. IaC programs are

highly structural “configuration of configurations,” which
contain a myriad of interconnected resources each with dis-
tinct attributes. For instance, the inter-resource connectivity
pattern between a gateway and its subnet and IP would in-
fluence the legality of their specific attribute values (e.g.,
their cloud regions and policies). Moreover, given the com-
plex, blackbox nature of cloud backends, validating semantic
checks also requires end-to-end deployment and observa-
tion. This stands in contrast to existing work that analyzes
software code or online sources, or performs local testing to
determine the validity of configuration checks [60]. Our tool,
Zodiac, tackles these IaC-specific challenges in an automated
pipeline for mining and validating semantic checks.

The mining phase of Zodiac captures the format of IaC
semantic checks and automatically discovers check instances
from online resources. We achieve this by designing a domain-
specific semantic knowledge base and a check specification
language. Jointly, they capture intra- and inter-resource con-
straints commonly seen in IaC programs, and give rise to a
set of semantic check templates that can be used for mining,.
Zodiac generates hypothesized checks from these templates,
uses online repositories for statistical filtering, and in certain
cases, relies on large language models (LLMs) to fill in certain
missing information. This produces a refined set of semantic
checks, which we will proceed to validate in the cloud.

The validation phase of Zodiac reasons about the correct-
ness of the checks by deploying IaC programs and observing
their deployment outcome. Since semantic checks exhibit
complex inter-resource correlations, Zodiac must minimize
the interference across hypothesized checks when testing
an JaC program. It relies on the semantic knowledge base
and SMT solving to construct both positive and negative test
cases for precise testing. A semantic check is validated if an
IaC program that conforms to the check successfully deploys,
and a similar program that violates the check fails to deploy.
Zodiac then takes iterative passes over the hypothesized
checks until each check is eventually validated or falsified.

We have applied Zodiac to a leading IaC framework, Ter-
raform, for Microsoft Azure resources. It has extracted 500+
semantic checks for 52 types of popular cloud resources,
many of which are not captured by state-of-the-art IaC tools.
With these checks, Zodiac has found more than 200 buggy
Terraform repositories and our results have been used for
fixing four Microsoft Azure usage examples.

2 Motivation

In this section, we motivate our problem further both in its
real-world relevance and the choice of our techniques.

2.1 Cloud Infrastructure-as-Code Programs

Cloud IaC frameworks are on the rise, with Terraform [25]
leading the market. Terraform enables cloud users (e.g., the
DevOps engineering teams in enterprise companies) to de-
scribe their desired infrastructure in a declarative language,

Scheduling (§4.2)

Test generatiom
__________ _.4'_ —_———
| @ Q
8 5 -

1
1
: Hypothesized
1
1

. 1
Validated | Semantic KB Spec language IaC repos

checks :_ (§3.1) (§3.2) checks

laC Developer Check mining (§3.3)

Figure 2. Overview of Zodiac pipeline.

akin to a configuration file for software entities (e.g., MySQL).
Recall that Figure 1 shows a Terraform snippet and its com-
piled resource graph representation. The basic unit is a re-
source block, which defines a cloud infrastructure component
(e.g., VM, NIC). Resource blocks are then composed to form
a larger infrastructure encapsulating all needed cloud com-
ponents. Their dependencies specify the relation across cloud
components—e.g., a VM depends on a NIC in order to con-
nect to the network. Thus, an IaC program not only requires
that attributes of each resource are instantiated correctly, but
also that dependencies across resources are correct. Further,
attributes of a single resource also depend on inter-resource
connectivity patterns—e.g., the maximum number of NICs
that a VM could use depends on the specific VM sku [17].

2.2 Syntactic vs. Semantic Checks

IaC frameworks do apply standard compilation checks to
reject erroneous IaC programs (e.g., programs that declare a
non-existent cloud resource type due to incorrect naming).
However, this process hides a vast range of complexities that
nevertheless still surface at deployment time.

IaC frameworks. IaC frameworks like Terraform only check
for syntactic correctness during compilation, but cloud-level
correctness requires deeper semantic checks. Incorporating
additional checks into the compilation phase requires intri-
cate expertise with a particular cloud, and the checks often
need to be identified manually. The engineering practices
of IaC frameworks also do not make semantic checks easy
to incorporate. The core compiler in Terraform is a shim
layer that is independent of cloud providers. If a specific
provider desires to supply additional checks, they must do
so via IaC “plugins,” which only allow for constrained check
formats on individual attributes—e.g., the VM.priority field
must be either Regular or Spot. These check formats cannot
capture more sophisticated, inter-resource checks—e.g., if a
gateway’s active_active attribute is set to False, then it
can connect to at most 1 IP resource. If an IaC program trig-
gers a cloud-level violation, the resulting infrastructure will
be buggy and may require manual fixes and redeployment.
Ancillary IaC checkers. There exist various ancillary IaC
tools [11, 28, 30, 35, 52] that aim to capture more sophis-
ticated checks. Checkov [11] and TFSec [30], in particular,
allow DevOps engineers to add customized checks into their
tools. These tools apply additional checks to an IaC program

after the IaC compilation phase. However, their checks are
manually handcrafted by developers with deep cloud exper-
tise, and they primarily target security/policy compliance
rather than deployment failures. TFLint [29], another re-
lated tool, provides some automation for check generation
through cloud API specification analysis. But its checks only
support per-attribute validation (e.g., available VM skus) and
cannot capture inter-resource semantics.

2.3 Inspiration: Configuration mining

We are inspired by a line of work on automated invariant
discovery via configuration mining, which uses online config-
uration repositories to identify likely invariants, and derive
configuration checks. Configuration mining treats the un-
derlying software as either opaque, with details of internal
behavior unavailable, or transparent.

Works that fall into the first class [70] use association
rule mining algorithms to discover regulations for applica-
tion configurations (e.g., MySQL). While this fits the cloud
setting, whose internal behaviors are unknown to Zodiac, ex-
isting techniques target systems whose configurations have
a “flat” structure, representing correlations between a set
of attributes; in contrast, IaC programs are complex, hierar-
chical configurations of configurations. Moreover, existing
work in this direction also does not consider automated vali-
dation. Validation is often manual (e.g. going through Stack
Overflow posts or GitHub issues)—while this works at the
scale needed for regular software (e.g., dozens of checks for
a specific software entity like MySQL), manual validation
does not scale to the number and diversity of cloud resources.
Works that fall into the second category [69] jointly analyze
software internal with their configurations, allowing them
to capture more complex dependencies, and identifying mis-
configurations that blackbox analyses cannot capture. For
example, years of efforts on network control plane analy-
sis have made it possible to take router configurations as
input and simulate the expected routing behavior (e.g., the
BGP protocol) [36]. Conversely, cloud resources are hard to
model formally, and their implementation details are opaque
to tenants, making whitebox analysis less applicable.

2.4 Zodiac: Zero-Touch Discovery of IaC Checks

We believe effective mining and validation of semantic checks
for cloud IaC frameworks has the following requirements:

o Automated: Both mining and validation phases should
be fully automated, without human intervention.

e High coverage: The mining phase should reason across
resources and attributes to unearth a large set of checks.

e High fidelity: The validation phase should test each
check via actual cloud deployment observations.

Figure 2 shows the overall workflow of Zodiac. It starts by in-
gesting IaC repositories crawled from online sources. Based
on a curated set of check templates using a semantic knowl-
edge base (KB) and a specification language, it generates

a set of hypothesized checks. Next, it performs statistical
filtering and interpolation to reduce false positives and fill
in missing details with the help of LLMs. The hypothesized
checks are then fed into the validation phase. For each such
check, Zodiac identifies conforming instances that could be
used as positive test cases, and it further mutates them to ob-
tain corresponding negative test cases. A check is validated
if the positive test case succeeds to deploy but its negative
counterpart does not. To further resolve conflicts across dif-
ferent checks, Zodiac plans the order of negative test case
generation and deployment via a validation scheduler. We
further discuss these two components in §3 and §4.

3 Mining Cloud IaC Semantic Checks

We start by discussing how Zodiac mines semantic checks
across cloud resources. Its inputs are open-source Terraform
repositories on Github, and its outputs are a set of hypothe-
sized semantic checks to be further validated.

3.1 Semantic knowledge base

To bootstrap this process, Zodiac first constructs a semantic
knowledge base (KB) that contains “base facts” for building
semantic checks. We draw inspiration from projects that
construct semantic type systems [44] and define three classes
of IaC type information. Each class of information is pro-
grammatically collected from different online sources, in an
automated manner. The KB entries are themselves useful
rules, many of which are not enforced by IaC frameworks.
Table 1 shows some examples.

The first class of Zodiac semantic information are IaC
native constraints. Zodiac extracts this from IaC provider
schema files, which contain precise information about these
properties. Consider the following examples: the IaC re-
source attribute SUBNET . name is usually a required field with
a string type whose value is supplied by the developer. IaC at-
tributes may also be optional (i.e., do not have to be specified);
nested (i.e., list or dict blocks with nested sub-attributes); or
computed (i.e., values only known after deployment).

The second class are provider-specific constraints, which
are regulated by individual cloud providers. For instance,
although subnet.name is a regular string from the perspec-
tive of IaC frameworks, they have special reserved values
for each cloud provider. As another example, only a subnet
named “FWSubnet” can be used to host firewalls; thus, our
KB states that “FWSubnet” is a provider-specific Enum value
instead of a generic string. Similarly, the KB would encode
whether an attribute is an IP CIDR range or a port number, or
whether it has a default value. Zodiac gathers this informa-
tion from the crawled Terraform repositories, which contain
common usage patterns for resource attributes.

The last but most interesting class of semantic information
are resource references in IaC programs. Consider the follow-
ing cases: SUBNET . name = VPC.name, and SUBNET . vpc_name
= VPC.name. At first glance, they look very similar to each

Attribute Class 1 Class 2 Class 3
SUBNET.name required, string [GWSubnet,..] [VPC.name]
SUBNET.CIDR required, string IPv4; IPv6 N/A

VM.priority optional, string [Regular, Spot] N/A

VM.nic_ids required, list N/A [NIC.id]

SG.rule[i] optional, dict N/A N/A

SG.rule[i].dir required, string [In, Out] N/A

Table 1. Sampled semantic knowledge base entries. Default
in class 2 and legality in class 3 are marked with bold fonts.

other—both are references to an attribute of another resource—
but they have different semantics. The first case simply states
that the subnet and the VPC have the same name, but the
second case specifies a deployment order when constructing
the infrastructure. Specifically, the subnet is attached to the
VPC, so it must be deployed after the VPC. Zodiac constructs
reference semantics from IaC provider registry examples.

3.2 Semantic check specification

When checking software configurations [70], the templates
are typically governing the relation across several attributes
in the same configuration. For instance, EnCore [70] contains
checks such as “uploaded file sizes for a PHP application
should be smaller than upload_max_filesize,” a relation
between two size attributes. However, IaC programs are
“configuration of configurations,” because an overall cloud
infrastructure contains myriad resources (e.g., VMs, NICs,
gateways) in a hierarchical structure. Therefore, IaC semantic
checks must incorporate this structure, not only capturing
checks that govern an individual resource (e.g., a VM), but
also how resources relate to each other (e.g. “if VM connects
to NIC, then they must reside in the same region.)

We develop a domain-specific assertion language to ad-
dress the topological nature of IaC programs and resource
dependencies, beyond attribute-level checks developed in
existing work. Our observation is IaC semantic checks are as-
sertions over a graph, where nodes represent cloud resources
and edges represent resource-level composition. The primi-
tives of our language likewise articulate common graph pat-
terns and graph-based assertions, categorized in two classes.
We start with topological predicates:

e conn(r;.in — ry.out): Resource r; is connected to resource
r, over a directed edge in the IaC resource graph, via
two attributes r;.in and ry.out. Attributes where inter-
resource connections are established are inbound and out-
bound endpoints. For instance, conn(NIC.b. subnet_id —
SUBNET . a. id) means that an inbound endpoint of NIC.b
is connected to an outbound endpoint of SUBNET.a. Each
outbound endpoint (e.g., SUBNET . a. id) could connect to
many inbound endpoints (e.g., 8 different NIC. subnet_id),
while inbound endpoints usage is usually restricted (e.g.,
NIC.subnet_id must connect to asingle SUBNET. id). Con-
nections could also be built among IaC resources with the
same type, e.g., conn(DISK.b.source_id — DISK.a.1id).

/* Check 1: If a virtual machine is connected to a
network card, then both resources must be located in
the same cloud region */

let r1: VM, r2: NIC in

JConforms to check x Violates check

! I* Check 2: If network cards belong to the same virtual
machine, then they must be connected to the same VPC */
I letr1: VM, r2: VPC, r3: NIC, r4: NIC in
I Coconn(r1.nic_ids -> r3.id, r1.nic_ids -> r4.id)
1 => Copath(r3 >r2, r4 ->r2)

]
1 JConforms to check x Violates check

/* Check 3: If the sku attribute of a virtual machine is 1
set to “sb1ls”, then it could connect to at most 2
remote managed data disks*/
letr1: VM in

r1.sku == “sb1ls” => Outdegree(r1, DISK) <= 2

JConforms to check x Violates check

|
|
1
|
1 Conn(r1.nic_ids->r2,id) => r1.location == r2.location
1
|
|

I

: @ [location:“US-west”] @ [location:“US-west”]1 |
| h

ry— 7 h
1 [location:“US-west”] [location:“Us-east”], |
}
| 1
[

1
1
1
1
1
1
sku: “sbils” ‘ :
1
1
1
1
1

vec || wvec [skusbis | |
w "

Figure 3. Three example semantic checks: on single resources, connectivity patterns, and aggregation properties, respectively.
Paths and direct connections are represented by dashed and solid lines, respectively.

r € Var,t € ResourceType, v € Value, a € Attribute

check := let bind in exp; = exp, semantic check
bind = ri:ity,...,rpity bindings
p = ra endpoint
T w= |1t type specifier
val == v base value

endpoint value
indegree value
outdegree value
connected expr
path expr
coexist expr
coexist expr
conditional expr
negated expr
comparison
function

|
| indegree(r, 1)
| outdegree(r, 1)
exp u= conn(p; — ps)
| path(r; — r)
| coconn(p; — p2, p3 — pa)
| copath(r; — ry, r3 — ry)
| op(valy, valy)
| lop(valy, valy)
op u= ==|l=|<=|>=]|<]|>
| overlap | contain | length

Figure 4. The grammar for semantic checks.

e path(r; — ry): Resource ry is reachable to another re-
source rp over a path in the IaC resource graph. This is
recursively defined over a set of conn relations with an un-
specified path. For instance, if VM. ¢ is connected to NIC.b,
which in turn is connected to a subnet entity SUBNET. a,
we derive path(VM.c — SUBNET. a).

e coconn(r;.in — ry.out, r3.in — ry.out): A correlation

predicate defined over two edges, where ry, ..., ry are re-

source nodes. It evaluates to true when both edges (r;.in —

rp.out) and (r3.in — ry.out) coexist in the IaC graph—e.g., a

VPC. a has two subnets SUBNET . b and SUBNET . ¢ can be ex-

pressed as coconn(SUBNET .b.vpc_name — VPC.a.name,

SUBNET. c.vpc_name — VPC.a.name).

copath(r; — ry, r3 — ry): A recursive predicate defined

over two paths that evaluates to true when the two paths

(ry — rz) and (r3 — ry) co-exist in an IaC graph. For in-

stance, copath(NIC.b — VPC.a, NIC.c — VPC. a) states

that VPC. a has two NICs configured in the IaC graph.

The above predicates constrain topological patterns of the

IaC resource graph. While we could design additional primi-

tives to model a larger graph region, in practice we find that

these primitives are enough to capture complex interactions
among JaC resources. In addition to these topological primi-
tives, we introduce two counting expressions that capture
aggregation properties of the IaC graph.

e indegree(r, 7): The number of incoming edges, of a spe-
cific type t, to resource r. For instance, a semantic check
might state that any network card is only attached to one
virtual machine, or indegree(NIC.a, VM) == 1.

e outdegree(r, 7): Analogous to the above aggregation prop-
erty, only with a different edge direction.

Semantic checks by examples. Our domain-specific asser-
tion language can describe a wide range of semantic checks
over an laC graph, and Figure 3 shows three concrete ex-
amples. (i) left: This check states that if a VM is connected
to a NIC, then they must be instantiated in the same cloud
region. As shown in the figure, if the NIC is located in “US-
East” instead of “US-West,” this would lead to a deployment
error. (ii) middle: It states that if two NICs are connected to
the same VM, then they must be contained in the same VPC
resource. (iii) right: Any virtual machine whose sku attribute
is set to sb11s must have < 2 data disks attached to it—an
aggregation property. The figure also shows example IaC
topologies that conform to or violate each check.

3.3 Semantic check mining

The specification language and semantic KB enable us to
narrow down the search space of IaC semantic checks. We
curated 84 templates based on our grammar via a mixture of
manual effort and automated generation. We first manually
added semantic constraints to each expression (e.g., if the
right side of “==" is an attribute value, then it must be an
Enum type defined in the KB rather than a string) to restrict
the template search space, and automatically combine con-
strained expressions as template conditions and statements
(e.g., combine conn with “==" to generate template for check
1 in Figure 3). We then manually pruned some trivial tem-
plates that add little information. The resulting templates are
reusable across [aC providers and user repositories and this
curation only needs to be done once for each cloud provider.
Association rule mining. The mining algorithm then ex-
amines crawled IaC repositories under the lens of templates,

and instantiate all witnessed checks. Consider a simple check
template that specifies intra-resource attribute relations:

1 for resource r in C:
2 find(r.attr1 == Enum => r.attr2 != null):

For this template, the mining engine iterates through all IaC
programs, identifying the contained resource types where
the Enum value of an attribute is positively associated with
the existence of another. As an example, this template might
find the following check, stating that a spot VM must be
configured with an eviction policy:

1 let r:VM in
2 r.priority == 'Spot' => r.evict_policy != null

For inter-resource templates, the mining engine iterates
through groups of resources to instantiate specific instances:

2 find(Conn(r1.in, r2.out) => rl.attrl == r2.attr2)

1 for resource r1, r2 in C: ‘

Our running example that constrains VM and NIC locations
would be such an instance. Since these identified checks may
be incorrect or incomplete, next we further refine them.

Statistical filtering. For each identified check, Zodiac com-
putes confidence and lift values for statistical filtering. Con-
fidence is the conditional probability that a given check is
satisfied when it occurs in the dataset, or Confidence(X=Y)
= P(Y|X); this metric prefers checks with fewer counterex-

amples. Lift indicates whether the predicate and assertion of
a check are independent or correlated: Lift(X = Y) = %,
where a value of one indicates that X and Y are independent.
a value higher than one is stronger evidence that the condi-
tion and statement are positively correlated. Zodiac filters
out semantic checks with low confidence or lift.

Large language model reasoning. Next, we handle a com-
mon phenomenon that quantitative properties, ranges, and
Enum types could lead to incomplete or inaccurate checks.
For example, “VM with sf2 sku can be attached to 2 NICs”
might be witnessed in some repositories, but the actual cloud
requirements could exist in a more general form—e.g., “for
a given VM type, the maximum number of NICs is t” Since
there are 100+ VM types and they could have 1-64 attached
NICs, such specific information may not be directly observed
in online repositories. We thus leverage LLMs for interpo-
lation to retrieve specific information about potentially am-
biguous check instances. An “interpolation query” might
state, for instance, “for a sf2 sku VM, what is the maximum
number of NICs allowed?” and the model may answer “4”;
Zodiac then includes this refined check.

Zodiac performs a series of prompt engineering steps,
which perform fact-checking on candidate checks, since
LLMs excel at such tasks [37, 49, 50]. Specifically, Zodiac
translates interpolation checks into natural language descrip-
tion, and generates an LLM prompt for few-shot learning—
i.e., providing several pairs of input-output examples, where

an input is an interpolation query, and an output is a concrete
answer (e.g., NIC count). By doing so, Zodiac relies on LLMs
to mitigate data scarcity issues that are an important limi-
tation of configuration mining work. Zodiac requires that
the LLM refer to reliable online sources (e.g. cloud provider
documents) to obtain up-to-date information outside of the
mining dataset. The intuition is that these documents typi-
cally contain detailed usage descriptions (e.g. sku tables [17]);
therefore, LLMs can effectively interpret this context and
produce reliable answers.

4 Validating Cloud IaC Semantic Checks

Next, Zodiac constructs test cases for each hypothesized
check for deployment-based validation. We write the set of
validated checks as R,, which initially is empty, and the set
of candidate checks as R., which is yet to be validated. In
each iteration, Zodiac picks a candidate check ¢ from R, and
attempts to validate or falsify it. c is then removed from R,
and if it passes validation, will be added to R,. This repeats
until R, becomes empty. To validate a check ¢, Zodiac finds
an IaC program t, that conforms to ¢ and validates that ,
can be deployed successfully—this is called the positive test
case for c. It also obtains a negative test case t, by mutating ¢,
to violate the check c, and further confirms that ¢, produces
a deployment error (e.g., IaC plugin errors, cloud service
errors, or inconsistent IaC states). Satisfying both conditions
will validate the check; otherwise, the check is falsified.
4.1 Encoding the mutation search space

For a candidate check c, there must exist some program P
that satisfies this check. Assume for now that we will directly
use P as the positive test case t,, and our goal is to find a
negative test case t, by mutating .
An example: Consider the following check ¢, which states
that a VPC cannot host more than one gateway:

1 let r1:GW, r2:VPC in

2 path(r1 — r2) => outdegree(r2, GW) == 1

Zodiac iterates through its corpus to identify a program
that declares a VPC with exactly one gateway; this is t,. To
construct t,, Zodiac mutates this program so that it contains
a VPC with multiple gateways. Note that this may not be
simply adding gateways to this existing VPC, because we
need to ensure that the mutated program does not violate
other checks. Otherwise, t, would have violated multiple
checks, and even if it fails to deploy, Zodiac cannot conclude
that ¢ is the root cause for the failure. For instance, Zodiac
may realize that there is another check ¢’ stating that a subnet
cannot have more than one gateway:

i let r1:GW, r2:SUBNET in

2 conn(rl.subnet_id, r2.id) => outdegree(r2, GW) == 1

In this case, when mutating the program, Zodiac will add
a new gateway as well as a new subnet, so that ¢’ will not
be violated. Recursively, this requires Zodiac to examine
additional checks when adding the subnet—e.g., a third check

¢’ stating that subnets under the same VPC cannot have
overlapping CIDR ranges:

1 let r1:SUBNET, r2:SUBNET, r3:VPC in
2 coconn(rl.subnet_id — r3.id, r2.subnet_id — r3.id)
3 => loverlap(r1.CIDR, r2.CIDR)

Our goal is to ensure that only ¢ is violated for precise testing.
Solver-aided mutation. We encode these constraints as
SMT formulas so that our #, violates a check ¢, but conforms
to all other checks in R, and R, as well as base facts in our se-
mantic KB. Given a positive test case t,, Zodiac first encodes
potential mutation strategies by instrumenting its attributes
and connections with symbolic values, and asks an SMT
solver to identify concrete assignments.

Encoding mutations. Consider the following check, which
states that a sf2 sku VM cannot host more than 2 NICs:

1 let r:WM in

2 r.sku == 'sf2' => indegree(r, NIC) <= 2

Suppose t;, contains a sf2 VM. a with two network interfaces
NIC.d and NIC.e, then Zodiac would create ¢, by adding a
third NIC and attaching it to VM.a.nic_ids. It converts part
of t, into symbolic variables denoted by ?? as shown below:

1 /* instrumented existing resources */

2 resource VPC b, SUBNET c, NIC d, e ...
3 resource WM a {

| sku = "sf2"; location = "eastus";

5 nic_ids = [NIC.d.id, NIC.e.id, ??]}

6 /% instrumented virtual resources */

7 resource NIC vo {

8 location = ??; subnet_id = ??}

9 resource VPC v1, SUBNET v2

A symbolic endpoint is put into VM. a.nic_ids as a third NIC
that would violate the candidate check. The actual NIC is
NIC.v@, also with symbolic values. Zodiac also adds VPC.v1
and SUBNET . v2, as the new NIC might require its own VPC
or subnet; these additional resources may be instantiated or
skipped depending on the SMT solving results.

Encoding requirements. Next, Zodiac encodes the semantic
KB. For example, it may assert that all newly added connec-
tions must be legal (e.g. NIC.v@. subnet_id cannot directly
connect to VPC.a.id)—e.g., based on Class 3 semantic KB
entries. Zodiac also encodes that if a new resource is added,
all its required endpoints must be correctly connected to
existing resources, based on Class 1 semantic KB entries.
As an example, if a new NIC.v® is connected to a VM. a at
its outbound endpoint, then it must be connected to some
subnet at its inbound endpoint. Likewise, Zodiac asserts that
NIC.v@.location must be a valid cloud region name based
on the semantic KB. Zodiac then encodes checks in R, and
R, as SMT constraints. For instance, to assert a check “VM
and its NIC must be in the same location”, the solver will
make sure that the assigned NIC.v@.location is equal to
VM.a.location, which in this case is eastus. Solving all
constraints above thus results in the following t,:

1 /% SMT generated negative test case */

2 resource VPC b, SUBNET ¢, NIC d, e ...

3 resource WM a {

4 sku = "sf2"; location = "eastus";

5 nic_ids = [NIC.d.id, NIC.e.id, NIC.v@.id]}

6 resource NIC vo {

7 location = "eastus"; subnet_id = SUBNET.c.id}

Immutable resources. IaC frameworks comprise an evolv-
ing ecosystem of service providers, so Zodiac may find re-
sources that it does not yet support (e.g., the KB does not con-
tain relevant information). Zodiac leaves such “unattended”
resources unchanged when performing mutations since it
does not know what valid mutations look like.

Minimizing changes. Finally, Zodiac minimizes the differ-

ence between t, and t, by adding SMT optimization objec-
tives. We require that attribute values and topology con-
nections should remain unchanged to the extent possible,
preferring original values and connections used in t,. We
also require that value mutations should minimize the dis-
tance from the original values—e.g., mutating a CIDR value
to its adjacent range with the same prefix length). The final
t, is expected to compile successfully in the IaC framework
but produce a deployment failure.
Pruning IaC programs. Thus far, we have assumed that z,
is some existing IaC program P in our corpus. In practice, Zo-
diac simplifies P by removing two types of resources before
generating t, and t,. First, Zodiac prunes away resources
that are not reachable from resources that trigger the can-
didate check c, so that the resulting programs have fewer
resources. This not only leads to smaller SMT encodings
but also lower cloud deployment cost. For example, when
validating a check that only regulates VM attributes, Zo-
diac will remove gateways and peerings from P and only
preserve the minimal set of resources (e.g., a single VM). In
addition to unreachable resources, Zodiac also removes child
resources that are only deployed after the candidate check
takes effect—e.g., the disk association of a VM. This pruning
is achieved by identifying a single instance that conforms to
¢ in the original program—i.e., a set of resources that witness
a check—and keeping only this instance and its ancestor
resources that are required for deploying this instance (e.g.,
a VM alongside its NIC, subnet and VPC). We call this a
minimal deployable configuration (MDC) which is our t,,.

4.2 Scheduling check validation

Next, we discuss how to schedule test cases and deploy them
into the cloud to validate the corresponding semantic checks.
The most naive solution would be to test a randomly chosen
candidate check against a randomly chosen program, then
repeat this process until all checks are validated or falsified.
However, in reality, it is not always possible to generate
negative test cases for each candidate check. A check may
be “untestable” because any attempts to mutate its attributes
or topology to violate a candidate check always has the side

effect of violating other checks in R, and R,. As an example,
consider three candidate checks below, assuming they are
the only checks in R.—that is, R, is empty:

1 /* Candidate check (1) x/

2 let r1:NIC, r2:VPC in

3 path(r1 — r2) => ri1.location == r2.location

4

D

/* Candidate check (2) */
let r1:VM, r2:NIC in
6 path(r1 — r2) => ri1.location == r2.location
7 /% Candidate check (3) *x/
¢ let r1:VM, r2:VPC in
9 path(r1 — r2) => ri1.location == r2.location

Consider the case where we start by validating check (2),
which asserts that the VM and NIC locations must be the
same. If we mutate the location of NIC, then (1) and (2) will
be violated simultaneously, and if we mutate the location of
VM, then (2) and (3) will be violated at the same time. These
check conflicts could lead to a stalemate.

Validation scheduling algorithm. Hence, the ordering
of testing is important, and Figure 5 shows our scheduling
algorithm to resolve check conflicts that may occur. At a high
level, the algorithm iterates (<O1) over R, until it becomes
empty (line 5). Each iteration is further composed of a false
positive removal pass and a true positive validation pass. The
intuition is that removing false positives could make it easier
to validate true positives (because fewer candidate checks
will be involved), and the same applies in reverse—validating
true positives make it easier to remove more false positives,
as validated checks become part of the ground truth.

In the false positive removal pass (lines 6-14), a candidate
check is classified as false positive if one of the following
cases occur: 1) no negative test case can be generated because
the solver always returns UNSAT due to conflicts with checks
in R, (line 11); 2) a negative test case exists but does not result
in deployment failures (line 13). When generating negative
test cases for false positive removal passes, the algorithm
ensures that the test cases conform with all the checks in R,,
but allows other checks in R, to be violated. This is because
R. has not yet been validated and its violation should not
stop Zodiac from making progress. In fact, if a deployment
succeeds for a test case containing multiple R, violations,
then it means all violated checks are false positives. As shown
on line 10, checks in R, are encoded as hard constraints
in the SMT solver, while checks in R, are encoded as soft
constraints through SMT minimization primitives (<102).

In the true positive validation pass (lines 17-24), if a neg-
ative test case fails to deploy, we further examine whether
1) it only has one check violation (line 21), or 2) it violates
multiple checks simultaneously (i.e., size(R,) > 1), but these
checks are indistinguishable from each other across all their
test cases (line 23). If either is true, Zodiac places such target
check(s) into R, and marks them as validated. We calculate in-
distinguishable check groups G; (<103) before the beginning
of each true positive validation pass (line 16). The algorithm

1: function VALIDATIONSCHEDULING(R., Ry, P)

2 / Calculate evaluation partial order among checks

3 EVALPARTIALORDER(R,) <04
4 // Tterate until candidate check set becomes empty

5: while R != 0 do <01
6 for cin R, do

7 Find positive test case in user repos

8 tp < FINDCHECKINSTANCE(c, P)

9 / Calculate negative test case and its violations

False positive removal pass

10: tn, Rn < SMTMINIMIZE(t)) <02
11: if t, == () then

12: Re «<— R - {c}

13: else if Deployment(t,) == Success then

14: Re < R. - {c}

15: // Find groups of indistinguishable checks

16: G; < GROUPINDISTINCT(R,) <03
17: for c in R, do // True positive validation pass

18: tp — FINDCHECKINSTANCE(c, P)

19: tn, Ry <~ SMTMINIMIZE(Z))

20: if Deployment(t,) == Failure then

21: if size(R,) == 1 then

22: Re < R¢ - {c}; Ry «<— Ry U {c}

23: else if R, in G; then

24: Re < R. - {c}; Ry «<— Ry U {c}

Figure 5. End-to-end validation scheduling algorithm.

comprises two steps. First, it generates a negative test case
t, for each check c in R.. If the test case for ¢ also violates
another check ¢’ and vice versa, c and ¢’ are put into a candi-
date group. Second, for each candidate group, the algorithm
searches through each available positive test case ¢, to gen-
erate a t,, that violates one of those checks yet conforms with
all other checks in the same group. If this process fails across
all t, with the solver reporting UNSAT, then they are indeed
indistinguishable from each other. For instance, if Zodiac
cannot find a t, that only violates one of the checks in (2)
and (3), then they are marked as indistinguishable.

In theory, the scheduler could run into a “reasoning loop”
where all negative test cases violate multiple semantic checks
and fail during deployment. This situation could again lead
to a stalemate. In practice, the hierarchical structure of IaC
programs helps alleviate this problem. Consider the three
candidate checks earlier in this subsection, and assume they
are all true positives. At first glance, it seems they all have
check conflicts with each other. However, since VM only
gets deployed after its NIC, we may construct a test case
that contains a NIC but does not have a VM, so the solver
can ignore check (2) and (3) when evaluating (1). This or-
dering between semantic checks forms an evaluation partial
order, which naturally resolves reasoning loops among inter-
resource semantic checks. This ordering also reduces the
amount of iterations, as interference among checks with
different partial orders are minimized. As shown in line 3,
the scheduler reorders all hypothesized checks so that those
with higher partial order will always be evaluated first (<104).
Although the above approach does not resolve intra-resource

Semantic check templates

Example mined by Zodiac

Category

A.attr; == Enum = A.attrp == Enum
A.attry = A.attrp = A.attrs != A.attry

“If GW.sku is Basic, GW.active_active is False”
“Different direction SG rules have diff. priority”

intra-resource
intra-resource

copath(A — B, A — C) = loverlap(B.attrj, C.attry)
conn(A.in; — B.out;) = B.attr1 == Enum

conn(A.in; — B.out;) = coconn(A.iny — C.outy, B.in3 — C.outs)

coconn(A.iny — B.outy, A.inp — C.outy) = B.attry != C.attr;

“Two tunneled VPCs have exclusive IP CIDR”
“IP associated with NAT must use standard sku”
“Route table and its routes must in same VPC”
“VM os_disk and data disk have different name”

inter w/o agg
inter w/o agg
inter w/o agg
inter w/o agg

conn(A.in; — B.out;) = outdegree(B,7) == 1
A.attr; == Enum = indegree(A, 7) ==
conn(A.in; — B.out;) = outdegree(B, 7) ==

“A NIC could only be attached to one VM”
“VPC2VPC type tunnels can’t use HA GW ”
“No other resource can share subnet with GW”

inter w/ agg
inter w/ agg
inter w/ agg

A.attrl == Enum = outdegree(A, 7) == int
A.attrl == Enum = indegree(A, 7) == int
A.attrl == Enum = A.attr2 != Enum

“Basic sku GW can have at most 10 tunnels” interpolation
“sf4 sku VM can be attached to at most 4 NICs” interpolation
“Premium sku SA prohibits GZRS redundancy” interpolation

Table 2. Some representative check formats Zodiac has currently validated. From top to bottom, they are intra-resource
checks, inter-resource checks without and with aggregation, and checks enhanced by LLM interpolation.

reasoning loops, we note that the latter does not appear in
our semantic check templates.

Validation examples. Next, we discuss how the schedul-
ing algorithm works in action, by observing how it handles
different scenarios around the motivating candidate checks.

I All checks are true positives. The validation scheduling
algorithm orders checks by their partial order, so check (1)
will be validated first without any conflicts. Check (2) and
(3) are then deemed as a group of indistinguishable checks
because they are always conformed or violated at the same
time. The true positive validation pass should be able to
resolve this case, and put both checks into R,.

II. Some checks are false positives. Suppose check (2) is the
only true positive. In this case, check (1) will be evaluated
first according to partial order, and get removed as a false
positive. Check (2) and (3) in this case do not have conflicts
any more, e.g., check (2) could mutate NIC and check (3)
could mutate VPC, without triggering other violations. They
can thus be easily resolved during upcoming passes.

5 Evaluation

Prototype. We have implemented Zodiac [31] in ~11,000
lines of code in Python: ~3,100 for data processing and se-
mantic KB construction, ~4,100 for the mining engine, and
~3,800 for the validation engine. The KB construction and
mining steps are implemented using Rego [18] queries, and
the test case generation uses the Z3 SMT solver. Interpolation
queries are performed using GPT-4.

Corpus and pipeline. We applied Zodiac to 52 popular re-
source types in Microsoft Azure, crawling 26,000 IaC reposi-
tories from GitHub. This yielded ~6,000 projects with ~3.8
million lines of Terraform code after preprocessing. We then
compiled these IaC programs into deployment plans, which
serves as the basis for both Zodiac mining and validation
steps. The mining phase completed in under 2 hours. We fur-
ther filtered out projects incompatible with our SMT solver
implementation and fed the remaining ~4200 projects to the
validation phase, which finished within 3 days. Our evalua-
tion focuses on several key research questions:

o How effective is Zodiac at discovering semantic checks,
and what are the implications of these checks?

e How effective is Zodiac compared to baseline systems?

o How effective are the design techniques in the mining
and validation phases in discovering semantic checks?

e How effective are Zodiac checks at finding real bugs?

5.1 Discovered semantic checks

The most important metric is the quantity and quality of the
semantic checks that Zodiac is able to discover. In the mining
phase, Zodiac discovered ~9,800 hypothesized checks, and
filtered out ~5,600 based on confidence and lift. The valida-
tion phase produced 510 validated checks (indistinguishable
checks are counted as one). We present several examples
below, and Table 2 summarizes the key templates.

(1) Premium storage account (SA) users might expect ad-
vanced replication support [6]—for instance, geo-zone re-
dundancy (GZRS) which provides both datacenter (zone) and
secondary region (geo) failovers. However, surprisingly, Zo-
diac finds that GZRS is not available to Premium but only
Standard SAs. This is because Premium is in fact optimized
for latency requirements instead of failover.

1 let r:SA in
2 r.sku == 'Premium' => r.replica != 'GZRS'

(2) VMs have an os_disk attribute, which is the storage
for the OS image, and it also has “data disk” resource type
for the main storage. At first glance, they do not appear
correlated, but Zodiac finds an inter-resource check stating
that their names must be different. Our study reveals that
although the IaC program uses different names for these
disks, at the Azure level both are instantiated in the same
way and cannot have naming conflicts.

i let r1:VM, r2:DISK, r3:ATTACH in

2 coconn(r3.vm_id — ri1.id, r3.disk_id — r2.id) =>

3 r1.os_disk != r2.name

(3) We discussed earlier that Azure has reserved subnets—
e.g., only “GWSubnet” can host a gateway GW. Zodiac is
able to further find that such subnets are also quite exclusive.

Error Phase Consequence Example mined by Zodiac Share
Plugin checks Target resource fails before requests are sent to providers. “Standard IP use static allocation” 9.00%
Pre-deploy sync Target resource fails as provider claims “already exists”. “Disks have different names” 5.84%
Sending request ~ Target resource fails during initial creation attempts. “Peering VPC CIDR can’t overlap” 74.94 %
Polling request Target resource fails during async. polling attempts. “FW subnet can’t use delegation” 7.79%

Post-deploy sync

Target resource completes but IaC/cloud states are inconsistent.

“subnet only attach to 1 route table” 2.43%

Table 3. IaC programs that violate Zodiac semantic checks could produce several classes of deployment errors.

If a subnet is hosting a GW, then it cannot host other types
of resources (e.g. a NIC):

1 let r1:GW, r2:SUBNET, in
2 conn(rl.subnet_id — r2.id) => outdegree(r2, !GW) == 0@

Deployment failure scenarios. Table 3 further shows the
failure scenarios due to semantic check violations. After
compilation, the IaC program will go through several steps.
First, IaC frameworks will perform a set of plugin checks out-
side the core compiler—using checks from individual plugin
providers. Violations against these checks account for 9.00%
of deployment failures within Zodiac test cases. This result
indicates that some Zodiac checks are already considered by
today’s IaC plugin developers. However, these plugin checks
are not static analyses; they are performed as resources are
being deployed—recall that the core IaC compiler does not
expose proper interfaces for implementing such semantic
checks. As a result, deployment will proceed normally at
first until a violation halts or disrupts the infrastructure.
After plugin checks, the IaC framework queries the cur-
rent cloud state and synchronizes that state with the IaC
program to be deployed. 5.84% of the failures occur at this
step, typically due to resources with conflicting identifiers.
If this passes, the IaC framework sends creation requests to
cloud providers, which initiates the actual deployment phase.
Most test cases (74.94%) fail here for myriad reasons, such as
invalid attributes, conflicting CIDR ranges, “resources not
found” errors, invalid connections, “features not supported
for sku” If no errors occur here, then the IaC framework
initiates a polling phase to retrieve the eventual cloud state
asynchrously, on resources that are slow to create (e.g. FW);
7.79% failures happen at this step. Finally, the IaC frame-
work performs another round of synchronization on the
successfully-deployed resources to determine whether the
deployed states are as expected, and this captures the re-
maining 2.43% errors that are silent across the deployment
attempt, typically because some created resources are over-
ridden by subsequent ones.
Impact of failures. We now discuss the impact of deploy-
ment failures when an IaC program violates Zodiac semantic
checks, denoting the “blast radius” of a check as the num-
ber of resource types that could be affected if that check is
violated. Consider an example check “two tunnelled VPCs
cannot have overlapping CIDR ranges.” In this case, before
the tunnel is created, the two VPCs could be deployed suc-
cessfully, along with their child resources. Later on when
the tunnel fails to deploy, users need to change VPC CIDR

rollback £ halting 71
E
2
©
17
K
) H H H
\m | | m\ﬁ
total intra inter w/o inter w/ interploation

Figure 6. Violations against Zodiac semantic checks could
lead to halted deployments or state rollback. Blast radius
refers to the upper bound of impacted resource types.

ranges for a fix. Since most direct changes to VPC-level CIDR
ranges are not allowed by Azure, we would need to recreate
the VPCs as well as all their child resources from scratch.
In other words, these resources (36 types among 52 that
Zodiac covers) are impacted by the rollback radius due to
deployment failure.

As Figure 6 shows, each semantic check violation would
impact ~7 resource types that requires rollback actions in
the worst case, which is the upper bound of resource types
that must be recreated to fix a deployment. Another ~6 are
within what we call the halting radius, because they could
not be deployed at all before the violation is resolved. The
blast radius changes across semantic check categories—e.g.,
intra-resource checks have a smaller rollback blast radius
because only the failed resource itself needs to be changed,;
inter-resource checks (without aggregation) have the largest
blast radius (both halting and rollback), as the graph patterns
are more complex and have more resource types.

5.2 Zodiac vs. existing tools

We compare Zodiac against several IaC checkers. First, the
Terraform native validate command matches user IaC pro-
grams against provider schema JSON files, which contain
basic syntax inspections and simple semantic checks (e.g.
conflicting attributes). Furthermore, there are also several
security checkers (TFSec, Checkov, TFComp, Regula) that
are developed outside Terraform as ancillary tools. They
could capture security incidents such as “Password authenti-
cation is insecure thus should not be used in VM.” or “Public
internet access to SSH ports is insecure thus should be dis-
abled in SG” These tools typically operate on compiled IaC
deployment files. TFLint is another popular static checker
that captures invalid Enum values in resource attributes, and
raises warnings when IaC programs deviate from best prac-
tices (e.g. whether single-line comments are used). TFLint
does not reason across different attributes or resources, and
is thus incapable of handling any checks mined by Zodiac.

Tool Spec Phase Prevalence Precision
Native ~ JSON Config 11.74% 36.67%
TFSec JSON Plan 11.54% ---

Checkov YAML Plan 66.34% ---

TFComp BDD Plan 3.91% ---
Regula OPA Plan 13.31% ---
TFLint* HCL Config --- ---

Table 4. Semantic checks found by Zodiac are not present
in other IaC static analysis tools. Prevalence denotes the
percentage of Zodiac test cases marked as invalid/insecure,
precision evaluates their overlapping with Zodiac checks.

108 L W/KB w/o KB]

108
102
10"

100 \H ﬂ\

10 20 40 80 160
Num. attributes

Num. mined checks

o filtered e confidence @ lift
lim-remove e lim-found

(a) Zodiac knowledge base (b) Zodiac filtering
Figure 7. Zodiac global knowledge base and filtering meth-
ods help with constraining the amount of candidate checks.

Table 4 shows the comparison. We randomly generated
~500 negative test cases for validated Zodiac checks as in-
puts to all checkers, and report their prevalence (percentage
of inputs with reported issues) and precision (percentage of
actual deployment problems among reported issues). Our
first observation is that most sampled test cases could pass
IaC native validation without triggering any errors: only
11.74% of them encountered compilation failures. It is worth
noting that most of these failures are not violations against
semantic checks, but rather generic syntax problems in sam-
pled test cases. Only 36.66% among them (4.00% of total test
cases) point to actual semantic violations, typically due to
missing attributes in a resource block (e.g. neither password
nor ssh_key is declared in a VM).

While ancillary security checkers (e.g. Checkov) do not
aim at capturing deployment failures (shown as ‘- - -’), they
actually reported some problems in our test cases for two rea-
sons. First, the original IaC programs in our corpus could be
insecure in the first place, triggering checker reports. Second,
the pruning optimization of Zodiac removes resource that
are not directly related to deployment success. For instance,
security checkers might suggest a subnet should have a SG
attached, but Zodiac will often remove SG during testing. We
were unable to compare against TFLint directly because it
only works against the HCL format, while Zodiac test cases
support configurations and planning files in JSON.

5.3 Effectiveness of the mining phase

Zodiac applied a set of domain-specific techniques for seman-
tic check mining and filtering, to capture more high quality
rules while discarding obvious false positives early on. In

Check encoding strategy TP Num. FP Num.
Ignoring non-target checks 4.30 11.76
Zodiac (consider other checks) 0 4.04

Config mutation strategy Attr. Num. Topo. Num.

No constraints on changes 11.05 3.20
Zodiac (minimizing changes) 2.87 2.90

Table 5. Zodiac test case generation needs to consider inter-
ference from other checks, and minimize mutation impact.

Figure 7(a), we demonstrate how Zodiac’s knowledge base
helps reduce the total number of candidate checks. The x-
axis shows resource types with varying number of attributes.
Simpler resource types (e.g., peering) may have fewer than
10 attributes, whereas complex ones (e.g., VM) have more
than 80. The y-axis denotes number of mined intra-resource
checks per resource type, while each group of columns shows
the result w/ and w/o KB involvement respectively. For both
cases, the number of mined checks grows as number of at-
tributes increases, but w/ KB reduces the number of mined
checks by several orders of magnitudes. For instance, intra-
resource check mining w/o KB generated more than 70,000
mined checks, which is almost 35 times higher than those
generated by Zodiac.

Figure 7(b) shows the number of checks removed by statis-
tical filtering (i.e., confidence and lift), as well as the number
of checks completed by LLM-based interpolation. The confi-
dence filter removed 38.3% of mined checks, which means
that those checks are not always respected in existing user
repositories. The lift filter further removed an additional
16.2% of mined checks, indicating that their conditions and
statements did not have a strong correlation.

We further leveraged LLMs to test the filtering effective-
ness using a randomly sampled set of mined checks. Out of
these 400 checks, ~34% pass the statistical filtering and the
rest were discarded by confidence and lift. We asked the LLM
to assess whether these checks are true positives. For the
checks that have passed statistical filtering, the LLM reports
18.80% as true positives; for checks that are filtered out statis-
tically, this drops to 4.53%. Although LLMs may mistakes in
these assessments, this difference is substantial and suggests
that confidence and lift are effective in removing low-quality
checks. Finally, the interpolation pass was able to generate
more than 800 checks initially, 40% of which were supported
by the LLM and added to the candidate rule list (shown as
Ilm-found). The rest were discarded (llm-remove).

5.4 Effectiveness of the validation phase

Zodiac’s validation pipeline is carefully designed to elimi-
nate false positives. In Table 5, we present our major design
decisions on negative test case generation. The top half of
the table shows that considering all checks in R, and R,
helps find failure root causes. If we only test a single candi-
date check, without considering R, and R, this results in an

= True positives 11 Candidate checks m Falsified = True positives 11 Candidate checks = Falsified ~—®—Deployable Unsatisfiable —li—Total —e—NMultiple Individual —=Total
100 100 100

[l

100

75

~

3]
~
o

50

FP checks (%)
N (%))
o o

TP checks (%

25

Total checks (%)
N [9)]
(4,1 o

Total checks (%)
[4)]
o

o
o

o

o

0 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6F 0 1F 1T 2F 2T 3F 3T 4F 4T 5F 5T 6F 0 1 2 3 4 5 0 1 2 3 4 5
Iterations Iterations Iterations Iterations

(a) Zodiac scheduling. (b) Scheduling: no indistinct handling. (c) False positive removal process. (d) True positive validation process.

Figure 8. All scheduling components must be used for effective validation.

average of 4.80 true positive violations and 11.76 false posi- Type pruned/att. orig./att. pruned/unatt. orig./unatt.
tive violations when generating negative test cases for each W 6.50 17.88 1.00 5.00
program. This makes it difficult for Zodiac to draw defini- SG 2.92 18.33 0.42 558

tive conclusions about the validity of a check. Our solution, GW 5.60 18.33 0.40 5.58
which considers all known checks, ensures that no violations LB 3.92 22.50 1.08 9.92
against R, occur, while minimizing violations towards R.. RT 4.57 41.57 114 8.71
The bottom half shows that encoding attribute and topology Table 6. Zodiac needs pruning during the scheduling phase
changes as minimization constraints helps with negative to reduce overhead and avoid unattended resource types.

test case generation. Without these constraints, the average
number of attribute changes in each negative test case is as
high as 11.05, reducing the reliability of validation results.
Figure 8 shows the importance of our validation schedul-
ing algorithm. Figure 8(a) demonstrates the overall conver-
gence process of the validation phase. False positive removal

is under a dollar, both affordable even for individual develop-
ers. It is also evident that IaC programs typically come with
multiple unattended resources (orig./unatt.), which could
post threats to validity if not mitigated by MDC (though not
completely removed, shown as pruned/unatt.).

passes gradually mark checks as false positives, while true 5.5 Real world misconfigurations

positive validation passes put them into R,. After six itera- To evaluate Zodiac’s capability of detecting real world se-

tions, the candidate rule set R; becomes empty, ending the mantic check violations, we applied our checks to inspect

validation process. Figure 8(b) shows the scheduling process all repositories used in the validation phase. Overall, Zodiac

without handling indistinguishable checks. The validation detected misconfigurations in 85 of these repositories, ac-

engine converges to a stage where no new true or false posi- counting for 2.0% of our dataset. As another test, we manually

tives can be found, yet R is still not empty. Figure 8(c) breaks encoded the top-3 checks with the most amount of violations

down the false positive removal passes. In the beginning, into Github API search queries [8-10]. Scanning through

most false positives are removed because their negative test Github, these three checks identified 200+ other repositories

cases could not trigger failures (shown by the "Deployable’ (outside our dataset) that violate these constraints.

curve). As more checks are evaluated, the focus of removal Moreover, we were able to identify four incorrect usage ex-

shifts to cases where target checks do not have negative test amples within the Terraform Azure provider documentation.

cases due to conflicts with checks in R, (shown by the ‘Un- We have submitted bug reports and suggested fixes as Github

satisflable’ curve). Figure 8(d) breaks down the true positive issues [13-16] to the Azure provider plugin developers, who

validation passes. It shows the importance of handling indis- responded quickly and fixed all of them. As an example, one

tinguishable checks, as almost half of the true positives are such buggy usage [26] consists of the following resources:

validated with more than 1 check violation in negative test | /% Associate NIC with APPGN address pool +/

cases (shown by the ‘Multiple’ curve), i.e., they are within) resource VPC a, SUBNET b, c ...

certain indistinguishable check groups. 3 /x Violation 1: IP of APPGW must have Standard sku %/
Finally, Table 6 demonstrates how the pruning methods 4 resource IP d { sku = "Basic"; allocation = "Dynamic"}

used by Zodiac helps with minimizing test cases. It lists sev- 5 resource APPGW f { ip_id = IP.d.id;

eral example resource types and their average positive test 6 subnet_id = SUBNET.b.id}

case size—with MDC-based pruning (pruned) and without 7 /% Violation 2: The subnet of APPGW is exclusive */

pruning (orig.). MDC helps remove both attended resources < e BHE @ o syt el = SR e el)

(att.) and unattended resources (unatt.), reducing the size of 9 [EERUIES HEEREiiel § coo

test cases by a magnitude of 3X to 9X. Most checks mined by This program passes IaC validation and compilation in Ter-

Zodiac could be evaluated with fewer than 10 resources, ex- raform, but violates two Zodiac checks simultaneously.

cept interpolation checks that require aggregation operators. Violation 1: Azure requires that if an IP address resource

This ensures the SMT solving time is typically within a sec- is used for an APPGW (application gateway), then it has to

ond on a standard server, and cloud deployment cost per test use Standard sku rather than Basic:

1 let r1:APPGW, r2:IP, in
2 conn(ril.subnet_id — r2.id) => r2.sku == 'Standard’

A naive fix seems to be changing the sku value from Basic
to Standard, but in fact, doing so would result in another
semantic check violation within the IP resource:

1 let r:IP in

2 r.allocation == 'Dynamic' => r.sku == 'Basic' ‘

The check states that if IP resource does not use Basic SKU,
it cannot apply Dynamic allocation. A complete fix must
therefore also change the allocation from Dynamic to Static.

Violation 2: A second semantic violation arises from incor-
rect subnet usage. APPGW, like GW mentioned in Section 5.1,
requires exclusive usage of its subnet. However, the NIC in
this program shares the same subnet . b with APPGW, which
goes against cloud requirements. It is also worth noting that
the developers of the usage example did declare two distinct
subnets (subnet.b, subnet.c) earlier in the program, but
later code only made use of one subnet. To fix this, we could
instead correct the NIC to the other subnet.c. This exam-
ple shows that mistakes could easily occur even for expert
Terraform programmers.

5.6 False positives

Like other configuration mining projects, Zodiac is subject
to an open-world assumption [19]—there may be invariants
that the mining phase cannot find, either because they do
not appear in the crawled dataset, or because they go beyond
our curated mining templates. As such, the validation phase
cannot offer soundness guarantees. Indeed, we have found
checks that align with Zodiac’s definition of true positives
(i.e. t, could be deployed while corresponding t, fail to de-
ploy), but are in fact false positives. This is because, when
the mutated test case t, fails to deploy, the root cause may
lie in some other checks that Zodiac is not aware of, instead
of the candidate check that is being validated. As a concrete
example, Zodiac’s validation engine believes that a check
stating “if a VM is reachable to a VPC, then it must specify a
source image reference block” is correct:

1 let r1:VM, r2:VPC, in
2 path(r1 — r2) => rl.source_image_ref != null

However, this rule is not a complete semantic check. In fact, if
VM. create attribute is set to Image, then the above statement
is indeed true. Instead, if the create option is set to Attach,
then VM can be deployed without a source image reference:

1 let r:VM in
2 r.source_image_ref == null => r.create == 'Attach’

The false positive occurred because cloud users rarely use the
Attach option, to a point that Image appears to be the only
available create option within our dataset. Zodiac henceforth
failed to unearth the correct check regarding Attach. Conse-
quently, Zodiac cannot generate a meaningful negative test
case to falsify the incorrect claim.

Initially, our validation engine outputs 539 semantic checks,
but 29 of them have been identified as false positives, ac-
counting for 5.4% of all validated checks. Among them, 17
false positives (3.1%) are identified through an automated
counterexample testing pass. Concretely, Zodiac looks for
additional repositories that violate each check and observes
whether they actually fail to deploy. If some of them are
in fact deployable (i.e., counterexamples of the check exist),
then Zodiac marks the check as false positive. The remaining
12 (2.2%), on the other hand, are identified by manually exam-
ining all checks. Specifically, we cross-reference each check
with Terraform and Azure documentations. If a check is rec-
ognized as a possible false positive, then we manually craft
test cases that violate the check and observe deployability.

6 Discussion

Different IaC frameworks. While our current prototype
targets Terraform, there exist several other IaC frameworks,
such as AWS CDK [1], CloudFormation [2], CDKTF [12],
and Pulumi [22], and Bicep [3]. (i) Declarative vs. imperative.
frameworks like Pulumi use imperative code (e.g., Python
and TypeScript) for configuring resources, in contrast to the
declarative approach in Terraform. In Terraform, the intra-
and inter-resource relations are directly encoded into the
configuration, whereas an imperative IaC program might
require more advanced software analysis techniques, e.g., for
mining semantic checks and mutating programs to obtain
negative test cases. (ii) Framework architectures. IaC frame-
works also differ in their software architectures. For instance,
Terraform has a core compiler that is cloud-agnostic, with
plugin extensions that can be integrated by individual cloud
providers. AWS CDK, on the other hand, only targets Ama-
zon’s cloud; it does not expose similar interfaces, and its
core compiler might have a smaller semantic gap since it is
developed by the cloud provider itself. Extending Zodiac to
other IaC platforms, therefore, may require additional man-
ual curation of the semantic KB, check templates, and new
program analysis techniques for deployment-based testing.
One potential roadmap is to analyze the IaC deployment
plans instead of the original IaC programs. Typically, an IaC
program is first compiled into a JSON-like format before the
deployment phase, and across IaC frameworks their deploy-
ment plans have similar formats which could serve as the
common denominator. For instance, CDKTF and Terraform
share the same JSON plan format; AWS CDK compiles into
CloudFormation [2] which also supports JSON. Some of Zo-
diac’s components (e.g., the mining engine) already operate
on the JSON deployment plans, which should be reusable in
specific cases. We leave this exploration to future work.
Handling IaC/cloud-level changes. Cloud services may
introduce new resources or modify existing ones, so Zodiac
needs to periodically update its semantic checks by rerun-
ning the automated mining/validation pipeline. Zodiac may
also need to incorporate new check templates over time, and

constructing additional templates is currently a manual pro-
cess. However, the templates only comprise 400 LoC for our
current version, and we expect that template changes would
occur more infrequently than service changes.

Different cloud providers. Our prototype targets Microsoft
Azure, but many other cloud providers use IaC-style manage-
ment. To generalize Zodiac’s techniques to other providers
(e.g., AWS, GCP), assuming that IaC programs are written
against Terraform, the mining and validation pipelines should
be reusable. We would need additional effort to curate check
templates and KB entries for the new cloud provider. Recall
that for Azure, we manually curated the templates which
account for about 400 lines of code; for AWS and GCP, we
expect a similar amount of manual work and a similar tem-
plate library size. Beyond the three major providers, addi-
tional challenges will arise if Zodiac needs to support “low-
resource” providers (i.e., smaller clouds). Zodiac relies on
open-source IaC repositories, so the data scarcity issue would
be amplified when supporting a less popular cloud provider.
This is also an interesting avenue of future work.
Unsupported constraints. As a limitation, there are two
classes of constraints that Zodiac currently does not capture.
(i) Region-specific: Each cloud provider may have multiple
regions, each with certain service differences—e.g., some VM
skus may not be supported in all regions [23]. (2) Subscription-
specific: Each cloud account may come with distinct resource
quota, as users can request more capacity for their subscrip-
tion on demand [7]. Extending Zodiac to capture these se-
mantic checks is an interesting avenue of future work.

Use cases. Apart from finding violations in IaC programs,
Zodiac could also enable other IaC tasks. For instance, some
IaC frameworks are introducing LLM-powered program syn-
thesis workflows [21], but the generated programs often suf-
fer from bugs due to hallucination. Zodiac semantic checks,
in this case, could serve as a RAG (retrieval-augmented gen-
eration) knowledge base [53] to provide additional context
to LLMs. By explicitly asking LLM models to conform with
these checks, users could potentially improve the quality
of their generated programs and accelerate development.
Another use case of Zodiac is to systematically bolster IaC
provider documentation. Zodiac could transform unearthed
semantic checks into natural language format, and offer them
to IaC users as documented deployment insights.

7 Related work

Association rule mining. Program analysis techniques
have been used to discover domain-specific checks/pattern-
s/errors, typically configuration invariants [60, 61, 64, 70]
and guidance on correlated changes on cloud services [57].
They focus on domain-specific inputs dissimilar to cloud IaC,
and do not consider automated validation in their designs.

API fuzzing. Another line of work performs RESTful API
fuzzing [34, 47, 63, 66] to test service API calls, or uses Con-
figuration Error Injection Testing (CEIT) [54, 71] to test appli-

cation configurations. These projects only aim to find defects
in API/application implementations, while Zodiac aims to
not only find problems, but also pinpoint their root causes.
Verification. LLM-based filtering methods have been de-
veloped to validate the query correctness [46, 55, 59, 65],
but they are prone to hallucinate, thus cannot be used di-
rectly for correctness critical validation. Zodiac instead uses
LLMs to fill in missing check details. Formal verification tech-
niques have been applied to other domains such as network
configuration verification [36, 56] and synthesis [38, 58], per-
formance analysis [33], and specific components of cloud
computing [39, 41, 62]. Zodiac instead applies formal reason-
ing to generate and prune semantic check test cases.
Invariant mining. Apart from configuration mining, there
are many works focusing on program invariant mining [32,
40, 42, 43] distributed protocol invariant mining [45, 67, 68],
and trace invariant mining [48, 51]. Their targeted invariants
and mining methods are different from those of Zodiac.

8 Conclusion

Cloud IaC frameworks are gaining popularity. However, to-
day, IaC programs that pass the compiler could still fail dur-
ing the actual cloud deployment. These problems are hard to
identify and fix, and could result in disruption to a deployed
cloud infrastructure. Zodiac is a tool that mines and validate
additional semantic checks as reliability guardrails for IaC.
Our evaluation shows that Zodiac can identify many use-
ful checks whose violation can trigger deployment failures.
This outperforms baseline techniques and existing IaC static
checkers. It has also identified bugs in real-world Terraform
repositories and documentation.

Acknowledgments

We thank our shepherd, Rebecca Isaacs, for her insightful
and detailed feedback that helped improve this paper. We
also thank the anonymous reviewers for their helpful re-
views. This work was partially supported by NSF grants CNS-
1942219, CNS-2106751, CNS-2106388, CNS-2214272, and a
VMware Early Career Faculty Grant.

References

[1] AWS cloud development kit. https://github.com/aws/aws-cdk.

[2] AWS CloudFormation. https://aws.amazon.com/cloudformation/.

[3] Azure Bicep. https://learn.microsoft.com/en-us/azure/azure-resource-
manager/bicep/.

[4] Azure site-to-site VPN connection. https://learn.microsoft.com/en-
us/azure/vpn-gateway/tutorial-site-to-site-portal.

[5

—

Azure SQL Managed Instance management . https://learn.micros
oft.com/en-us/azure/azure-sql/managed-instance/management-
operations-overview?view=azuresq|l.

[6

—

Azure Storage Account Redundancy. https://learn.microsoft.com/en-
us/azure/storage/common/storage-account-overview.

[7] Azure subscription and service limits, quotas, and con-
straints. https://learn.microsoft.com/en-us/azure/azure-resource-
manager/management/azure-subscription-service-limits.

Checking for IaC Programs where APPGW uses Basic IP Address
with Dynamic Allocation Method. https://github.com/search?q=

[8

=

[10

[t

(11]
(12]

(13]

[15]

[16]

[27]

(28]

[29

—

[30]

(31]

azurerm_public_ip+allocation_method++Dynamic+NOT+static+
azurerm_application_gateway+resource+NOT+each+language%3A
HCL+&type=code.

Checking for IaC Programs where APPGW with non-WAF v2 sku uses
Web Application Firewall. https://github.com/search?q=waf_ configu-
ration+NOT+WAF_v2+azurerm_application_gateway++NOT+ vari-
able+NOT+output+language%3AHCL+&type=code.

Checking for IaC Programs where the Request Routing Rule of Stan-
dard v2 APPGW does not Specify Priority. https://github.com/search?
q=+azurerm_application_gateway+request_routing rule+NOT+ pri-
ority+Standard_v2+language%3AHCL&type=code.

Checkov: ship code that’s secure by default. https://bridgecrew.io/ch
eckov/.

Cloud development kit for terraform. https://developer.hashicorp.co
m/terraform/cdktf.

Example Usage within azurerm_application_gateway Documentation
Cannot be Deployed Successfully. https://github.com/hashicorp/terra
form-provider-azurerm/issues/27065.

Example Usage within azurerm_dedicated_hardware_security_module
Documentation Cannot be Deployed Successfully. https:
//github.com/hashicorp/terraform-provider-azurerm/issues/27078.
Example Usage within azurerm_mssql_database Documentation Can-
not be Deployed Successfully. https://github.com/hashicorp/terrafo
rm-provider-azurerm/issues/27194.

Example Usage within azurerm_network_interface_application_gateway
_backend_address_pool_association Documentation Cannot be De-
ployed Successfully. https://github.com/hashicorp/terraform-
provider-azurerm/issues/27222.

Microsoft Azure Fsv2-series VM. https://learn.microsoft.com/en-us/a
zure/virtual-machines/fsv2-series.

Opa’s native query language rego. https://www.openpolicyagent.org/
docs/latest/policy-language/.

Open world assumptions. https://www.sciencedirect.com/topics/com
puter-science/open-world-assumption.

OpenTofu: The open source infrastructure as code tool. https://open
tofu.org/.

Pulumi ai. https://www.pulumi.com/ai.

Pulumi: Infrastructure as code in any programming language. https:
//www.pulumi.com/.

Regions for virtual machines in azure. https:/learn.microsoft.com/en-
us/azure/virtual-machines/regions#special-azure-regions.

Shift testing left with unit tests. https://learn.microsoft.com/en-us/d
evops/develop/shift-left-make-testing-fast-reliable.

Terraform by Hashicorp. https://www.terraform.io/.

Terraform Resource: Manages the association between a Net-
work Interface and a Application Gateway’s Backend Address Pool.
https://registry.terraform.io/providers/hashicorp/azurerm/3.97.0/docs/
resources/network_interface_application_gateway_backend_address_
pool_association.

Terraform v.s. alternatives. https://developer.hashicorp.com/terrafor
m/intro/vs/cloudformation.

Terrascan: Detect compliance and security violations across Infras-
tructure as Code to mitigate risk before provisioning cloud native
infrastructure. https://runterrascan.io/.

TFLint: A Pluggable Terraform Linter. https://github.com/terraform-
linters/tflint.

TFSec: Security Scanner for Your Terraform Code. https://github.com
/aquasecurity/tfsec.

Zodiac: Unearthing Semantic Checks for Cloud Infrastructure-as-Code
Programs. https://github.com/824728350/Zodiac.

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

Glenn Ammons, Rastislav Bodik, and James R Larus. Mining specifica-
tions. ACM Sigplan Notices, 37(1):4-16, 2002.

Mina Tahmasbi Arashloo, Ryan Beckett, and Rachit Agarwal. Formal
methods for network performance analysis. In 20th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 23),
2023.

Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. Restler:
Stateful REST API fuzzing. In IEEE/ACM 41st International Conference
on Software Engineering (ICSE), 2019.

Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. Check-
ing security properties of cloud service rest apis. In 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification
(ICST), 2020.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A gen-
eral approach to network configuration verification. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communica-
tion (SIGCOMM), 2017.

Giannis Bekoulis, Christina Papagiannopoulou, and Nikos Deligiannis.
A review on fact extraction and verification. ACM Computing Surveys
(CSUR), 55(1):1-35, 2021.

Eric Hayden Campbell, William T Hallahan, Priya Srikumar, Carmelo
Cascone, Jed Liu, Vignesh Ramamurthy, Hossein Hojjat, Ruzica Piskac,
Robert Soulé, and Nate Foster. Avenir: Managing data plane diversity
with control plane synthesis. In 18th USENLX Symposium on Networked
Systems Design and Implementation (NSDI 21), 2021.

Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk. Pre-
deployment security assessment for cloud services through semantic
reasoning. In Computer Aided Verification (CAV 21), 2021.

Michael D Ernst, Jeff H Perkins, Philip J] Guo, Stephen McCamant,
Carlos Pacheco, Matthew S Tschantz, and Chen Xiao. The daikon
system for dynamic detection of likely invariants. Science of computer
programming, 69(1-3):35-45, 2007.

Alexandros Evangelidis, David Parker, and Rami Bahsoon. Perfor-
mance modelling and verification of cloud-based auto-scaling policies.
Future Generation Computer Systems, 87:629-638, 2018.

Grigory Fedyukovich and Rastislav Bodik. Accelerating syntax-guided
invariant synthesis. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2018.

Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar, and Aarti
Gupta. Quantified invariants via syntax-guided synthesis. In Computer
Aided Verification (CAV 19), 2019.

Zheng Guo, David Cao, Davin Tjong, Jean Yang, Cole Schlesinger, and
Nadia Polikarpova. Type-directed program synthesis for restful apis.
In 43rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 22), 2022.

Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. Finding
invariants of distributed systems: It’s a small (enough) world after all.
In 18th USENIX symposium on networked systems design and implemen-
tation (NSDI 21), 2021.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley,
Roberta Raileanu, and Robert McHardy. Challenges and applications
of large language models. arXiv preprint arXiv:2307.10169, 2023.
Myeongsoo Kim, Saurabh Sinha, and Alessandro Orso. Adaptive REST
API Testing with Reinforcement Learning. In IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2023.

Ivo Krka, Yuriy Brun, and Nenad Medvidovic. Automatic mining
of specifications from invocation traces and method invariants. In
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 14), 2014.

Nayeon Lee, Yejin Bang, Andrea Madotto, Madian Khabsa, and Pascale
Fung. Towards few-shot fact-checking via perplexity. arXiv preprint
arXiv:2103.09535, 2021.

(50]

[51

—

[52

—

[53

[t

[54

=

[55

[

(56

—

(57

—

(60]

[61]

(62]

(63

[t

(64]

Nayeon Lee, Belinda Z Li, Sinong Wang, Wen-tau Yih, Hao Ma, and
Madian Khabsa. Language models as fact checkers? arXiv preprint
arXiv:2006.04102, 2020.

Caroline Lemieux. Mining temporal properties of data invariants. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering (ICSE 15), volume 2. IEEE, 2015.

Julien Lepiller, Ruzica Piskac, Martin Schaf, and Mark Santolucito.
Analyzing infrastructure as code to prevent intra-update sniping vul-
nerabilities. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 21), 2021.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktéschel, et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Processing Systems,
33:9459-9474, 2020.

Wang Li, Zhouyang Jia, Shanshan Li, Yuanliang Zhang, Teng Wang,
Erci Xu, Ji Wang, and Xiangke Liao. Challenges and opportunities:
an in-depth empirical study on configuration error injection testing.
In Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 21), 2021.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrit-
twieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno,
Agustin Dal Lago, et al. Competition-level code generation with Al-
phacode. Science, 378(6624):1092-1097, 2022.

Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun
Lee, Robert Soulé, Han Wang, Calin Cascaval, Nick McKeown, and
Nate Foster. P4v: Practical verification for programmable data planes.
In Proceedings of the 2018 Conference of the ACM Special Interest Group
on data communication (SIGCOMM 18), 2018.

Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal, Chandra
Maddila, Balasubramanyan Ashok, Sumit Asthana, Christian Bird, and
Aditya Kumar. Rex: Preventing bugs and misconfiguration in large
services using correlated change analysis. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), 2020.
Yiming Qiu, Ryan Beckett, and Ang Chen. Synthesizing runtime pro-
grammable switch updates. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), 2023.

Laria Reynolds and Kyle McDonell. Prompt programming for large
language models: Beyond the few-shot paradigm. In Extended Abstracts
of the 2021 CHI Conference on Human Factors in Computing Systems,
2021.

Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron Shim, and
Ruzica Piskac. Synthesizing configuration file specifications with
association rule learning. Proceedings of the ACM on Programming
Languages, 1(OOPSLA 17):1-20, 2017.

Mark Santolucito, Ennan Zhai, and Ruzica Piskac. Probabilistic auto-
mated language learning for configuration files. In Computer Aided Ver-
ification: 28th International Conference, (CAV 16), Toronto, ON, Canada,
July 17-23, 2016, Proceedings, Part II 28. Springer, 2016.

Alireza Souri, Nima Jafari Navimipour, and Amir Masoud Rahmani.
Formal verification approaches and standards in the cloud comput-
ing: a comprehensive and systematic review. Computer Standards &
Interfaces, 58:1-22, 2018.

Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. Resttest-
gen: automated black-box testing of RESTful APIs. In IEEE 13th In-
ternational Conference on Software Testing, Validation and Verification
(ICST), 2020.

Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang.
Automatic misconfiguration troubleshooting with PeerPressure. In
6th Symposium on Operating Systems Design & Implementation (OSDI
04), 2004.

[65]

[66]

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan
Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency im-
proves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

Huayao Wu, Lixin Xu, Xintao Niu, and Changhai Nie. Combinato-
rial testing of RESTful APIs. In Proceedings of the 44th International
Conference on Software Engineering (ICSE 22), 2022.

[67] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. DuoALl: Fast,

automated inference of inductive invariants for verifying distributed
protocols. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), 2022.

[68] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and

Gabriel Ryan. Distai:data-driven automated invariant learning for
distributed protocols. In 15th USENIX symposium on operating systems
design and implementation (OSDI 21), 2021.

[69] Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu. Static detec-

tion of silent misconfigurations with deep interaction analysis. Pro-
ceedings of the ACM on Programming Languages, 5(OOPSLA 21):1-30,
2021.

[70] Jiagi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu

[71]

Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou. Encore: Exploiting
system environment and correlation information for misconfiguration
detection. In Proceedings of the 19th international conference on Ar-
chitectural support for programming languages and operating systems
(ASPLOS 14), 2014.

Sai Zhang and Michael D Ernst. Proactive detection of inadequate
diagnostic messages for software configuration errors. In Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA
15), 2015.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Cloud Infrastructure-as-Code Programs
	2.2 Syntactic vs. Semantic Checks
	2.3 Inspiration: Configuration mining
	2.4 Zodiac: Zero-Touch Discovery of IaC Checks

	3 Mining Cloud IaC Semantic Checks
	3.1 Semantic knowledge base
	3.2 Semantic check specification
	3.3 Semantic check mining

	4 Validating Cloud IaC Semantic Checks
	4.1 Encoding the mutation search space
	4.2 Scheduling check validation

	5 Evaluation
	5.1 Discovered semantic checks
	5.2 Zodiac vs. existing tools
	5.3 Effectiveness of the mining phase
	5.4 Effectiveness of the validation phase
	5.5 Real world misconfigurations
	5.6 False positives

	6 Discussion
	7 Related work
	8 Conclusion
	References

