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A large number of herbivorous mammals and reptiles in many terrestrial ecosystems
across the globe are presently in the receiving end of extinction. Over-exploitation by its
immediate predator and anthropogenic actions is one of the main reasons. Reintroduc-
tion of apex predator or top predator at some instances has proven to be a successful
strategy in restoring ecological balance. In this paper, we conceptualize the role of top
predator in enriching the density of vulnerable species of lower trophic level, with the
help of mathematical modeling. First, the dynamical behavior of two species system
(prey and mesopredator) is studied, where growth of prey is subject to strong Allee
effect. Also, the cost of predation induced fear is incorporated in the growth term. Para-
metric regions, for which the species perceive extinction risk are analyzed and depicted
numerically. We consider that whenever density of the vulnerable species reach a cer-
tain threshold, minimum viable population, top predator is introduced in the habitat.
Our obtained results show that a species population can be restored from the verge of
extinction to a stable state with much higher population density with the introduction
of top predator and even it stabilizes an oscillatory system.

Keywords: Top predator; fear effect; Allee effect; ratio-dependent functional response;
extinction; bifurcations.
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1. Introduction

Species extinction rate is unprecedentedly growing over time. According to the
International Union of Conservation of Nature (IUCN), 160 species have gone
extinct in the last decade [1], which includes mammals, reptiles, birds and plants.
Furthermore, 18% of extant vertebrates have been declared vulnerable [2]. Atwood
et al. [7] concluded from their study that herbivores perceive elevated predation
risk among mammals, birds and reptiles. Some theoretical studies with the help of
mathematical modeling have been done to preserve endangered species. Oliveira and
Hilker [32] explored bio-control approach by introducing disease in invasive predator
species. Disease weakens the predators and the augmented death results in limiting
the predation, which in turn will allow the endangered species to recover. Numfor
et al. [31] studied optimal control strategy of trapping and culling of invasive preda-
tors along with bio-control strategy to conserve endangered species. As every organ-
ism has fair contribution and specific role in shaping and preserving the healthy
ecosystems in which they dwell, continuous species loss has influenced the ecology
of our planet profoundly. All the species in terrestrial or aquatic ecosystem occupy
some trophic level in the food chain. Often, extinction of lower trophic species leads
to secondary extinction. Predation or feeding serves as the bridge between trophic
levels, which provides the pathway for energy to flow from lower trophic levels to
higher trophic levels. The entire idea of energy flow mechanism is based on the
bottom-up approach, i.e. the cumulative resources, like food and habitat available
for lower trophic level ultimately determine the fate of those species occupying
higher trophic levels. This concept of bottom-up approach has been considered as
one of the main tenets of ecology. However, to answer the famous question “why
is the Earth green?”, ecologists agreed that influence of top-down approach along
with bottom-up approach is also pervasive [20, 38]. In this top-down approach, the
role of predators becomes significant in shaping the ecosystem. Carnivores weeding
out weak, slow and dying animals, which belong to their prey community, and thus
keep prey population in check. The presence of predators restrains herbivores from
accessing and over-utilizing the plant resources they feed upon. Thus, predation
is not only beneficial for predators, but also keeps the entire ecosystem healthy.
Therefore, ecologists come out with the concept of introducing top predator as one
of the most plausible techniques to improve ecological functioning. Sergio et al. [44]
reviewed the role of top predators in bio-diversity restoration in reference of various
ecosystems. Baker et al. [8] proposed an ensemble modeling method to study the
potential outcomes of keystone predator reintroduction in an ecosystem.

An experiment of repatriation of wolf in Yellowstone national park in the USA
comes out with resounding success in reviving the degrading ecosystem. In 1995,
eight wolves were reintroduced in Yellowstone national park with the expectation
of restoring the continuously deteriorating ecosystem. Reintroduction of wolves
brought back lots of ecological benefits for the whole national park ecosystem [39)].
As predation by wolves limits the population of deer and elk, some endangered
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plant species were observed in more patches, colony of beaver species increased,
more songbirds were being observed as canopy increased, more scavengers were
seen as carcasses increased. Some barren land came to life as grazing decreased
by some amount. Besides that, more interestingly, it is observed that the behavior
and grazing pattern of elk have changed in the presence of wolves. Very recently,
in 2018, the reintroduction of wolves in Isle Royale Island also got reverberating
success in bringing back the degrading ecosystem to its healthy state [48].

Mathematical modeling provides a platform to understand the dynamic pro-
cess involved in ecology and are often useful to make practical predictions and
derive insightful conclusions. Starting from the seminal work of Lotka—Volterra
[30, 54], theoretical study of predator—prey interaction and food web system tra-
verse a long way with the help of mathematical modeling and has proven to be a
persuasive alternative for time consuming and often risky field experiments. Devel-
opment of mathematical models with the incorporation of species specific traits
engaged many researchers working in the field of ecological modeling. Allee, in
1930s, put forward his observation that in many species, the growth and popula-
tion density are positively correlated. Biological phenomena like difficulty in mating
and reduced anti-predator defense lead to the Allee effect. Numerous predator—prey
systems have been studied considering strong Allee effect [3, 15, 55, 56, 62, 63] for
its ecological significance. Along with the modified growth term, predator func-
tional response plays a key role in modulating predator—prey dynamics. Predation
usually involves searching of food entity and food sharing. Ratio-dependent func-
tional response, that stands on the ratio of prey and predator population instead of
depending on only prey population, better captures the mutual interference among
predators [13, 19]. Interestingly, for ratio-dependent predator—prey system, both
the populations may extinct even in presence of stable co-existence equilibrium
in the system. Many researchers studied the predator—prey dynamics considering
functional response to be ratio-dependent [15, 16, 21, 23, 53, 60]. Besides the con-
sumptive effect of predator, the growth of prey species is also influenced by the
non-consumptive effect. That is, only the presence of predator brings substantial
psychological and behavioral changes in prey species [14, 46, 49, 59]. The change
in foraging behavior and spending more effort and time in vigilance to counter the
fear of predation attributes to reduction in the growth rate of species. A significant
number of modeling-based studies have been done to see the impact of fear on the
dynamics of different predator—prey system [18, 28, 40-42, 51, 57]. Cong et al. [12]
and Verma et al. [52] studied the role of fear in a three-species food chain model.
Panday et al. [36] observed that fear induces trophic cascading in a three species
food chain model.

An ecosystem is seldom stable, rather it is a very dynamic system and is always
in recovering phase. However, sometimes, a particular entity of an ecosystem, i.e. a
species becomes badly affected mainly due to over-exploitation and environmental
factors. The affected species may even reach at the verge of extinction. In this paper,
we provide a theoretical study to avoid the extinction of a species that occupy a
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relatively lower trophic level in a food chain. We conceptualize the introduction of
apex predator as a species conservation tool.
Specific research questions, we intend to address in this study, are as follows:

e If the density of a species depleted below a certain threshold, i.e. viable population
size, which triggers the chance of extinction of the species, then how the extinction
can be avoided and density of the species can be restored naturally?

e In modeling phenomena, we incorporate the impact of predation induced fear
along with direct killing. How these fear parameters mediate the dynamics of the
proposed systems?

2. Mathematical Model

Suppose z is the density of our target species, which takes the place of prey in a
predator—prey interaction. y is the density of predator (mesopredator) population,
which totally depends on the considered prey species for food. In previous studies,
predator functional response, i.e. per capita predator’s food consumption per unit
time, was thought to be a function of prey density only (Holling type I, II, and
IIT functional responses), which covers a huge volume of literature. However, over
the course of time, with ecological justifications, it is believed that predator density
also has a role to play in the predator’s functional response. Thereafter, ratio-
dependent functional response, a particular form of predator density-dependent
response, where food consumption by a predator per unit time is a function of ratio
of prey density to predator abundance, becomes popular among many researchers.
Outcomes of many field and laboratory experiments support the consideration of
ratio-dependent functional response [5, 6, 9]. Kuang and Baretta [27] first analyzed
global qualitative behavior of a ratio-dependent predator—prey system in a system-
atic way. Thereafter, Hsu et al. [23] contributed with a more detailed study of global
qualitative behavior and answered many open questions left unanswered by Kuang
and Baretta. Xiao and Ruan [58] also put light on global behavior in the neigh-
borhood of origin of ratio-dependent predator—prey system. They have investigated
different kinds of topological structures in the neighborhood of origin. In many ter-
restrial and aquatic ecosystems, the growth rate of some species is observed to follow
Allee dynamics. At smaller species density, i.e. below a certain threshold popula-
tion level, net population growth becomes negative. Few studies have been carried
out by considering ratio-dependent functional response along with the incorpora-
tion of Allee effect in the growth rate of species [3, 10, 26, 43]. In particular, Sen
et al. [43] explicitly incorporated the Allee factor along with logistic growth term
of prey in a predator—prey system with ratio-dependent functional response. In this
study, they compare the dynamics of ratio-dependent predator—prey model with
and without Allee effect. They concluded that chance of persistent oscillation of
species density ceases with the consideration of Allee effect in the ratio-dependent
predator—prey system. Surprisingly, the study of non-consumptive effect of preda-
tor over prey density (effect of predation fear), where prey’s growth rate subjected
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to strong Allee effect along with ratio-dependent predator’s functional response,
is overlooked. Here, first we consider a two species system, where we represent
the interaction of two species by a classical predator—prey model with the ratio-
dependent Michaelis-Menten-type functional response [24, 25]. Furthermore, the
non-consumptive impact of predators, namely, the induction of fear, elicits signif-
icant behavioral and physiological alterations in prey species. Predation-induced
fear not only contributes to diminished reproductive output [59], but also affects
foraging behavior and adult survival [4, 11, 47]. Consequently, the fear of predation
influences the inherent reproductive capacity of prey populations. Thus, the repro-
ductive rate is modulated by a declining function of predator abundance and the
intensity of predation-induced fear [35, 50, 61]. Let h(k1,y) represent this decreasing
function, where k; denotes the intensity of fear and y signifies predator abundance.
The biologically pertinent assumptions underlying the formulation of such a func-
tion are elucidated as follows:

h(0,y) =1, h(ki,0)=1, klim h(k1,y) =0,

lim h(k1,y) _ 07 ah(klvy) 8h(§15 y)
Y

0.
e Ok =

<0,

The simplest function with these properties is h(k1,y) = ﬁ, which is also con-
sidered by Wang et al. [57] and many authors [12, 28, 33, 34] to include the impact
of predation induced fear in the growth of prey species. With the incorporation
of fear factor and Allee effect in the growth equations of prey, the predator—prey
system takes the following form:

dx 1 T Ty
B S 1 = _A) —
dt 1+k1ym( K) (z=4)

x + y’
(2.1)
dy  bOraizy 5
dt x4y R
where x(0) > 0 and y(0) > 0. As growth equations of both prey and predator are
undefined at (z,y) = (0,0), we redefine growth rates i—f =0, % =0, at (z,y) =

(0,0). Such modification was first proposed by Xiao and Ruan [58], and thereafter
considered in many studies.

It can be easily shown that for 0 < 2(0) < A, lim;_,o (t) = 0, which in turn
implies y(t) — 0 as t — oo. Therefore, for our proposed model system, we consider
x(0) > A. To understand the relationship between population size of a species and
its chances of extinction, ecologists came up with the idea of viable population size
[22, 45]. Tt is the minimum population size range at which preservation method can
be successfully accomplished. Prior to applying any conservation strategy on any
species, it is very important to predict its viable population size. Let x. be that
critical limit of population size, below which the species is in danger of extinction.
This critical value varies from species to species and also depends on various factors
such as nature of ecosystem, habitat and environmental factors.
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When the population of z-species is large enough, i.e. x > z., where z. is an
arbitrary chosen threshold population size of z-species, the dynamics is governed
by system (2.1). If the population size of x-species depletes and enters into the
interval A < z < z., where A is the Allee threshold, then to protect the z-species
from further diminution, we consider that top predator species that feeds upon y-
species (mesopredator) only but not on a-species, is being introduced in the habitat.
With the introduction of top predator, the dynamics of 3-species system is assumed
to be governed by the following system of differential equations:

dx 1 (1 T ) ( 4) 1 aqzy

— = re(l——)(x—A) —

dt 1+ kyy K l+koza+y’

dy 1 011y

- — &y — 2.2
BT ks w gy W o (2.2)
d

d—j = Oraoyz — 5922,

Initial conditions are x(0) > 0,y(0) > 0, and z(0) > 0. Again, the growth equations
are defined to be i—f = 0, % = 0, and % =0, at (z,y,2) = (0,0,0). Here,
along with the impact of direct predation of top predator, the non-consumptive
effect is also taken into account in governing the dynamics of mesopredator and
hence prey species. In addition to impeding growth, fear also impacts the effective
predation by mesopredators. A field investigation by Gordon et al. [17] furnished
compelling evidence of the suppression of foraging and predatory behavior among
mesopredators (e.g. feral cats) in the presence of apex predators (e.g. dingoes),
thereby mitigating the perceived predation risk encountered by small prey, such
as desert rodents. Moreover, within the Yellowstone National Park ecosystem, the
reintroduction of apex predators like wolves has brought about substantial shifts
in the behavior and grazing patterns of elk [39]. Consequently, in our proposed
model, both the growth and predation terms concerning mesopredators are subject
to multiplication by a factor of (1/1 + koz), representing a diminishing function
of the fear parameter (k2) and the density of top predators (z). Description of all
the parameters that appeared in system (2.2) is mentioned in Table 1. It is to be
noted that, we define z-species as prey, y-species as mesopredator and z-species as
top predator, throughout the paper. We intend to study the effect of introduction
of top predator on the density of our targeted prey species and explore the whole
dynamics exhibited by systems (2.1) and (2.2).

Now, we show that solution of system (2.1) satisfies the positivity and bound-
edness criteria. From system (2.1), we have

w0 =000 [ (i (1= 0 -0~ 5855 ) o

v =v0e| [ t (st 5 ) ]
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Table 1. Parameters and their description.
Parameter Description
r Per capita growth rate of prey
K Carrying capacity of prey
A Allee threshold
k1 Strength of predation fear among prey species
[e%1 Predation rate of mesopredator
01 Conversion efficiency of mesopredator
01 Natural death rate of mesopredator
ko Strength of predation fear among mesopredator
g Predation rate of top predator
(2 Conversion efficiency of top predator
d2 Density-dependent death rate of top predator

Therefore, x(0) > 0 and y(0) > 0 imply =(t) > 0, y(¢t) > 0, ¥V ¢ > 0. Hence,
the solution trajectories initiated from positive quadrant of x — y plane stay in the

positive quadrant.

To show boundedness of the system, consider

x(t) =

where

s e | [ Pty

Fla(u),y(w) = 1+

Now, we discuss two cases.

Case I. z(0) € (0, K).

krly(u) (1 - z;?) (2(u) — A) — z((mlf(ﬂ)u

We intend to show z(t) < K, ¥V ¢t > 0. On the contrary, suppose there exist two

positive values of t; T7 and
Then for all ¢t € (T1,T5),

2(t) = 2(0) exp UO

T5 such that Z‘(Tl) = K and l‘(t) > K, Vite (Tl,TQ).

F(x(u)w(u))du}

t

T
—eexp | [ Flatu).w)du exp[ Fa(u), y(u))du

= 2(T) exp [

< ‘T(Tl) = Ka

T

t

F(x(u)w(u))du}
T

which is contradictory to our assumption. Therefore, z(t) < K for all ¢ > 0.
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Case II. z(0) > K.
As F(x(t),y(t)) <0 for 2(t) > K, therefore whenever z(t) > K,

x(t) = 2(0) exp [/0 F(z(uw),y(u))du| < x(0).
Combining two cases, we get
x(t) < max{K,x(0)}.

Again, system (2.1) implies

9 a(ty+ y)) <7 - (alt) + ) ) -
dt ( 6, 01

Using Gronwall’s inequality, we have
1 1
2(t) + —y(t) ) < (2(0) + 2-y(0) ) e + L (1 — =),
91 91 51

As 61 > 0, so for sufficiently large time, we get the inequality

(x(t) + oily(t)) <5 te

e takes any positive value. Therefore, y(t) is also bounded.
In a similar manner, for system (2.2), we can have

2(t) < max{x(0), K}
and

Yy  aoyz
01 0,

<=1 (a0 + 50

Therefore, with similar argument as above, x(t) and y(t) are bounded as for large
time, (z(t)+ %y(t)) < 3 +e€, € takes any positive value. Now, 92 < Oy oymaxz — 022>
0202 Ymax

implies 2(¢) < max{z(0), 22522}, 4y is the upper bound of y.
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3. Dynamics of the System (2.1)
3.1. Equilibria of system (2.1) and their stability

Along with trivial equilibrium Fy(0,0), the predator-free equilibria E(A4,0) and
E5(K,0) are always feasible. Solution of the following two algebraic equations gives
feasible coexistence equilibrium E*(z*, y*):

r x a1y
1- = —A) - —— =
1+k1y( K)(z ) T+y 0

From the second equation, we have

o 91(11 — (51

=1 3.1
y 5 " (3.1)
Using this value of y in first equation, we get
X o 91(11 — (51 91(11 — (51
Simplifying, we get
22+ a1z +as =0, (3.3)
where
Kk (0 —61)? K 0 -6
oy = BB T ey gy and gy = K (rag =0
7“91(51 r 91

Therefore, system (2.1) has two co-existence equilibria if 613 — 01 > 0,01 <
0 and a? > 4as. These two equilibria collide when a? = 4ay and vanish for a? < 4as.
These conditions raise the possibility for system (2.1) to exhibit saddle-node bifur-
cation, provided 11 — 61 > 0 and a1 < 0 hold.

Trivial equilibrium E(0, 0) is non-hyperbolic attractor for all parameter values,
which can be proved as per [15, Lemma 3]. The equilibrium FE;(A4,0) is always
unstable, whereas the stability of equilibrium Fs (K, 0) depends on the sign of ;a1 —
61. Equilibrium FEs is stable only when the maximum per capita growth rate of
mesopredator is negative, i.e. 611 — 61 < 0. In that case, only prey population
survive and mesopredator population extinct. Fs becomes unstable when the sign
of f1r; — 81 changes to positive. Thus, system (2.1) shows transcritical bifurcation
between FEs(K,0) and coexistence equilibrium, provided co-existence equilibrium
exist. The Jacobian matrix at E*(z*, y*) is

hl(l‘*) _ (91&1 —(51)2 _ 1{31 (51y* _ (S%
1 + kly* 9%0[1 1 + kly* 91 9%0&1
(91041 — 51)2 01
Sl RS VIR - 0100 — 0
91(11 91&1( 1 1)
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where h(z) = zf(x) =rz (1 — %) (z — A). Now, we define

h/(l'*) (910&1 — 51)2 B 51

A=T L) = -
race(Jg+) 1+ kg P b

(101 —51), and

A= Det(JE*).

Some calculation results that A = Det(Jg«) < (or >)0 if % > (or <)%.

Therefore, we can conclude that E* is locally stable only when

Oro — 61
01 '

(1 + k1y*) ((91a1 VA (6101 — 51))] .

9%0[1 910&1

b (z*) < min {(1 + 2y (

Also, it is very clear that if h'(2*) is negative, then the equilibrium E* is always
stable.

Remark 1. From Eq. (3.3), it is to be noted that the z-component of the stable

—a1+ a1—4a2
co-existence equilibrium is r = ——5—+——

de _ lday _ — M _ K(ro1-61)?

e = 2d \/—{al Va 4a2} < 0, since = v > 0. Also,
de l da - — N 2 day da; _ 2KEki(0101—61)
dox — 2 do /—a§—4a2 {o1—+/ai 4a2} Jar ey dor S 0,as gor = o1 >

das __
Oanddel—7>O.

, where a1 < 0 and al 4a2 > 0. Now,

Therefore, it is evident that equilibrium density of prey species always follow
decreasing trend with increasing k1 and a7, whenever the equilibrium is feasible.

3.2. Bifurcation analysis of system (2.1)

Here, first we show the occurrence of transcritical bifurcation by using Sotomayor
theorem [37]. As E5(K,0) changes its stability at ;a1 —d; = 0. Therefore, we will
look for transcritical bifurcation around Es (K, 0) with respect to the parameter «;.
At E5, the Jacobian matrix of model system (2.1) is

J B —’I“(K — A) —Q1 35
P2 0 (910&1 — 51) ' ( . )

At aq(= oF) = 2—1, the matrix Jg, has simple zero eigenvalue. The eigenvectors
of Jg, and ng corresponding to zero eigenvalue are V = (v1,v2)T = (T(I_(—OfA), nHT
and W = (w1, ws)T = (0,1)T, respectively.

Consider, G = (g*, g?)T, where

1 r (1_2) gy Ty
I A x) =4 ’

2450068-10



Int. J. Biomath. Downloaded from www.worldscientific.com

by WEIZMANN INSTITUTE OF SCIENCE on 11/11/25. Re-use and distribution is strictly not permitted, except for Open Access articles.

How can we avoid the extinction of any species naturally?

Now,
0¢g?
W7 G, (Ba,ai) = wa 5 —0.
X (EBz,07)
6292

WT[DGal (E27 CYT)V] = WV =——(—— = 91 7é 0.
0010y | (g, az)

T2 * 28292 251

W D*G(Es, a7)(V, V)] = wavy == =7 £ 0.

0Y? | (53,01)

Therefore, according to Sotomayor theorem [37], the conditions for the existence
of transcritical bifurcation are satisfied. Hence, transcritical bifurcation occurs at
a1 = of for system (2.1), that is as ay crosses «of, the equilibrium Es changes its
stability and emergence (or vanishing) of a stable interior equilibrium is observed.

As mentioned in Remark 1, two co-existence equilibria collide and vanish
at (z,9), where f'(Z) = ki %. Corresponding & and ¢ are given by

101

i=3|(K+A)—Kk %} and § = Glo‘lz As two equilibrium collide at

(Z,9), discriminant of Eq. (3.3) becomes zero, which gives a critical value of ki,
k1 say. Now, we check the conditions of Sotomayor theorem [37] for saddle-node
bifurcation.

Let the eigenvectors corresponding to zero eigenvalue be V = (o1, 72)7 and
W = (wy,w2)T for Jz and Jg, respectively. Then

) 1
V=606 |, and W= 1f,;1y01y+92
o1 51(%)
Considering
1 a1y
1+k1yzf(x) Tty
G(z,y, k1) = )
Glalzyi
Tty R
we obtain
WG, (7,3, Fr) ] ~<1 ‘"E)( A) <0
€, Y, = - B rr T T -
R T ) K
and
o 2r  x
WTID*G(z,5, k) (V,V)] = ——=——— <0
DG 3RV V)] =

Hence, by Sotomayor theorem, we affirm that system (2.1) “undergoes saddle-node
bifurcation around E = (Z,7) as ky crosses a critical value k.

Occurrence or termination of limit cycle with varying parameter is characterized
by Hopf bifurcation. Choosing strength of fear k; as the bifurcation parameter, we
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intend to show analytically that system (2.1) exhibits Hopf bifurcation at interior
equilibrium E*(z*,y*). Conditions for occurrence of Hopf bifurcation for system
(2.1) are mentioned in the following theorem.

Theorem 3.1. System (2.1) undergoes Hopf bifurcation around the co-existence

h' (") 0101 -6
by < o and

equilibrium E*(xz*,y*) at k1 = ki if and only if
dkl( Mky=k: # 0, where A = Trace(Jg-).

Proof. At Hopf bifurcation point, the pair of eigenvalues of the Jacobian matrix
at E* should be purely imaginary. Therefore, the Jacobian matrix (3.4) has trace
A equal to zero for the critical value k1 = &}, which leads the corresponding char-
acteristic equation to become

A2 + Aklzkf =0.
Let the pair of purely imaginary roots of the above equation be A2 = ¢,
where ¢g = \/Zkl:k; exists, if A > 0. Therefore, at ky = kf
B! (z*) thog — 6y
1 + ley* 91 '
Suppose the eigenvalues of the Jacobian matrix for any neighboring point k; of

kf are ALQ = E(kl) + Lgf)(kl), where

A(m*(k1)27y*(k1)), o(k1) = \/A(m*(kl),y*(kl)) o AQ(x*(k/’livy*(kl))_

§(k1) =

Now,

S E0Dlmss = 3 | A ).y ()]

kv =k}
Transversality condition affirms the crossing of imaginary axis for the eigen-
values with nonzero speed. The transversality condition is satisfied if d;;glA(as*(kl),
2
y* (k1)) # 0 at ky = ki, Le. if h"(x )dk1 b=y 7 M(Glal — 01 + 0101) (2"

9206161
ke dz T )|;€1 —k». Therefore, with these conditions, system (2.1) would undergo Hopf
bifurcation at k; = kf. O

4. Dynamics of System (2.2)
4.1. Fxistence of interior equilibria

Positive solution of following three algebraic equations gives the co-existence equi-
librium of system (2.2):

1 T 1 ary
1—— —A) — = 4.1
1+I<;1yr( K)(I ) 1+kozao+y 0, (4.1)
1 910[11‘
—_— — 01 — =0 4.2
1+kozx+y 1T e ’ (4.2)
92a2y — (522 =0. (43)
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From (4.3), we have

0
p =202, (4.4)
02
Using this value of z in Eqgs. (4.1) and (4.2), we get
1+ k
r(1-2) @—4) =22 Ty (4.5)
K Ty l+kaS2y
Oronx [PYe G202
=(9 e 1+k . 4.

z+y <1+a2 52y><+252y> o

The curve (4.6) approaches origin and always increases in the positive quadrant. On
the other hand, the curve (4.5) passes through (A, 0) and (K, 0); increasing at (A, 0)
and decreasing at (K, 0). Therefore, these two isoclines may have no intersection,

100

80 [

60 [

100

80 [

60 [

> >
40 4071
201 20t
0 0 . . . .
0 200 400 600 800 1000 200 400 600 800 1000
x
(a) (b)
120 : : : : . 200
100 |
150
80
> 60 > 100
40
50
20t
0 . . . . o . . .
0 200 400 600 800 1000 200 400 600 800 1000
x
(c) (d)
Fig. 1. (Color online) Different scenarios for the intersection of two isoclines. Blue and red curves

represent isoclines (4.5) and (4.6), respectively. The value of fear parameter ki is varied and its
values are (a) k1 = 16, (b) k1 = 14.08, (c) k1 = 10, (d) k1 = 0.1, and other parameter values are
same as given in Eq. (5.2).
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one touching point, or two intersections, based upon parameter values, as shown in

. . o (K—A)?
Figs. 1(a)-1(c). Moreover, the curve (4.5) has two vertical asymptotes if “=7=~ >

%. In such a case, two isoclines obviously intersect at two points, as shown in

Fig. 1(d).

4.2. Stability and bifurcation analysis of system (2.2)

Now, the Jacobian matrix at co-existence equilibrium E = (Z,9,2) is

bir bz b3
Jp=|bar ba boz|, (4.7)
b3 b3z b33
where
$f'(2) + f(2) 1 ag? 1 6ra19?
b11= = - =~ 7 A 2 b21= NPISYE b31:05
14+ kg 1+ ko2 (2 +79) 1+ ka2 (24 9)
P @)k 1 aa? j ) )
bis = — - by = ——2—(5 bys = 0
12 A+ kg)? 14k (@+9)2 2 Fn gj( 1+ a2f), bi2 = 02022,
k LYy k 0 LYy
big = 2 Y bag = — 2 Ly gy, bzz = —029.

(14 k22)? (2 +9)

The characteristic equation corresponding to the Jacobian matrix is

(1+ko2)? (2 +9)

p* + Bip® + Bopi+ B3 =0 (4.8)
where
By = —(b11 + b2a + ba3),
By = b11ba2 + b11b33 + bazbss — bi2ba1 — basbsa,
B3 = b12b21b33 — b11b22b33 — b13b21b32 + b11b23b32.

According to the Routh—Hurwitz criterion, the roots of Eq. (4.8) lie on the left half
of a complex plane if and only if B; > 0, Bs > 0, and B;Bs — Bs > 0. Therefore,
with these conditions, the equilibrium F = (&, ¢, 2) is locally asymptotically stable.

4.3. Hopf bifurcation

Suppose at some critical value of as (3 say), the conditions B; > 0 and Bs > 0
hold but By By — B3 = 0. Then, the characteristic equation (4.8) can be written as

(4* + Ba)(n + B1) = 0. (4.9)

The above equation has two purely imaginary roots, say 12 = Ftv/Bs and a
negative real root, say us = —Bj.
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Now, suppose at any point ap in the e-neighborhood of o3, p12 = 71 £ vys.
Putting this in the characteristic equation and separating real and imaginary parts,
we get

7 = 3717 + Bini — B173 + Bay + Bz =0, (4.10)
37172 — 75 + 2B17172 + B2y = 0. (4.11)
As y9 # 0, from Eq. (4.11), we have
73 =371 + 2Bimi + Ba.
Using this value of 72 in Eq. (4.10), we get
87 4+ 8By} + 271(B? 4 Bs) + B1By — B3 = 0.

Differentiating above equation with respect to as and using the fact that 1 () = 0,
we get

{ﬁ

davs B} + Bs) das

az=aj

L@—o@ o [ﬁi(BlBQ - Bs)

Hence, transversality condition holds if riz(BlBQ — B3)|ay=a3 # 0. Therefore,
with this condition, system (2.2) exhibits Hopf bifurcation at as = «f around
interior equilibrium E. System (2.2) also shows saddle-node bifurcation, which can
be proved following the same analysis carried out in Sec. 3.2.

4.4. Bogdanov—Takens bifurcation

Bogdanov—Takens bifurcation (BT-bifurcation) is a type of codimension-2 bifurca-
tion. At BT-bifurcation point, the system has zero eigenvalue with multiplicity 2.
Using the methods from Kuznetsov [29], we derive the conditions for BT-bifurcation
at E of the model system (2.2).

To examine the conditions for BT-bifurcation of system (2.2) at E, first we use
the transformations = £+ X, y = §+Y, and z = 2+ Z in order to shift the origin
at B = (Z,9,2). Consequently, system (2.2) can be expressed in the subsequent

form:
x]’ x] [&
Y| =J, | Y|+ ]|C| +0(X,Y,Z%), (4.12)
Z z Cy

where

Cr = 1o X2+ Bog V2 4+ 1302 2% + 1110 XY + s XZ + 18,V Z,
Cy = 1300 X2 + 1300V + 1302 2% + 1310 XY + 15, X Z +18,,Y Z,

C3 = —(5222 + 92042172
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and

po_ r@i-4) r(l— %) arg?
07 KA+ kig)  K(1+k19) (@4 9)3(1 + ko2)’

riki(1— %) | 2riky —rKky .

20[1533;

Ly, =-— A) — ,
U Y/ N G o ER A Rl P TGy o)
P o a2 riki(1—£)(2 — A)
0207 (2 + 9)3(1 + ko2) (14 k19)3 ’

041]43%5339 1 041]92332

oy = — oy =
2T @)L+ k2)3 T (3 4 9)2(1 4 ke2)?

ll _ 041]{32532 12 _ 910&13}2
@Rk 0 (@49 (14 ke2)

~2 2
7 01012 9 011 k529

1520 = o2 =

PO (@) (L ke2) P (@ 491+ k22)?
12 . 291(111‘@ l2 _ 91(11/{32(1 + /{Jgé)yAQ
MO @49 (4 ke2) Y (@4 9)2(1 4 ke2)¥
2= _91(11]@@‘2(1 + kgé)
o (@ +9)*(1 + ko2)?

— (9.

The generalized characteristic vectors corresponding to characteristic value 111 2 = 0
- - . T 5 T
are U1 = [Ull u21 ’LL31] , and U2 = [U12 u22 ’LL32] where

Uy = baobss — bashs b23b32, Ugy = *@7 uzg1 =1, U= ﬁ,
b32b21 b3 A
Ugg = &, Uzg = ﬁ,
A A
where
b1 b1z D13 11 b1z b1
A =det(Jg) = |bar bao bag|, Ay =|Uz by bz,
0 b3z bss uz1 bza  bsz
bi1 11 bis bir bz un
Ag = |by1 o1 baz|, Az=|by by 21|,
0 az b33 0 b32 a3

which satisfy JEU1 =0 and JEUQ = U,. Also, Uy = [Q13 Tos &33]T is the eigen-
vector corresponding to characteristic value us = —B1, where

_ (boo + B1)(b3z + B1) —bazbzas . bz +DBr .
u , Uy =——7——, uzz=1.

b32boq b2

2450068-16



Int. J. Biomath. Downloaded from www.worldscientific.com

by WEIZMANN INSTITUTE OF SCIENCE on 11/11/25. Re-use and distribution is strictly not permitted, except for Open Access articles.

How can we avoid the extinction of any species naturally?

Let P = [Ul U, Ug], then under the non-singular linear transformation

X X1

N =
I
hell

falila

system (4.12) becomes
X = Xo + Ao X2 + A X1 Xo + Aga X2 + O(| X1, Xo, X3/?),
Xé = B20X12 + BlleXQ + BOQXQQ + O(|X17X2’ X3|2), (4.13)
X = —B1 X3+ O(|X1, X2, X3]%),
where the inverse of P is given by
011 U1z V13
Pl= |ty Do o3
Ug1 U3z V33
Here,
Agg = 011 (1300 3y + 190031 + L0013y + ot fizr + Loy @inidian + [y 21ti31)
+ D12(1300T11 + l20Ti31 + 10203, + 1T10Tn1to1 + Loy G11ls1 + 151, T21T31)
+ D13( =093, + O202@in1 1),
Avy = D11 (200 T2 + gglioriizg + goplisi iz + U1 (11 Tz + Gr2ian)
+ 21101 (T 1z + Ta2dis1) + 2051 (Ta2lizg + Gio1Tis2)) + D12(20500 U111 12
+ 213o0 o1 Tioe + 2505 T31132 + 110 (TUn1di2e + T12d21) + 20501 (11732
+ Gi12fi31) + 20511 (fi2atiz1 + G211i32)) + D13 (— 20213132 + O (Ti21 32
+ Ui22131)),
Agz = 011 (I3 i2s + a0 li3s + Lhoailias + Hygilinaiiog + Lo Gin2iize + 1 li2oiiz2)
+ D12 (1300 T3 + 520130 + 102035 + 110Tn2to2 + 3oy Ti2lis2 + 51, T22Ts2)
+ D13(— 023y + O2atingiizn),
Bag = a1 (I i3y + Lga0 a1 + 1500131 + Hrotin1fizr + o @iniian + 1y 21ti31)
+ D22 (1300011 + 2031 + L0203, + 1T10Tn1to1 + Loy G11lis1 + (514 T21T31)

- -2 JO
+ Uo3(—0203; + Oa0r2lin1iz1),
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By = 91 (230011112 + 2gegilioriis + 2sgtiz1lisze + 111 (Un1liaz + U121
+ 2110 (G132 + T2831) + 20811 (Taztizg + Gi211iz2)) + D22 (205001181
+ 21250 lio1 oz + 20305131132 + Uo (U1 Ti2e + G128ia1) + 20301 (11732
+ Gi12031) + 20311 (Tiaatiz) + Gi211a2)) + D23 (—2091i31 U2
+ 02002 (U1 Uga + U22tiz1)),

Boz = D21 (I300T3 + L2032 + L0283z + Uglazlios + Loy Gnalize + gy loaiizs)
+ D22 (I500T1a + 20T + 1502135 + 110Tn2ta + [o1 Gi2tss + 511 U221s2)
+ Doz (—0aiizy + Oaralinaiiza).

Hence, in accordance with the center manifold theorem, center manifold exists for
system (2.2), and it can be locally expressed in the following manner:

XC :{(Xl,XQ,Xg) S RQ X R‘ Xg = ﬁl(Xl,XQ) for |X1| < €1 and |X2| < €9,
F1(0,0) = DF1(0,0) = 0},

for and sufficiently small €; and e5. Thus, we have to calculate the center manifold
for system (2.2). The system is restricted to the central manifold given as

X| = Xo + Ago X7 4+ A X1 Xo + Apa X3 + O(| X1, Xa|?),

. o o o o (4.14)
X} = BagX{ + B11 X1 X2 + Boa X3 + O(| X1, Xo|?).
Using the transformation
N ~ 1 - ~ ~ o~~~ ~ ~
Xy = U+ =(Ay; + Boa)U? + AT + O(|U, V|?),
2 (4.15)
Xy = U — Axll? 4+ BT + O(|81, T|?),
and rewriting system (4.14) n Xl and Xg, we get,
X = Xo,
(4.16)

X} = BogX? + B X1 Xo,
where %20 = Bgo and %11 = Bu + 212120. The conditions derived for the occurrence

of BT-bifurcation are summarized in Theorem 4.1.

Theorem 4.1. If Boy and Bi11 are nonzero, then system (2.2) displays a co-
dimension 2 BT-bifurcation at the interior equilibrium E.

5. Numerical Simulations

This section deals with numerical simulations to explore the underlying dynamics
that systems (2.1) and (2.2) posses, with the help of MATLAB software and MAT-
CONT package. Suppose initially the density of prey is large enough such that it
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remains above the threshold value x.. Then the dynamics is governed by system
(2.1) and the parameter values we consider for simulations are as follows:

r=2 K=1000, A=100, o1 =3, 6,=07 & =15 (5.1)

First, we plot the equilibrium curve by varying fear parameter k; to capture the
impact of fear (Fig. 2(a)). Supercritical Hopf bifurcation occurs at k1 = 1.9956
(denoted by H) as first Lyapunov coefficient (I1) is negative (I; = —1.828425 x
10~7). Saddle-node bifurcation also is found to occur for system (2.1) at ky = 2.7194
(denoted by LP). At LP, two branches of equilibrium curves collide and disappear.
Continuation of limit cycles from the Hopf point has been plotted in Fig. 2(b). Sta-
ble limit cycles originate from Hopf point which further disappear at k1 = 1.997,
with the occurrence of Limit Point Curve (LPC). At LPC, saddle-node bifurcation
of limit cycle occurs, i.e. one stable and one unstable limit cycle collide and vanish.
It is evident that prey population diminishes with the increment in fear parameter.
Between Hopf point k1 = 1.9956 and k; = 1.996, the dynamical variables show
persistent periodic oscillations. Further, between k; = 1.996 and k; = 1.997, an
unstable limit cycle surrounding stable limit cycle exists. Trajectories converge to
stable limit cycle only when the initial point lies inside the outer unstable limit
cycle. For initial points in the exterior of the unstable limit cycle, the trajecto-
ries collapse. If k1 > 1.997, then species population goes to extinction. Therefore,
the prey species, which shows more anti-predator behavior, is more vulnerable to
extinction.

It is obvious that for system (2.1), whenever x(0) < A, solution trajectories
converge to the trivial equilibrium FEy(0,0). However, this is not the necessary
condition, i.e. even if x(0) > A, the solution trajectories may move toward the
trivial equilibrium depending on the initial start. In Fig. 3, we have plotted the

1000
900 -
800 - 800 -
700 1
H
600 1 600 £
8

= 500 -

400 1
LP 400
200 1 300 -
200 -

0 . . . . . . . . . .
0 0.5 1 15 2 25 3 1.995 1.9955 1996 1.9965 1997 19975 1.998
kl kl

(a) (b)

Fig. 2. (Color online) (a) Equilibrium curve in x of system (2.1) with respect to k1. Blue curve
is the collection of stable co-existence equilibria and red curve is the collection of unstable co-
existence equilibria. (b) Limit cycle continuation from Hopf bifurcation point. Stable limit cycles
are represented by blue color and unstable limit cycles by red color.
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Fig. 3. Phase portraits of system (2.1) for (a) k1 = 0.5, (b) k1 = 1.5, and (c) k1 = 3.

phase portraits for three different values of ki. It can be clearly observed that
the basin of attraction of the stable co-existence equilibrium is critically shrink-
ing with increasing k. After some critical value of k1, the co-existence equilibrium
loses its stability, and then trivial equilibrium becomes globally stable. In Fig. 4,
we plot xz-component of equilibrium by varying the predation rate parameter «;.
The figure depicts that the system undergoes transcritical bifurcation (denoted by
BP) at a; = 2.1428, supercritical Hopf bifurcation at a; = 3.3577 (first Lyapunov
coefficient, I; = —2.41598 x 10_8) and saddle-node bifurcation at oy = 3.555. For
lower predation rate, the predator-free equilibrium is stable. That means preda-
tors cannot capture and arrange sufficient food to feed upon. Therefore, predator
population cannot sustain in the system and as a result, the density of prey popu-
lation tends to its carrying capacity. Both prey and mesopredator species co-exist
for an intermediate range of predation rate o, depending on the initial population
sizes. For higher predation rate, both the species population collapse, irrespective
of initial population sizes.
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Fig. 4. (Color online) Equilibrium curve in x of system (2.1) with respect to o1. Here, we take
k1 = 1. Blue curve is the collection of stable equilibria and red curve is the collection of unstable
equilibria.
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Fig. 5. Bifurcation diagram in k1 — a1 parametric plane.

As we see that predation induced fear and rate of predation have the potential
to modulate system’s dynamics, two-parameter bifurcation diagram is plotted in
k1 — aq plane (Fig. 5). Black curve denotes transcritical curve, below which co-
existence equilibrium is not feasible, only mesopredator-free equilibrium is stable. In
the parametric region between transcritical and Hopf curve, one stable co-existence
equilibrium exists, which loses its stability as Hopf-curve is crossed. In the above
saddle-node curve, co-existence equilibrium loses its feasibility again. We can infer
from the figure that for less fearful prey, both the species may sustain stably in the
habitat for considerably large range of predation rate. However, if the impact of
fear is large enough, then higher predation rate always trigger extinction of species.
Therefore, for more fearful prey, extinction is more likely to occur. Also, from Fig. 5,
it is noted that if the parameter values lie in the region between transcritical curve
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and Hopf curve, then the threshold value z. determines whether the introduction
of top predator should be initiated in the habitat or not. However, whenever the
parameters lie above the Hopf curve, introduction of top predator is inevitable,
whatsoever x. might be.

From the above discussion, we observe that, for higher strength of fear and
magnitude of predation rate, prey species equilibrium density is reducing, and even
the collapse of species population is also occurring. In such a situation, the idea
of introduction of top predator which predates on mesopredator but not on the
considered prey species is deployed. In Fig. 6, we first plot time series for system
(2.1) up to t = 50 unit, taking k1 = 1.8 and other parameter values are same as
given in Eq. (5.1). We see that system stabilizes at (z*,y*) = (632.531,253.088).
Then at ¢ = 50 unit, we introduce top predator in the system, and we plot time
series from ¢ = 50 unit to ¢ = 100 unit, for system (2.2). The parameter values we
comnsider for the simulations of system (2.2) are given by

r=2K=1000, A=100, k =18, a;=3, 60;=0.7,

51 == 15, k2 == 01, Qo = 01, 92 == 03, 52 = 2. (52)

We observe that top predator introduction induces trophic cascading effect and
system (2.2) stabilizes with very high density of prey species.

In Fig. 7, we have plotted the phase portraits of systems (2.1) and (2.2) for
k1 = 1.8. It is evident that the basin of attraction of the co-existence equilibrium
is broadening with the incorporation of the top predator. Suppose we choose the
critical value 2. = 400, then from Fig. 7(a), we can see that trajectories with initial
start outside the basin of attraction of stable interior equilibrium, i.e. upper half
of green curve, bound to cross z. and ultimately falls to origin. The instant it
crosses ., we will introduce top predator. With the introduction of top predator,

1000 T
i
i
i —— Prey
800 : —— Mesopredator |
600 - 1
>
8
400 i 1
i
~e——o—
200 - \ b
0 L
0 20 40 60 80 100

t

Fig. 6. (Color online) Time series of system (2.1) is plotted for time interval [0,50] and time
series of system (2.2) is plotted for time interval [50,100]. Here we take k1 = 1.8. and other
parameter values are same as given in Eq. (5.2). Blue curve represents density of prey and red
curve represents the density of mesopredator.
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Fig. 7. Phase portraits of (a) system (2.1), and (b) system (2.2), for k1 = 1.8.

100

the species extinction can be controlled if the solution trajectories lie inside the
basin of attraction for the equilibrium of system (2.2). In Fig. 7(b), z(0) is taken
to be z(0) = 5 for all the solution trajectories, i.e. we are considering that 5 unit
of top predator is being introduced. It is also observed that the value of z(0) has
not much influence on the basin of attraction. Even though for system (2.2) the
basin of attraction of the stable co-existence equilibrium is being increased, the
trajectories may also converge to origin if the initial point lie on the left of green
curve (Fig. 7(b)).

Similarly, in Fig. 8, we plot time series for system (2.1) in time interval [0, 50]
and for system (2.2) in [50, 100], taking &y = 1.9965 and other parameter values are
same as given in Eq. (5.2). Figure 8 corroborates that introduction of top predator
even stabilizes an oscillatory system. Also, in both the above cases, introduction

1000 T T T T

——— Prey
800 [ —— Mesopredator |

600 1

z,y

400 1

200 :\/\/\/\/\JL il

o} 20 40 60 80 100
t

Fig. 8. (Color online) Time series of system (2.1) is plotted for time interval [0, 50] and time series
of system (2.2) is plotted for time interval [50, 100]. Here, k1 = 1.9965 and other parameter values
are same as given in Eq. (5.2). Blue curve represents density of prey and red curve represents the
density of mesopredator.
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Fig. 9. Phase portraits of (a) system (2.1) and (b) system (2.2), for k1 = 1.9965.

of top predator induces cascading effect. As top predator limits the density of
mesopredator, the density of prey species increases.

Phase portrait of systems (2.1) and (2.2) for k; = 1.9965 is plotted in Fig. 9.
One interior equilibrium of system (2.1) is saddle and the other unstable one is
surrounded by a stable (magenta color) and an unstable limit cycle (green color).
Region inside the unstable limit cycle serves as the basin of attraction of the stable
limit cycle, which is very narrow. Otherwise the trajectories finally accumulates at
origin, and in the meantime the density of prey species falls below our considered
z.. In such a situation, top predator introduction magnifies the basin of attraction
of corresponding interior equilibrium many fold, mop up the oscillation, and drives
the trajectories to stabilize at higher equilibrium density of prey species. Here also,
some region of positive quadrant lies outside the basin of attraction of interior
equilibrium, and trajectories starting in this region ultimately terminate at origin.

We have already observed in Fig. 2(a), higher strength of fear triggers population
collapse. So in Fig. 10, we consider k1 = 2.2 and plot times series of system (2.1) up
to t = 5 unit, when both the species rapidly move towards extinction. Introduction
of top predator at that instance mediates the system to a stable state where all the
species co-exist. All trajectories in Fig. 11(a) converge to trivial equilibrium for any
initial start. In such a situation, species can be prevented from extinction, provided
the initial point of the trajectories of system (2.1) lies inside the basin of attraction
of stable equilibrium point (Fig. 11(b)). Thus, the density of a particular species
in an ecosystem can be enriched by introducing a suitable top predator. Even the
extinction of a species can be avoided by timely introducing top predator.

Thereafter, we plot the equilibrium curve for system (2.2) by varying fear param-
eter ky (Fig. 12). We observe that a stable branch exists up to large value of k;
and then the system undergoes saddle-node bifurcation at ky = 14.08, where the
stable branch collides with unstable branch and co-existence equilibrium vanishes.
That means when perceiving predation risk, prey species deploy most of their effort
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Fig. 10. (Color online) Time series of system (2.1) is plotted for time interval [0,5] and time
series of system (2.2) is plotted for time interval [5, 10]. Here, k1 = 2.2 and other parameter values
are as given in Eq. (5.2). Blue curve represents density of prey and red curve represents the density
of mesopredator.
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Fig. 11. Phase portraits of (a) system (2.1) and (b) system (2.2), for k1 = 2.2.
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Fig. 12. (Color online) Equilibrium curve in z for system (2.2) with respect to k1. Blue curve
is the collection of stable co-existence equilibria and red curve is the collection of unstable co-
existence equilibria.
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Fig. 13. (Color online) Equilibrium curve in z for system (2.2) with respect to a2, where (a)
k1 =1, (b) k1 = 4. Blue curve is the collection of stable co-existence equilibria and red curve is
the collection of unstable co-existence equilibria.

and time in anti-predation activities, growth rate becomes very low and prey pop-
ulation gradually dies out. This further implies that the whole system fall out and
all the species become extinct. Figure 13(a) represents the equilibrium curve in
ag — x plane, obtained by varying the predation rate of top predator (az), con-
sidering k1 = 1 and rest of the parameter values are same as in Eq. (5.2). The
system undergoes transcritical bifurcation at as = 0, and the system remains sta-
ble for all positive as. Keeping as = 0 is just mimicking the situation that the
dynamics is governed by system (2.1), and then the system achieves its stable
equilibrium (z*,y*) = (803.598,321.439). Now, as the top predator is introduced,
and its predation rate takes any positive value, density of prey species increases
from its previous state. However, for k1 = 4, the system shows different kinds of
dynamics (Fig. 13(b)). System (2.2) remains stable for relatively higher values of
ag. It undergoes Hopf bifurcation at as = 0.029, which is subcritical in nature
(I1 = 4.734 x 107%), and saddle-node bifurcation at as = 0.0257. Therefore, the
system experiences population collapse or species extinction if as decreases below
0.029. Since we consider k1 = 4, we can see from Fig. 2(a) that system (2.1) already
experiencing population collapse. Therefore, top predator is introduced at some
instance of time to re-instate the species. However, if the top predators are found
to be weak, failed to capture mesopredator at some considerable rate, then the
target of enriching x-species population cannot be achieved.

Furthermore, to get more intriguing effect of k1 and as on the dynamics of sys-
tem (2.2), we plot bifurcation diagram in k; — ay parametric plane (Fig. 14). The
red, blue and black color curve, respectively, representing the saddle-node, Hopf
and homoclinic curve, all of which converge to BT-bifurcation point. Below the
saddle- node curve, the system has no co-existence equilibrium. Between saddle-
node and Hopf curve, although two co-existence equilibria exist, both are unstable.
Between Hopf and homoclinic curve, one co-existence equilibrium gains stability
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Fig. 14. (Color online) Bifurcation diagram of system (2.2) in k1 — a parametric plane. Rest
parameter values are same as given in (5.2). The red, blue and black color curves, respectively,
representing the saddle-node, Hopf and homoclinic curve.

through Hopf bifurcation with an unstable limit cycle surrounding the equilibrium.
In such case, if the initial point lies in the interior of unstable limit cycle, then
trajectories converge to the stable co-existence equilibria, otherwise the trajecto-
ries fall out. Above the homoclinic curve, the unstable limit cycle vanishes with
the occurrence of homoclinic bifurcation and the system has only a stable and an
unstable co-existence equilibria. Biologically, the figure interprets that if the prey
species is more fearful and show strong anti-predation behavior, then in order to
protect ecosystem from collapsing, predation rate of introduced top predator should
be high enough.

Now, to understand the combining impact of both fear parameters on the den-
sity of targeted species (prey) population, we draw equilibrium curve of system
(2.2) with respect to fear parameter ko, for three different values ki, represented
by Fig. 15. The complete dynamics of system (2.2) with respect to k1 and ko is
captured in Fig. 16. Similar kind of dynamics as explained for Fig. 14 is observed
in this case also. When the strength of mesopredator induced fear on prey pop-
ulation is weak, density of prey population maintained at higher level, whatever
the strength of top predator induced fear might be. However, if the cost of fear
on prey population is relatively high, then the strength of top predator induced
fear should be comparatively high for the stable co-existence of the species in the
system. Parameters should lie above the black curve (homoclinic curve) for stable
co-existence of all the species with density of prey population at higher level. There-
fore, if the targeted species is less responsive toward mesopredator induced fear, the
purpose of elevating prey density would be successful by the introduction of top
predator. However, for more fearful prey species, the motive can be achieved if the
strength of top predator induced fear on mesopredator is comparatively higher.

Although increasing mesopredator induced fear factor (k1) leads to shrinking
of basin of attraction of the stable equilibrium of system (2.2), but increase in
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Fig. 15. (Color online) Equilibrium curve of system (2.2) with respect to k2, where (a) k1 = 4,
(b) k1 = 5.6, (c) k1 = 7. Blue curve is the collection of stable co-existence equilibria and red curve
is the collection of unstable co-existence equilibria.
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Fig. 16. (Color online) Bifurcation diagram of system (2.2) in k1 — k2 parametric plane. Rest

parameter values are same as given in Eq. (5.2). The red, blue and black color curves, respectively,
representing the saddle-node, Hopf and homoclinic curve.
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predation rate (as) and top predator induced fear (k2) has a positive impact in
expanding the basin of attraction.

6. Conclusion

Over the course of time, many species have gone extinct and a large number
of species have been declared endangered. Sometimes, the species population in
a habitat becomes low due to over-predation augmented with some environmen-
tal factors. Previously, the producers and the herbivores are believed to be main
contributors in shaping an ecosystem and the ecologists conceived the concept of
bottom-up approach that governs an ecosystem. With experimental evidences col-
lected from various ecosystem, ecologists started to understand that an ecosystem
is not totally controlled by the producers or primary consumers, those occupying
the lower trophic level. The tertiary consumers or apex predators, those comprise
the higher trophic levels of a food chain are also important drivers of ecosystem.
From the inception of Green World Hypothesis by Hairston et al. [20], the idea of
top-down mechanism surfaced in the scientific community. From thereon, the role
of predator in maintaining a healthy ecosystem is being studied more and more. In
this study, we theoretically conceptualize the role of top predator in protecting a
prey species from extinction, in presence of mesopredator. The main idea is that
if the targeted species (prey) population in the considered habitat falls below a
certain threshold, top predator would be introduced in that habitat. We can call
it as species population enrichment in a habitat. For the proposed mathemati-
cal model, feasibility conditions of interior equilibrium and its stability conditions
are obtained. Following are the results of our study obtained theoretically and
numerically:

(1) For system (2.1), in the absence of top predator, the density of prey species is
always decreasing with the increasing strength of fear and predation rate. Also,
the basin of attraction of the stable co-existence equilibrium is observed to be
shrinking critically with increasing fear parameter and predation rate.

(2) Beyond certain threshold value of fear parameter or predation rate, population
collapse and both species extinct.

(3) Our theoretical study suggests that the elevation of density of lower trophic
species in the considered region can be possible with the introduction of a top
predator, which feed upon the mesopredator only but not on prey.

(4) Also top predator introduction can eliminate the persistent periodic oscillation
of species density and drive the system to stable state.

(5) More importantly, species extinction can be prevented by timely introduction
of top predator in the habitat.

(6) If the impact of predation induced fear is very high on prey species, then in order
to reinstate the density of prey species at higher level either the predation rate
of top predator should be relatively high or the effect of fear on mesopredator
is strong enough.
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