

1 Manuscript Type: Commentary

2

3 **Retinal Focus on Relationships between Diet-Induced, Advanced Glycation End Products**

4 **and Supplemental Estradiol**

5

6 Nicholas T. Bello^{1#}, Bonnie L. Firestein^{2#}, and Maribel Vazquez^{3#*}

7

8 ¹ Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The

9 State University of New Jersey (New Brunswick)

10 ² Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State

11 University of New Jersey (New Brunswick)

12 ³ Department of Biomedical Engineering, School of Engineering, Rutgers, The State University of

13 New Jersey (New Brunswick)

14 [#]These Authors contributed equally to this work.

15 ^{*}Corresponding Author: Maribel Vazquez. Email: mv582@soe.rutgers.edu

16 Received: 3 December 2024; Accepted: DMY; Published: DMY

17

18 **ABSTRACT**

19 Neurodegeneration of retinal tissue leads to progressive vision loss in millions of working age

20 adults each year. Metabolic alterations caused by modern diets that are high in fats and sugars

21 contribute to development of diabetic retinopathy. Chronic, diet-induced metabolic changes are

22 linked to, both, high glucose and harmful, pro-inflammatory compounds in the blood, called

23 advanced glycation end products (AGEs), that can alter the integrity of neurovascular barriers.

24 AGEs-induced changes to the permeability of the inner blood retinal barrier can lead to progressive

25 vision loss with disparate impacts in patients with low estrogen, such as via natural aging

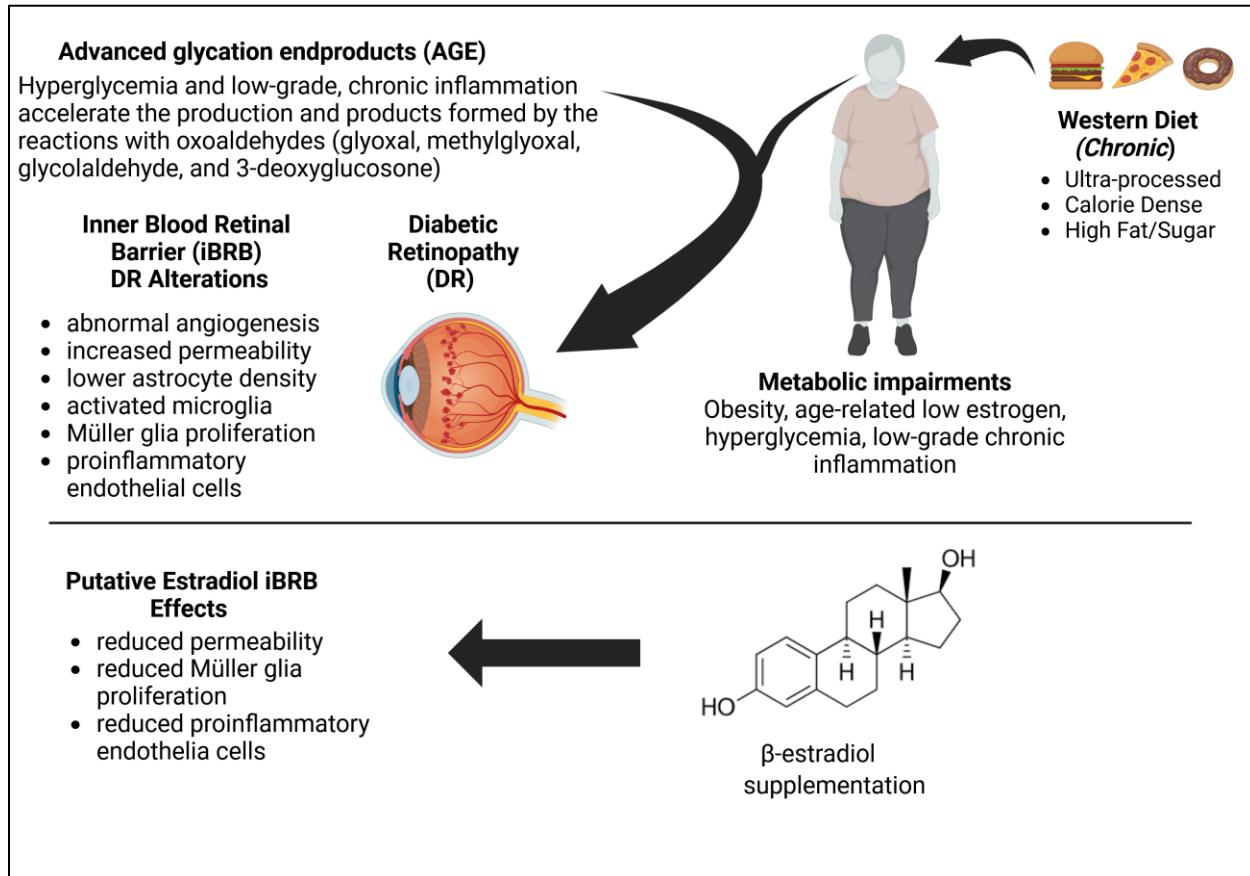
26 processes, chronic illness, or aggressive medical interventions. Application of supplemental

27 estradiol has been shown to ameliorate degeneration across the cardiovascular, intestinal, and

28 nervous systems. This commentary describes potential benefits of estradiol-based therapies on the

29 visual health of older women with progressive diabetic retinopathy.

30


31

32 **Diet-Induced Neuroinflammation**

33 Degenerative vision loss is an escalating global challenge as millions of adults will lose their sight
34 with aging due to retinal disease, such as age-related macular degeneration, glaucoma, and diabetic
35 retinopathy [1,2]. A dramatic rise in progressive vision loss from diabetic retinopathy is driven by
36 rising incidence of Type II diabetes mellitus (T2DM), associated with metabolic alterations from
37 the excess intake of calories [3,4]. Modern day ultra-processed foods, high in fats and sugars, can
38 also stimulate neuroinflammation via altered balance of intestinal microbiota leading to the
39 elevated neuronal metabolism [5], and persistently activated inflammatory signaling pathways [6].
40 The contributing mechanisms to these chronic, diet-induced metabolic changes are linked to the
41 accumulation of harmful, pro-inflammatory compounds in the blood, called advanced glycation
42 end products (AGEs). Many AGEs are produced from the Maillard reaction, which is the browning
43 process during cooking or baking to enhance the color and taste of food. Alarmingly, AGEs can
44 alter protein structure and function and work in concert with high blood glucose to promote
45 inflammatory signaling and neurodegeneration [7]. Moreover, non-nutritive additives used
46 extensively in the global food supply chain, such as anti-microbials, synthetic preservatives, and
47 artificial sweeteners [8], bind to ingested proteins, adhere onto the extracellular matrix, and interact
48 with surface receptors to create inclusion complexes that impact ocular outcomes [9]. As a result,
49 research into the metabolic and neural impact of diet compositions and non-nutritive additives has
50 been at the forefront of nutritional neuroscience, as shown in **Fig. 1**.

51

52

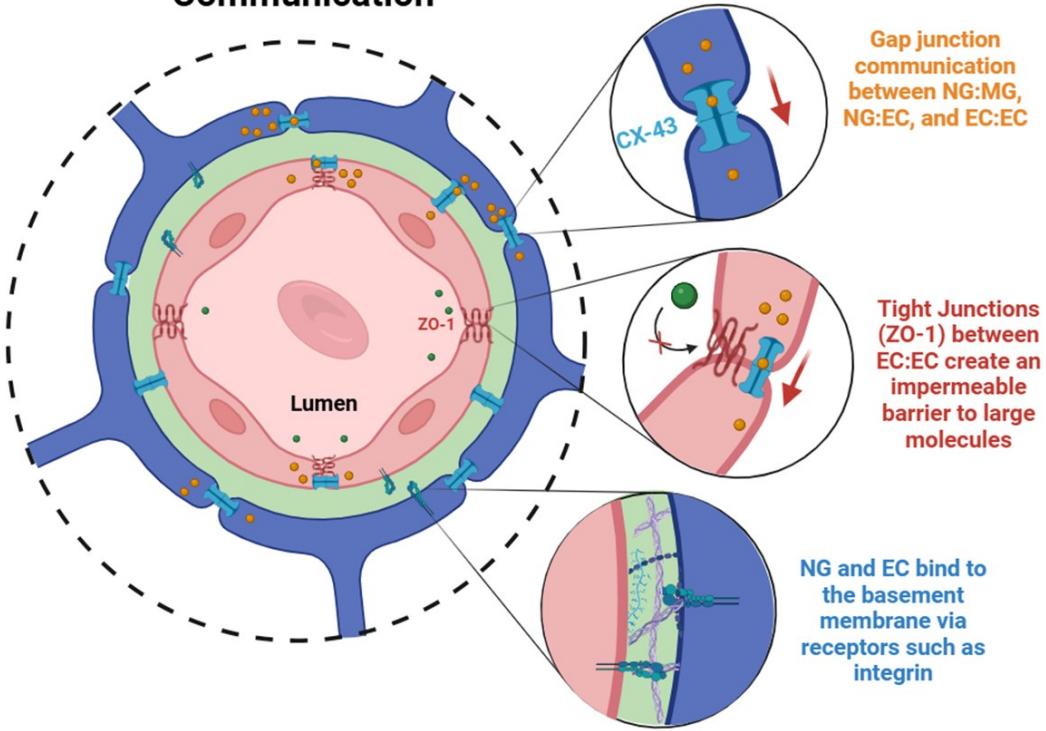
53

54

55 **Figure 1:** Schematic description of the impacts of diet-based, advanced glycation end products
56 (AGEs) on inflammatory pathways, metabolic alterations, and the inner blood retinal barrier
57 (iBRB).

58

59


60 **Neurovascular Barriers**

61 Inflammation-induced changes can be critical for influencing the permeability of neurovascular
62 barriers, such as the blood brain barrier (BBB) and inner blood retinal barrier (iBRB), that regulate
63 transport from circulating blood. Indeed, inflammatory-induced vascular changes can impede
64 clearance of metabolic waste allowing harmful, blood borne molecules and cells to enter the brain.
65 *In vivo* study of high fat diets has implicated excess consumption with cognitive decline, which is
66 due, in part, to insulin resistance (Reviewed in [10]). In line with these findings, our group has
67 reported high fat diet-induced changes in rodent sensorimotor gating of the acoustic startle

68 response [11] that reflects similar data gathered from non-human primates and clinical patients
69 with neurovascular disorders of the prefrontal and visual cortex [12,13]. Analogous alterations can
70 be involved in the diet-induced, metabolic changes associated with other vascular barriers. The
71 iBRB of the eye is a vision-critical, semi-permeable membrane that regulates transport of
72 molecules and ions between retinal capillaries and the neuroretina. The iBRB is comprised of
73 endothelial cells and pericytes, alongside Muller glia and astrocytes that communicate via
74 junctional, gap, and adhesion proteins, among others (Fig. 2). Molecules, such as zonula
75 occludens, facilitate formation of monolayer barriers of endothelial cells to provide resistance to
76 the transport of harmful compounds from circulating blood to neural tissue. Endothelial cells
77 respond collectively with neuroglia in barrier tissues, as these retinal cells are key regulators of
78 oxygen, toxins, and nutrients needed to support neuronal synapse for vision [14, 15]. Neuroglia,
79 thereby, exhibit bi-directional communication with endothelial cells via gap junctions as well as
80 with one another through gliotransmitters, such as glutamate [16]. AGEs are well-known to cause
81 pericyte death and stimulate astrogliosis in patients with chronic, diabetic retinopathy [17],
82 indicating that collective response from barrier cells are significant but understudied components
83 of emerging therapies.

84

Neuroglia : Endothelial Cell Communication

85

86 **Figure 2:** Structure of the inner blood retinal barrier (iBRB) and communication between
87 endothelial cells (ECs) and neuroglia (NG). The inner blood retinal barrier is comprised of
88 endothelial cells that line the inner lumen of retinal capillaries, pericytes that wrap around the
89 capillaries, and neuroglia of the retina that communicate via synapse with retinal neurons to
90 facilitate vision [with permission from 15] These cell types form a dynamic tissue barrier and
91 collectively communicate with one another across a basement membrane comprised largely of
92 collagen IV and laminin. Neuroglia cells primarily communicate with each other, and with
93 endothelial cells, via gap junctions formed by connexin 43 (CX-43) proteins, to enable the passage
94 of small molecules via juxtracrine communication. In complement, endothelial cells form tight
95 junctions, most notably zonula occludens-1 (ZO-1), that selectively regulate transcellular transport
96 across the cell barrier. When the integrity of the iBRB is compromised, higher permeability across the
97 vascular wall leads to unregulated molecular transport of water, toxins, and cytokines that disrupt
98 cell signaling and lead to the dysfunction and eventual death of retinal neurons.

99

100 **Estrogen as a Retinal Neuroprotectant**

101 A growing body of evidence demonstrates that estrogen decline during natural aging processes or
102 medically treated conditions drives a systemic inflammatory state [18]. This low-grade chronic
103 inflammation can compromise the iBRB to make the retina more susceptible to neurodegenerative
104 disease [19]. Clinical data illustrate that women are less disposed to effects of neurodegeneration
105 before menopause transition [20], suggesting that rising, worldwide incidence in women as they
106 age may be related to decreasing levels of circulating estrogen. The neuroprotective effects of beta-
107 estradiol in the nervous system are well-established, including major anti-inflammatory effects on
108 microglia. Estrogen also facilitates higher cognitive functions by inducing spinogenesis and
109 synaptogenesis in the visual cortex and hippocampus [21], which play important roles in vision
110 and learning. Moreover, supplemental estrogen improves memory and reduces accumulation of
111 amyloid-beta prodromal to Alzheimer's disease in female mice after ovariectomy [20].

112

113 Estrogen receptors are present on endothelial, pericyte, and neuroglial cells of the iBRB, where
114 recent studies suggest that hormonal imbalance may serve as global markers for inflammation and
115 metabolic syndromes that impact neurovascular outcomes [22]. Moreover, activated receptors are
116 shown to prevent oxidative stress and stimulate production of neurotrophic factors that attenuate
117 retinal degeneration. Recent work from our own group illustrates that supplemental estradiol was
118 able to increase resistivity of cell barriers formed by, both, endothelial and neuroglial cells of the
119 iBRB [23] by impacting gap and tight junctional communication [15].

120

121 Significant biological sex-based, health disparities have been recorded in vision loss [24], where
122 women experience disparate impacts and poorer outcomes of retinal disease as they grow into
123 mature adulthood. Globally, women over the age of 55 endure progressive vision loss from diabetic
124 retinopathy at higher rates than their male counterparts. The combination of lifelong AGEs
125 consumption in the form of ultra processed foods and lowered estrogen may produce low-grade
126 chronic inflammation in aging women that fuels retinal degeneration. Our group has developed
127 micro-physiological systems that model molecular transport across retinal tissue and demonstrate
128 that increased concentrations of AGEs elevate production of cell reactive oxidation species, altered
129 cell morphology, and increased formation of blood clots in retinal vascular barriers [25]. Our recent
130 studies have used endothelial-glial bilayers to illustrate that increased AGEs reduce glia-to-glia

131 and glia-to-endothelial cell communication via decreased expression of the critical proteins
132 connexin 43 (Cx43) and cluster of differentiation 40 (CD40) [15]. Moreover, as patients with
133 diabetic retinopathy are frequently treated with anti-VEGF pharmacotherapies to reduce ocular
134 angiogenesis (e.g., Avastin and Eylea), we tested the effects of anti-VEGF on the resistivity of
135 bilayers of iBRB cells. Our results showed that bilayers of endothelial and glial cells cultured long-
136 term in high glucose and AGEs exhibited greater barrier resistivity (measured via Trans-
137 Endothelial Electrical Resistance, or TEER) after treatment with anti-VEGF than did respective
138 bilayers cultured in normoglycemic medium [15]; suggesting an underexplored method of action
139 for anti-VEGF. Surprisingly, effects of AGEs in all studies were attenuated with supplemental
140 estradiol [23], highlighting understudied molecular relationships between hormones and cells of
141 barrier tissue that are significant to aging as well as to women's health.

142

143 **Conclusion**

144 In summary, accruing evidence illustrates that supplemental estradiol may have neuroprotective
145 effects throughout aging, such as during menopause transition and chronic illness or treatment.
146 Multiple recent studies suggest direct positive benefits of estradiol in combination with
147 accumulating levels of AGEs consumed in modern high fat diets. These understudied relationships
148 are critical to emerging therapies for women's health as AGEs impact the collective cell behavior
149 of neurovascular barriers and could adversely influence the transport of non-nutritive additives and
150 pharmaceuticals agents across the BBB and iBRB.

151

152

153

154

155

156

157

158

159

160

161

162 **Acknowledgement:** Not applicable

163

164 **Funding Statement:** This research was funded by a Life Sciences Alliance Pilot Seed Grant from
165 the Rutgers–New Brunswick Office of the Vice Provost for Research, Grant Number OVPR-100
166 (MV), <https://newbrunswick.rutgers.edu/provost/research/life-sciences-alliance>.

167

168 **Author Contributions:**

169 The authors confirm contribution to the paper as follows: Conceptualization, Nicholas Bello,
170 Bonnie Firestein, and Maribel Vazquez; ; investigation, Nicholas Bello, Bonnie Firestein, and
171 Maribel Vazquez; resources, Nicholas Bello, Bonnie Firestein, and Maribel Vazquez; writing—
172 original draft preparation, Maribel Vazquez; writing—review and editing, Nicholas Bello, Bonnie
173 Firestein, and Maribel Vazquez; ; visualization, Nicholas Bello, Bonnie Firestein, and Maribel
174 Vazquez; funding acquisition, Nicholas Bello, Bonnie Firestein, and Maribel Vazquez ; All authors
175 reviewed the results and approved the final version of the manuscript.

176

177 **Availability of Data and Materials:** “Not applicable.” (This article does not involve data
178 availability, and this section is not applicable).

179

180 **Ethics Approval:** Not Applicable.

181

182 **Conflicts of Interest:** The authors declare no conflicts of interest regarding the present study.

183

184

185

186

187

188

189

190

191

192

193 REFERENCES

- 194 1. Rein, D.B., J.S. Wittenborn, P. Zhang, F. Sublett, P.A. Lamuda, E.A. Lundeen, and J. Saaddine, *The Economic Burden of Vision Loss and Blindness in the United States*. Ophthalmology, 2022. **129**(4): p. 369-378.
- 195 2. Blindness, G.B.D., C. Vision Impairment, and S. Vision Loss Expert Group of the Global Burden of Disease, *Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study*. Lancet Glob Health, 2021. **9**(2): p. e130-e143.
- 196 3. Milluzzo, A., A. Maugeri, M. Barchitta, L. Sciacca, and A. Agodi, *Epigenetic Mechanisms in Type 2 Diabetes Retinopathy: A Systematic Review*. Int J Mol Sci, 2021. **22**(19).
- 197 4. Iatcu, C.O., A. Steen, and M. Covasa, *Gut Microbiota and Complications of Type-2 Diabetes*. Nutrients, 2021. **14**(1).
- 198 5. Cavaliere, G., G. Trinchese, E. Penna, F. Cimmino, C. Pirozzi, A. Lama, C. Annunziata, A. Catapano, G. Mattace Raso, R. Meli, M. Monda, G. Messina, C. Zammit, M. Crispino, and M.P. Mollica, *High-Fat Diet Induces Neuroinflammation and Mitochondrial Impairment in Mice Cerebral Cortex and Synaptic Fraction*. Front Cell Neurosci, 2019. **13**: p. 509.
- 199 6. Duan, Y., L. Zeng, C. Zheng, B. Song, F. Li, X. Kong, and K. Xu, *Inflammatory Links Between High Fat Diets and Diseases*. Front Immunol, 2018. **9**: p. 2649.
- 200 7. Shen, C.Y., C.H. Lu, C.H. Wu, K.J. Li, Y.M. Kuo, S.C. Hsieh, and C.L. Yu, *The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases*. Molecules, 2020. **25**(23).
- 201 8. Iizuka, K., *Is the Use of Artificial Sweeteners Beneficial for Patients with Diabetes Mellitus? The Advantages and Disadvantages of Artificial Sweeteners*. Nutrients, 2022. **14**(21).
- 202 9. Clarkson-Townsend, D.A., A.J. Douglass, A. Singh, R.S. Allen, I.N. Uwaifo, and M.T. Pardue, *Impacts of high fat diet on ocular outcomes in rodent models of visual disease*. Exp Eye Res, 2021. **204**: p. 108440.
- 203 10. Freeman, L.R., V. Haley-Zitlin, D.S. Rosenberger, and A.C. Granholm, *Damaging effects of a high-fat diet to the brain and cognition: a review of proposed mechanisms*. Nutr Neurosci, 2014. **17**(6): p. 241-51.
- 204 11. Scarpa, L.L. and N.T. Bello, *Dietary-induced binge-like eating impairs acoustic startle responses to acute nisoxetine in male mice*. Behav Pharmacol, 2023. **34**(7): p. 411-423.
- 205 12. Rolls, E.T., *Sensory processing in the brain related to the control of food intake*. Proc Nutr Soc, 2007. **66**(1): p. 96-112.
- 206 13. Adams, M.S., D. Andrew, and W.R. Staines, *The contribution of the prefrontal cortex to relevancy-based gating of visual and tactile stimuli*. Exp Brain Res, 2019. **237**(10): p. 2747-2759.
- 207 14. Pena, J.S. and M. Vazquez, *Harnessing the Neuroprotective Behaviors of Muller Glia for Retinal Repair*. Front Biosci (Landmark Ed), 2022. **27**(6): p. 169.
- 208 15. Pena, J.S., F. Berthiaume, and M. Vazquez, *Muller Glia Co-Regulate Barrier Permeability with Endothelial Cells in an Vitro Model of Hyperglycemia*. Int J Mol Sci, 2024. **25**(22).
- 209 16. Kugler, E.C., J. Greenwood, and R.B. MacDonald, *The "Neuro-Glial-Vascular" Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction*. Front Cell Dev Biol, 2021. **9**: p. 732820.
- 210 17. Yamagishi, S., K. Nakamura, and T. Imaizumi, *Advanced glycation end products (AGEs) and diabetic vascular complications*. Curr Diabetes Rev, 2005. **1**(1): p. 93-106.

239 18. McCarthy, M. and A.P. Raval, *The peri-menopause in a woman's life: a systemic*
240 *inflammatory phase that enables later neurodegenerative disease*. J Neuroinflammation,
241 2020. **17**(1): p. 317.

242 19. Kutsyr, O., A. Noailles, N. Martinez-Gil, L. Maestre-Carballa, M. Martinez-Garcia, V.
243 Maneu, N. Cuenca, and P. Lax, *Short-term high-fat feeding exacerbates degeneration in*
244 *retinitis pigmentosa by promoting retinal oxidative stress and inflammation*. Proc Natl Acad
245 Sci U S A, 2021. **118**(43).

246 20. Saha, P., I.Q. Weigle, N. Slimmon, P.B. Poli, P. Patel, X. Zhang, Y. Cao, J. Michalkiewicz,
247 A. Gomm, C. Zhang, R.E. Tanzi, N. Dylla, A. Al-Hendy, and S.S. Sisodia, *Early modulation*
248 *of the gut microbiome by female sex hormones alters amyloid pathology and microglial*
249 *function*. Sci Rep, 2024. **14**(1): p. 1827.

250 21. Sengupta, D.C., C.L. Lantz, M.A.K. Rumi, and E.M. Quinlan, *17alpha Estradiol promotes*
251 *plasticity of spared inputs in the adult amblyopic visual cortex*. Sci Rep, 2019. **9**(1): p.
252 19040.

253 22. Dubey, P., V. Singh, N. Venishetty, M. Trivedi, S.Y. Reddy, R. Lakshmanaswamy, and A.K.
254 Dwivedi, *Associations of sex hormone ratios with metabolic syndrome and inflammation*
255 *in US adult men and women*. Front Endocrinol (Lausanne), 2024. **15**: p. 1384603.

256 23. Castro, N., J.S. Pena, R. Cliver, F. Berthiaume, and M. Vazquez, *Estradiol Impacts Muller*
257 *Glia and Endothelial Cell Responses in Hyperglycemic Microenvironments with Advanced*
258 *Glycation End Products*. Exp Eye Res, 2024: p. 110185.

259 24. Xu, Y., A. Wang, X. Lin, J. Xu, Y. Shan, X. Pan, J. Ye, and P.F. Shan, *Global burden and*
260 *gender disparity of vision loss associated with diabetes retinopathy*. Acta Ophthalmol,
261 2021. **99**(4): p. 431-440.

262 25. Pena, J.S., R.K. Ramanujam, R.A. Risman, V. Tutwiler, F. Berthiaume, and M. Vazquez,
263 *Neurovascular Relationships in AGEs-Based Models of Proliferative Diabetic Retinopathy*.
264 Bioengineering (Basel), 2024. **11**(1).

265