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Abstract. Temporal grounding, also known as video moment retrieval,
aims at locating video segments corresponding to a given query sentence.
The compositional nature of natural language enables the localization
beyond predefined events, posing a certain challenge to the compositional
generalizability of existing methods. Recent studies establish the corre-
spondence between videos and queries through a decompose-reconstruct
manner to achieve compositional generalization. However, they only con-
sider dominant primitives and build negative queries through random
sampling and recombination, resulting in semantically implausible neg-
atives that hinder the models from learning rational compositions. In
addition, recent DETR-based methods still underperform in composi-
tional temporal grounding, showing irrational saliency responses when
given negative queries that have subtle differences from positive queries.
To address these limitations, we first propose a large language model-
driven method for negative query construction, utilizing GPT-3.5 Turbo
to generate semantically plausible hard negative queries. Subsequently,
we introduce a coarse-to-fine saliency ranking strategy, which encourages
the model to learn the multi-granularity semantic relationships between
videos and hierarchical negative queries to boost compositional general-
ization. Extensive experiments on two challenging benchmarks validate
the effectiveness and generalizability of our proposed method. Our code
is available at https://github.com/zxccade/SHINE.
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1 Introduction

Temporal grounding [9,18,31,54] has received continuous attention for its wide
range of applications in video summarization [12,21], moment retrieval [24,51],
surveillance and security [33,34]. Unlike typical temporal action localization tasks
[58], temporal grounding aims to retrieve video moments based on textual queries
that include not only the action itself but also the objects, attributes, and interac-
tions. Moreover, the extensive vocabulary of natural language can expand the lim-
ited terms from labeled videos to describe new, unlabeled scenarios in the training
data. However, recent works [5,37,38,50] have shown that existing vision-language
models (VLMs) lack compositional generalizability for unseen combinations, as
reflected by their insensitivity to word order and primitives.
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Fig. 1. Comparison of saliency scores given different queries. The existing work [31]
struggles with discerning hard negative queries, showing irrational saliency responses
under different primitive substitutions. Our method helps a model to learn the nuances
in the semantics of hierarchical negative samples, suppressing the model’s response to
irrelevant queries while boosting its compositional generalizability.

To address this challenge, compositional temporal grounding has been
recently proposed in [22], which aims at locating unseen video moments by learn-
ing novel combinations of known words in the training data. They decompose
videos and queries into global events, local actions, and atomic objects, and
establish relationships between visual and text concepts by constructing a hier-
archical semantic graph. However, their pipeline greatly relies on off-the-shelf
object detection and action recognition models, which exhibits poor flexibility
and scalability. Later, Li et al. [20] proposed a self-supervised learning frame-
work to enhance the compositional generalization capability of existing VLMs
by masking different primitives to generate semantically equivariant and invari-
ant samples. In contrast, Deco [46] has constructed negative samples through a
decompose-reconstruct strategy, employing a mask-and-predict ranking loss to
learn the multi-granularity correspondence between video-text pairs.

While these methods have improved existing techniques, they share limita-
tions in the construction of negative samples: (1) VISA [22] and SSL2CG [20]
focus on dominant verbs and nouns, but overlook the role of other primitives such
as prepositions and adverbs (e.g., on/under the table and turn on/off the light),
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where the substitution of these words fundamentally changes the semantics. (2)
Deco [46] neglects the viability of semantics when recombining primitives, result-
ing in numerous infeasible combinations, such as eating the table and reading the
door. These issues not only hinder the model from learning the semantics of
non-dominant primitives, but also force the model to extract differences from
unrealistic combinations.

Additionally, these works [20,22,46] have only explored the compositional
generalizability of classic temporal grounding methods, lacking considerations on
recent novel architectures, such as DETR-based methods [15,19,27,31]. These
approaches combine highlight detection [47] with the temporal grounding task,
aiming to locate segments corresponding to the query while predicting the
saliency scores for each moment. The saliency scores evaluate the relevance of
all video clips to a given query, revealing the corresponding highlight moments.
However, we observed that existing work [31] struggles with discerning different
negative queries, showing irrational saliency responses under different primitive
substitutions, as shown in Fig. 1. This indicates that current approaches tend to
ignore the nuances between hard negative and positive queries. Consequently,
they fail to accurately match visual representations with corresponding primi-
tives, hindering their ability to achieve compositional generalization.

To this end, we first propose a large language model (LLM)-driven approach
for constructing hard negative samples, which are semantically plausible yet dis-
tinct from the original query. With these manipulated negatives at hand, we
further introduce a coarse-to-fine saliency ranking strategy to establish a multi-
granularity semantic relationship between video clips and hierarchical negative
queries. Compared to existing works, our method has the following advantages:
(1) a good compositional representation for negative queries that consider the
significance of different primitives while maintaining semantic feasibility; (2) the
saliency scores derived from negative samples at different levels exhibit a hier-
archical divergence, indicating that our method successfully captures the multi-
granularity relationship between video clips and queries; (3) our method can be
seamlessly integrated into existing DETR-based models, significantly improving
their generalization capabilities to unseen combinations while maintaining the
accuracy for seen samples. In summary, our contributions are three-fold:

— To address the issue of implausible negative queries generated by random
sampling, we introduce an LLM-driven approach that produces semantically
viable hard negative queries, which facilitates temporal grounding models to
learn plausible compositional semantics.

— To deal with the irrational saliency responses in existing methods, we pro-
pose a coarse-to-fine saliency ranking strategy that utilizes the plausible hard
negatives to capture hierarchical semantic differences and boost their compo-
sitional generalizability.

— Extensive experiments are conducted with two DETR-based backbones on
two challenging benchmarks, Charades-CG and ActivityNet-CG, which show
that our method significantly improves baseline performance and achieves
competitive results.
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2 Related Work

Temporal Grounding. Temporal grounding, a.k.a. video moment retrieval,
initially proposed in [9] and [18], aims at localizing segments in a video that
match the description of a query sentence. Currently, dominant supervised learn-
ing techniques are divided into two categories: proposal-based and proposal-free
methods. Proposal-based methods generate candidate segments through various
strategies, including sliding windows [9,26], dense proposals [13,41,44], and fixed
anchors [4,39,53,56], subsequently selecting the most appropriate intervals based
on a similarity measure. However, the generation of candidate proposals and
their semantic matching with queries are computationally intensive. Conversely,
proposal-free methods [24,32,45,49,52] directly predict the temporal boundaries
of the target clip. This paradigm eliminates the need for proposal generation,
significantly enhancing the model’s efficiency during inference. Recently, Lei et
al. [19] reformulated the temporal grounding task as a set prediction problem,
introducing a DETR-based [2] architecture enabling simultaneous video moment
retrieval and highlight detection. Subsequent works, including UMT [27], QD-
DETR [31], and EaTR [15], have enhanced localization accuracy by refining the
DETR framework. Differently, our work establishes a connection between the
saliency score and compositionality, which effectively unlocks the potential for
compositional generalization in DETR-based models.

Compositional Generalization. Recently, the compositional generalizabil-
ity of vision-language models, or VLMs, has received sustained attention
[5,38,42,43,50], with several benchmarks being proposed for evaluating the
robustness of the models on specific downstream tasks, including image-text
retrieval [14,29,36], visual question answering [8,11,16,48], and zero-shot learn-
ing [23,28,57]. To further evaluate the compositional generalization of existing
temporal grounding methods, Li et al. [22] has constructed two benchmarks,
Charades-CG and ActivityNet-CG, and proposed a variational cross-graph rea-
soning framework to achieve compositional video-text comprehension. Later, Li
et al. [20] generated semantic equivariant and invariant samples by masking
different primitives, and employed contrastive learning to improve the compo-
sitional generalization capability of existing VLMs. Yang et al. [46] constructed
negative queries through a decompose-reconstruct strategy, utilizing a mask-and-
predict contrastive ranking loss to learn the multi-granularity correspondence
between video-text pairs. However, most of these works only consider dominant
primitives like verbs and nouns, ignoring the effect of other words like preposi-
tions and adverbs. Moreover, they adopt random sampling to replace primitives
for negative construction, which hinders the model from learning semantically
feasible compositions. In contrast, we progressively replace the primitives with
different ratios beyond just verbs and nouns. Additionally, we resort to a large
language model to generate semantically plausible negative queries instead of
random sampling.
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3 Method

3.1 Problem Definition and Overview

Given an untrimmed video V' and a query sentence @), our goal is to identify the
start and end timestamps (t,t.) of the moments in the video that correspond
to the query. The model is expected to achieve precise localization based on the
novel combinations of seen words in the training set. Compared to the conven-
tional temporal grounding task, we seek a good balance in performance between
seen and unseen compositions, which requires the model to avoid overfitting
while ensuring compositional generalizability.
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Fig. 2. The overall framework of our method SHINE. For each video-text pair, we first
generate a set of hierarchical hard negative queries and randomly sample one negative
query from the same mini-batch. These queries and the video clips are fed into a DETR-
based encoder for interaction and predicting saliency scores S. The coarse-grained
ranking loss L., aims to enlarge the disparity between the saliency scores produced
by positive and negative queries, and the fine-grained ranking loss Ly, is designed to
capture the nuanced semantics among the hierarchical hard negative queries. These
two constraints are combined with Lpsse to optimize the model.

The overall framework of our proposed method is shown in Fig.2. Given
a video-query pair (V,, @), we first construct a set of hierarchical hard neg-
ative queries {Q% }3_, via a progressive mask-and-predict strategy (Sect.3.2).
Notably, we utilize a large language model, namely GPT-3.5 Turbo [1], to select
appropriate words from the training set for primitive replacement. This operation
gradually changes the semantics of the original query while effectively avoiding
implausible combinations. These manipulated queries, along with the original
query @, and a negative query @, selected from other queries in the same
mini-batch, constitute a set of queries. During the training phase, each video
and its associated query set are first fed into a video encoder F,(-) and a text
encoder Fi(+) to extract corresponding features, which are then processed by the
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encoder to predict the saliency scores {S,, S} ,S? ,S3 .S,}. Subsequently, we
propose modeling the video-level saliency prior using a coarse-grained saliency
ranking loss L., which incorporates two constraints designed to enhance the
discriminability between positive and negative queries (Sect. 3.3). Concurrently,
we employ a fine-grained saliency ranking loss Ly, to discern the saliency scores
derived from the query set, which facilitates the learning of multi-granularity
semantics by exploring the nuance among hierarchical negative samples. By com-
bining Lpqse with the proposed coarse-to-fine saliency ranking loss (Sect. 3.4), our
method can be seamlessly integrated into existing DETR-based models [19,31],
greatly enhancing their potential for compositional generalization.
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Fig. 3. The construction pipeline of hierarchical hard negative queries.

3.2 Hierarchical Hard Negatives Construction

Unlike previous methods that only consider verbs and nouns for negative query
construction, we argue that other primitives like adverbs and prepositions also
play an important role in composition generalization. Moreover, negative samples
generated by randomly replacing primitives contain a large number of seman-
tically infeasible combinations. Accordingly, we first propose an LLM-driven
method to construct semantically viable hierarchical negative queries.

Figure3 shows the pipeline for constructing hierarchical negative queries.
Specifically, we first use spaCy! to perform part-of-speech (POS) tagging on all
query sentences in the training set, and construct a dictionary D by counting
words from five types of primitives (verbs, nouns, adjectives, prepositions, and
adverbs). Subsequently, for a given query @), we progressively mask the primi-
tives with different ratios in the original query according to their relative impor-
tance in linguistics, i.e., verb-noun-adjective-preposition-adverb. Also, to ensure
contextual consistency in negative queries, subjects (usually nouns) are only con-
sidered when other primitives are insufficient. Instead of filling in the masks with
random selections from D, we resort to a powerful LLM, i.e., GPT-3.5 Turbo,
to generate semantically plausible hard negative queries. Considering the token

! spaCy: https://spacy.io/.
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limit inherent to LLMs, we randomly select a subset from the dictionary to
ensure a balance between context and diversity for each sample. Furthermore,
we have carefully crafted a prompt template to steer the LLM toward producing
challenging negative queries. These negatives are semantically viable yet distinct
from the original query, laying the foundation for fine-grained saliency ranking.

3.3 Coarse-to-Fine Saliency Ranking

The saliency scores measure the relevance of video clips to a given query, reveal-
ing the corresponding highlight moments. However, we observed that existing
methods [19,31] exhibit irrational saliency responses when faced with differ-
ent negative queries, as shown in Fig. 1. The saliency scores of some hard neg-
ative queries even surpass that of the original ones. This indicates that cur-
rent methods fail to accurately match visual representations with corresponding
primitives, struggling to discern the nuances between different queries. To this
end, we introduce a coarse-to-fine saliency ranking strategy by establishing a
multi-granularity semantic relationship between video clips and different nega-
tive queries. This approach enables the model to capture hierarchical semantic
differences and enhances its compositional generalizability.

- + - . con is . .
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Fig. 4. An illustration of the Coarse-to-Fine Saliency Ranking strategy.

Coarse-Grained Saliency Ranking. As shown in Fig. 4, for a given video-
text pair (V},, @p), we designate video clips within and outside the ground-truth
interval as Vp+ and V,~, respectively, and ), as the corresponding positive query.
Concurrently, a negative query is randomly selected from the same mini-batch,
denoted as Q.

Intuitively, the saliency scores within the ground-truth interval should sur-
pass those outside, and scores elicited by positive queries should exceed those
by negative ones. With these two priors, we introduce a coarse-grained ranking
loss with dual constraints, formulated as:
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Ler = max(0,hy + 5, — S;) +max(0, hy + S — S;)7 (1)
Lintra Linter
1 k
St = - ;sort(S)TJr, k =max(1, [T /q)), (2)

where SZ‘,Ir and S represent the top-k mean value of saliency scores yielded
by (V,©,Qp) and (V,F,Qy), respectively, and S, is the maximum of saliency
scores produced by (V,7,Q,). T T denotes the number of clips within the ground-
truth interval, and ¢ is a factor to control the selection ratio. hy and hy are
two predefined margins. Notably, our constraints differ from [19] in two key
ways: (1) Rather than using a single maximum value, we adapt to intervals
of different scales based on interval length and ¢. (2) Beyond considering the
internal difference of positive queries, we also enlarge the saliency gap between
positive and negative queries to achieve better discriminability.

Fine-Grained Saliency Ranking. While the coarse-grained ranking loss
improves the discriminative capability of the video-text representation, it does
not fully capture the relationships between the query primitives and the video
clip. In DETR-based architectures, saliency scores are temporally aligned with
the timestamps of localization boundaries, mirroring the relevance of the current
video clip to the query. We argue that saliency scores tied to the original query
should be temporally consistent with the ground truth, whereas those related to
hard negatives ought to display a hierarchical disparity from the positive one, as
illustrated in Fig. 4. Based on this assumption, we further propose a fine-grained
ranking loss to refine the saliency scores derived from varying semantic levels of
negative queries, formulated as:

L =max(0,mg +d(Y, Sp) — d(S,, S},))
+ max(0,my + d(Sp, St,,) — d(Sp, Si))
+ max(0,ma + d(S,, Si,) — d(Sp, Si,))
+ max (0, m3 + d(S,, S3,,) — d(Sp, Sn)),

LI
-7 Z yilog(7:), (4)

where { S}, }3_, denotes saliency scores of hierarchical negative queries, d(-) sym-
bolizes the negative log-likelihood between the observation y and the prediction
7, measuring the disparity in the distribution of saliency scores across the tempo-
ral dimension 7. In particular, due to the lack of ground-truths for the saliency
scores, a value of 1 is assigned to moments inside the localization interval, and 0
is assigned to moments outside the interval, with Y denoting the pseudo saliency
score. mg to mg represent four predefined margins. This loss not only underscores
the nuanced semantics between the video and the query sentence, but also the
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differences in temporal distribution and magnitude of the saliency scores in the
hard negative samples. By hierarchically constraining the saliency scores of these
hard negatives, our method helps the model discern the nuances between various
primitive words and video moments, suppressing irrational saliency responses,
and further improving its capability to identify novel combinations.

3.4 Model Training Objectives

Since our method can be seamlessly integrated into existing DETR-based mod-
els, during the training phase, we optimize the model utilizing three distinct loss
functions, with the overall objective expressed as:

L= Ebase + accr + ﬂﬁfr (5)

where Lyqse represents the basic loss of the DETR-based model, typically includ-
ing bipartite matching loss, moment localization loss, and saliency loss. More
details can be found in supplementary material. & and (§ are two weight coef-
ficients. By combining the two constraints with Lpqse, our method can sig-
nificantly enhance the model’s compositional generalization capabilities while
preserving accuracy for in-distribution samples, as demonstrated in subsequent
experiments.

4 Experiments

Datasets and Evaluation Metrics. We evaluate our method on two newly
proposed benchmarks, Charades-CG and ActivityNet-CG [22], originated from
Charades-STA [9] and ActivityNet Captions [18]. Each dataset is reorganized
into four splits: Training/Test-Trivial/Novel-Composition/Novel-Word, where
the latter three splits evaluate the model’s performance on IID samples, novel
combinations of seen words, and unseen words, respectively. In particular, the
Novel-Composition split considers five types of new compositions: verb-noun,
noun-noun, verb-adverb, adjective-noun, and preposition-noun. Following pre-
vious works [20,22,46], we use two main metrics to evaluate our methods, i.e.,
“R@n,IoU = m” and mean Intersection over Union (mlIoU). The former denotes
the percentage of queries with at least one prediction whose IoU score is larger
than m within the top-n predictions, while the latter refers to the average of IoU
scores across all queries.

Implementation Details. We adopt Moment-DETR. [19] and QD-DETR [31]
as our baselines and integrate them with our method using their officially released
code. Unless specifically noted, other hyperparameters follow their default set-
tings. For QD-DETR, following [20,46], we utilize pretrained 13D [3] features on
the Charades-CG dataset and C3D [17] features on the ActivityNet-CG dataset,
respectively. Following [19], we employ SlowFast [7] and CLIP [35] to extract
hybrid visual features for Moment-DETR. As for text features, we follow [19,31]



Coarse-to-Fine Saliency Ranking for Compositional Temporal Grounding 407

to extract CLIP features with 512 dimensions for each query. In hierarchical hard
negative construction, we progressively mask the original query in Charades-CG
at ratios of 25%, 50%, and 75%, while the masking ratios for ActivityNet-CG
are set to 10%, 30%, and 50%. For Charades-CG, we set the learning rates
for QD-DETR and Moment-DETR to 0.0001 and 0.0002, respectively, while for
ActivityNet-CG, the learning rates for both models are set to 0.0002. The coarse-
grained margins h; and ho are set to 1.0 and 2.0, respectively, while the relative
thresholds mg to mg are set to 0.25. The factor g in Eq. (2) are set to 8 for both
Charades-CG and ActivityNet-CG. All experiments are run on a single NVIDIA
A100 GPU with a batch size of 32 training for 200 epochs.

4.1 Comparisons with the State-of-the-Arts

Table 1 shows the overall performance of our approach on the Charades-CG
dataset. We observe that: (1) While the baseline QD-DETR [31] outperforms the
latest state-of-the-art methods (e.g., SSL [20] and DeCo [46]) in the Test-Trivial
spilt, there is still a performance gap in the Novel-Composition and Novel-Word
splits, indicating that it has poor compositional generalization capabilities. (2)
Our method can significantly improve the compositional generalizability of QD-
DETR, elevating 7.93% and 6.60% in R1@0.5 and R1@0.7 in Novel-Composition
split, respectively, finally outperforming on all three test splits. (3) Our method
can be integrated into existing DETR-based models to unlock their composi-
tional generalizability. e.g., our approach notably enhances Moment-DETR, and
improves its performance by 7.66% and 5.23% in R1@0.5 in Test-Trivial and
Novel-Composition splits, respectively.

Table 1. Performance (%) of state-of-the-art methods on the Charades-CG dataset.
The best result is shown in bold and the second best is underlined. ‘WS’: weakly-
supervised methods. ‘RL’: reinforcement learning methods. ‘PB’: proposal-based meth-
ods. ‘PF’: proposal-free methods. { indicates the results of our implementation using
the officially released code.  denotes the results relying on external detector knowledge.

SettingMethod Test-Trivial Novel-Composition  [Novel-Word
R1@0.5[R1@0.7/mIoU [R1@0.5/R1@0.7 mIoU [R1@0.5R1@0.7jmIoU
WS [WSSL [6] 15.33 [5.46 [18.313.61 [1.21 826 279 0.73 [7.92
RL  |TSP-PRL [40] 39.86 [21.07 [38.41[16.3 [2.04 [13.52 [14.83 [2.61 |14.03
TMN [25] 18.75 [8.16 19.82 [8.68 | 4.07 |10.14 9.43 [4.96 [11.23
PB  [2D-TAN [56] 48.06 27.10 |43.72 3274 (1525 [31.5 |37.12 [18.99 135.04
OD-TAN+SSL [20]  [53.91 [31.82 46.84 35.42 |17.95 [33.07 43.60 [25.32 [39.32
MS-2D-TAN [55] 57.85 [37.63 [50.51 [43.17 [23.27 |38.06 45.76 (27.19 |40.80
MS-2D-TAN-+SSL [20]58.14 |37.98 50.58 [46.54 25.10 |40.00 50.36 [28.78 |43.15
LGI [32] 19.45 [23.8  |45.01[29.42 [12.73 [30.09 [26.48 [12.47 [27.62
VLSNet [54] 45.91 [19.80 |41.63 [24.25 [11.54 |31.43 25.60 [10.07 30.21
pp |VISA" [22] 53.20 [26.52 [A7.11 [45.41 [22.71 |42.03 [42.35 [20.88 |40.18
Deco [46] 58.75 [28.71 |49.06 47.39 [21.06 |40.70
Moment-DETR' [19] [49.48 [28.04 44.82 [30.42 |18.62 |36.61 46.76 [24.75 |41.70
Moment-DETR+Ours 57.14 33.85 |49.32 [44.65 (23.21 (39.86 47.05 24.32 41.57
IQD-DETR' [31] 59.24 [33.43 |50.92 42.30 |21.09 [38.55 46.04 [26.33 42.89
QD-DETR+Ours 60.66 38.60 52.53/50.23 27.69 44.1455.25 35.25 48.10
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In Table 2, we also achieve competitive results on the ActivityNet-CG dataset
across two baselines. In the Novel-Composition split, our method promotes the
performance of QD-DETR by 2.65%, 3.43%, and 1.43% in R1@0.5, R1@0.7 and
mloU, respectively. Additionally, by integrating our approach, Moment-DETR’s
performance experiences a boost of 1.39%, 0.69%, and 1.50% in R1@0.5, R1@0.7
and mlIoU metrics, respectively. Notably, VISA [22] leverages external knowl-
edge from off-the-shelf object detectors and action recognition models while our
method is conducted in an end-to-end manner. Although our method underper-
forms VISA [22] in the Test-Trivial split, it still achieves comparable performance
in the Novel-Composition split, which proves that our method has a better capa-
bility of compositional generalization.

4.2 Ablation Studies

We further provide ablation studies to validate the effectiveness of the proposed
method, including various constraints in the coarse-to-fine saliency ranking loss,
diverse hierarchical negative queries, and several hyperparameter settings. We
use QD-DETR as the baseline to explore the insights.

Table 2. Performance (%) of state-of-the-art methods on the ActivityNet-CG dataset.
The best result is shown in bold and the second best is underlined. ‘WS’: weakly-
supervised methods. ‘RL’: reinforcement learning methods. ‘PB’: proposal-based meth-
ods. ‘PF’: proposal-free methods. { indicates the results of our implementation using
the officially released code. » denotes the results relying on external detector knowledge.

SettingMethod Test-Trivial Novel-Composition  Novel-Word
R1@0.5[R1@0.7/mloU [R1@0.5R1@0.7/mIoU [R1@0.5[R1@0.7/mIoU
WS \WSSL [6] 11.03 414  15.07 2.89 0.76 7.65 3.09 |1.13 7.10
RL  [TSP-PRL [40] 34.27 [18.80 [37.05[14.74 |1.43 [12.61 18.05 [3.15  |14.34
TMN [25] 16.82 [7.01 |17.138.74 4.39 [10.0819.93 [5.12 [11.38
PB  2D-TAN [56] 44.50 [26.03 [42.12[22.80 9.95 [28.49 23.86 [10.37 |28.88
LGI [32] 43.56 [23.20 [41.37[23.21 [9.02 [27.86 23.10 [9.03  [26.95
VLSNet [54] 39.27 [23.12 [42.51[20.21 9.18  [29.07 21.68 (9.94 |29.58
PF VISA* [22] 17.13  |29.64 14.02 (31.51 16.73 |35.85 |30.14 15.90 [35.13
Deco [46] 43.98 [24.25 |43.47 27.35 [11.66 131.27 - - -
Moment-DETR' [19] [42.73 [25.31 [42.19[29.20 [13.71 [31.63 [26.84 [13.34 [29.95
Moment-DETR+Ours/44.19 25.81 43.49/30.60 14.40 33.1329.59 15.10 32.43
IQD-DETR! [31] 41.80 [20.88 |41.15 26.91 [10.96 (31.01 27.09 |11.38 |31.21
QD-DETR+Ours  43.76 [25.98 |42.86 [29.56 14.37 32.44 27.60 [13.11 |30.98

Table 3. Ablation studies for coarse-grained ranking on Charades-CG dataset. * means
that we replace the saliency loss in Lygse with our Linirq and yield better performance.

Lvase | Lintra | Linter | Test-Trivial Novel-Composition
R1@0.5 | R1@0.7 | mIoU | R1@0.5 | R1@0.7 | mIoU

v 59.24 33.43 50.92 | 42.30 21.09 38.55
v vE 60.24 35.89 51.73 | 44.02 22.84 39.23
v v 60.17 37.11 51.96 | 46.69 24.87 41.74
v v v 61.98 37.56 53.38 | 46.25 24.93 41.88




Coarse-to-Fine Saliency Ranking for Compositional Temporal Grounding 409

Coarse-Grained Saliency Ranking. We report the contributions of each
constraint within the coarse-grained saliency ranking loss in Table 3. Note that
the proposed intra-ranking loss shares the same objective with the saliency loss
in Lpgse- Therefore, by replacing it with L;psq, our loss yields improvements
across all metrics on two test sets, with R1@0.7 increasing by 2.46% on Test-
trivial and 1.75% on Novel-Composition. We also notice that the boosting effect
of Linter is more significant compared to L;,¢rq- By combining both with Lpqse,
the overall performance can be further increased, resulting in absolute gains of
2.46% and 3.33% for mloU on Test-Trivial and Novel-Composition, respectively.
The results show the L., enhances the discriminability between video clips inside
and outside the ground truth interval, as well as between positive and negative
query responses, simultaneously improving the compositional generalizability.

Fine-Grained Saliency Ranking. We present the effects of each constraint
within the fine-grained saliency ranking loss in Table4, and its synergy with
coarse-grained ranking loss. We can observe that: (1) As fine-grained ranking
constraints are gradually added, there is a general trend of improvement across
all three metrics, among which L}T plays a leading role, significantly improv-
ing R1@0.5 by 4.13%. (2) Without complete constraints, the introduction of
53”% leads to a slight performance degradation. This trend remains consistent
both before and after combining with L.,. Interestingly, when all constraints

Table 4. Ablation studies for fine-grained Table 5. Comparison of different large
saliency ranking constraints in the Novel- language models for hard negative con-
Composition split of Charades-CG. £}T struction in the Novel-Composition test
to £‘}r are four constraints in order in Ly,. split.

Liase E}r 5% E}r E?r Ler | R1@0.5 | R1@0.7 | mIoU Dataset Hard Negatives R1@0.5 | R1@0.7 | mIoU
v 42.30 21.09 38.55 Charades-CG random sample 47.41 25.33 42.50
v v 46.43 23.39 41.65 Llama 3 [30] 48.75 25.22 42.89
v v v 46.72 24.35 42.29 Gemini-1.5 Flash [10] | 48.69 25.60 43.54
/ ol s 1640 | 2330 | 4188 GPT-3.5 Turbo [1] 50.23 | 27.69 | 44.14
v v v v v 16.98 24.00 41.94 ActivityNet-CG | random sample 29.59 12.89 32.06

; - Llama 3 [30] 29.24 13.56 31.82
v v v v 48.40 {24'5_5 43'(3? Gemini-1.5 Flash [10] | 29.72 13.24 31.96
j i j v v j jzﬁ ;Zz; ili;j GPT-3.5 Turbo [1] 29.56 14.37 | 32.44
v v v v v v 50.23 27.69 44.14

Table 6. Contribution of including prepo- Table 7. Performance (mloU) of our
sittons and adverbs into hard negatives on method on different composition types of
Charades-CG Novel Composition split. Charades-CG Novel Composition split.

Method R1@0.5 | R1@0.7 | mloU Method | verb-noun | adj-noun | noun-noun | verb-adv | prep-noun
MD+Ours w/o prep & adv | 43.03 | 22.08 | 38.79 MD 36.01 2879 | 4195 3445 ) 3538

. o MD+Ours | 40.29 3754 | 4156 37.69 | 38.48
MD-+Ours 44.65 2321 39.86 QD 37.51 41.14 44,70 34.65 33.72
QD+Ours w/o prep & adv | 48.87 25.28 43.30 QD+Ours | 43.25 45.34 45.53 41.05 38.71
QD+Ours 50.23 27.69 44.14
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are integrated into the baseline, E?r further improves the performance by 3.17%
in R1@0.7, which suggests that it only realizes full potential when forming a
complete hierarchy of constraints.

Comparison of Hierarchical Negative Queries. We compare the effects
of the random sample-based and LLM-based hard negative queries in Table 5.
From the Charades-CG results, we observe that LLM-based negative queries sig-
nificantly outperform random sampling, with improvements of 2.82% on R1@0.5
and 1.64% on mloU.

Among all the evaluated LLMs, the negative samples generated by GPT-3.5
Turbo perform better. We also note that the improvement using the LLM-based
approach over random sampling is less significant in ActivityNet-CG. A possible
reason is that the query sentences are longer while the replacement ratio is lower,
so the retained context is still sufficient for localization. However, the LLM-based
approach consistently outperforms random sampling in R1@0.7, indicating its
potential for precise grounding.

Ablation of Different Composition Types. We conduct an ablation study
by excluding prepositions and adverbs for hard negative construction. Table 6
shows that considering prepositions and adverbs effectively improves the model’s
perception of non-dominant primitives. Table 7 further shows that our method
consistently improves the compositional generalizability of existing DETR-based
methods across different composition types, validating the rationality of the
proposed hard negative construction method.

TGS T NCRIGNS - NWRIGHS o Tl T NC@bl) & WD)

l?\a 05 1.0 20 E\“ 05
; — — 50
ol A P o o el 05~ 46.66 WP 47.88 05 4165 PR #
- o v
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2 Wi 52 O 10 4794 IREEM 4797 210 4266 s
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i ;
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i T TNy N ol

2 4 8 16 2 4 8 16
Charades.CG Ac,ivi;NH_CG (b) Comparison of the trade-off loss weights in
(a) The effect of different g in top-k selection for tché g;):i—e(t}.omposwlon split of the Charades-

coarse-grained ranking loss.

Fig. 5. Hyperparameter Evaluation.

= e o - Hard Negative 2 (HN2) == Hard Negative 3 (N3] Negative Query  — Original Query ~~- Hard Negative 1 (HN1) -~ Hard Negative 2 (HN2] -~ Hard Ne

rig uery: Person they put a pillow into it

QD-DETR

219sf———1307s

N1: Person they adjust a pillow into it. 8
N 7
N2: Person they adjust a pill M

HN.
HN3: Pe v adjust 4
HNG: 3
Nee Neg: person pours coke into glass. &

e o

(b)

Fig. 6. Visualization of saliency scores given different query sentences. (a) and (b) are
test samples from Charades-CG.
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Hyperparameter Evaluation. In Fig.5a, we explore the effect of different
g on the top-k selection in Eq. (2). For Charades-CG, with the increase of g,
the metrics including R1@0.5 and mIoU on Test-Trivial and Novel-Composition
show an opposite trend, indicating a competitive balance between the two splits.
For ActivityNet-CG, the trends for Test-Trivial and Novel-Composition are con-
sistent, while larger ¢ leads to a decrease in performance on all three splits. When
q = 8, the model achieves the best Novel-Composition results on both datasets.
The heatmaps in Fig. 5b illustrate the effects of different loss weights a and (3
in Eq. (5) in the Novel-Composition split. We empirically find that the optimal
performance in R1@0.5 and mIoU is achieved when both « and ( are set to 1.0.
Therefore, we use this setting by default in our experiments.

4.3 Qualitative Analysis

We visualize the saliency scores of several cases in Charades-CG in Fig.6 and
observe that the existing work struggles with hard negative queries, showing
irrational saliency responses. For instance, in Fig.6a, the hard negative query
“Person takes the shoe in the closet.” is even more salient than the positive
query “Person puts the towel in the closet”, leading to imprecise moment local-
ization. In contrast, our approach consistently improves the model’s ability to
distinguish different words between positive and hard negative queries and yield
hierarchical responses, thereby achieving better moment localization and com-
positional generalization. Additionally, our method can also catch the nuanced
variation of adverbs and prepositions, such as different prepositions “into” and
“behind” in Fig. 6b. This indicates that ours are more sensitive to the semantic
changes of different non-dominant primitives.

Query: Person watching a video that is playing on their laptop. Query: Person puts the towel in the closet.

= e

j——————— Ground truth: 0.0s ~ 12.45 Ground truth

QD-DETR: 22,65~ 31.7s)—————————  QD-DETR 18.35 pb————] 24.05
[ |QD-DETR + Ours: 0.1s ~ 13.3s QD-DETR + Ours 2l dsp—— 2075
(a) Two Samples from the Test-Trivial split
Query: A person turns the light off as the person leaving. Query: A person puts a box on the counter.

13.0s f———2155

4.4s|-—-|1 1.9s Ground truth

Ground truth
QD-DETR 1225 {1825 48— J17.0s QD-DETR
485 j———————11.7s QD-DETR + Ours QD-DETR + Ours 13,65 f—————|21.65
(b) Two Samples from the Novel-Composition split
Query: A person throws a blanket into the corner. Query: Person holding shoes in their hands.

)

| Ground truth: 0.0s ~ 17.3s

j——————"] Ground truth: 1.1s~ 6.25 I
44sj————{9.55 QD-DETR QD-DETR  7.6sf—————————————] 1975
)

1.2—————{6.55 QD-DETR + Ours J | QD-DETR + Ours: 0.5 ~ 16.2s

(c) Two Samples from the Novel-Word split

Fig. 7. Qualitative comparison in different test splits of Charades-CG.
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Figure 7 illustrates several qualitative examples in three splits of Charades-
CG. In the Test-Trivial split, although the queries don’t contain unseen compo-
sitions and words, our method demonstrates more precise alignment than the
baseline. When encountering the Novel-composition “turns the light off” and
“put a bor on” and Novel-Word “corner” and “hands” in the queries, our
method can still generalise well to them. The presented results indicate that
our method effectively guides DETR-based models in utilizing hierarchical neg-
ative samples to enhance the generalizability of unseen compositions and unseen
words.

5 Conclusion

In this paper, we propose SHINE, a Saliency-aware Hlerarchical NEgative rank-
ing method for compositional temporal grounding. We first utilize an LLM to
produce semantically plausible yet distinct hierarchical hard negatives from the
original query. Furthermore, we introduce a coarse-to-fine saliency ranking strat-
egy that establishes a multi-granularity semantic relationship between video and
hard negatives. Extensive experiments demonstrate that SHINE substantially
enhances the compositional generalization capabilities of current DETR-based
temporal grounding models.
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