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Abstract

We present a taxonomy-driven framework
for constructing domain-specific knowledge
graphs (KGs) that integrates structured tax-
onomies, Large Language Models (LLMs) and
Retrieval-Augmented Generation (RAG). Al-
though we focus on climate science to illus-
trate its effectiveness, our approach can poten-
tially be adapted for other specialized domains.
Existing methods often neglect curated tax-
onomies—hierarchies of verified entities and
relationships—and LLMs frequently struggle
to extract KGs in specialized domains. Our
approach addresses these gaps by anchoring ex-
traction to expert-curated taxonomies, aligning
entities and relations with domain semantics,
and validating LLM outputs using RAG against
the domain taxonomy. Through a climate sci-
ence case study using our annotated dataset
of 25 publications (1,705 entity-publication
links, 3,618 expert-validated relationships),
we demonstrate that taxonomy-guided LLM
prompting combined with RAG-based valida-
tion reduces hallucinations by 23.3% while im-
proving F1 scores by 13.9% compared to base-
lines without the proposed techniques. Our con-
tributions include: 1) a generalizable methodol-
ogy for taxonomy-aligned KG construction; 2)
a reproducible annotation pipeline, 3) the first
benchmark dataset for climate science infor-
mation retrieval; and 4) empirical insights into
combining structured taxonomies with LLMs
for specialized domains. The dataset, including
expert annotations and taxonomy-aligned out-
puts, is publicly available at https://github.
com/Jo-Pan/ClimatelE, and the accompany-
ing framework can be accessed at https://
github.com/Jo-Pan/TaxoDrivenkG.

1 Introduction

Effective management and utilization of structured
knowledge is a core challenge in domain-specific
research. While scientific publications across fields,
from materials science to epidemiology, routinely

describe critical relationships between models, ob-
servational datasets, and analytical findings, these
connections are rarely formalized or linked to stan-
dardized data sources (Dong et al., 2019; Rezig
et al., 2015, 2016). For instance, climate science
papers might detail how green house gas emis-
sion affects the occurrence of wildfires (Touma
et al., 2021; Kruger et al., 2006), while chem-
istry studies could analyze battery chemistry per-
formance under different extreme conditions (Fan
et al.,, 2024). Yet in both cases, these insights
remain trapped in unstructured text, inaccessible
to computational analysis. This lack of system-
atization impedes cross-study knowledge integra-
tion, slowing discovery and limiting reproducibility.
Knowledge graphs (KGs) address this gap by struc-
turing entities and relationships into semantically
interconnected frameworks, enabling querying, au-
tomated reasoning, and cross-domain interoperabil-
ity (Chang et al., 2023).

Although KGs have advanced research in do-
mains like material science (Venugopal et al., 2022)
and geospatial sciences (Cogan et al., 2024), con-
structing them in specialized fields faces two main
challenges. First, existing methods overlook do-
main taxonomies, which are curated hierarchies
of verified entities and relationships. Instead, they
build KGs from scratch via LLMs. (Edge et al.,
2024). While flexible, this forfeits the semantic
rigor and community consensus embedded in tax-
onomies, leading to inconsistent representations.
Second, despite LLMs’ proficiency in general-
purpose information extraction (Xu et al., 2024),
they struggle in specialized domains: hallucinating
entities, misclassifying relationships, and overlook-
ing tail-domain concepts absent from their training
data (Yu et al., 2024). For example, in climate sci-
ence, models frequently conflate teleconnections
(large-scale climate linkages) with generic corre-
lations or fail to recognize emerging terms like
‘Arctic amplification’. These errors compromise
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KG reliability for downstream tasks.

A critical bottleneck in KG construction lies
in accurate named entity recognition (NER) for
specialized domains. State-of-the-art generalist
models like GLINER (Zaratiana et al., 2024),
which achieve competitive performance on broad-
coverage benchmarks (F1: 0.478), falter in domain-
specific settings—scoring only 0.339 F1 on climate
science texts. This performance gap stems from
two interrelated issues: 1) Domain-specific termi-
nology—such as teleconnections, oceanic Rossby
waves, and CMIP6 emission scenarios—occupies
the “long tail” of knowledge underrepresented in
LLM training corpora (Yu et al., 2024), and 2)
LLMs lack mechanisms to disambiguate domain-
relevant entities (e.g., "water" as a model variable
in hydrological studies) from semantically similar
generic terms (e.g., generic mentions of "water"
in non-technical contexts). Recent advances in
weak supervision (Zhang et al., 2025) have shown
promise in augmenting scarce annotations by lever-
aging heuristic rules, knowledge bases, or LLM-
generated pseudo labels, offering a viable path to
improve domain-specific entity recognition at scale.
Consequently, LLMs either omit critical concepts
or misclassify them, propagating errors into down-
stream KG components.

To address these challenges, we propose a frame-
work that synergizes domain taxonomies, con-
strained LLM extraction, and iterative validation,
demonstrated through climate science KG construc-
tion. Our approach comprises three key compo-
nents: 1) Taxonomy-driven KG construction: Ex-
traction is anchored to expert-curated taxonomies
(e.g., MeSH in biomedicine, NASA’s GCMD (Na-
gendra et al., 2001) in climate science). By integrat-
ing RAG with LLMs, we ensure extracted entities
(e.g., CMIP6 experiments) and relationships (e.g.,
ENSO influences Drought) align with the taxon-
omy’s hierarchical structure, preserving semantic
consistency. 2) Constrained Entity and Relation
Typing: To reduce hallucinations, we restrict the
types of named entities (NEs) and relations that
LLMs can extract. This prevents irrelevant entity
types, such as person names, from being included.
Few-shot learning is employed to adapt the model
to domain tasks, improving performance. 3) RAG-
based output verification: Unlike approaches like
GraphRAG (Edge et al., 2024), which directly use
model outputs for KG construction, we verify out-
puts using RAG against the domain taxonomy. This
prevents the introduction of wrong entities and re-

lations into the graph.

Our work advances domain-specific KG con-

struction through the following contributions:

* A Generalizable = Taxonomy-Driven
Methodology:  While demonstrated in
climate science, our framework provides
a potential blueprint for constructing KGs
in any domain with structured taxonomies
(e.g., Space Domain Awareness taxonomy).
By anchoring extraction to expert-curated
hierarchies, we ensure semantic consistency
while enabling sustainable updates.

* Hallucination-Robust LLM-RAG Integra-
tion: We demonstrate how RAG-enhanced
LLMs, constrained by taxonomic rules, re-
duce entity hallucination by 23% compared
to baseline methods while maintaining 47%
recall on tail-domain concepts.

* A Reproducible Climate Science Bench-
mark: A curated dataset of 25 publications
with 1,705 entity-publication links and 3,618
expert-validated relationships.

* Rigorous Evaluation Framework: Ablation
studies and cross-model comparisons quan-
tify the impact of taxonomy anchoring, show-
ing 18% F1 gains over SOTA models like
GLiNER in climate science NER—a pattern
generalizable to other specialized domains.

By bridging unstructured scientific text and struc-

tured knowledge representations, our approach pro-
vides a scalable solution for climate science. We
also discuss how the methodology could be adapted
for other domains that rely on precision and taxon-
omy grounding, while acknowledging that domain-
specific validation is needed to confirm broader
effectiveness.

2 Related Work

2.1 KGs & Taxonomy Integration

Domain-specific KGs have driven advances across
scientific fields, from accelerating material dis-
covery (Venugopal et al., 2022) to enabling en-
vironmental decision-making through geospatial
KGs like KnowWhereGraph (Cogan et al., 2024).
However, most approaches neglect existing domain
taxonomies. While projects like SNOMED-CT
(healthcare) and Materials Ontology provide cu-
rated hierarchies, current KG construction methods
often rebuild entity structures from scratch rather
than leveraging these semantic scaffolds. This over-
sight leads to redundant efforts and weakens in-
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teroperability. For example, biomedical KGs fre-
quently over-represent common concepts while
under-representing niche terms (Stephen et al.,
2021). Our work addresses this gap by formalizing
taxonomy integration as a first-class paradigm for
KG construction, ensuring semantic consistency
while preserving domain-specific nuance.

2.2 LLMs for Domain-Specialized Extraction

LLMs excel in general-purpose information extrac-
tion (Gabriel et al., 2024; Pan et al., 2024, 2023;
Zhang et al., 2024), but struggle in scientific do-
mains, exhibiting high hallucination for tail con-
cepts (Viviane et al., 2024) and inconsistent recog-
nition of domain-specific entities. Recent mitiga-
tions like contrastive decoding (Derong et al., 2024)
and domain-adapted models (e.g., SciLitLLM (Si-
hang et al., 2024)) improve precision but remain
taxonomy-agnostic. Our framework advances this
paradigm by hard-constraining LLMs to predefined
entity/relationship types from domain taxonomies.
This approach generalizes beyond climate science.
In materials science, it can constrain entity recog-
nition to the Materials Ontology while excluding
irrelevant chemical classifications.

2.3 Retrieval-Augmented Generation

RAG has become a key strategy to improve LLM re-
liability, with applications ranging from PaperQA’s
provenance-aware scientific QA (Jakub et al., 2023)
to G-RAG’s graph-enhanced retrieval in materi-
als science (Radeen et al., 2024). However, exist-
ing RAG systems prioritize document-level context
over taxonomy alignment, risking semantic drift.
For example, ATLANTIC (Sai et al., 2023) im-
proves cross-disciplinary coherence but lacks mech-
anisms to validate entities against domain hierar-
chies. Our work introduces taxonomy-guided RAG,
where retrieval candidates are filtered through
domain-specific taxonomies (e.g., GCMD for cli-
mate science) before LLLM processing. This dual-
phase approach retrieves from both literature and
taxonomies. It ensures extracted entities map to
verified concepts rather than hallucinated variants.

3 Method Overview

We propose a generalizable framework for con-
structing domain-specific KGs that harmonizes
structured taxonomies with unstructured text ex-
traction. While demonstrated through climate sci-
ence, a domain with complex terminology and
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Figure 1: Overview of the proposed framework for
Knowledge Graph construction

rapid conceptual evolution—the methodology ap-
plies to any field with curated vocabularies (e.g.,
Unified Astronomy Thesaurus ! or GeoNames 2 in
geospatial sciences). The framework comprises
three stages: 1) Taxonomy as Semantic Scaf-
fold: Domain taxonomies (e.g., GCMD for cli-
mate science) define entity hierarchies and relation-
ship rules, ensuring consistency. 2) LLM-RAG
Hybrid Extraction: RAG grounds LLMs in tax-
onomy entities during extraction, reducing hallu-
cinations while preserving contextual nuance. 3)
Dynamic KG Assembly: Validated entities and re-
lationships are integrated into a graph that evolves
with publications, balancing taxonomic rigor with
conceptual growth.

Figure 1 illustrates the proposed framework for
KG construction from scientific publications. We
start with a taxonomy, which provides a hierarchi-
cal classification of domain-specific named entities
but lacks explicit relationships beyond hierarchical
structures such as subclass relations. To enrich this
taxonomy, we incorporate a broader set of relations
that define interactions between entities. These
relations are automatically derived from research
publications, but are constrained by our RAG to
predefined types of relations and entities within the
taxonomy, ensuring consistency and mitigating hal-
lucinations. The taxonomy serves as the structural
foundation of the KG, anchoring entity organiza-
tion, while the extracted relations add depth by
capturing meaningful interactions between entities.

4 Stage 1: Taxonomy Integration

We propose a 3-step framework to transform do-
main taxonomies into adaptive backbones for KG
construction, applicable to scientific fields requir-
ing structured yet evolving knowledge representa-
tion. Using climate science as a case study, the
process involves: aggregating domain-specific tax-
onomies, enhancing node definitions, and indexing
for semantic alignment.

'https://astrothesaurus.org
Zhttps://www.geonames.org
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4.1 Aggregate Domain-related Taxonomies

KG construction begins by unifying domain-
specific taxonomies. Starting with a core tax-
onomy (e.g., NASA’s GCMD (Nagendra et al.,
2001) for climate science), we integrate: 1) Con-
trolled vocabularies: Standardized terms from mod-
eling protocols or experimental frameworks (e.g.,
CMIP6CYV (Taylor et al., 2018)); 2) Data Repos-
itories: Entity labels from observational datasets,
clinical databases, or institutional repositories (e.g.,
obs4MIPs (Waliser et al., 2020) for climate obser-
vations; and 3) Domain-Specific Standards: Expert-
curated resources tailored to niche subfields (e.g.,
CMIP Pub Hub?).

In the climate science case study, we constructed
the taxonomy GCMD+ with publically available re-
sources: GCMD, CMIP6CYV, obs4MIPs and CMIP
Pub Hub. Each entity in GCMD-+ is assigned with a
unique hierarchical path and identifier, resulting in
a total of 16,360 entities, an 18% increase over the
base GCMD. To enhance interoperability, we link
the taxonomy to a cross-domain knowledge base,
Wikidata, through Entity Matching and Metadata
Integration, detailed in Appendix A.1.

Why Not General Taxonomies? Broad re-
sources like Wikidata introduce noise through ex-
cessive granularity (e.g., redundant storm classifi-
cations by years) and irrelevant entities. Domain-
specific taxonomies prioritize precision, leveraging
curated hierarchies validated by practitioners.

4.2 Enhance Definitions

Taxonomy nodes often lack standardized defini-
tions. In GCMD+, 30% of nodes lacked definitions.
We address this using Llama-3.3-70B (Grattafiori
et al., 2024) to generate concise descriptions us-
ing the node label, hierarchical path, and original
definitions (where available). This improved def-
inition coverage while standardizing length and
clarity across the taxonomy. Additionally, remov-
ing irrelevant detail and standardized vocabulary
improves indexing in later stages.

4.3 Indexing for Dynamic Alignment

All entities are embedded using NVIDIA NV-
Embed-v2 (Lee et al., 2024) (4096 dimensions),
a top-performing model on the MTEB benchmark
(Muennighoff et al., 2022). The embeddings en-
able semantic search and link literature-extracted
knowledge to taxonomy. This indexing ensures the

Shttps://cmip-publications.1lnl.gov

1 LLM Prompt construction

1) Task Description
2) Entity and Relation Definitions
Domain |_ 3) Few-shot Learning o
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Entity, ENSO signals, Variable, Observable patterns or data related to ...
Entity, oceanic teleconnection, Teleconnection, A large-scale pattern of ...

2 Entity & Relationship Extraction

¢

Relationship, ENSO, ComparedTo, I0D;

3 Outputvalidation & Entity Linking (PostRAG)

Oceanic teleconnection X

Indonesian Throughflow passagex RAG
ENSO signals & (GcMD+ ID: 095805¢0..) [+

CMIP3 models @ (GCMD+ ID: 6a04c8fh..)

Figure 2: Stage 2: Information Extraction from publica-
tions using LLM and RAG

taxonomy serves as a stable anchor for maintaining
semantic consistency across the evolving KG.

S Stage 2: Information Extraction via
LLM-RAG Synergy

Figure 2 outlines our 3-step pipeline for taxonomy-
guided information extraction: 1) prompt engineer-
ing, 2) constrained entity/relationship extraction,
and 3) validation against domain taxonomies. Be-
low we detail each stage.

5.1 LLM Prompt Construction

A trivial prompt asking the LLM to extract entities
and relationships from domain science literature
is insufficient for ensuring accuracy, consistency,
and alignment with domain knowledge. Without
constraints, the model tends to hallucinate entity
types, introduce ambiguous relationships, and devi-
ate from the standardized terminology needed for
structured knowledge representation. To address
these challenges, we construct a domain-specific
prompt framework guided by the taxonomy. The
taxonomy serves as a backbone, constraining the
LLM'’s outputs to predefined entity types and rela-
tionships, thereby reducing ambiguity and ensuring
semantic coherence. We developed a 4-component
prompt framework based on GraphRAG (Edge
et al., 2024) (Figure 2, Step 1). The complete
prompt template is provided in Appendix A.2.

Task Description : Defines the task of identi-
fying entities from predefined domain types and
extracting contextual relationships between them.
This ensures outputs align with taxonomic con-
straints while preserving contextual nuance.

4298


https://cmip-publications.llnl.gov

Entity & Relation Definitions: 1) Entities: The
taxonomy provides a hierarchical organization
of terms, where higher-level nodes represent ab-
stract entity types (e.g., Teleconnection, Model,
and Ocean Circulation), while lower-level nodes
correspond to specific instances. Experts select
entity types from the higher-level nodes, ensur-
ing alignment with domain interest. 2) Relation-
ships: Domain-critical interactions are defined by
domain experts(e.g., 9 climate relationships like
ComparedTo and MeasuredAt).

Few-Shot Learning Few-shot learning (Yao
et al., 2024; Dai et al., 2022) played a critical role
in adapting the model to domain nuances. We
include 10 annotated examples in the prompt to
explicitly demonstrate NER and relationship ex-
traction (RE) patterns. These examples cover all
predefined types. This is particularly necessary be-
cause naive prompting leads to inconsistencies in
entity classification and relationship identification.

Input with RAG Results (PreRAG) To further
constrain the model and improve precision, we
leveraged RAG to retrieve suggested entities us-
ing a multistep process: 1) Extract noun phrases
from input text using SpaCy dependency parsing.
2) Apply pre-defined rules to filter out irrelevant
phrases, such as non-climate-related terms, skip
words, or phrases shorter than three characters. 3)
Retrieve the most similar taxonomy nodes for each
noun phrase using cosine similarity between the
noun phrase embedding and node embeddings. 4)
Retain candidates with similarity scores above 0.6
and append them to the input text as ‘Potential En-
tities:’. This process enriched the input context
while maintaining strict alignment with the verified
taxonomy. The 0.6 threshold balances precision
and recall based on experimentation. Lower values
(e.g., 0.5) caused excessive false positives, while
higher values (e.g., 0.7) missed relevant entities.

5.2 Entity & Relationship Extraction

An LLM (e.g., Llama-3.3-70B-Instruct (Grattafiori
et al., 2024)) processes the inputs from Section 5
to extract entities and relations from publications.

5.3 Output Validation (PostRAG)

Extracted candidates undergo rigorous validation
(Figure 2, Step 3): First, each extracted entity,
along with its description, is matched to domain
taxonomy nodes (e.g., GCMD+ or MeSH) via co-
sine similarity. The entity’s predicted description

is leveraged to retrieve potential matches from do-
main taxonomy based on semantic similarity. En-
tities with high-similarity (0.6+) matches are ac-
cepted for inclusion in the graph.

Second, the validated entities are used to es-
tablish paper-mention-entity relationships, which
are incorporated into the KG. Publications act as
sources of evidence for these relationships, enhanc-
ing the KG’s reliability and utility. Furthermore,
only predicted relationships involving validated en-
tities are added to the graph. Entities without suf-
ficiently confident matches are excluded from the
final graph to prevent the introduction of noise or
misinformation. This process is critical for mini-
mizing hallucinations and ensuring alignment with
the domain taxonomy.

Through this structured approach, the taxon-
omy serves as an anchor throughout the extraction
pipeline, ensuring that entity recognition, relation-
ship extraction, and knowledge graph integration
remain grounded in verified domain knowledge.

6 Stage 3: Dynamic KG Assembly &
Maintenance

Our framework constructs domain-specific KGs
that balance taxonomic stability with adaptabil-
ity. The resulting KG (e.g., ClimatePubKG
for climate science) integrates entities from do-
main taxonomies (e.g., GCMD+) and schol-
arly publications into a unified graph database
(e.g., Neodj). Each relationship inherits prove-
nance metadata—including paper references, cited
text snippets, and contextual mentions—enabling
evidence-based queries. For instance, in climate
science, a MeasuredAt relationship between ENSO
signals and an oceanic location links to the source
publication’s methodology section.

We demonstrate through a climate science
case study: processing 300 papers from Se-
mantic Scholar established 21K validated entity-
publication links (e.g., connecting CMIP3 models
to teleconnection studies). Automated pipelines
continuously ingest new publications, expanding
coverage while enforcing taxonomic alignment.

To balance comprehensiveness with reliability,
unlinked entities (e.g., emerging terms like “sub-
surface salinity fronts") undergo systematic moni-
toring. 1) Frequency Tracking: Entities surpassing
occurrence thresholds are flagged. 2) Expert Val-
idation: Domain specialists assess candidates for
taxonomy inclusion. 3) Taxonomy Extension: Ap-
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proved entities are added with unique identifiers.

This process filters transient concepts while inte-
grating validated knowledge. The KG architecture
supports dual roles: a historical repository and a
live research tool. In climate science, feedback
loops between experts and extraction models en-
able real-time hypothesis testing (e.g., validating
new teleconnection patterns against historical data).

By grounding KGs in taxonomies while ac-
commodating domain evolution, our framework
achieves precision at scale—critical for fields like
climate science where terminology and relation-
ships evolve rapidly. The methodology generalizes
to other domains through configurable taxonomic
constraints and validation rules.

7 Domain-Specific Annotation Pipeline

We demonstrate our framework’s practicality
through a climate science annotation pipeline, vali-
dated by 4 domain experts. The 3-step process bal-
ances efficiency and precision through iterative re-
finement: Step 1: NER: Annotators validate LLM-
generated pre-annotations (e.g., Llama-3.3 predic-
tions) against domain-specific guidelines, tagging
12 predefined categories (Appendix A.2). Irrele-
vant predictions such as person names are filtered
out, while missing domain entities (e.g., telecon-
nections) are added. This step achieved moderate
inter-annotator agreement (Kappa: 0.77), reflecting
challenges in consistently identifying climate sci-
ence entities, particularly nuanced variables like or-
bital period and domain-specific experiments like
RCP. Step 2: Entity Linking (EL): (Kappa: 0.89)
Validated entities are mapped to GCMD+ taxon-
omy IDs. Ambiguous cases are flagged for expert
review, while unmatched entities are retained for
evaluation. Step 3: RE: (Kappa: 0.82) Annotators
verify and add relationship predictions between
entities, excluding speculative or unsupported con-
nections.

At each step, the consistency of the annotated
entities and relationships was verified, and discrep-
ancies were resolved collaboratively. Using the
INCEpTION annotation tool, (Klie et al., 2018) we
annotated 25 publications from Semantic Scholar,
covering a wide range of climate science topics,
including atmospheric processes, ocean dynam-
ics, and climate modeling. This yielded 13,773
entity mentions (10,174 linked to GCMD+) and
3,618 validated relationships. Frequent categories
include variable (3,953 mentions), location (2,767),

and (climate) model (1,500), as detailed in Ap-
pendix A.5. By recycling step outputs as inputs
(e.g., NER results inform linking), we reduced an-
notation effort. Annotation guidelines and further
details on the annotation process can be found in
Appendix A.9.

8 Experiments

The experiments aim to evaluate the proposed
framework’s effectiveness and investigate the con-
tributions of its key components, including few-
shot learning, RAG, backbone models, and rela-
tionship extraction. The evaluation is conducted on
three tasks: NER, EL, and RE.

8.1 Evaluation Protocol

We evaluate using 600-token chunks with 100-
token overlaps, following GraphRAG (Edge et al.,
2024). For NER, the strict measure requires ex-
act matches between predicted and ground truth
entity strings with matching labels (Ojha et al.,
2023). The relaxed measure counts predictions as
correct if they overlap with ground truth substrings,
regardless of label. It retains only the longest non-
overlapping substring in both ground truth and pre-
dictions (e.g., preferring ‘long-latitudes’ over ‘lati-
tude’). This approach evaluates the model’s ability
to identify unique entities while handling termino-
logical variations common in scientific literature.

For RE, strict evaluation requires exact matches
for source entity, target entity, and type, while re-
laxed evaluation ignores type. EL performance is
assessed by comparing PostRAG entity IDs against
human-annotated GCMD+ IDs.

We compute precision (P), recall (R), F1-score
(F1), prediction count (#PD), and ground truth
count (#GT) at both chunk and paper levels. Paper-
level results are in Appendix A.6.

8.2 Backbone Model Comparison

We evaluate the proposed method using multi-
ple backbone models to assess performance vari-
ations. 1) Scale variants: LLlama-3.3-8B-Instruct
(Grattafiori et al., 2024) vs. Llama-3.3-70B-
Instruct (Grattafiori et al., 2024) measure model
size impact. 2) Commercial APIs: GPT-40 (Ope-
nAl et al., 2024) and DeepSeek-V3 (DeepSeek-Al
et al., 2024) as proprietary alternatives.

We also include generalist NER baselines,
GLiNER (Zaratiana et al., 2024) and NuNER (Bog-
danov et al., 2024), which rely solely on text input
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and label names. This setup isolates the effects of
model architecture, parameter count, and domain
specialization under identical taxonomy constraints
and RAG configurations across experiments.

All non-API models are run on a server with
two NVIDIA A100 80GB GPUs. These experi-
ments provide insights into the trade-offs between
model size, cost, and accuracy, guiding the choice
of backbone models for practical deployments.

8.3 Ablation Studies

Few-Shot vs. Zero-Shot Learning To assess
in-context learning, we compare the framework
with few-shot examples (10-shot, 1-shot) and with-
out (0-shot). The few-shot setup includes climate-
specific examples. This evaluates its impact on
NER, EL, and RE, highlighting its benefits for
domain-specific extraction.

RAG Efficiency RAG’s effectiveness is assessed
by comparing the method with and without RAG-
generated input candidates (PreRAG) to isolate its
impact on entity recognition and linking. For post-
processing (PostRAG), predictions are compared
against annotations with linked GCMD+ IDs, while
base predictions use all ground truth entities.

Isolating Relationship Extraction (NER only)
To isolate the contribution of the relationship ex-
traction stage, we conduct an ablation study com-
paring the full pipeline with a configuration that
includes only NER and EL. This experiment quan-
tifies the incremental performance gain achieved
by relationship extraction and demonstrates its im-
portance in building KGs.

9 Results and Discussion

Our proposed framework includes all components
including 10-shot, PreRAG, PostRAG and Rela-
tionship Extraction. Experiments yield three key
findings. First, taxonomy constraints with LLMs
significantly improves climate science information
extraction. Second, retrieval augmentation and
few-shot learning effectively reduce hallucinations.
Third, relationship extraction introduces precision-
recall trade-offs requiring careful balancing.

9.1 Ablation Studies

As can be seen in Table 1 our best-performing
model according to NER F1 score is Llama-3.3
across all tested LLMs. Therefore, our ablation
studies are based on Llama-3.3. Key findings from

ablation studies highlight the contributions of each
framework component:

Few-Shot Few-shot learning consistently im-
proves NER performance significantly, as can be
seen in Table 1 by comparing Llama-3.3 with all
proposed components (including 10-shot) to Llama
3.3 with O shot: improvement 13.9% (0.440 —
0.501). Adding just 1 example (1-shot) boosts NER
F1 by 5.8% (0.440 — 0.464). This underscores the
value of minimal in-context guidance.

RAG Contribution RAG is critical for disam-
biguation. Removing PreRAG (suggested candi-
dates by RAG) reduces NER F1 by 3.2% (0.501
— 0.485) (Table 1). This highlights the impor-
tance of input candidates in improving extraction
accuracy and reducing hallucinations. PostRAG
processing reduces false positives by 23.3%, as
evidenced by precision jumps from 0.536 to 0.661
in NER. Relaxed F1 rises to 0.525—an 5% gain
over the model without PostRAG. This validates
our hypothesis that taxonomic constraints mitigate
LLM hallucinations while preserving recall.

Isolating Relationship Extraction While re-
moving the relationship extraction task marginally
improves NER relaxed F1 (+4.2%; 0.501—0.522)
and EL F1 (+3.3%; 0.367—0.379), these gains
come at the expense of losing all relationship se-
mantics critical for KG applications. Crucially,
maintaining separate NER/EL and relationship
stages doubles LLM computational costs due to re-
dundant prompt processing. Our experiments sug-
gest practitioners may prioritize relationship extrac-
tion when domain interactions are mission-critical
(e.g., climate analysis), while considering the
NER/EL-only approach for resource-constrained
entity-centric use cases.

Model Scale Larger models (70B vs. 8B) im-
prove NER F1 by 33% (0.395 — 0.525), as in-
creased model size better captures domain nuances.
This aligns with findings in other specialized do-
mains, where model scale correlates with perfor-
mance on tail concepts and complex terminology.

9.2 Information Extraction Performance

Entity Extraction As Table 1 shows, Llama-
3.3-70B achieves 0.501 F1 (relaxed) and 0.378 F1
(strict) on NER, outperforming generalist models
like GLiNER (0.461 F1) and domain-specific base-
lines like ClimateGPT (0.110 F1).
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Relaxed Strict

All NEs PostRAG All NEs PostRAG
Model #Params P R F1 P R F1 P R F1 P R F1
Proposed Llama-3.3 70B | .536 471 .501 .661 436 .525 | 432 .337 .378 .530 .310 .391
Llama-3.1 8B | .385 .346 364 533 314 .395|.291 239 262 413 .220 .287
DeepSeek-V3 671B | .,572 350 435 .604 336 432 | 472 255 331 .498 244 328
ClimateGPT 70B | 494 062 .110 495 .104 .172|.305 .034 .062 .325 .061 .102
GPT 40 200B | .602 323 420 .663 .304 417 | 455 214 291 510 205 .292
Generalist NuNER 0.35B | .727 307 .431 - - -1 .512 196 284 - - -
GLiNER 0.3B | .591 .378 461 - - - | 458 269 .339 - - -
0-shot 469 414 440 603 386 .470 | .358 285 317 461 266 .338
1-shot Llama-3.3 70B 504 431 464 641 405 497 | 386 295 334 485 274 350
No PreRAG ’ 517 456 485 688 413 516 | 406 316 .355 .535 282 .370
NER only 539 505 522 653 468 545 | 431 360 392 521 333 406

Table 1: NER performance for the proposed framework and ablations

Model P R F1 #PD
Llama-3.3 | 440 315 367 4,051
Llama-3.1 | .396 .247 .304 3,540
Proposed DeepSeek-V3 | 457 272 341 3,365
ClimateGPT | 478 .108 .176 828
GPT4o | 497 246 330 2,779
0-shot 427 294 348 3,788
1-shot Llama-3.3 448 304 362 3,840
No PreRAG T 456 298 360 3,692
NER only 435 336 379 4,388
Table 2: Entity linking performance
Relaxed Strict
Model| P R F1| P R Fl1
Llama-3.3 | .066 .096 .078 | .045 .066 .053
Llama-3.1 | .026 042 .032|.016 .027 .020
Proposed DeepSeek-V3 | .075 .072 .073 | .034 .032 .033
ClimateGPT | .096 .066 .079 | .000 .000 .000
GPT4o0 | 009 .001 .001 | .060 .041 049
0-shot 037 083 .051 | .012 .028 .017
1-shot Llama-3.3 | .047 .076 .058 | .031 .050 .038
No PreRAG 064 096 .076 | 040 .061 .048

. Best proposed model scores are underlined.

Table 3: Relationship extraction performance

Entity-type analysis with Llama-3.3 (Ap-
pendix A.5) shows performance correlates with
taxonomic standardization in that well-defined cat-
egories like Teleconnection (0.61 F1) and Model
(0.53 F1) outperform ambiguous types (i.e., not
well-defined) like Platform (0.04 F1).

Error analysis highlights two key limitations. 1)
Our LLMs frequently extracted acronyms (e.g.,
"SAM") while ignoring full names ("Southern An-
nular Mode"), even when both appeared in context.
2) It inconsistently handled term variants, retaining
"anthropogenic climate change" but omitting syn-
onymous phrases like "climate change impacts" in
the same sentences. Appendix A.3 illustrates these
patterns through annotated examples.

Entity Linking Taxonomy-guided linking
achieves 0.367 F1 (Table 2), with GPT-40 leading

in precision (0.497) and Llama-3.3-70B in recall
(0.315). The precision-recall gap reflects a
trade-off: strict taxonomic alignment avoids false
links but may omit novel concepts. Our dynamic
update mechanism addresses this by tracking
high-frequency unlinked entities for expert review.

Relationship Extraction While RE is critical
for KG completeness, it remains challenging. Cli-
mateGPT achieves the highest relaxed F1-score
(0.079) but scores 0 under strict evaluation (Ta-
ble 3). The performance of Llama-3.3 is more
stable scoring 0.078 (relaxed) and 0.053 (strict).
Similar to NER, Llama-3.3 with the proposed com-
ponents performs the best. When entity matching
is relaxed to allow partial alignment of source and
target entities (Appendix A.7), ClimateGPT scores
0.015 F1, and Llama-3.3 scores 0.244 F1. Beyond
identifying correct entity pairs, poor matching fur-
ther complicates RE; even PostRAG (App.A.7) of-
fers little help if entity matching fails.

10 Conclusion

In this work, we presented a taxonomy-driven
framework for domain-specific KG construction
using LLMs and RAG. Our approach addresses the
challenges of extracting and organizing domain-
specific knowledge from unstructured scientific lit-
erature. By grounding the KG construction pro-
cess in a taxonomy (NASA’s GCMD), we ensured
semantic consistency and reduced hallucinations
commonly associated with LLMs.

Our experiments demonstrated the effectiveness
of integrating RAG with LLMs for KG construc-
tion, particularly in improving precision and reduc-
ing false positives in entity recognition and rela-
tionship extraction. The use of few-shot learning
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further enhanced the model’s ability to adapt to the
climate science domain, even with minimal train-
ing examples. Additionally, our curated dataset and
annotation pipeline provide a valuable resource for
future research in climate science information ex-
traction. While demonstrated in climate science,
our framework provides a blueprint for any domain
with structured taxonomies. By converting unstruc-
tured text into structured, machine-readable knowl-
edge representation, this work enables large-scale
organization of specialized scientific information.

11 Limitations

Our approach faces several important constraints
in constructing climate science KGs. The GCMD+
taxonomy, while comprehensive, may not fully cap-
ture emerging concepts in climate science, creating
potential gaps in knowledge representation. Since
our dynamic maintenance process includes climate
experts in the loop, it can introduce delays in in-
corporating new terminology, affecting the KG’s
currency.

Despite taxonomic anchoring, performance
varies by entity type—well-defined categories like
Teleconnection achieve 0.61 F1 versus 0.04 F1
for ambiguous Platform entities. Acronym dis-
ambiguation (e.g., "SAM" vs. "Southern Annular
Mode") remains unresolved, with 58% of errors
stemming from partial term extraction.

The entity linking process presents technical
challenges, particularly in our fuzzy string match-
ing approach for Wikidata integration. Using a
60% similarity threshold involves trade-offs be-
tween coverage and accuracy, potentially missing
valid matches or creating incorrect associations for
complex scientific terms.

Our method’s focus on English-language scien-
tific literature introduces a language bias, poten-
tially overlooking valuable climate knowledge in
other languages. The predefined relationship types
may not capture all nuanced interactions between
climate science entities, particularly in interdisci-
plinary contexts.

These limitations suggest several directions for
future research, including developing multilingual
extensions, implementing more efficient computa-
tional approaches, and creating automated mecha-
nisms for taxonomy extension that can better keep
pace with advancing climate science knowledge.
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A Appendix
A.1 Linking with WikiData

To enhance interoperability, we link the taxonomy
to a cross-domain knowledge base, Wikidata in two
phases:

Entity Matching: Retrieve 10 Wikidata candi-
dates per taxonomy entity, filtering matches via
fuzzy string alignment (70% threshold). In cli-
mate science, this yields 5,098 validated mappings
from 10,623 candidates. Metadata Integration:
Matched entities were enriched with Wikidata IDs,
definitions, and relationships (e.g., broader/nar-
rower terms), enhancing cross-domain interoper-
ability. This step added semantic granularity to
31% of GCMD+ entities while maintaining align-
ment with the original taxonomy structure.

A.2 Prompt

Table 4 shows the prompt being used for Climate
Science Entity and Relationship Extraction from
the climate science literature. Table 5 shows the
prompt template for refining the node definitions.

A.3 Entity extraction prediction

We employ regular expressions to align predicted
entity names with the input text, enabling pre-
cise boundary matching. Figures 3, 4, and 5 vi-
sualize raw(Yellow: PD_all) and PostRAG(Blue:
PD_post) predictions from Llama-3.3-70B, show-
casing examples from evaluation documents.

A.4 Model selection choice

Fine-tuning large models such as Llama-3.3-70B
was not explored due to its high computational cost
and inefficiency for domain-specific tasks. Instead,

we rely on in-context learning with few-shot exam-
ples and RAG to achieve competitive performance
with significantly lower resource requirements.

A.5 NER performance per entity type

Entity-type analysis with Llama-3.3 (Table 6) re-
veals performance correlates with taxonomic stan-
dardization.

A.6 NER performance on paper level

Table 7 shows paper-level performance metrics av-
eraged across 25 papers. The results align with
chunk-level evaluation, suggesting our method
maintains consistent performance across different
granularities of text processing.

A.7 Relationship Performance (Relaxed)

When entity matching allows partial alignment
between source and target entities, the results are
presented in Table 8.

A.8 Relationship performance by tag

Table 9 details relationship extraction performance
across types for Llama-3.3-70B, evaluated under
relaxed and strict criteria. Performance is restricted
as exact boundary matching is challenging.

High-Frequency Relationships: MountedOn
(1,842 instances) achieves poor relaxed F1 (0.058),
with strict performance limited by NER’s bound-
ary matching challenges. ComparedTo (922 in-
stances) shows balanced precision/recall (relaxed
F1: 0.088), but struggles with implicit comparisons
(e.g., "IOD differs from ENSO" vs. indirect refer-
ences).

Low-Frequency Challenges: Rare types like
ValidatedBy (2 instances) and UsedIn (14 instances)
suffer from data sparsity, yielding near-zero F1.

A.9 Annotation Guidelines and Discussions

Annotation guidelines are attached at the end. The
following section provides additional context about
our multi-stage annotation process, the annotators’
background, and lessons learned from conducting
climate-specific entity and relationship labeling.

Annotator Qualifications and Selection We re-
cruited four annotators, each holding a PhD in
climate science or a closely related field, to en-
sure they were well-versed in the domain topics
(e.g., climate models, teleconnections, atmospheric
processes). Two were internal team members,
compensated at our institution’s research assistant

4308


https://api.semanticscholar.org/CorpusID:273654376
https://api.semanticscholar.org/CorpusID:273654376
https://api.semanticscholar.org/CorpusID:273654376
https://aclanthology.org/2025.findings-naacl.137/
https://aclanthology.org/2025.findings-naacl.137/

-Goal-

Given a text document with a preliminary list of potential entities, verify, and identify all entities of the specified types within the
text. Note that the initial list may contain missing or incorrect entities. Additionally, determine and label the relationships among
the verified entities.

-Entity Types-

A project refers to the scientific program, field campaign, or project from which the data were collected.

A location is a place on Earth, a location within Earth, a vertical location, or a location outside of the Earth.

A model is a sophisticated computer simulation that integrate physical, chemical, biological, and dynamical processes to
represent and predict Earth’s climate system.

An experiment is a structured simulation designed to test specific hypotheses, investigate climate processes, or assess the impact
of various forcings on the climate system.

A platform refers to a system, theory, or phenomenon that accounts for its known or inferred properties and may be used for
further study of its characteristics.

A instrument is a device used to measure, observe, or calculate.

A provider is an organization, an academic institution or a commercial company.

A variable is a quantity or a characteristic that can be measured or observed in climate experiments.

A weather event is a meteorological occurrence that impacts Earth’s atmosphere and surface over short timescales.

A natural hazard is a phenomenon with the potential to cause significant harm to life, property, and the environment.

A teleconnection is a large-scale pattern of climate variability that links weather and climate phenomena across vast distances.
An ocean circulation is the large-scale movement of water masses in Earth’s oceans, driven by wind, density differences, and the
Coriolis effect, which regulates Earth’s climate.

-Relationship Types and Definitions-

ComparedTo: The source entity is compared to the target entity. Outputs: A climate model, experiment, or project (source entity)
outputs data (target entity).

RunBy: Experiments or scenarios (source entity) are run by a climate model (target entity).

ProvidedBy: A dataset, instrument, or model (source entity) is created or managed by an organization (target entity).
ValidatedBy: The accuracy or reliability of model simulations (source entity) is confirmed by datasets or analyses (target entity).
UsedIn: An entity, such as a model, simulation tool, experiment, or instrument (source entity), is utilized within a project (target
entity).

MeasuredAt: A variable or parameter (source entity) is quantified or recorded at a geographic location (target entity).
MountedOn: An instrument or measurement device (source entity) is physically attached or installed on a platform (target
entity).

TargetsLocation: An experiment, project, model, weather event, natural hazard, teleconnection, or ocean circulation (source
entity) is designed to study, simulate, or focus on a specific geographic location (target entity).

-Steps-

1. Identify all entities. For each identified entity, extract the following information:

- entity name: Name of the entity

- entity type: One of the following types: [project, location, model, experiment, platform, instrument, provider, variable]
Format each entity as ("entity"<I><entity name><|><entity type><I><entity description>)

2. From the entities identified from step 1, identify all pairs of (source entity, target entity) that are *clearly related* to each other.
For each pair of related entities, extract the following information:

- source entity: name of the source entity

- target entity: name of the target entity

- relationship type: One of the following relationship types: ComparedTo, Outputs, RunBy, ProvidedBy, ValidatedBy, UsedIn,
MeasuredAt, MountedOn, TargetsLocation

Format each relationship as ("relationship"<I><source entity><I><target entity><I><relationship type>)

3. Return output in English as a single list of all the entities and relationships identified in steps 1 and 2. Use **** as the list
delimiter. Do not output any code or steps for solving the question.

4. When finished, output <ICOMPLETEI>

ITRTRTNTRTR IR TR TR IR TR IR TN TR IR IR TR TR IR TR TR INT]
HHHHHHH AR

-Examples-
{formatted examples}

ITRTRTN TR IR IR TR IR IR IR IR IR TR IR IR TR IR IR TR IR INT]
HH AR AR

-Real Data-

ITRTRTNTR IR IR TR IR IR TR IR IR TR IR IR TR IR IR TR IR IR
HH R R R

Text: {input text}
Potential Entities: {potential entities}

ITRTRTRTRTRINTRTR IR TR TN TN TR IR TN TR IR IR TR TR INT]
HH AR

Output:

Table 4: Prompt Template for Climate Science Entity and Relationship Extraction
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the likelihood of the southern annular mode ( SAM ) forcing Indian Ocean dipole ( 10D ) events and the possible impact of the 10D on El Nifi o - Southern

GT 6T GT GT GT GT
PD_all PD_all PD_all PD_all
PD_post

Oscillation ( ENSO ) events . Several conclusions emerge from statistics based on multimodel outputs . First, ENSO signals project strongly onto the SAM ,

6T PD_all 6T
PD_all PD_post PD_all
PD_post T

although ENSO - forced signals tend to peak before ENSO . This feature is similar to the situation associated with the 10D . The 10D - induced signal over

PD_all et 6T 6T
PD_post PD_all PD_all PD_all
6T PD_post

southern Australia , through stationary equivalent Rossby barotropic wave trains , peak before the 10D itself . Second , there is no control by the SAM on the

GT GT GT GT
PD_all PD_all PD_all
PD_post

10D, in contrast to what has been suggested previously . Indeed , no model produces a SAM - 10D relationship that supports a positive ( negative ) SAM driving a

GT GT GT GT

PD_all PD_all  PD_all PD_all

positive ( negative ) 10D event . This is the case even in models that do not simulate a statistically significant relationship between ENSO and the 10D . Third , the

GT GT GT
PD_all PD_all PD_all
PD_post

10D does have an impact on ENSO . The relationship between ENSO and the 10D in the majority of models is far weaker than the observed . However , the ENSO 's

GT GT GT GT GT
PD_all PD_all PD_all PD_all PD_all
PD_post PD_post PD_post

influence on the 10D is boosted by a spurious oceanic teleconnection , whereby ENSO discharge - recharge signals transmit to the Sumatra - Java coast ,

6T 6T eT 6T
PD_all PD_all PD_all PD_all
PD_post PD_post PD_post

Figure 3: Example 1 of of entity extraction in a climate science publication. Yellow highlights raw predictions
(PD_all), blue highlights PostRAG predictions (PD_post), and green indicates ground truth (GT).

all et al . 2011;0tto et al . 2012 ) . Assessments of the influence of anthropogenic climate change on extreme events has potential value for policy which is

GT GT
PD_all PD_all
PD_post

designed to address current and future climate change impacts . By investigating how human influence on the climate is affecting flooding or drought now , it

6T [ et GT
PD_all PD_all
PD_post PD_post

might be possible to provide guidance on whether to expect increases or decreases in intensity or frequency of such extremes in the future , and therefore inform

6T

adaptation planning to reduce consequent risks . As well as being relevant to adaptation , event attribution studies could be useful for emerging mechanisms to

PD_all

PD_post

address Bloss and damage”from climate change , in particular the Warsaw International Mechanism ( WIM ) established by the United Nations Framework

6T 6T -1 6T

pD_all

Figure 4: Example 2 of entity extraction results from a climate science publication.
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Given the following metadata about an entity in a climate science ontology, which may include the entity’s name, ontology path,
and a definition (which may be missing), please develop an edited definition suitable for a named entity recognition (NER)
task in climate science literature. The definition should be concise, clear, and limited to 150 tokens. Ensure it is precise and
emphasizes the entity’s unique aspects, avoiding overly general descriptions that could apply to multiple entities. Do not explain;

only provide the edited definition.
Metadata: {}
Edited Definition:

Table 5: Prompt Template for Refining Definitions

large differences in the quantifiable risk . The implications for policy are discussed in Section 4 and conclusions summarised in Section 5 . < heading > The science of probabilistic event attribution in an

ot

african context</heading > The majority of event attribution studies employ the BACE~-method ( Attribution of Climaterelated Extremes , e.g., Christidis et al . 2012 ): model simulations representing

ot PD_all 53
PD_all PD_all

PD_post

present - day weather statistics are contrasted with simulations of a so - called counterfactual world , a Bworld that might have been” , had anthropogenic GHG emissions not altered the climate system .

o1

PD_all

These simulations are achieved by running the same climate model but with the anthropogenic forcing removed . Any differences in the statistics of extreme weather events obtained can then be attributed

or ot

ot
PD_all

PD_post

to anthropogenic GHG forcing . This methodology requires the availability of large climate model ensembles to simulate the statistics of extreme events , which are by definition rare . So far there have

ot PD_all

PD_post

ot or

ot

Figure 5: Example 3 of entity extraction results from a climate science publication. Yellow highlights raw predictions
(PD_all), blue highlights PostRAG predictions (PD_post), and green indicates ground truth (GT)

rate, while two were external annotators recruited
through professional connections. This combined
pool of expertise helped capture scientific nuances
and maintain high annotation quality.

Annotation Process Overview Our initial ap-
proach, which asked annotators to label all tasks
(NER, entity linking, and relationship extraction)
simultaneously, yielded low inter-annotator agree-
ment. In response, we divided the annotation into
three sequential stages—(1) Named Entity Recog-
nition, (2) Entity Linking, and (3) Relationship Ex-
traction. This step-by-step protocol improved both
accuracy and agreement, as each stage clarified the
inputs to the next.

Stage 1: Named Entity Recognition

Annotators validated and refined Llama-3.3’s pre-
dictions against 12 categories. They removed in-
valid labels (e.g., geographic terms mislabeled as
climate models), added omitted entities (e.g., bo-
real spring predictability barrier), and resolved
boundary disputes (SSP5-8.5 vs. SSP). Despite
these refinements, Cohen’s x = 0.77 reflected the
complexity of climate entities, especially distin-
guishing constructs like orbital period (variable)
and RCP scenarios (experiment).

Stage 2: Entity Linking

Next, recognized entities were mapped to GCMD+
taxonomy identifiers, leveraging pre-linked sugges-
tions from our system. Key tasks included fixing
alignment errors (e.g., Argo floats labeled as instru-
ments rather than platforms), handling ambiguous
cases (ENSO <« El Nifio—Southern Oscillation vs.
regional impacts), and leaving 14.3% of entities un-
linked for future taxonomy extension. High agree-
ment (k = 0.89) highlighted the disambiguation
utility of a well-defined taxonomy.

Stage 3: Relationship Extraction

Annotators assigned nine expert-defined relation-
ship types (e.g., MeasuredAt, Compared1o) to pairs
of validated entities. They verified both contextual
plausibility and taxonomic consistency. For in-
stance, in the sentence “GFDL model overestimates
mean precipitation across India,” annotators had to
confirm that “GFDL” was indeed a model and “Pre-
cipitation” a variable, then mark “Target location”
as the relationship. The moderate K = 0.82 un-
derscored continuing challenges, especially when
entities were missing from the previous stages or
lacked sentence-level grounding.

Challenges and Lessons Learned A central ob-
stacle was entity disambiguation, such as dis-
tinguishing variables (e.g., aerosol optical depth)
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All NEs PostRAG

Label P R F1 #PD #GT P R F1 #PD #GT
tele | .73 53 .61 180 247 |.70 .50 .58 148 208

model | .72 42 .53 870 1500 | .65 .46 .54 609 861
loc | .73 39 .51 1462 2767 | 77 33 .46 947 2233

exp | 45 48 47 329 307 | .67 .50 .57 216 288

var | 46 .26 .33 2212 3953 | 55 25 .34 1329 2979
proj | .21 48 30 549 247 | .12 36 .18 380 131
wea | .21 25 23 215 182 | .17 .15 .16 141 158
prov | .12 .53 .20 1029 239 | 37 .45 41 174 141
haz | 34 .11 .17 121 358 | .33 .10 .15 76 258
instr | .06 .20 .10 221 701 .05 .09 .07 60 32
circ | .05 .20 .08 85 201 .02 .06 .02 63 18

plat | .02 .09 .04 125 341.00 .00 .00 36 14

Table 6: NER performance from Llama-3.3 by type, comparing All vs PostRAG results. Entity types include
Teleconnection (tele), Model (model), Location (loc), Experiment (exp), Variable (var), Project (proj), Weather
Event (wea), Provider (prov), Natural Hazard (haz), Instrument (instr), Ocean Circulation (circ), and Platform (plat).
Best scores per column are underlined.

Relaxed Strict

All NEs PostRAG All NEs PostRAG
Model P R F1 P R F1 P R F1 P R F1
Llama-3.3 | 441 .532 458 528 431 469 | .370 .437 .377 .443 .347 .383
Llama-3.1 | .311 470 353 414 385 .392 | .248 370 .278 .334 .304 .311
DeepSeek-V3 | 454 397 410 472 325 377 | 401 330 .348 420 .271 .322
Proposed  ClimateGPT | .443 .107 .168 .405 .096 .154 | .255 .062 .097 .229 .053 .085
GPT 40 | 478 375 .403 .530 .301 .377|.384 299 319 .430 .237 .298
NuNER | .620 .341 438 - - - | 464 253 326 - - -

GLINER | 490 445 .465 - - -.391 334 359 - - -

0-shot 385 485 410 468 391 420 | 306 393 327 363 307 327
1-shot Llama-3.3 426 516 443 512 411 451 | 344 404 350 412 325 358

No PreRAG T 426 509 439 545 392 449 | 340 394 342 425 291 .339
NER only 438 556 468 510 450 471 | 365 454 385 423 361 .383

Table 7: Paper-Level Evaluation of NER performance for the proposed framework and ablation studies, with the
best proposed scores underlined.

Relaxed (Partial) | Relaxed (PostRAG) | Strict (PostRAG)
Model P R F1 P R F1 P R F1

Llama-3.3 | 206 .301 .244 | .060 .052 .056 | .039 .034 .036

Llama-3.1 | .174 284 216 | .042 .034 .038 | .026 .022 .024

Proposed DeepSeek-V3 | .294 282 .288 | .059 .041 .049 | .026 .018 .022
ClimateGPT | .313 216 .256 | .090 .036 052 | .065 .026 .037

GPT 40 | .132 .008 .015 | .000 .000 .000 | .000 .000 .000

0-shot 198 450 275 | .040 .051 .045 | .013 .017 .015
1-shot Llama-3.3 | 205 .335 .255|.050 .050 .050 | .031 .031 .031
No PreRAG 192 288 230 | .070 .053 060 | .044 .033 .038

Table 8: Relationship Performance with PostRAG and more relaxed metrics that allow partial match of source and
target entities.
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Relaxed (Partial) Relaxed Strict
label #GT P R F1 P R F1 P R F1
ComparedTo 922 | .149 .104 .122 | .107 .075 .088 | .107 .075 .088
MeasuredAt 263 | .094 285 .141 | .045 .137 .068 | .045 .137 .068
TargetsLocation 1842 | .163 .137 .149 | .064 .054 .058 | .064 .054 .058
Outputs 465 | .137 .095 .112 | .056 .039 .046 | .056 .039 .046
UsedIn 242 | .036 .140 .057 | .020 .079 .032 | .020 .079 .032
RunBy 35 |.014 .057 .022|.014 .057 .022 |.014 .057 .022
ProvidedBy 31 |.012 226 .023 | .010 .194 .020 | .010 .194 .020
ValidatedBy 14 | .010 .143 .018 | .010 .143 .018 | .010 .143 .018
MountedOn 2 |.000 .000 .000 |.000 .000 .000 |.000 .000 .000

Table 9: Relationship Detection Performance from Llama-3.3-70B by different relationship types.

from weather events (e.g., thunderstorms) in dense
methodological texts. Relationship contextualiza-
tion also proved difficult, especially for vague ref-
erences like Access Model, UsedIn, CESM Model.
Moreover, 14.3% of entities could not be linked to
GCMD+ due to emerging concepts (e.g., Al-driven
parameterizations). Our iterative dual-annotation
process cut error propagation by 41% compared to
the single-stage approach, demonstrating the im-
portance of refining outputs step by step.

Developing consistent and curated annotation
guidelines was crucial. Early on, unclear defini-
tions and inconsistent label boundaries led to lower
agreement. By creating a detailed guide with exam-
ples, we reduced misalignments and improved &
across tasks. These findings indicate that a domain-
specific taxonomy and carefully structured annota-
tion steps—combined with expert feedback—are
essential for robust, reproducible climate science
information extraction.
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Annotation Guideline

STAGE ONE: Named Entity Recognition

1. Introduction

Purpose of the Manual:
This manual provides detailed instructions for annotating climate-related text or terms extracted from
scientific literature. It aims to ensure consistency and accuracy in labelling climate entities, data, and
models.
Intended Audience:
The guidelines are designed for annotators, including researchers, climate analysts, scientists, and
students, who are familiar with climate science terminology and concepts.
Scope of Annotations:
The annotations focus on specific climate entities, including but not limited to:

e Earth Systems: Land, ocean, atmosphere, and biosphere entities.

e Climate Data: Specific datasets and measurements.

e Climate Models: Global and regional climate models.

2. Definitions and Examples of Key Climate Entities

2.1 Earth Systems

Land:

Refers to a specific region or unit of land that can be described and modeled geographically within

the framework of a climate model. Examples:

e Continents/Regions: Africa, Ethiopia, United Kingdom (UK), high/mid-latitudes, tropics (tropical
regions).

e Land Features: Groundwater, river flow, runoff, streamflow, land cover, land use.

e Specific Landmarks: Amazon Rainforest, Himalayas, United States Midwest (Corn Belt),
Antarctica.

Atmosphere:

Refers to the layer of gases surrounding the Earth, which plays a vital role in shaping climate and

weather patterns and can be modeled geographically within the framework of a climate model.

Examples:

e Atmospheric Layers: Troposphere, mesosphere.

e Climate Phenomena: Temperature, precipitation, wind, evapotranspiration, clouds.

e Weather Systems: Hadley Cells, Ferrel Cells, Trade Winds, Jet Streams, Monsoons, Intertropical
Convergence Zone (ITCZ), El Nifio-Southern Oscillation (ENSO), Tornadoes, Thunderstorms.

Oceans:

Refers to the large bodies of saltwater that cover about 71% of the Earth's surface and can be modeled

geographically within the framework of a climate model. Examples:

e QOceans/Seas: Pacific Ocean, Indian Ocean, Atlantic Ocean.

e QOceanic Features: Gulf Stream, Kuroshio Current, Thermohaline Circulation.

e Climate-Related Ocean Phenomena: Ocean acidification, marine heatwaves, coral reefs, upwelling
zones, sea ice, continental shelves.

2.2 Climate Data

Refers to detailed, quantitative measurements or simulations of variables that describe various

components of the Earth's climate system. Examples:

e Datasets: CRU (Climate Research Unit), GPCC (Global Precipitation Climatology Centre), ERA5
(ECMWEF Reanalysis 5th Generation).

e Climate Indices: HadCRUT, MERRA-2, GSMP3.
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2.3 Climate Models

Refers to computational models used to simulate the Earth's climate system. Examples:
2.4 Global Climate Models (GCMs): CCSM4, CNRM-CMb5, HadGEM2-ES.

2.5 Regional Climate Models (RCMs): MICRO, ACCESS-ESM1.5.

3. Key Tags or Labels

Guidelines for Tagging:
e  Ensure the correct spelling and usage of tags. For example, use "Variables" consistently, not
"Variable>" or other variations.

e Review definitions carefully and apply tags or values strictly based on the provided examples
and their accurate definitions.

e If uncertain about the definition of an entity, verify its classification (e.g., variable,
teleconnection) before tagging.

Tag

Definition and examples

Variable

represents a specific measurable element or attribute of the climate system that is
studied or monitored (e.g., cloud cover,

temperature (i.e., surface air, ocean, or groundwater), precipitation, wind speed,
vapor pressure, geopotential height, humidity (relative, specific) etc.

Project

refers to a coordinated effort or initiative aimed at investigating specific aspects of
climate. Projects often involve multiple stakeholders and produce datasets, models,
or assessments (e.g., Coupled Model Intercomparison Project Phase 6 (CMIP6))

Location

refers to the geographic region or coordinates being studied or monitored. This can
be global, regional, or local. Examples includes West Africa, Central Africa, East
Africa, or Southern Africa; tropics or polar regions; high or mid latitudes regions,
specific sites (such as the Amazon, Congo Rainforest or Sahara Desert etc).

Model

refers to computational tool used to simulate and predict climate processes and
interactions in the Earth system (e.g., HadGEM3, WRE etc)

Provider

refers to the organization or agency responsible for creating, maintaining, or
distributing climate data or tools (e.g., NASA (e.g., GISS for climate models,
MERRA datasets); ECMWEF (e.g., ERA5 reanalysis datasets); NOAA (e.g., NCEP
datasets and climate services).

Instrument

refers to the device or tool used to measure climate variables. Instruments can be
ground-based, airborne, or spaceborne. Examples includes Radiosondes (balloons
for atmospheric measurements); Satellites (e.g., MODIS, GOES, or Sentinel); Rain
gauges and anemometers for ground-level data.

Event

An event is an occurrence or phenomenon in the Earth’s system that varies in
temporal scale, ranging from short-term weather events lasting minutes to days to
long-term climate events spanning decades or more. Examples include remote
teleconnection such as ENSO, IOD, etc, droughts, floods, etc

Weather event

Weather events are meteorological occurrences that impact Earth's atmosphere and
surface over short timescales (hours to days).

Common Weather Events; Rainfall (e.g., Drizzle, showers, or steady rain), Snowfall
(e.g., Light, or heavy ); Thunderstorms (e.g., storms with lightning, thunder, heavy
rain, and hail), Wind Events (e.g., breezes, gusts, and strong winds), Cloud Cover
(e.g., Clear skies, partly cloudy, overcast), Temperature Changes (Heatwaves or
cold snaps), Fog and Mist, Frost, Dew etc.
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Natural
Hazard

Natural hazards are phenomena with the potential to cause significant harm to life,
property, and the environment. Teleconnection refers to large-scale patterns of
climate variability that link weather and climate phenomena across vast geographic
areas, influencing atmospheric conditions over long distances. Typical examples of
hazards can be broadly classified into geophysical (e.g., earthquakes, volcanic
eruptions, tsunamis, landslides), meteorological (e.g., cyclones or hurricanes or
typhons, tornadoes, heatwaves), hydrological (e.g., floods, flash floods, drought,
avalanches), biological (pandemics, plagues, animal borne diseases), and
climatological (e.g., wildfires, frost, cold wave) categories.

Ocean
circulation

Ocean circulation is the large-scale movement of water masses in the Earth's
oceans, driven by wind, density differences, and the Coriolis effect, regulating
Earth's climate. Key examples of ocean circulation, categorized into surface
currents (Gulf Stream, Kuroshio Current, California Current, Canary Current,
Equatorial Currents), deep ocean currents (North Atlantic Deep Water (NADW),
Antarctic Bottom Water (AABW), Mediterranean Outflow Water, Indian Ocean
Overturning), Global Ocean Circulation Systems (the Global Conveyor Belt, the
Atlantic Meridional Overturning Circulation (AMOC).

Teleconnection

Teleconnection is a large-scale patterns of climate variability that link weather and
climate phenomena across vast distances. Examples includes El Nifio-Southern
Oscillation (ENSO; (El Nifio or La Nina), North Atlantic Oscillation (NAQO), Arctic
Oscillation (AO), Pacific Decadal Oscillation (PDO), Indian Ocean Dipole (I0D),
Madden-Julian Oscillation (MJO), Atlantic Multi-Decadal Oscillation (AMO),
Southern Annular Mode (SAM), Rossby Waves, Walker Circulation, Monsoonal
Systems (i.e., Asian Monsoon and West African Monsoon)

4. Example

Example: “This annotation manual aims to provide consistent methods for annotating climate data. Our primary
focus is 09bdb7d909ed6615760571a6aa14051133179aee.xmi”

Task one: see the scientific literature with serial number above.

Role of the annotator: The annotator is expected is to read each sentence carefully. Then, you are

required to perform these tasks concurrently.

/7

1. Verify specific pre-annotated climate entries of interest in line 22: (E.g., “clouds”, “precipitation”,

“ENSO”) and other scientific terms such as “mid-latitude continents”. (see details below for more
information).

Delete pre-annotated test that involves a “process” or “methods”, “tools”, frameworks,
“instrument of measurements”, “units of measurement”, “temporal, threshold or range of values”
(e.g., convective parameterisation, diurnal, monsoon (see details below for more information).
Annotate missing but relevant “un-annotated” text of interest (E.g., Westerly Winds) (see details

below on how to annotate).

The strength of the westerly winds, and therefore the Ekman transport, varies with latitude-the maximum northward surface

transport occurs at about 50° S and decreases south of that.

Water must be drawn up from below in order to balance the difference between the larger northward transport at 50° S, say,

compared with the smaller northward transport at 60° S.

The broad ring of upwelling shown in figure 2a starts close to the AnE;Fctic contir;ent and extends all the way to roughly 50° S.

4316



clouds precipitation
clouds M1O

It is nateworthy fhat some of fhese new developments havp already been implemented in models, indigeting a speeding of the model
development prdcess.

=)
In the if i ENSO

ation: atthe process scale, major modelfarge-scale biases still remain in

= h [==]
relation with an both in the mean stpte (e.g., the double ITCZ artifact, warm biages of mid-latitude continents

represent the largest source of uncertainty in cloud feedback in the current generation of global climate medels [113] and the anvils

associated with deep convective cloud systems are a largely unconstrained contributor to climate change besides their well-documented
increase in height with warming [221]
i The persistence of endemic model biases, combined with the inevitable trend toward higher model resolution, has led part of the

to abandon ional d in favor of new approaches made possible by the increase of

computing power, based on models resolving convection and floud; at the kilometer scale (cloud-resolving models; CRMs)

25 The super-p rization gr - 3
clouds
1AM 18] ie a hubrid annmach that renlares 2 b a 30 CRM nraven a 30 lame-erddu simalation
[160,199] is & hybrid approach that replaces a | i ization by a 20 CRM, or even a 3D large-eddy simulation
==
( LES ) model

[63] in each atmospheric column
Uttimately, the goal of scaleaware parameterization efforts is to eventually give way to global cloud-resolving models that operate on
scales that do net require any cumulus parameterization at all [134],

More recently, first attempts to develop a novel class of convective parameterizations based on machine learning, using a

deep neural network trained by explicit simulations, have been tried with some skill to reproduce convective tendencies and m
[56.145,183].
Other Scientific Terms: You may find other climate variables such as temperature, wind speed or

wind, sea surface temperature or SST; rainfall, cyclones, aerosols, etc

Delete wrongly pre-annotated climate entities. These may include but not limited to methods,
materials, processes, units of measurements, threshold, or range of values, etc

Units of Measurement: (e.g., Celsius for temperature, mm for rainfall, km/h for wind speed).
Thresholds and Ranges: Values or thresholds or ranges. E.g., 10°C for temperature or mm for
precipitation."

Standardization: standardizing annotations across climate entities. For example, temperature (delete
prefix “minimum or min”, “maximum or max”, “nighttime”, “daytime” for temperature annotations
to ensure consistency (e.g. minimum temperature to temperature).

Other Scientific Terms: Phrases that are a scientific term but do not fall into any of the above classes
E.g. diurnal, interannual,
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22 In the meantime, even ifjconvective parameterizations fre improved at the process scale, major model large-scale biases still remain in

relation with clouds and precipitatiori, both in the mean state (e.g., the double ITCZ artifact, warm biases of mid-latitude continents and

EED )
onsoon,

the eastern tropical oceans), and in variability from the interannual timescales (| MJO , ENSO ,etc.).

23 Furthermore, much less attention has been paid to the clouds that accompany moist convection, even though shallow cumulus clouds
represent the largest source of uncertainty in cloud feedback in the current generation of global climate models [113] and the anvils

associated with deep convective cloud systems are a largely unconstrained contributor to climate change besides their well-documented
increase in height with warming [221].

24/ The persistence of endemic model p+ - binad-with-tha-reyitable trend toward higher model resolution, has led part of the
community to abandon traditional convective parameterization flevelopment in favor of new approaches made possible by the increase of

computing power, based on models resolving convection and clouds at the kilometer scale (cloud-resolving models; CRMs).

25 The super-parameterization or multiscale modeling framework

26[160,199] is a hybrid approach that replaces a conventional convective parameterization by a 2D CRM, or even a 3D large-eddy simulation
(LES) model

STAGE TWO: Entity Linking

1. Tag Selection Guidelines
e Allowed Tags: Only the following values should be selected as tags. Do not type any tags
manually; only select from the provided list: project, location, model, experiment, platform,
instrument, provider, variable, weather event, natural hazard, teleconnection, ocean circulation
e Spelling and Formatting:
o Ensure all tags are in lowercase.
o Do not use uppercase letters or modify the spellings in any way.
o If you encounter any foreign or unrecognized tags, do not use them.
2. Annotation Setup
Open two tables simultaneously:

1. Annotation Table: The document or interface where you are performing the annotations.
2. Knowledge Base Table: A reference table or database containing entity identifiers and
their corresponding information.
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Use the knowledge base to search for and verify the correct identifiers for each entity. Make sure
to check if the definitions and the path match the semantic meaning.

3. Task Description

Objective: Link each entity in the text to its corresponding identifier in the knowledge base.
Steps:

1. Identify the entity in the text.

2. Double check the tag from the allowed list (e.g., location, variable, etc.).
3. Search the knowledge base to find the correct identifier for the entity.
4. Link the entity to its identifier in the annotation table.

4. Quality Assurance

Double-check the spelling and formatting of tags.

Ensure that all entities are linked to the correct identifiers in the knowledge base.

If an entity cannot be found in the knowledge base, flag it for review rather than making an
assumption.

STAGE THREE: Relationship
1. Relationship Types and Definitions

Below are the relationship types to be annotated, along with their definitions and examples. Ensure
that you correctly identify the source entity and target entity for each relationship.

1. ComparedTo
e Definition: The source entity is compared to the target entity.
e Example: A climate model, experiment, or project (source entity) outputs data (target entity).
e Template: [Source Entity] ComparedTo [Target Entity]

2. RunBy
e Definition: Experiments or scenarios (source entity) are run by a climate model (target
entity).

e Example: An experiment (source entity) is executed by a climate model (target entity).
e Template: [Source Entity] RunBy [Target Entity]
3. ProvidedBy

e Definition: A dataset, instrument, or model (source entity) is created or managed by an
organization (target entity).
e Example: A dataset (source entity) is provided by a research organization (target entity).
e Template: [Source Entity] ProvidedBy [Target Entity]
4. ValidatedBy

e Definition: The accuracy or reliability of model simulations (source entity) is confirmed by

datasets or analyses (target entity).
e Example: A climate model simulation (source entity) is validated by observational data

(target entity).
e Template: [Source Entity] ValidatedBy [Target Entity]
5. UsedIn

e Definition: An entity, such as a model, simulation tool, experiment, or instrument (source
entity), is utilized within a project (target entity).
e Example: A climate model (source entity) is used in a research project (target entity).
e Template: [Source Entity] UsedIn [Target Entity]
6. MeasuredAt
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e Definition: A variable or parameter (source entity) is quantified or recorded at a geographic
location (target entity).
e Example: Temperature data (source entity) is measured at a specific weather station (target

entity).
e Template: [Source Entity] Measured At [Target Entity]
MountedOn

e Definition: An instrument or measurement device (source entity) is physically attached or
installed on a platform (target entity).

e Example: A weather sensor (source entity) is mounted on a satellite (target entity).

e Template: [Source Entity] MountedOn [Target Entity]

TargetsLocation

e Definition: An experiment, project, model, weather event, natural hazard, teleconnection, or
ocean circulation (source entity) is designed to study, simulate, or focus on a specific
geographic location (target entity).

e Example: A climate model (source entity) targets the Amazon Rainforest (target entity).

e Template: [Source Entity] TargetsLocation [Target Entity]

2. Annotation Instructions

1.

Identify Entities:

e (learly identify the source entity and target entity in the text.

e Ensure that both entities are correctly tagged (e.g., model, location, variable, etc.) before
annotating the relationship.

Select Relationship Type:

e Choose the most appropriate relationship type from the list above based on the context.
e Refer to the definitions and examples to ensure accuracy.
Annotate the Relationship:

e Use the provided templates to annotate the relationship between the source and target
entities.

e Double-check that the relationship type aligns with the context of the text.

Verify Consistency:

e Ensure that the relationship annotation is consistent with the definitions and examples
provided.
e If unsure, consult the knowledge base or flag the relationship for review.
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