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A large number of herbivorous mammals and reptiles in many terrestrial ecosystems
across the globe are presently in the receiving end of extinction. Over-exploitation by its
immediate predator and anthropogenic actions is one of the main reasons. Reintroduc-
tion of apex predator or top predator at some instances has proven to be a successful
strategy in restoring ecological balance. In this paper, we conceptualize the role of top
predator in enriching the density of vulnerable species of lower trophic level, with the
help of mathematical modeling. First, the dynamical behavior of two species system
(prey and mesopredator) is studied, where growth of prey is subject to strong Allee
effect. Also, the cost of predation induced fear is incorporated in the growth term. Para-
metric regions, for which the species perceive extinction risk are analyzed and depicted
numerically. We consider that whenever density of the vulnerable species reach a cer-
tain threshold, minimum viable population, top predator is introduced in the habitat.
Our obtained results show that a species population can be restored from the verge of
extinction to a stable state with much higher population density with the introduction
of top predator and even it stabilizes an oscillatory system.

Keywords: Top predator; fear effect; Allee effect; ratio-dependent functional response;
extinction; bifurcations.
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1. Introduction

Species extinction rate is unprecedentedly growing over time. According to the

International Union of Conservation of Nature (IUCN), 160 species have gone

extinct in the last decade [1], which includes mammals, reptiles, birds and plants.

Furthermore, 18% of extant vertebrates have been declared vulnerable [2]. Atwood

et al. [7] concluded from their study that herbivores perceive elevated predation

risk among mammals, birds and reptiles. Some theoretical studies with the help of

mathematical modeling have been done to preserve endangered species. Oliveira and

Hilker [32] explored bio-control approach by introducing disease in invasive predator

species. Disease weakens the predators and the augmented death results in limiting

the predation, which in turn will allow the endangered species to recover. Numfor

et al. [31] studied optimal control strategy of trapping and culling of invasive preda-

tors along with bio-control strategy to conserve endangered species. As every organ-

ism has fair contribution and specific role in shaping and preserving the healthy

ecosystems in which they dwell, continuous species loss has influenced the ecology

of our planet profoundly. All the species in terrestrial or aquatic ecosystem occupy

some trophic level in the food chain. Often, extinction of lower trophic species leads

to secondary extinction. Predation or feeding serves as the bridge between trophic

levels, which provides the pathway for energy to flow from lower trophic levels to

higher trophic levels. The entire idea of energy flow mechanism is based on the

bottom-up approach, i.e. the cumulative resources, like food and habitat available

for lower trophic level ultimately determine the fate of those species occupying

higher trophic levels. This concept of bottom-up approach has been considered as

one of the main tenets of ecology. However, to answer the famous question “why

is the Earth green?”, ecologists agreed that influence of top-down approach along

with bottom-up approach is also pervasive [20, 38]. In this top-down approach, the

role of predators becomes significant in shaping the ecosystem. Carnivores weeding

out weak, slow and dying animals, which belong to their prey community, and thus

keep prey population in check. The presence of predators restrains herbivores from

accessing and over-utilizing the plant resources they feed upon. Thus, predation

is not only beneficial for predators, but also keeps the entire ecosystem healthy.

Therefore, ecologists come out with the concept of introducing top predator as one

of the most plausible techniques to improve ecological functioning. Sergio et al. [44]

reviewed the role of top predators in bio-diversity restoration in reference of various

ecosystems. Baker et al. [8] proposed an ensemble modeling method to study the

potential outcomes of keystone predator reintroduction in an ecosystem.

An experiment of repatriation of wolf in Yellowstone national park in the USA

comes out with resounding success in reviving the degrading ecosystem. In 1995,

eight wolves were reintroduced in Yellowstone national park with the expectation

of restoring the continuously deteriorating ecosystem. Reintroduction of wolves

brought back lots of ecological benefits for the whole national park ecosystem [39].

As predation by wolves limits the population of deer and elk, some endangered
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How can we avoid the extinction of any species naturally?

plant species were observed in more patches, colony of beaver species increased,

more songbirds were being observed as canopy increased, more scavengers were

seen as carcasses increased. Some barren land came to life as grazing decreased

by some amount. Besides that, more interestingly, it is observed that the behavior

and grazing pattern of elk have changed in the presence of wolves. Very recently,

in 2018, the reintroduction of wolves in Isle Royale Island also got reverberating

success in bringing back the degrading ecosystem to its healthy state [48].

Mathematical modeling provides a platform to understand the dynamic pro-

cess involved in ecology and are often useful to make practical predictions and

derive insightful conclusions. Starting from the seminal work of Lotka–Volterra

[30, 54], theoretical study of predator–prey interaction and food web system tra-

verse a long way with the help of mathematical modeling and has proven to be a

persuasive alternative for time consuming and often risky field experiments. Devel-

opment of mathematical models with the incorporation of species specific traits

engaged many researchers working in the field of ecological modeling. Allee, in

1930s, put forward his observation that in many species, the growth and popula-

tion density are positively correlated. Biological phenomena like difficulty in mating

and reduced anti-predator defense lead to the Allee effect. Numerous predator–prey

systems have been studied considering strong Allee effect [3, 15, 55, 56, 62, 63] for

its ecological significance. Along with the modified growth term, predator func-

tional response plays a key role in modulating predator–prey dynamics. Predation

usually involves searching of food entity and food sharing. Ratio-dependent func-

tional response, that stands on the ratio of prey and predator population instead of

depending on only prey population, better captures the mutual interference among

predators [13, 19]. Interestingly, for ratio-dependent predator–prey system, both

the populations may extinct even in presence of stable co-existence equilibrium

in the system. Many researchers studied the predator–prey dynamics considering

functional response to be ratio-dependent [15, 16, 21, 23, 53, 60]. Besides the con-

sumptive effect of predator, the growth of prey species is also influenced by the

non-consumptive effect. That is, only the presence of predator brings substantial

psychological and behavioral changes in prey species [14, 46, 49, 59]. The change

in foraging behavior and spending more effort and time in vigilance to counter the

fear of predation attributes to reduction in the growth rate of species. A significant

number of modeling-based studies have been done to see the impact of fear on the

dynamics of different predator–prey system [18, 28, 40–42, 51, 57]. Cong et al. [12]

and Verma et al. [52] studied the role of fear in a three-species food chain model.

Panday et al. [36] observed that fear induces trophic cascading in a three species

food chain model.

An ecosystem is seldom stable, rather it is a very dynamic system and is always

in recovering phase. However, sometimes, a particular entity of an ecosystem, i.e. a

species becomes badly affected mainly due to over-exploitation and environmental

factors. The affected species may even reach at the verge of extinction. In this paper,

we provide a theoretical study to avoid the extinction of a species that occupy a
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relatively lower trophic level in a food chain. We conceptualize the introduction of

apex predator as a species conservation tool.

Specific research questions, we intend to address in this study, are as follows:

• If the density of a species depleted below a certain threshold, i.e. viable population

size, which triggers the chance of extinction of the species, then how the extinction

can be avoided and density of the species can be restored naturally?

• In modeling phenomena, we incorporate the impact of predation induced fear

along with direct killing. How these fear parameters mediate the dynamics of the

proposed systems?

2. Mathematical Model

Suppose x is the density of our target species, which takes the place of prey in a

predator–prey interaction. y is the density of predator (mesopredator) population,

which totally depends on the considered prey species for food. In previous studies,

predator functional response, i.e. per capita predator’s food consumption per unit

time, was thought to be a function of prey density only (Holling type I, II, and

III functional responses), which covers a huge volume of literature. However, over

the course of time, with ecological justifications, it is believed that predator density

also has a role to play in the predator’s functional response. Thereafter, ratio-

dependent functional response, a particular form of predator density-dependent

response, where food consumption by a predator per unit time is a function of ratio

of prey density to predator abundance, becomes popular among many researchers.

Outcomes of many field and laboratory experiments support the consideration of

ratio-dependent functional response [5, 6, 9]. Kuang and Baretta [27] first analyzed

global qualitative behavior of a ratio-dependent predator–prey system in a system-

atic way. Thereafter, Hsu et al. [23] contributed with a more detailed study of global

qualitative behavior and answered many open questions left unanswered by Kuang

and Baretta. Xiao and Ruan [58] also put light on global behavior in the neigh-

borhood of origin of ratio-dependent predator–prey system. They have investigated

different kinds of topological structures in the neighborhood of origin. In many ter-

restrial and aquatic ecosystems, the growth rate of some species is observed to follow

Allee dynamics. At smaller species density, i.e. below a certain threshold popula-

tion level, net population growth becomes negative. Few studies have been carried

out by considering ratio-dependent functional response along with the incorpora-

tion of Allee effect in the growth rate of species [3, 10, 26, 43]. In particular, Sen

et al. [43] explicitly incorporated the Allee factor along with logistic growth term

of prey in a predator–prey system with ratio-dependent functional response. In this

study, they compare the dynamics of ratio-dependent predator–prey model with

and without Allee effect. They concluded that chance of persistent oscillation of

species density ceases with the consideration of Allee effect in the ratio-dependent

predator–prey system. Surprisingly, the study of non-consumptive effect of preda-

tor over prey density (effect of predation fear), where prey’s growth rate subjected
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How can we avoid the extinction of any species naturally?

to strong Allee effect along with ratio-dependent predator’s functional response,

is overlooked. Here, first we consider a two species system, where we represent

the interaction of two species by a classical predator–prey model with the ratio-

dependent Michaelis–Menten-type functional response [24, 25]. Furthermore, the

non-consumptive impact of predators, namely, the induction of fear, elicits signif-

icant behavioral and physiological alterations in prey species. Predation-induced

fear not only contributes to diminished reproductive output [59], but also affects

foraging behavior and adult survival [4, 11, 47]. Consequently, the fear of predation

influences the inherent reproductive capacity of prey populations. Thus, the repro-

ductive rate is modulated by a declining function of predator abundance and the

intensity of predation-induced fear [35, 50, 61]. Let h(k1, y) represent this decreasing

function, where k1 denotes the intensity of fear and y signifies predator abundance.

The biologically pertinent assumptions underlying the formulation of such a func-

tion are elucidated as follows:

h(0, y) = 1, h(k1, 0) = 1, lim
k1→∞

h(k1, y) = 0,

lim
y→∞

h(k1, y) = 0,
∂h(k1, y)

∂k1
< 0,

∂h(k1, y)

∂y
< 0.

The simplest function with these properties is h(k1, y) = 1
1+k1y

, which is also con-

sidered by Wang et al. [57] and many authors [12, 28, 33, 34] to include the impact

of predation induced fear in the growth of prey species. With the incorporation

of fear factor and Allee effect in the growth equations of prey, the predator–prey

system takes the following form:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dx

dt
=

1

1 + k1y
rx
(
1 − x

K

)
(x − A) − α1xy

x + y
,

dy

dt
=

θ1α1xy

x + y
− δ1y,

(2.1)

where x(0) > 0 and y(0) > 0. As growth equations of both prey and predator are

undefined at (x, y) = (0, 0), we redefine growth rates dx
dt

= 0, dy
dt

= 0, at (x, y) =

(0, 0). Such modification was first proposed by Xiao and Ruan [58], and thereafter

considered in many studies.

It can be easily shown that for 0 < x(0) < A, limt→∞ x(t) = 0, which in turn

implies y(t) → 0 as t → ∞. Therefore, for our proposed model system, we consider

x(0) > A. To understand the relationship between population size of a species and

its chances of extinction, ecologists came up with the idea of viable population size

[22, 45]. It is the minimum population size range at which preservation method can

be successfully accomplished. Prior to applying any conservation strategy on any

species, it is very important to predict its viable population size. Let xc be that

critical limit of population size, below which the species is in danger of extinction.

This critical value varies from species to species and also depends on various factors

such as nature of ecosystem, habitat and environmental factors.
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When the population of x-species is large enough, i.e. x > xc, where xc is an

arbitrary chosen threshold population size of x-species, the dynamics is governed

by system (2.1). If the population size of x-species depletes and enters into the

interval A < x ≤ xc, where A is the Allee threshold, then to protect the x-species

from further diminution, we consider that top predator species that feeds upon y-

species (mesopredator) only but not on x-species, is being introduced in the habitat.

With the introduction of top predator, the dynamics of 3-species system is assumed

to be governed by the following system of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
=

1

1 + k1y
rx
(
1 − x

K

)
(x − A) − 1

1 + k2z

α1xy

x + y
,

dy

dt
=

1

1 + k2z

θ1α1xy

x + y
− δ1y − α2yz,

dz

dt
= θ2α2yz − δ2z

2.

(2.2)

Initial conditions are x(0) > 0, y(0) > 0, and z(0) > 0. Again, the growth equations

are defined to be dx
dt

= 0, dy
dt

= 0, and dz
dt

= 0, at (x, y, z) = (0, 0, 0). Here,

along with the impact of direct predation of top predator, the non-consumptive

effect is also taken into account in governing the dynamics of mesopredator and

hence prey species. In addition to impeding growth, fear also impacts the effective

predation by mesopredators. A field investigation by Gordon et al. [17] furnished

compelling evidence of the suppression of foraging and predatory behavior among

mesopredators (e.g. feral cats) in the presence of apex predators (e.g. dingoes),

thereby mitigating the perceived predation risk encountered by small prey, such

as desert rodents. Moreover, within the Yellowstone National Park ecosystem, the

reintroduction of apex predators like wolves has brought about substantial shifts

in the behavior and grazing patterns of elk [39]. Consequently, in our proposed

model, both the growth and predation terms concerning mesopredators are subject

to multiplication by a factor of (1/1 + k2z), representing a diminishing function

of the fear parameter (k2) and the density of top predators (z). Description of all

the parameters that appeared in system (2.2) is mentioned in Table 1. It is to be

noted that, we define x-species as prey, y-species as mesopredator and z-species as

top predator, throughout the paper. We intend to study the effect of introduction

of top predator on the density of our targeted prey species and explore the whole

dynamics exhibited by systems (2.1) and (2.2).

Now, we show that solution of system (2.1) satisfies the positivity and bound-

edness criteria. From system (2.1), we have

x(t) = x(0) exp

[∫ t

0

(
r

1 + k1y(u)

(
1 − x(u)

K

)
(x(u) − A) − α1y(u)

x(u) + y(u)

)
du

]
,

y(t) = y(0) exp

[∫ t

0

(
θ1α1x(u)

x(u) + y(u)
− δ1

)
du

]
.
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How can we avoid the extinction of any species naturally?

Table 1. Parameters and their description.

Parameter Description

r Per capita growth rate of prey
K Carrying capacity of prey
A Allee threshold
k1 Strength of predation fear among prey species
α1 Predation rate of mesopredator
θ1 Conversion efficiency of mesopredator
δ1 Natural death rate of mesopredator
k2 Strength of predation fear among mesopredator
α2 Predation rate of top predator
θ2 Conversion efficiency of top predator
δ2 Density-dependent death rate of top predator

Therefore, x(0) > 0 and y(0) > 0 imply x(t) ≥ 0, y(t) ≥ 0, ∀ t ≥ 0. Hence,

the solution trajectories initiated from positive quadrant of x− y plane stay in the

positive quadrant.

To show boundedness of the system, consider

x(t) = x(0) exp

[∫ t

0

F (x(u), y(u))du

]
,

where

F (x(u), y(u)) =
r

1 + k1y(u)

(
1 − x(u)

K

)
(x(u) − A) − α1y(u)

x(u) + y(u)
.

Now, we discuss two cases.

Case I. x(0) ∈ (0, K).

We intend to show x(t) ≤ K, ∀ t ≥ 0. On the contrary, suppose there exist two

positive values of t; T1 and T2 such that x(T1) = K and x(t) > K, ∀ t ∈ (T1, T2).

Then for all t ∈ (T1, T2),

x(t) = x(0) exp

[∫ t

0

F (x(u), y(u))du

]

= x(0) exp

[∫ T1

0

F (x(u), y(u))du

]
exp

[∫ t

T1

F (x(u), y(u))du

]

= x(T1) exp

[∫ t

T1

F (x(u), y(u))du

]

< x(T1) = K,

which is contradictory to our assumption. Therefore, x(t) ≤ K for all t > 0.
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Case II. x(0) > K.

As F (x(t), y(t)) ≤ 0 for x(t) ≥ K, therefore whenever x(t) ≥ K,

x(t) = x(0) exp

[∫ t

0

F (x(u), y(u))du

]
≤ x(0).

Combining two cases, we get

x(t) ≤ max{K, x(0)}.

Again, system (2.1) implies

dx(t)

dt
+

1

θ1

dy(t)

dt
≤ rx

(
1 − x

K

)
(x − A) − δ1y

θ1
.

Letting γ = maxt≥0{rx(1 − x
K

)(x − A) + δ1x},

d

dt

(
x(t) +

1

θ1
y(t)

)
≤ γ − δ1

(
x(t) +

1

θ1
y(t)

)
.

Using Gronwall’s inequality, we have

(
x(t) +

1

θ1
y(t)

)
≤
(

x(0) +
1

θ1
y(0)

)
e−δ1t +

γ

δ1
(1 − e−δ1t).

As δ1 > 0, so for sufficiently large time, we get the inequality

(
x(t) +

1

θ1
y(t)

)
≤ γ

δ1
+ ε,

ε takes any positive value. Therefore, y(t) is also bounded.

In a similar manner, for system (2.2), we can have

x(t) ≤ max{x(0), K}

and

dx(t)

dt
+

1

θ1

dy(t)

dt
≤ rx

(
1 − x

K

)
(x − A) − δ1y

θ1
− α2yz

θ1
.

≤ rx
(
1 − x

K

)
(x − A) − δ1y

θ1

≤ γ − δ1

(
x(t) +

1

θ1
y(t)

)
.

Therefore, with similar argument as above, x(t) and y(t) are bounded as for large

time, (x(t)+ 1
θ1

y(t)) ≤ γ
δ1

+ε, ε takes any positive value. Now, dz
dt

≤ θ2α2ymaxz−δ2z
2

implies z(t) ≤ max{z(0), θ2α2ymax

δ2

}, ymax is the upper bound of y.
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How can we avoid the extinction of any species naturally?

3. Dynamics of the System (2.1)

3.1. Equilibria of system (2.1) and their stability

Along with trivial equilibrium E0(0, 0), the predator-free equilibria E1(A, 0) and

E2(K, 0) are always feasible. Solution of the following two algebraic equations gives

feasible coexistence equilibrium E∗(x∗, y∗):

r

1 + k1y

(
1 − x

K

)
(x − A) − α1y

x + y
= 0,

θ1α1x

x + y
− δ1 = 0.

From the second equation, we have

y =
θ1α1 − δ1

δ1
x. (3.1)

Using this value of y in first equation, we get

r
(
1 − x

K

)
(x − A) =

θ1α1 − δ1

θ1

(
1 + k1

θ1α1 − δ1

δ1
x

)
. (3.2)

Simplifying, we get

x2 + a1x + a2 = 0, (3.3)

where

a1 =
Kk1(θ1α1 − δ1)

2

rθ1δ1
− (K + A) and a2 =

K

r

(
rA +

θ1α1 − δ1

θ1

)
.

Therefore, system (2.1) has two co-existence equilibria if θ1α1 − δ1 > 0, a1 <

0 and a2
1 > 4a2. These two equilibria collide when a2

1 = 4a2 and vanish for a2
1 < 4a2.

These conditions raise the possibility for system (2.1) to exhibit saddle-node bifur-

cation, provided θ1α1 − δ1 > 0 and a1 < 0 hold.

Trivial equilibrium E0(0, 0) is non-hyperbolic attractor for all parameter values,

which can be proved as per [15, Lemma 3]. The equilibrium E1(A, 0) is always

unstable, whereas the stability of equilibrium E2(K, 0) depends on the sign of θ1α1−
δ1. Equilibrium E2 is stable only when the maximum per capita growth rate of

mesopredator is negative, i.e. θ1α1 − δ1 < 0. In that case, only prey population

survive and mesopredator population extinct. E2 becomes unstable when the sign

of θ1α1 − δ1 changes to positive. Thus, system (2.1) shows transcritical bifurcation

between E2(K, 0) and coexistence equilibrium, provided co-existence equilibrium

exist. The Jacobian matrix at E∗(x∗, y∗) is

JE∗ =

⎡
⎢⎢⎢⎣

h′(x∗)

1 + k1y∗
− (θ1α1 − δ1)

2

θ2
1α1

− k1

1 + k1y∗

δ1y
∗

θ1
− δ2

1

θ2
1α1

(θ1α1 − δ1)
2

θ1α1
− δ1

θ1α1
(θ1α1 − δ1)

⎤
⎥⎥⎥⎦ , (3.4)
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A. K. Misra, S. Pal & Y. Kang

where h(x) = xf(x) = rx
(
1 − x

K

)
(x − A). Now, we define

Λ = Trace(JE∗) =
h′(x∗)

1 + k1y∗
− (θ1α1 − δ1)

2

θ2
1α1

− δ1

θ1α1
(θ1α1 − δ1), and

Δ = Det(JE∗).

Some calculation results that Δ = Det(JE∗) < (or >)0 if h′(x∗)
1+2k1y∗

> (or <) θ1α1−δ1

θ1

.

Therefore, we can conclude that E∗ is locally stable only when

h′(x∗) < min

[
(1 + 2k1y

∗)

(
θ1α1 − δ1

θ1

)
,

(1 + k1y
∗)

(
(θ1α1 − δ1)

2

θ2
1α1

+
δ1

θ1α1
(θ1α1 − δ1)

)]
.

Also, it is very clear that if h′(x∗) is negative, then the equilibrium E∗ is always

stable.

Remark 1. From Eq. (3.3), it is to be noted that the x-component of the stable

co-existence equilibrium is x =
−a1+

√
a2

1
−4a2

2 , where a1 < 0 and a2
1−4a2 > 0. Now,

dx
dk1

= 1
2

da1

dk1

1√
a2

1
−4a2

{a1 −
√

a2
1 − 4a2} < 0, since da1

dk1

= K(θ1α1−δ1)
2

rθ1δ1

> 0. Also,

dx
dα1

= 1
2

da1

dα1

1√
a2

1
−4a2

{a1−
√

a2
1 − 4a2}− 2√

a2

1
−4a2

da2

dα1

< 0, as da1

dα1

= 2Kk1(θ1α1−δ1)
rδ1

>

0 and da2

dα1

= K
r

> 0.

Therefore, it is evident that equilibrium density of prey species always follow

decreasing trend with increasing k1 and α1, whenever the equilibrium is feasible.

3.2. Bifurcation analysis of system (2.1)

Here, first we show the occurrence of transcritical bifurcation by using Sotomayor

theorem [37]. As E2(K, 0) changes its stability at θ1α1 − δ1 = 0. Therefore, we will

look for transcritical bifurcation around E2(K, 0) with respect to the parameter α1.

At E2, the Jacobian matrix of model system (2.1) is

JE2
=

[
−r(K − A) −α1

0 (θ1α1 − δ1)

]
. (3.5)

At α1(= α∗
1) = δ1

θ1

, the matrix JE2
has simple zero eigenvalue. The eigenvectors

of JE2
and JT

E2
corresponding to zero eigenvalue are V = (v1, v2)

T = ( −α1

r(K−A) , 1)T

and W = (w1, w2)
T = (0, 1)T , respectively.

Consider, G = (g1, g2)T , where

g1 =
r

1 + k1y
x
(
1 − x

K

)
(x − A) − α1xy

x + y
,

g2 =
θ1α1xy

x + y
− δ1y.
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How can we avoid the extinction of any species naturally?

Now,

WT Gα1
(E2, α

∗
1) = w2

∂g2

∂α

∣∣∣∣
(E2,α∗

1
)

= 0.

WT [DGα1
(E2, α

∗
1)V ] = w2v2

∂2g2

∂α1∂y

∣∣∣∣
(E2,α∗

1
)

= θ1 	= 0.

WT [D2G(E2, α
∗
1)(V, V )] = w2v

2
2

∂2g2

∂y2

∣∣∣∣
(E2,α∗

1
)

= −2δ1

K
	= 0.

Therefore, according to Sotomayor theorem [37], the conditions for the existence

of transcritical bifurcation are satisfied. Hence, transcritical bifurcation occurs at

α1 = α∗
1 for system (2.1), that is as α1 crosses α∗

1, the equilibrium E2 changes its

stability and emergence (or vanishing) of a stable interior equilibrium is observed.

As mentioned in Remark 1, two co-existence equilibria collide and vanish

at (x̃, ỹ), where f ′(x̃) = k1
(θ1α1−δ1)

2

θ1δ1

. Corresponding x̃ and ỹ are given by

x̃ = 1
2

[
(K + A) − Kk1

(θ1α1−δ1)
2

rθ1δ1

]
and ỹ = θ1α1

δ1

x̃. As two equilibrium collide at

(x̃, ỹ), discriminant of Eq. (3.3) becomes zero, which gives a critical value of k1,

k̃1 say. Now, we check the conditions of Sotomayor theorem [37] for saddle-node

bifurcation.

Let the eigenvectors corresponding to zero eigenvalue be V̄ = (v̄1, v̄2)
T and

W̄ = (w̄1, w̄2)
T for JẼ and JT

Ẽ
, respectively. Then

V̄ =

⎛
⎝

1

θ1α1 − δ1

δ1

⎞
⎠ , and W̄ =

⎛
⎜⎜⎝

1

− k1

1+k1ỹ
δ1

θ1

ỹ +
δ2

1

θ2

1
α1

δ1(
θ1α1−δ1

θ1α1

)

⎞
⎟⎟⎠ .

Considering

G(x, y, k1) =

⎛
⎜⎜⎜⎝

1

1 + k1y
xf(x) − α1xy

x + y

θ1α1xy

x + y
− δ1y

⎞
⎟⎟⎟⎠ ,

we obtain

W̄T Gk1
(x̃, ỹ, k̃1) = − ỹ

(1 + k̃1ỹ)2
rx̃

(
1 − x̃

K

)
(x̃ − A) < 0

and

W̄T [D2G(x̃, ỹ, k̃1)(V̄ , V̄ )] = −2r

K

x̃

1 + k̃1ỹ
< 0.

Hence, by Sotomayor theorem, we affirm that system (2.1) undergoes saddle-node

bifurcation around Ẽ = (x̃, ỹ) as k1 crosses a critical value k̃1.

Occurrence or termination of limit cycle with varying parameter is characterized

by Hopf bifurcation. Choosing strength of fear k1 as the bifurcation parameter, we
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A. K. Misra, S. Pal & Y. Kang

intend to show analytically that system (2.1) exhibits Hopf bifurcation at interior

equilibrium E∗(x∗, y∗). Conditions for occurrence of Hopf bifurcation for system

(2.1) are mentioned in the following theorem.

Theorem 3.1. System (2.1) undergoes Hopf bifurcation around the co-existence

equilibrium E∗(x∗, y∗) at k1 = k∗
1 if and only if

h′(x∗)
1+2k1y∗

< θ1α1−δ1

θ1

and
d

dk1

(Λ)|k1=k∗

1
	= 0, where Λ = Trace(JE∗).

Proof. At Hopf bifurcation point, the pair of eigenvalues of the Jacobian matrix

at E∗ should be purely imaginary. Therefore, the Jacobian matrix (3.4) has trace

Λ equal to zero for the critical value k1 = k∗
1 , which leads the corresponding char-

acteristic equation to become

λ2 + Δk1=k∗

1
= 0.

Let the pair of purely imaginary roots of the above equation be λ1,2 = ±ιφ0,

where φ0 =
√

Δk1=k∗

1
exists, if Δ > 0. Therefore, at k1 = k∗

1

h′(x∗)

1 + 2k1y∗
<

θ1α1 − δ1

θ1
.

Suppose the eigenvalues of the Jacobian matrix for any neighboring point k1 of

k∗
1 are λ1,2 = ξ(k1) ± ιφ(k1), where

ξ(k1) =
Λ(x∗(k1), y

∗(k1))

2
, φ(k1) =

√
Δ(x∗(k1), y∗(k1)) −

Λ2(x∗(k1), y∗(k1))

4
.

Now,

d

dk1
ξ(k1)|k1=k∗

1
=

1

2

[
d

dk1
Λ(x∗(k1), y

∗(k1))

]

k1=k∗

1

.

Transversality condition affirms the crossing of imaginary axis for the eigen-

values with nonzero speed. The transversality condition is satisfied if d
dk1

Λ(x∗(k1),

y∗(k1)) 	= 0 at k1 = k∗
1 , i.e. if h′′(x∗)dx∗

dk1

|k1=k∗

1
	= (θ1α1−δ1)2

θ2

1
α1δ1

(θ1α1 − δ1 + θ1δ1)(x
∗ +

k1
dx∗

dk1

)|k1=k∗

1
. Therefore, with these conditions, system (2.1) would undergo Hopf

bifurcation at k1 = k∗
1 .

4. Dynamics of System (2.2)

4.1. Existence of interior equilibria

Positive solution of following three algebraic equations gives the co-existence equi-

librium of system (2.2):

1

1 + k1y
r
(
1 − x

K

)
(x − A) − 1

1 + k2z

α1y

x + y
= 0, (4.1)

1

1 + k2z

θ1α1x

x + y
− δ1 − α2z = 0, (4.2)

θ2α2y − δ2z = 0. (4.3)
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How can we avoid the extinction of any species naturally?

From (4.3), we have

z =
θ2α2

δ2
y. (4.4)

Using this value of z in Eqs. (4.1) and (4.2), we get

r
(
1 − x

K

)
(x − A) =

α1y

x + y

1 + k1y

1 + k2
θ2α2

δ2

y
, (4.5)

θ1α1x

x + y
=

(
δ1 + α2

θ2α2

δ2
y

)(
1 + k2

θ2α2

δ2
y

)
. (4.6)

The curve (4.6) approaches origin and always increases in the positive quadrant. On

the other hand, the curve (4.5) passes through (A, 0) and (K, 0); increasing at (A, 0)

and decreasing at (K, 0). Therefore, these two isoclines may have no intersection,
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Fig. 1. (Color online) Different scenarios for the intersection of two isoclines. Blue and red curves
represent isoclines (4.5) and (4.6), respectively. The value of fear parameter k1 is varied and its
values are (a) k1 = 16, (b) k1 = 14.08, (c) k1 = 10, (d) k1 = 0.1, and other parameter values are

same as given in Eq. (5.2).
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A. K. Misra, S. Pal & Y. Kang

one touching point, or two intersections, based upon parameter values, as shown in

Figs. 1(a)–1(c). Moreover, the curve (4.5) has two vertical asymptotes if (K−A)2

4K
>

k1α1δ2

rk2θ2α2

. In such a case, two isoclines obviously intersect at two points, as shown in

Fig. 1(d).

4.2. Stability and bifurcation analysis of system (2.2)

Now, the Jacobian matrix at co-existence equilibrium Ê = (x̂, ŷ, ẑ) is

J
Ê

=

⎡
⎢⎢⎣

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤
⎥⎥⎦ , (4.7)

where

b11 =
x̂f ′(x̂) + f(x̂)

1 + k1ŷ
− 1

1 + k2ẑ

α1ŷ
2

(x̂ + ŷ)2
, b21 =

1

1 + k2ẑ

θ1α1ŷ
2

(x̂ + ŷ)2
, b31 = 0,

b12 = − x̂f(x̂)k1

(1 + k1ŷ)2
− 1

1 + k2ẑ

α1x̂
2

(x̂ + ŷ)2
, b22 = − ŷ

x̂ + ŷ
(δ1 + α2ẑ), b32 = θ2α2ẑ,

b13 =
k2

(1 + k2ẑ)2
α1x̂ŷ

(x̂ + ŷ)
, b23 = − k2

(1 + k2ẑ)2
θ1α1x̂ŷ

(x̂ + ŷ)
− α2ŷ, b33 = −δ2ŷ.

The characteristic equation corresponding to the Jacobian matrix is

μ3 + B1μ
2 + B2μ + B3 = 0 (4.8)

where

B1 = −(b11 + b22 + b33),

B2 = b11b22 + b11b33 + b22b33 − b12b21 − b23b32,

B3 = b12b21b33 − b11b22b33 − b13b21b32 + b11b23b32.

According to the Routh–Hurwitz criterion, the roots of Eq. (4.8) lie on the left half

of a complex plane if and only if B1 > 0, B3 > 0, and B1B2 − B3 > 0. Therefore,

with these conditions, the equilibrium Ê = (x̂, ŷ, ẑ) is locally asymptotically stable.

4.3. Hopf bifurcation

Suppose at some critical value of α2 (α∗
2 say), the conditions B1 > 0 and B3 > 0

hold but B1B2 −B3 = 0. Then, the characteristic equation (4.8) can be written as

(μ2 + B2)(μ + B1) = 0. (4.9)

The above equation has two purely imaginary roots, say μ1,2 = ±ι
√

B2 and a

negative real root, say μ3 = −B1.
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How can we avoid the extinction of any species naturally?

Now, suppose at any point α2 in the ε-neighborhood of α∗
2, μ1,2 = γ1 ± ιγ2.

Putting this in the characteristic equation and separating real and imaginary parts,

we get

γ3
1 − 3γ1γ

2
2 + B1γ

2
1 − B1γ

2
2 + B2γ1 + B3 = 0, (4.10)

3γ2
1γ2 − γ3

2 + 2B1γ1γ2 + B2γ2 = 0. (4.11)

As γ2 	= 0, from Eq. (4.11), we have

γ2
2 = 3γ2

1 + 2B1γ1 + B2.

Using this value of γ2 in Eq. (4.10), we get

8γ3
1 + 8B1γ

2
1 + 2γ1(B

2
1 + B2) + B1B2 − B3 = 0.

Differentiating above equation with respect to α2 and using the fact that γ1(α
∗
2) = 0,

we get
[

dγ1

dα2

]

α2=α∗

2

= −
[

1

2(B2
1 + B2)

d

dα2
(B1B2 − B3)

]

α2=α∗

2

.

Hence, transversality condition holds if d
dα2

(B1B2 − B3)|α2=α∗

2
	= 0. Therefore,

with this condition, system (2.2) exhibits Hopf bifurcation at α2 = α∗
2 around

interior equilibrium Ê. System (2.2) also shows saddle-node bifurcation, which can

be proved following the same analysis carried out in Sec. 3.2.

4.4. Bogdanov–Takens bifurcation

Bogdanov–Takens bifurcation (BT-bifurcation) is a type of codimension-2 bifurca-

tion. At BT-bifurcation point, the system has zero eigenvalue with multiplicity 2.

Using the methods from Kuznetsov [29], we derive the conditions for BT-bifurcation

at Ê of the model system (2.2).

To examine the conditions for BT-bifurcation of system (2.2) at Ê, first we use

the transformations x = x̂+X̄, y = ŷ+ Ȳ , and z = ẑ+ Z̄ in order to shift the origin

at Ê = (x̂, ŷ, ẑ). Consequently, system (2.2) can be expressed in the subsequent

form:
⎡
⎢⎢⎣

X̄

Ȳ

Z̄

⎤
⎥⎥⎦

′

= J
Ê

⎡
⎢⎢⎣

X̄

Ȳ

Z̄

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

Ĉ1

Ĉ2

Ĉ3

⎤
⎥⎥⎦+ O(|X̄, Ȳ , Z̄|3), (4.12)

where

Ĉ1 = l1200X̄
2 + l1020Ȳ

2 + l1002Z̄
2 + l1110X̄Ȳ + l1101X̄Z̄ + l1011Ȳ Z̄,

Ĉ2 = l2200X̄
2 + l2020Ȳ

2 + l2002Z̄
2 + l2110X̄Ȳ + l2101X̄Z̄ + l2011Ȳ Z̄,

Ĉ3 = −δ2Z̄
2 + θ2α2Ȳ Z̄
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and

l1200 = − r(2x̂ − A)

K(1 + k1ŷ)
+

r(1 − x̂
A

)

K(1 + k1ŷ)

α1ŷ
2

(x̂ + ŷ)3(1 + k2ẑ)
,

l1110 = −rx̂k1(1 − x̂
K

)

K(1 + k1ŷ)
+

2rx̂k1 − rKk1

K(1 + k1ŷ)2
(x̂ − A) − 2α1x̂ŷ

(x̂ + ŷ)3(1 + k2ẑ)
,

l1020 =
α1x̂

2

(x̂ + ŷ)3(1 + k2ẑ)
+

rx̂k1(1 − x̂
K

)(x̂ − A)

(1 + k1ŷ)3
,

l1002 = − α1k
2
2x̂ŷ

(x̂ + ŷ)(1 + k2ẑ)3
, l1101 =

α1k2ŷ
2

(x̂ + ŷ)2(1 + k2ẑ)2
,

l1011 =
α1k2x̂

2

(x̂ + ŷ)2(1 + k2ẑ)2
, l2200 = − θ1α1ŷ

2

(x̂ + ŷ)3(1 + k2ẑ)
,

l2020 = − θ1α1x̂
2

(x̂ + ŷ)3(1 + k2ẑ)
, l2002 =

θ1α1k
2
2x̂ŷ

(x̂ + ŷ)(1 + k2ẑ)3
,

l2110 =
2θ1α1x̂ŷ

(x̂ + ŷ)3(1 + k2ẑ)
, l2101 = − θ1α1k2(1 + k2ẑ)ŷ2

(x̂ + ŷ)2(1 + k2ẑ)3
,

l2011 = −θ1α1k2x̂
2(1 + k2ẑ)

(x̂ + ŷ)2(1 + k2ẑ)3
− α2.

The generalized characteristic vectors corresponding to characteristic value μ1,2 = 0

are Ũ1 = [ũ11 ũ21 ũ31]
T
, and Ũ2 = [ũ12 ũ22 ũ32]

T
where

ũ11 =
b22b33 − b23b32

b32b21
, ũ21 = −b33

b32
, ũ31 = 1, ũ12 =

Δ1

Δ
,

ũ22 =
Δ2

Δ
, ũ32 =

Δ3

Δ
,

where

Δ = det(J
Ê

) =

∣∣∣∣∣∣∣∣

b11 b12 b13

b21 b22 b23

0 b32 b33

∣∣∣∣∣∣∣∣
, Δ1 =

∣∣∣∣∣∣∣∣

ũ11 b12 b13

ũ21 b22 b23

ũ31 b32 b33

∣∣∣∣∣∣∣∣
,

Δ2 =

∣∣∣∣∣∣∣∣

b11 ũ11 b13

b21 ũ21 b23

0 ũ31 b33

∣∣∣∣∣∣∣∣
, Δ3 =

∣∣∣∣∣∣∣∣

b11 b12 ũ11

b21 b22 ũ21

0 b32 ũ31

∣∣∣∣∣∣∣∣
,

which satisfy J
Ê

Ũ1 = 0 and J
Ê

Ũ2 = Ũ1. Also, Ũ3 = [ũ13 ũ23 ũ33]
T is the eigen-

vector corresponding to characteristic value μ3 = −B1, where

ũ13 =
(b22 + B1)(b33 + B1) − b23b32

b32b21
, ũ23 = −b33 + B1

b32
, ũ33 = 1.
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How can we avoid the extinction of any species naturally?

Let P̃ = [Ũ1 Ũ2 Ũ3], then under the non-singular linear transformation

⎡
⎢⎢⎣

X̄

Ȳ

Z̄

⎤
⎥⎥⎦ = P̃

⎡
⎢⎢⎣

X̂1

X̂2

X̂3

⎤
⎥⎥⎦ ,

system (4.12) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X̂ ′
1 = X̂2 + Ã20X̂

2
1 + Ã11X̂1X̂2 + Ã02X̂

2
2 + O(|X̂1, X̂2, X̂3|2),

X̂ ′
2 = B̃20X̂

2
1 + B̃11X̂1X̂2 + B̃02X̂

2
2 + O(|X̂1, X̂2, X̂3|2),

X̂ ′
3 = −B1X̂3 + O(|X̂1, X̂2, X̂3|2),

(4.13)

where the inverse of P̃ is given by

P̃−1 =

⎡
⎢⎢⎣

ṽ11 ṽ12 ṽ13

ṽ21 ṽ22 ṽ23

ṽ31 ṽ32 ṽ33

⎤
⎥⎥⎦ .

Here,

Ã20 = ṽ11(l
1
200ũ

2
11 + l1020ũ

2
21 + l1002ũ

2
31 + l1110ũ11ũ21 + l1101ũ11ũ31 + l1011ũ21ũ31)

+ ṽ12(l
2
200ũ

2
11 + l2020ũ

2
21 + l2002ũ

2
31 + l2110ũ11ũ21 + l2101ũ11ũ31 + l2011ũ21ũ31)

+ ṽ13(−δ2ũ
2
31 + θ2α2ũ21ũ31),

Ã11 = ṽ11(2l1200ũ11ũ12 + 2l1020ũ21ũ22 + 2l1002ũ31ũ32 + l1110(ũ11ũ22 + ũ12ũ21)

+ 2l1101(ũ11ũ32 + ũ12ũ31) + 2l1011(ũ22ũ31 + ũ21ũ32)) + ṽ12(2l2200ũ11ũ12

+ 2l2020ũ21ũ22 + 2l2002ũ31ũ32 + l2110(ũ11ũ22 + ũ12ũ21) + 2l2101(ũ11ũ32

+ ũ12ũ31) + 2l2011(ũ22ũ31 + ũ21ũ32)) + ṽ13(−2δ2ũ31ũ32 + θ2α2(ũ21ũ32

+ ũ22ũ31)),

Ã02 = ṽ11(l
1
200ũ

2
12 + l1020ũ

2
22 + l1002ũ

2
32 + l1110ũ12ũ22 + l1101ũ12ũ32 + l1011ũ22ũ32)

+ ṽ12(l
2
200ũ

2
12 + l2020ũ

2
22 + l2002ũ

2
32 + l2110ũ12ũ22 + l2101ũ12ũ32 + l2011ũ22ũ32)

+ ṽ13(−δ2ũ
2
32 + θ2α2ũ22ũ32),

B̃20 = ṽ21(l
1
200ũ

2
11 + l1020ũ

2
21 + l1002ũ

2
31 + l1110ũ11ũ21 + l1101ũ11ũ31 + l1011ũ21ũ31)

+ ṽ22(l
2
200ũ

2
11 + l2020ũ

2
21 + l2002ũ

2
31 + l2110ũ11ũ21 + l2101ũ11ũ31 + l2011ũ21ũ31)

+ ṽ23(−δ2ũ
2
31 + θ2α2ũ21ũ31),
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A. K. Misra, S. Pal & Y. Kang

B̃11 = ṽ21(2l1200ũ11ũ12 + 2l1020ũ21ũ22 + 2l1002ũ31ũ32 + l1110(ũ11ũ22 + ũ12ũ21)

+ 2l1101(ũ11ũ32 + ũ12ũ31) + 2l1011(ũ22ũ31 + ũ21ũ32)) + ṽ22(2l2200ũ11ũ1

+ 2l2020ũ21ũ22 + 2l2002ũ31ũ32 + l2110(ũ11ũ22 + ũ12ũ21) + 2l2101(ũ11ũ32

+ ũ12ũ31) + 2l2011(ũ22ũ31 + ũ21ũ32)) + ṽ23(−2δ2ũ31ũ32

+ θ2α2(ũ21ũ32 + ũ22ũ31)),

B̃02 = ṽ21(l
1
200ũ

2
12 + l1020ũ

2
22 + l1002ũ

2
32 + l1110ũ12ũ22 + l1101ũ12ũ32 + l1011ũ22ũ32)

+ ṽ22(l
2
200ũ

2
12 + l2020ũ

2
22 + l2002ũ

2
32 + l2110ũ12ũ22 + l2101ũ12ũ32 + l2011ũ22ũ32)

+ ṽ23(−δ2ũ
2
32 + θ2α2ũ22ũ32).

Hence, in accordance with the center manifold theorem, center manifold exists for

system (2.2), and it can be locally expressed in the following manner:

X̂
c ={(X̂1, X̂2, X̂3) ∈ R

2 × R
∣∣ X̂3 = F̃1(X̂1, X̂2) for |X̂1| < ε1 and |X̂2| < ε2,

F̃1(0, 0) = DF̃1(0, 0) = 0},
for and sufficiently small ε1 and ε2. Thus, we have to calculate the center manifold

for system (2.2). The system is restricted to the central manifold given as
⎧
⎨

⎩
X̂ ′

1 = X̂2 + Ã20X̂
2
1 + Ã11X̂1X̂2 + Ã02X̂

2
2 + O(|X̂1, X̂2|2),

X̂ ′
2 = B̃20X̂

2
1 + B̃11X̂1X̂2 + B̃02X̂

2
2 + O(|X̂1, X̂2|2).

(4.14)

Using the transformation
⎧
⎪⎨
⎪⎩

X̂1 = Ũ +
1

2
(Ã11 + B̃02)Ũ

2 + Ã02ŨṼ + O(|Ũ, Ṽ|2),

X̂2 = Ṽ − Ã20Ũ
2 + B̃02ŨṼ + O(|Ũ, Ṽ|2),

(4.15)

and rewriting system (4.14) in X̂1 and X̂2, we get
⎧
⎨
⎩

X̂ ′
1 = X̂2,

X̂ ′
2 = B̃20X̂

2
1 + B̃11X̂1X̂2,

(4.16)

where B̃20 = B̃20 and B̃11 = B̃11 +2Ã20. The conditions derived for the occurrence

of BT-bifurcation are summarized in Theorem 4.1.

Theorem 4.1. If B20 and B11 are nonzero, then system (2.2) displays a co-

dimension 2 BT-bifurcation at the interior equilibrium Ê.

5. Numerical Simulations

This section deals with numerical simulations to explore the underlying dynamics

that systems (2.1) and (2.2) posses, with the help of MATLAB software and MAT-

CONT package. Suppose initially the density of prey is large enough such that it
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How can we avoid the extinction of any species naturally?

remains above the threshold value xc. Then the dynamics is governed by system

(2.1) and the parameter values we consider for simulations are as follows:

r = 2, K = 1000, A = 100, α1 = 3, θ1 = 0.7, δ1 = 1.5. (5.1)

First, we plot the equilibrium curve by varying fear parameter k1 to capture the

impact of fear (Fig. 2(a)). Supercritical Hopf bifurcation occurs at k1 = 1.9956

(denoted by H) as first Lyapunov coefficient (l1) is negative (l1 = −1.828425 ×
10−7). Saddle-node bifurcation also is found to occur for system (2.1) at k1 = 2.7194

(denoted by LP ). At LP , two branches of equilibrium curves collide and disappear.

Continuation of limit cycles from the Hopf point has been plotted in Fig. 2(b). Sta-

ble limit cycles originate from Hopf point which further disappear at k1 = 1.997,

with the occurrence of Limit Point Curve (LPC). At LPC, saddle-node bifurcation

of limit cycle occurs, i.e. one stable and one unstable limit cycle collide and vanish.

It is evident that prey population diminishes with the increment in fear parameter.

Between Hopf point k1 = 1.9956 and k1 = 1.996, the dynamical variables show

persistent periodic oscillations. Further, between k1 = 1.996 and k1 = 1.997, an

unstable limit cycle surrounding stable limit cycle exists. Trajectories converge to

stable limit cycle only when the initial point lies inside the outer unstable limit

cycle. For initial points in the exterior of the unstable limit cycle, the trajecto-

ries collapse. If k1 > 1.997, then species population goes to extinction. Therefore,

the prey species, which shows more anti-predator behavior, is more vulnerable to

extinction.

It is obvious that for system (2.1), whenever x(0) < A, solution trajectories

converge to the trivial equilibrium E0(0, 0). However, this is not the necessary

condition, i.e. even if x(0) > A, the solution trajectories may move toward the

trivial equilibrium depending on the initial start. In Fig. 3, we have plotted the

0 0.5 1 1.5 2 2.5 3

0

200

400

600

800

1000

(a)

1.995 1.9955 1.996 1.9965 1.997 1.9975 1.998

200

300

400

500

600

700

800

900

(b)

Fig. 2. (Color online) (a) Equilibrium curve in x of system (2.1) with respect to k1. Blue curve
is the collection of stable co-existence equilibria and red curve is the collection of unstable co-
existence equilibria. (b) Limit cycle continuation from Hopf bifurcation point. Stable limit cycles
are represented by blue color and unstable limit cycles by red color.
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Fig. 3. Phase portraits of system (2.1) for (a) k1 = 0.5, (b) k1 = 1.5, and (c) k1 = 3.

phase portraits for three different values of k1. It can be clearly observed that

the basin of attraction of the stable co-existence equilibrium is critically shrink-

ing with increasing k1. After some critical value of k1, the co-existence equilibrium

loses its stability, and then trivial equilibrium becomes globally stable. In Fig. 4,

we plot x-component of equilibrium by varying the predation rate parameter α1.

The figure depicts that the system undergoes transcritical bifurcation (denoted by

BP ) at α1 = 2.1428, supercritical Hopf bifurcation at α1 = 3.3577 (first Lyapunov

coefficient, l1 = −2.41598 × 10−8) and saddle-node bifurcation at α1 = 3.555. For

lower predation rate, the predator-free equilibrium is stable. That means preda-

tors cannot capture and arrange sufficient food to feed upon. Therefore, predator

population cannot sustain in the system and as a result, the density of prey popu-

lation tends to its carrying capacity. Both prey and mesopredator species co-exist

for an intermediate range of predation rate α1, depending on the initial population

sizes. For higher predation rate, both the species population collapse, irrespective

of initial population sizes.
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1.5 2 2.5 3 3.5 4

200

400

600

800

1000

Fig. 4. (Color online) Equilibrium curve in x of system (2.1) with respect to α1. Here, we take
k1 = 1. Blue curve is the collection of stable equilibria and red curve is the collection of unstable
equilibria.

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3

Fig. 5. Bifurcation diagram in k1 − α1 parametric plane.

As we see that predation induced fear and rate of predation have the potential

to modulate system’s dynamics, two-parameter bifurcation diagram is plotted in

k1 − α1 plane (Fig. 5). Black curve denotes transcritical curve, below which co-

existence equilibrium is not feasible, only mesopredator-free equilibrium is stable. In

the parametric region between transcritical and Hopf curve, one stable co-existence

equilibrium exists, which loses its stability as Hopf-curve is crossed. In the above

saddle-node curve, co-existence equilibrium loses its feasibility again. We can infer

from the figure that for less fearful prey, both the species may sustain stably in the

habitat for considerably large range of predation rate. However, if the impact of

fear is large enough, then higher predation rate always trigger extinction of species.

Therefore, for more fearful prey, extinction is more likely to occur. Also, from Fig. 5,

it is noted that if the parameter values lie in the region between transcritical curve
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and Hopf curve, then the threshold value xc determines whether the introduction

of top predator should be initiated in the habitat or not. However, whenever the

parameters lie above the Hopf curve, introduction of top predator is inevitable,

whatsoever xc might be.

From the above discussion, we observe that, for higher strength of fear and

magnitude of predation rate, prey species equilibrium density is reducing, and even

the collapse of species population is also occurring. In such a situation, the idea

of introduction of top predator which predates on mesopredator but not on the

considered prey species is deployed. In Fig. 6, we first plot time series for system

(2.1) up to t = 50 unit, taking k1 = 1.8 and other parameter values are same as

given in Eq. (5.1). We see that system stabilizes at (x∗, y∗) = (632.531, 253.088).

Then at t = 50 unit, we introduce top predator in the system, and we plot time

series from t = 50 unit to t = 100 unit, for system (2.2). The parameter values we

consider for the simulations of system (2.2) are given by

r = 2, K = 1000, A = 100, k1 = 1.8, α1 = 3, θ1 = 0.7,

δ1 = 1.5, k2 = 0.1, α2 = 0.1, θ2 = 0.3, δ2 = 2. (5.2)

We observe that top predator introduction induces trophic cascading effect and

system (2.2) stabilizes with very high density of prey species.

In Fig. 7, we have plotted the phase portraits of systems (2.1) and (2.2) for

k1 = 1.8. It is evident that the basin of attraction of the co-existence equilibrium

is broadening with the incorporation of the top predator. Suppose we choose the

critical value xc = 400, then from Fig. 7(a), we can see that trajectories with initial

start outside the basin of attraction of stable interior equilibrium, i.e. upper half

of green curve, bound to cross xc and ultimately falls to origin. The instant it

crosses xc, we will introduce top predator. With the introduction of top predator,

0 20 40 60 80 100

0

200

400

600

800

1000

Fig. 6. (Color online) Time series of system (2.1) is plotted for time interval [0, 50] and time
series of system (2.2) is plotted for time interval [50, 100]. Here we take k1 = 1.8. and other
parameter values are same as given in Eq. (5.2). Blue curve represents density of prey and red
curve represents the density of mesopredator.
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Fig. 7. Phase portraits of (a) system (2.1), and (b) system (2.2), for k1 = 1.8.

the species extinction can be controlled if the solution trajectories lie inside the

basin of attraction for the equilibrium of system (2.2). In Fig. 7(b), z(0) is taken

to be z(0) = 5 for all the solution trajectories, i.e. we are considering that 5 unit

of top predator is being introduced. It is also observed that the value of z(0) has

not much influence on the basin of attraction. Even though for system (2.2) the

basin of attraction of the stable co-existence equilibrium is being increased, the

trajectories may also converge to origin if the initial point lie on the left of green

curve (Fig. 7(b)).

Similarly, in Fig. 8, we plot time series for system (2.1) in time interval [0, 50]

and for system (2.2) in [50, 100], taking k1 = 1.9965 and other parameter values are

same as given in Eq. (5.2). Figure 8 corroborates that introduction of top predator

even stabilizes an oscillatory system. Also, in both the above cases, introduction

0 20 40 60 80 100

0

200

400

600

800

1000

Fig. 8. (Color online) Time series of system (2.1) is plotted for time interval [0, 50] and time series
of system (2.2) is plotted for time interval [50, 100]. Here, k1 = 1.9965 and other parameter values
are same as given in Eq. (5.2). Blue curve represents density of prey and red curve represents the
density of mesopredator.
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Fig. 9. Phase portraits of (a) system (2.1) and (b) system (2.2), for k1 = 1.9965.

of top predator induces cascading effect. As top predator limits the density of

mesopredator, the density of prey species increases.

Phase portrait of systems (2.1) and (2.2) for k1 = 1.9965 is plotted in Fig. 9.

One interior equilibrium of system (2.1) is saddle and the other unstable one is

surrounded by a stable (magenta color) and an unstable limit cycle (green color).

Region inside the unstable limit cycle serves as the basin of attraction of the stable

limit cycle, which is very narrow. Otherwise the trajectories finally accumulates at

origin, and in the meantime the density of prey species falls below our considered

xc. In such a situation, top predator introduction magnifies the basin of attraction

of corresponding interior equilibrium many fold, mop up the oscillation, and drives

the trajectories to stabilize at higher equilibrium density of prey species. Here also,

some region of positive quadrant lies outside the basin of attraction of interior

equilibrium, and trajectories starting in this region ultimately terminate at origin.

We have already observed in Fig. 2(a), higher strength of fear triggers population

collapse. So in Fig. 10, we consider k1 = 2.2 and plot times series of system (2.1) up

to t = 5 unit, when both the species rapidly move towards extinction. Introduction

of top predator at that instance mediates the system to a stable state where all the

species co-exist. All trajectories in Fig. 11(a) converge to trivial equilibrium for any

initial start. In such a situation, species can be prevented from extinction, provided

the initial point of the trajectories of system (2.1) lies inside the basin of attraction

of stable equilibrium point (Fig. 11(b)). Thus, the density of a particular species

in an ecosystem can be enriched by introducing a suitable top predator. Even the

extinction of a species can be avoided by timely introducing top predator.

Thereafter, we plot the equilibrium curve for system (2.2) by varying fear param-

eter k1 (Fig. 12). We observe that a stable branch exists up to large value of k1

and then the system undergoes saddle-node bifurcation at k1 = 14.08, where the

stable branch collides with unstable branch and co-existence equilibrium vanishes.

That means when perceiving predation risk, prey species deploy most of their effort
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Fig. 10. (Color online) Time series of system (2.1) is plotted for time interval [0, 5] and time
series of system (2.2) is plotted for time interval [5, 10]. Here, k1 = 2.2 and other parameter values
are as given in Eq. (5.2). Blue curve represents density of prey and red curve represents the density
of mesopredator.
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Fig. 11. Phase portraits of (a) system (2.1) and (b) system (2.2), for k1 = 2.2.
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Fig. 12. (Color online) Equilibrium curve in x for system (2.2) with respect to k1. Blue curve
is the collection of stable co-existence equilibria and red curve is the collection of unstable co-
existence equilibria.
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Fig. 13. (Color online) Equilibrium curve in x for system (2.2) with respect to α2, where (a)
k1 = 1, (b) k1 = 4. Blue curve is the collection of stable co-existence equilibria and red curve is
the collection of unstable co-existence equilibria.

and time in anti-predation activities, growth rate becomes very low and prey pop-

ulation gradually dies out. This further implies that the whole system fall out and

all the species become extinct. Figure 13(a) represents the equilibrium curve in

α2 − x plane, obtained by varying the predation rate of top predator (α2), con-

sidering k1 = 1 and rest of the parameter values are same as in Eq. (5.2). The

system undergoes transcritical bifurcation at α2 = 0, and the system remains sta-

ble for all positive α2. Keeping α2 = 0 is just mimicking the situation that the

dynamics is governed by system (2.1), and then the system achieves its stable

equilibrium (x∗, y∗) = (803.598, 321.439). Now, as the top predator is introduced,

and its predation rate takes any positive value, density of prey species increases

from its previous state. However, for k1 = 4, the system shows different kinds of

dynamics (Fig. 13(b)). System (2.2) remains stable for relatively higher values of

α2. It undergoes Hopf bifurcation at α2 = 0.029, which is subcritical in nature

(l1 = 4.734 × 10−6), and saddle-node bifurcation at α2 = 0.0257. Therefore, the

system experiences population collapse or species extinction if α2 decreases below

0.029. Since we consider k1 = 4, we can see from Fig. 2(a) that system (2.1) already

experiencing population collapse. Therefore, top predator is introduced at some

instance of time to re-instate the species. However, if the top predators are found

to be weak, failed to capture mesopredator at some considerable rate, then the

target of enriching x-species population cannot be achieved.

Furthermore, to get more intriguing effect of k1 and α2 on the dynamics of sys-

tem (2.2), we plot bifurcation diagram in k1 − α2 parametric plane (Fig. 14). The

red, blue and black color curve, respectively, representing the saddle-node, Hopf

and homoclinic curve, all of which converge to BT-bifurcation point. Below the

saddle- node curve, the system has no co-existence equilibrium. Between saddle-

node and Hopf curve, although two co-existence equilibria exist, both are unstable.

Between Hopf and homoclinic curve, one co-existence equilibrium gains stability
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Fig. 14. (Color online) Bifurcation diagram of system (2.2) in k1 − α2 parametric plane. Rest
parameter values are same as given in (5.2). The red, blue and black color curves, respectively,
representing the saddle-node, Hopf and homoclinic curve.

through Hopf bifurcation with an unstable limit cycle surrounding the equilibrium.

In such case, if the initial point lies in the interior of unstable limit cycle, then

trajectories converge to the stable co-existence equilibria, otherwise the trajecto-

ries fall out. Above the homoclinic curve, the unstable limit cycle vanishes with

the occurrence of homoclinic bifurcation and the system has only a stable and an

unstable co-existence equilibria. Biologically, the figure interprets that if the prey

species is more fearful and show strong anti-predation behavior, then in order to

protect ecosystem from collapsing, predation rate of introduced top predator should

be high enough.

Now, to understand the combining impact of both fear parameters on the den-

sity of targeted species (prey) population, we draw equilibrium curve of system

(2.2) with respect to fear parameter k2, for three different values k1, represented

by Fig. 15. The complete dynamics of system (2.2) with respect to k1 and k2 is

captured in Fig. 16. Similar kind of dynamics as explained for Fig. 14 is observed

in this case also. When the strength of mesopredator induced fear on prey pop-

ulation is weak, density of prey population maintained at higher level, whatever

the strength of top predator induced fear might be. However, if the cost of fear

on prey population is relatively high, then the strength of top predator induced

fear should be comparatively high for the stable co-existence of the species in the

system. Parameters should lie above the black curve (homoclinic curve) for stable

co-existence of all the species with density of prey population at higher level. There-

fore, if the targeted species is less responsive toward mesopredator induced fear, the

purpose of elevating prey density would be successful by the introduction of top

predator. However, for more fearful prey species, the motive can be achieved if the

strength of top predator induced fear on mesopredator is comparatively higher.

Although increasing mesopredator induced fear factor (k1) leads to shrinking

of basin of attraction of the stable equilibrium of system (2.2), but increase in
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Fig. 15. (Color online) Equilibrium curve of system (2.2) with respect to k2, where (a) k1 = 4,
(b) k1 = 5.6, (c) k1 = 7. Blue curve is the collection of stable co-existence equilibria and red curve
is the collection of unstable co-existence equilibria.
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Fig. 16. (Color online) Bifurcation diagram of system (2.2) in k1 − k2 parametric plane. Rest
parameter values are same as given in Eq. (5.2). The red, blue and black color curves, respectively,
representing the saddle-node, Hopf and homoclinic curve.
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predation rate (α2) and top predator induced fear (k2) has a positive impact in

expanding the basin of attraction.

6. Conclusion

Over the course of time, many species have gone extinct and a large number

of species have been declared endangered. Sometimes, the species population in

a habitat becomes low due to over-predation augmented with some environmen-

tal factors. Previously, the producers and the herbivores are believed to be main

contributors in shaping an ecosystem and the ecologists conceived the concept of

bottom-up approach that governs an ecosystem. With experimental evidences col-

lected from various ecosystem, ecologists started to understand that an ecosystem

is not totally controlled by the producers or primary consumers, those occupying

the lower trophic level. The tertiary consumers or apex predators, those comprise

the higher trophic levels of a food chain are also important drivers of ecosystem.

From the inception of Green World Hypothesis by Hairston et al. [20], the idea of

top-down mechanism surfaced in the scientific community. From thereon, the role

of predator in maintaining a healthy ecosystem is being studied more and more. In

this study, we theoretically conceptualize the role of top predator in protecting a

prey species from extinction, in presence of mesopredator. The main idea is that

if the targeted species (prey) population in the considered habitat falls below a

certain threshold, top predator would be introduced in that habitat. We can call

it as species population enrichment in a habitat. For the proposed mathemati-

cal model, feasibility conditions of interior equilibrium and its stability conditions

are obtained. Following are the results of our study obtained theoretically and

numerically:

(1) For system (2.1), in the absence of top predator, the density of prey species is

always decreasing with the increasing strength of fear and predation rate. Also,

the basin of attraction of the stable co-existence equilibrium is observed to be

shrinking critically with increasing fear parameter and predation rate.

(2) Beyond certain threshold value of fear parameter or predation rate, population

collapse and both species extinct.

(3) Our theoretical study suggests that the elevation of density of lower trophic

species in the considered region can be possible with the introduction of a top

predator, which feed upon the mesopredator only but not on prey.

(4) Also top predator introduction can eliminate the persistent periodic oscillation

of species density and drive the system to stable state.

(5) More importantly, species extinction can be prevented by timely introduction

of top predator in the habitat.

(6) If the impact of predation induced fear is very high on prey species, then in order

to reinstate the density of prey species at higher level either the predation rate

of top predator should be relatively high or the effect of fear on mesopredator

is strong enough.
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