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Abstract—This paper introduces a novel approach to schedul-
ing in conflict graphs by leveraging a fully scalable multi-agent
reinforcement learning (MARL) framework. The objective is to
minimize average delays in the presence of stochastic packet
arrivals to links, where scheduling conflicts arise if two vertices
(or links) are assigned to the same spectrum sub-band in the same
time slot. The problem is formulated as a decentralized partially
observable Markov decision process (Dec-POMDP), with the
implementation of the multi-agent proximal policy optimization
(MAPPO) algorithm to optimize scheduling decisions. To enhance
performance, advanced recurrent structures in the neural net-
work are integrated. The proposed MARL solution allows for
both decentralized training and execution, facilitating scalability
to large networks. Extensive simulations conducted across diverse
conflict graphs demonstrate the superior performance of the ap-
proach in terms of throughput and delay compared to established
schedulers under varied traffic conditions.

Index Terms—Markov decision process; multi-agent reinforce-
ment learning (MARL); recurrent neural networks; stochastic
traffic; wireless networks.

I. INTRODUCTION

This paper addresses the challenge of scheduling in conflict
graphs, a crucial problem with broad applications across
various domains [1], [2]. This problem involves allocating
resources like time slots and/or radio spectrum sub-bands to
conflicting tasks or events while considering both mutual inter-
ference and operational constraints. In wireless communication
networks, conflict graphs serves as an effective abstraction to
represent interference and constraints between different links.
Our goal is to develop a distributed, efficient, and scalable
method for scheduling wireless links that interfere with each
other across multiple frequency sub-bands.

Traditional method like the MaxWeight algorithm achieves
optimal throughput in a conflict graph [3], but requires identi-
fying all maximum independent sets within the graph, which
is an NP-complete problem [4]. Low-complexity heuristic
methods such as longest-queue-first (LQF) provide simpler
alternatives but often support only a portion of the capacity
region. A recent study [2] adopted graph neural networks,
leveraging topological information to address similar schedul-
ing problems in conflict graphs, showcasing the potential of
machine learning in enhancing scheduling strategies. However,

The authors are with Department of Electrical and Computer En-
gineering, Northwestern University, Evanston, IL 60208, USA (e-mail:
{yimingzhang2026, dguo} @northwestern.edu).

The work was supported in part by the National Science Foundation (NSF)
under grant Nos. 2003098 and 2216970, a gift from Intel Corporation, and
also the SpectrumX Center under NSF grant No. 2132700.

all these methods are centralized, necessitating the collection
of information from all links in the graph and hence imprac-
tical in large communication. A low-complexity distributed
scheduling method called queue-length-based carrier-sense
multiple access (Q-CSMA) [5] was proposed as a practical
solution. We use it as one of the benchmarks in our simulation.

Aforementioned works and recent machine learning-based
scheduling studies [2], [6]-[8] have primarily focused on
throughput maximization and use sum-rate as the key perfor-
mance metric. In this work, we prioritizes the average packet
delay as the quality of service (QoS) metric for two main
reasons. Firstly, wireless networks often operate under lighter
traffic conditions than their maximum throughput capacity
allows, making latency a more relevant measure of user
experience. Secondly, high throughput does not necessarily
eliminate significant packet delays, which can occur due to
unbalanced scheduling that disproportionately favors certain
links.

Formulating a tractable delay minimization problem is
a longstanding challenge. This paper adopts a data-driven,
model-free approach and leverage reinforcement learning
(RL), which may offer substantial benefits over traditional
optimization approaches. First, it circumvents the difficulty of
directly formulating the delay minimization problem and the
corresponding computational complexity in potentially high-
dimensional, non-convex optimization. Second, RL-based
scheduling leverages historical data and interactions, thereby
offering a richer understanding of system dynamics over time,
unlike traditional methods which focus on optimizing objec-
tives based on the current state alone. Third, this historical
perspective also enables consideration of long-term utility in
decision-making processes. While RL has been successfully
employed in various network resource allocation problems
(see, e.g.,) [9]-[11], these RL-based solutions typically con-
verge to a fixed optimal allocation such as the power levels of
transmitters [9], [11] or control variables in unmanned aerial
vehicles (UAVs) [10]. In contrast, our work aims to learn
flexible and adaptable policies that can map dynamic traffics to
a broad spectrum of actions, thereby avoiding the limitations of
static solutions and continually adapting to fluctuating traffic
loads and varying channel conditions.

Multi-agent reinforcement learning (MARL) expands the
scope of RL by introducing multiple agents that interact and
learn simultaneously to achieve desirable rewards. While [12]
studies the case where each agent controls one link as in an
ad hoc network, this paper develops an MARL framework



for cellular wireless networks, where each agent manages all
links in a cell. These agents needs to learn effective scheduling
policies considering the intra-cell and inter-cell interference
constraints described by the conflict graph. The inherent need
for agents to coordinate their actions and make jointly good
decisions makes MARL a natural fit for this setting.

One key challenge of MARL is the scalability issue caused
by the exponentially large joint-action space. Function approx-
imation techniques such as linear methods [13] and neural
networks [14] have been used to manage the expansive Q-
table in temporal difference learning.

In prior work [12], we utilized centralized training and
distributed execution, where the size of a critic neural network
is proportional to the network size. In this paper, we adapt
the previous framework, using only neighborhood information
during both training and execution phases. The adjustment
keeps the training costs and neural network size constant for
each agent, thus ensuring scalability.

Another challenge arises from the limited information ex-
change in a practical network. This limitation, often due to
constraints on communication overhead or excessive delays
over multiple hops, means that each agent may only have
access to observations made in its neighborhood. Conse-
quently, agents must learn local policies that map their limited
observations to local actions, necessitating a distributed ap-
proach. Recently, MARL’s application in networked systems,
with agents relying on local observations, has been a major
research focus [7], [15], [16]. Unlike in [16], which makes
an unrealistic assumption that one agent’s queue length is
independent of other agents’ actions, here we allow arbitrary
dependence on neighboring agents’ actions.

To address scalability and the need for decentralization, we
approach MARL in conflict graphs as distributed learning in
a decentralized partially observable Markov decision process
(Dec-POMDP) framework. We employ a widely adopted on-
policy algorithm multi-agent proximal policy optimization
(MAPPO) and integrate recurrent structures in the neural
network. These recurrent structures enable agents to better
estimate the underlying state by encoding historical transitions.

The remainder of this paper is organized as follows. We
describe the system model and formulate the learning problem
in Section II. In Section III, we introduce an RL framework.
In Section IV, we discuss the simulation setup and numerical
results. Concluding remarks are given in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System model

We consider the downlink broadcast channel within a wire-
less cellular network comprising /N devices distributed over
K cells. Let K = {1,2,...,K} and N = {1,2,...,N}
denote the set of cell indices and device indices, respectively.
Each cell hosts an AP & € K. Devices are allocated to
their nearest AP for service, with the serving AP of device
n is denoted as b, € K. Thus, N}, = {ne N | b, =k}
denotes all the devices served by AP k. Let time be slotted,
an AP k transmits data packets to devices in N} over a set
of consecutive discrete time slots with slot duration 7. We
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Fig. 1: Two networks with 19 cells serving 57 devices.

(a) A regular hexagonal deployment where each AP serves
3 devices; (b) A random deployment.

assume that that all transmitters and receivers are equipped
with a single antenna.

Examples of cellular networks are given in Fig. 1. Fig. la
depicts a regular network with 57 devices deployed across
19 hexagonal cells, where each access point (AP) serves three
devices within its cell. Fig. 1b illustrates a network where both
APs and devices are randomly deployed, in which the number
of devices served by an AP ranges from 1 to 5. In general, a



network with IV devices has N AP-to-device links.

B. Conflict Graph

Wireless links may have conflict with one another if acti-
vated simultaneously on the same sub-band due to the wireless
interference or physical constraints. To model this, consider a
directed conflict graph denoted as G = (Z, &), where each
vertex in Z represents a link, and an edge (i,j) € £ with
i,7 € T and i # j , indicates link ¢ would cause conflict to
link 7 if they are activated on the same sub-band.

As an example, Fig. 2a depicts a symmetric network deploy-
ment where each AP serves 2 devices. Fig. 2b depicts a conflict
graph as an abstraction of the deployment, in which DI,...,
DS represent 8 links. Since APs can not serve multiple links on
the same sub-band simultaneously, conflicts are bidirectional
within the same cell, highlighting intra-cell conflict. For de-
vices positioned at the cell boundary, the corresponding links
would be strongly interfered by the activation of nearby AP.
For examples, the activation of AP2, would cause interference
to D2, therefore, the links served by AP2, i.e. D3 and D4,
would cause conflict to D2, illustrating the inter-cell conflict.

C. Cell-based Agent

In this work we study the performance of cell-based agents,
each associated with an AP and also denoted by k£ € K.
These agents are responsible for scheduling transmissions for
all devices within their respective cells. For instance, as shown
in Fig. 2b, agent 1 needs to schedule transmissions for D1
and D2. A neighborhood is defined for each agent, which
includes the agent itself and some other agents, referred to
as its neighbors. Here we simply let agent k’s neighborhood
be defined to include all agents whose links conflict with
those served by agent k. For instance, in Fig. 2b, agent 1’s
neighborhood includes agents 2 and 4, while agent 2’s neigh-
borhood includes agents 1 and 3, and so on. Let [ denote the
number of neighbors agent k has, and let vy, 1, ..., v, denote
their indexes. Let C(k) = {k,vk,1,. .., vk, } denote agent k’s
neighborhood, which always includes the agent itself. Agent
k utilizes information from C(k) to schedule transmissions for
all devices in its service area.

Each link operates a first-in-first-out (FIFO) queue. Let X T(f)
denote the number of newly arrived packets to link n at the
beginning of time slot t. We assume that Xy(f) is independent
across all links n and time slot ¢, and all packets are of
identical size. We adopt the usual collision model, where a
packet transmission on a specific sub-band by a link during
a time slot succeeds if and only if no other conflicting link
transmits on the same sub-band in that slot. Without loss of
generality, we assume that all links have unit capacity on each
sub-band, i.e., a scheduled link can transmit up to one packet
using one sub-band in one time slot.

Let H represent the total number of sub-bands, with h €
{1,..., H} specifying a particular sub-band. We assume all
the sub-bands are orthogonal. In each time slot ¢, the agent &k
is tasked with making scheduling decision ag) across all sub-
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Fig. 2: Examples of network deployment and abstracted con-
flict graph. (a) 4 APs in symmetry deployment and each
serving 2 devices; (b) The abstracted conflict graph.

bands simultaneously. ag) = {aff’)l, . .,aff_’)H}. For sub-band

h, the scheduling decision a,(f)h would be selected from
{0,1,, ..., |NK|}- (1)

where a decision of 0 indicates that no links are activated
during time slot ¢, or alternatively, an agent may select
one of the links within its cell for transmission on sub-
band h. Crucially, global-to-local index mapping strategy is
employed in implementation, converting decisions from the
local index to the global index of the link. Specifically,
we define a bijective mapping f maps each global index
to a corresponding AP’s index together with the local in-
dex in that cell, formally defined as f : {1,...,N} —
{(1,1), ..., (JNg], 1), (1,2) ..., (|Nk|, K)}. For example, in
Fig. 2b, D5 and D6 are the two links in cell 3, so f(5) = (1, 3),
f(6) =(2,3), and f~1(1,3) = 5.

Let unﬁ ,, and mnt’ ,, represent the scheduling decision and
the number of successfully transmitted packets of link n on
h-th sub-band in time slot ¢, respectively. The binary variable
,uJS)h = 1 indicates the link n is scheduled for transmission on
sub-band A in time slot ¢. This condition holds true when



f! (az(;t)mb ) = n. Consequently, the number of packets
(1)

successfully transmitted, My, s is determined as follows:

@ _ )1, if uff)h = zh ;é 1 for all (i,n) € £
myn = . 2
’ 0, otherwme.
Specifically, ;)h = 1 indicates that link n is scheduled for

conflict-free transmission on the hA-th sub-band at time slot ¢. If
there is a conflict or the link is not scheduled for transmission,
then mgL )h = 0. Given these assumption, we can accurately
represent queueing dynamic for each link. The queue length

of link n at the end of slot ¢ is expressed as follows:

¢ = max (0 gV +x® Z mg)h> . 3)
=1

This representation signifies the queue length of agent n at the
moment of measuring the local observation. We assume that
(O) = ( since the queues start empty.

D. Problem Formulation and QoS

Our objective is to minimize the packet delay of afore-
mentioned system. We formulate the problem as distributed
learning in Dec-POMDP. Consider a network of K agents
and N links. Let the global state space be denoted as S =
Sy x -+ xS Let st) = (s(lt), cee 51?) € S denote the global
state at a given point ¢. The state entry s comprises queue
information for all the links managed by AP k’s. Specifically,
define the queue information (,, of link n as:

G =g+ X, 4)
Then
{Cf Wy C5h wklk)} ®)

The local observation of agent k, denoted as Og(s) =
(SksSup1s- -+ Suy,, )> consists of entries of the global state.
Let A = A; x---x Ag represent the joint action space of all
agents. In each transition, agent k selects an action aj, € Ayg
based on its local observation. Let P (s’ | s,a) represent the
transition probability from state s to s’ given the joint action
a = (ai,...,ar). The reward function of agent k, denoted
as Ry(s,a,s’), depends on the state, transition, and the joint
action. We express the total discounted reward of a given
trajectory of the state and action from time slot ¢ onward as:

ZVTRI(CHT) (s(t+T), a7, s(t“”)) .
7=0

(6)

In slot ¢, the control policy of agent k, denoted as 7y, g, , which
is a neural network parameterized by weights 65, maps the
local observation

Ol(ct)() ((t) (t) (t) )

Sk Suia Vlclk

)

to the action a,(c) For agent k € {1,..., K} and sub-band h €
{1,..., H}, the control policy decision variable a,(f’)h selected
from (1) indicates the agent k’s decision on sub-band A in

time slot ¢. The policy 7y ¢, is trained using a collection of

state, action, and reward trajectories. In this work, all agents
are trained in parallel. The goal is that once trained, the agents
have learned policies that lead to highly desirable total reward.

In this work, we define learning objectives using queue
lengths as surrogates for the packet delay. Evidently, the longer
a link’ queue length is, the longer the packet delays are. For a
given traffic, the delay QoS is a more relevant metric than the
total throughput. Specifically, the direct contribution of agent
k to the queue length objective can be expressed as:

Z q(t)

ZENk

u](:)( (t— 1) (8)

We also include the utilities of agent k’s neighbors as indirect
contributions in order to encourage joint decisions that lead to
mutually beneficial outcomes. The agent k’s reward function
is expressed as:

RY (5<t>, a® (t+1>)

Zu

1€C(k)

(€))

Generally, the reward of agent k, denoted as Ry, is a function
of global states, transitions and actions. In our design, it can be
computed locally using only queue lengths from agent k£ and
its neighbors. For example, the reward for agent 1 in Fig. 2b
: : (t) (t) (t) t (t) (t)
in slot ¢ is equal to — ( +q5° +q3” +aqi’ +a;7 +qg )
which agent 1 can compute using its own information and
information from neighboring agents 2 and 4.

ITI. A REINFORCEMENT LEARNING FRAMEWORK

In this paper, we adopt a multi-agent reinforcement learning
setting where agents interact with an environment in discrete
time steps to learn a policy. We employ an on-policy algorithm,
MAPPO, which has demonstrated success in solving various
cooperative multi-agent tasks [17].

We consider two different training methods. In the first
method, agents individually train distinct actor and critic
networks using MAPPO based on their own interaction tra-
jectories, facilitating a fully decentralized policy tailored to
each agent’s specific neighborhood and traffic conditions. In
the second method, we train one common neural network as
a shared policy for all agents. While this shared policy typi-
cally achieves a lower average reward than the individualized
method, its total computational complexity across all agents
is substantially lower. This shared approach is particularly
effective in scenarios where agents are homogeneous and
encounter similar local topology and traffic conditions. In
the following, we explore the intricacies of neural networks,
recurrent structures and decentralized training crucial to our
MARL method.

A. Actor Network

The actor network, parameterized by 6, represents the policy
mg for each agent. It maps the local observation O to a
categorical distribution over discrete actions in our specific
setting. Let 0,4 denote the parameter values of the policy
network from the previous iteration. Let B represent the



training batch size. For agent k£ and time slot ¢ in a batch,
we define

t t t t t
- (a;>|o,g>)/m,m (a1 0.

Let H(-) denote the Shannon entropy of a probability mass
function. We use the generalized advantage estimation (GAE)
method in [18, Eq. 15] to compute the advantage function,
denoted as A,(:). The training objective in each update for the
actor is to maximize the following function:

ZZmln (Tek s Ce ( é%,l) A(t))

tlk:l

+0*ZZH(M (101))
where o denotes a hyperparameter and

ce(z,y)

represents a clipping function.

(10)

J(0) =
(11)

12)

= min(max(z,y —€),y + €)

B. Critic Network

The critic network in MAPPO, parameterized by ¢, maps a
local state Oy, to Vi4(Oy,), which is an estimate of the expected
return from a given state of agent k. The training objective
in each update for the critic network is to minimize the loss

function:
| BLE o "
ﬁ;;max (VdJ (O ) R ) )
(e (1% (01) Vau (017)) - &)
where R(*) represents the discounted reward-to-go, which is

defined as the cumulative sum of discounted rewards from a
specific time slot ¢ until the end of an episode.

C. Recurrent Structure

In our Dec-POMDP formulation, each agent’s input is
limited to local observations within its neighborhood. In order
to adapt to environmental dynamics beyond a single local
observation, we consider utilizing recurrent structures like long
short-term memory (LSTM) or gated recurrent unit (GRU)
in our neural networks. These structures help agents to infer
the impact of other agents’ actions and make decisions utiliz-
ing historical states and actions. The inclusion of sequential
memory empowers the agent’s ability to incorporate long-term
consequences of its actions and leveraging the accumulated
knowledge stored within the memory.

In our implementation, both the actor and critic networks
are recurrent neural networks (RNNs). We aggregate the loss
function defined in (13) over time and use the RNN states
as input to these networks. Back-propagation through time
(BPTT) is employed for training and a detailed pseudocode
illustrating the training phase is found in [17]. During the
training phase, all actor and critic networks are updated for
a fixed number of steps for each training episode.

D. Decentralized Training and Distributed Execution

The paradigm of centralized training and distributed ex-
ecution is widely adopted to addresses challenges of non-
stationarity and scalability. Under this paradigm, global in-
formation is used in the training stage to enhance the learning
phase, whereas agents rely solely on local information during
execution. The conventional MAPPO follows this paradigm,
where the computation of the value function V(s) during
training uses the global state s as input to the critic network.
However, it is impractical for a central controller to gather
timely global information in many real-world scenarios.

Inspired by the scalable framework suggested in [15], we
modify centralized training by feeding local observations into
the critic network in lieu of the global state. Specifically,
for each agent k, the critic network ¢ is fed with its local
observation Oy, which contains the information of itself and its
neighbors. We assume that the neighborhood size is bounded
by a constant, ensuring that the input dimension to the neural
network is fixed. This adjustment ensures full scalability as the
training cost per agent remains constant and does not escalate
with an increase in the number of agents. The fact the cost is
constant is due to two primary reasons: the fixed size of the
policy and critic networks, as they process fixed-dimension
inputs and outputs, and the stable number of interactions
within each agent’s neighborhood, preventing any increase
in computational complexity as the agent count grows. Our
experiments validate the effectiveness of this approach.

E. Characteristics of States, Actions and Rewards

This section highlights the salient features of the state space,
action space, and reward function to enhance clarity and to
ensure reproducibility of our work, despite having previously
discussed and defined them. To ease implementation, we
introduce dummy links to maintain identical state and action
space dimensions for all agents, regardless of the number of
devices they serve, under the practical assumption this number
is capped by a constant.

State Space: Following the Dec-POMDP framework, the
global state in time slot ¢ can be represented as s(*) =

sgt), e sg? , Where s,(f) is defined in (5). Given the
constraints of our Dec-POMDP setting, an agent k only has
access to information about itself and its neighbors. Therefore,
the local observation is expressed in (7). Clipping is employed
here to make the observation to be a coarsely quantized
function of the queue length, which guarantee the state space
to be finite.

Action Space: The action space dimension for each agent is
determined by the number of devices |Vj| and the number of
sub-bands H. The action decision of agent k allocate each sub-
band to one of the devices as shown in (1)(where a value of 0
indicates that no devices are scheduled). Consequently, there
are HWrl+1 possible actions available to each agent. If H is
not too small, the large action space renders tabular reinforce-
ment learning methods impractical [16]. The agent’s decision-
making allocates sub-bands to links, considering constraints
from neighboring agents’ actions to optimize transmission
performance.



Reward Function: In our traffic-driven approach, the ob-
jective is to minimize the average packet delay, which is
equivalent to minimizing the long-term queue length. The
direct contribution of agent k to the queue length objective
has been defined in (8) and the agent k’s reward function is
a function of queue length of itself and its neighbors at time
slot ¢ defined in (9).

State transition: The next global state s() is determined
by the joint action a® and the randomness of system. More
specifically, each entry is a function of queue length and the
transition is expressed in (3).

IV. SIMULATION RESULTS AND ANALYSIS
A. Simulation Setup

We model the traffic arriving to link n as a discrete-time
memoryless Poisson process. Specifically, let the number of
packet arrivals to agent n in time slot ¢, denoted by X,(f), be
an independent Poisson random variable with mean A,,. The
experiments are conducted on three distinct conflict graphs :

1) The conflict graph depicted in Fig. 2b, where 8 devices
and 4 APs deployed symmetrically.

2) A conflict graph as an abstraction of a cellular network
depicted in Fig. la. Here each user device has a direct
link to its nearest AP. We define the downlink channel
gain from AP b, to device m as g, _,. If the gain
difference gy, —n — gr—sn falls below a certain threshold,
then link n is considered to be in conflict with links in
the set NVj.

3) A conflict graph as an abstraction of a cellular network
depicted in Fig. 1b. Compared with Fig. 1a, the devices
and APs are deployed randomly. Each AP serves a
variable number of devices, reflecting a less structured
network topology.

The performance of the proposed MARL-based scheduler
is evaluated and compared in terms of QoS against two
benchmarks. The first benchmark scheme, referred to as local
longest queue (LLQ), schedules a link for transmission if it
has a longer queue than all links that it has a conflict with;
in case of a tie between multiple links, each link is scheduled
with a uniform probability independently among these links.
The second benchmark scheme is Q-CSMA [5], where links
perform carrier sensing prior to transmission, ensuring that
all scheduled links form an independent set, and then each
enabled link transmits with a certain probability, where the
probability is updated based on its queue length.

Throughout this section, we assume the spectrum is divided
into H = 3 subbands. we give both benchmark schemes
the additional advantage of having H rounds of information
sharing before actual transmissions in each time slot ¢. This
is equivalent to letting both schemes sequentially determine
the actions on a subband depending on the transmission
outcome of previous subbands. In contrast, our MARL method
allows agents to share information with their neighbors only
once before deciding on their transmissions on all sub-bands
simultaneously. As we shall see, the MARL method still
outperforms than the benchmarks.
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B. Training and Testing

We consider a centrally trained policy as well as individual
policies trained separately. We set the duration of a training
episode to 2,000 time slots. Whenever the queue length of any
link surpasses a predefined threshold, it signifies a congested
or very unfavorable traffic situation. In such instances, the
current episode is curtailed, and a new episode is started. The
purpose here is to avoid being trapped in adverse queueing
conditions before the scheduler is trained well.

During testing or deployment, we set the duration of a
testing episode to 5,000 time slots and adopt the average
packet delay as the performance metric (when the queue is
perceived to be stable).

C. Performance analysis

We compare the average packet delays attained by the
MARL method and the LLQ and Q-CSMA benchmark.
The packet delays for each method were recorded and the
cumulative distribution functions (CDFs) of these packet
delays are plotted in Figure 3, where all methods were
tested under a light traffic condition. The CDFs of both
MARL approaches—utilizing either a shared or separate poli-
cies—dominate those of the benchmarks.

Notably, more than 80% of the packets are transmitted
immediately (within just one time slot) using either of the
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Fig. 5: Average packet delay of 57-link conflict graph ab-
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MARL methods. The average packet delay of the MARL
method with a shared policy is 1.24, which is 19.5% less than
that of Q-CSMA (1.54) and 54.7% than that of LLQ (2.74).
If agents use separately trained policies, the average delay is
even smaller at 1.13. Additionally, the maximum packet delay
for MARL with separate policies is significantly lower, at 5
time slots, compared to 9 time slots for Q-CSMA and 27 time
slots for the LLQ.

We also test our algorithms under medium and heavy
traffic conditions, which poses increasing challenges to the
learning method. The average packet delays across different
traffic scenarios are depicted in Figure 4. Under medium
traffic conditions, the MARL framework’s shared and separate
policies result in average delays of 1.59 and 1.41 time slots,
respectively. The latter represent a 34.4% reduction compared
to Q-CSMA (2.15) and a 59.0% reduction over LLQ (3.44). In
the case of a heavy traffic condition experimented here, which
is relatively close to the boundary of the capacity region, the
LLQ benchmark algorithm experiences significant challenges,
resulting in an average packet delay of up to 9.41 time slots.
The Q-CSMA scheduler is still stable and results in average
packet delay of 3.38 time slots. Both our MARL method
achieves average delay that less than 2 time slots, a substantial
44% reduction compared to Q-CSMA.

In terms of the CDF, average delay, and maximum packet
delay, the MARL methods demonstrate substantial improve-
ments over the benchmarks. A close examination of the agents’
policies reveals several key differences. Q-CSMA transmits
more conservatively as it is designed to only schedule links
in an independent set, thereby avoiding conflicts. In contrast,
MARL adopts a more aggressive scheduling strategy. Since
conflicts in our conflict graph are directional, MARL can
schedule conflicting transmissions, ensuring that at least one
link successfully transmits. In addition, compared with both
benchmarks, our MARL method operates within a much richer
action space.

We further validate the proposed MARL method on larger
conflict graphs abstracted from Fig. 1a and Fig. 1b. In these
scenarios, both separate and shared policies remain stable and
continue to outperform the other two benchmark algorithms,
as illustrated in Fig. 5 and Fig. 6. The results demonstrates
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Fig. 6: Average packet delay of 57-link conflict graph ab-
stracted from Fig. 1b.
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that our method scales well with the network size.

D. Policy Convergence

With the 57-link 19-agent conflict graph abstracted from
Fig. 1b, we test the learned policies once every five training
episodes and plot the rewards. The average reward from the
MARL method using a shared policy is depicted as the blue
dashed line in Fig. 7, with clarity enhanced by an exponential
moving average (EMA) curve in orange. Initially, the average
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Traffic load for testing: Light | Medium Heavy

if trained under light traffic: good mixed unstable

if trained under medium traffic: | good good unstable
if trained under heavy traffic: good good good

TABLE I: Training and testing mismatch.

reward improved rapidly, indicating quick learning by the
agents. After approximately 1,000,000 time slots, the rewards
plateaued, suggesting convergence to a sub-optimal solution.
Despite the occasional fluctuations in rewards, which are
characteristic of exploration in MARL methods, the reward
generally improved and eventually stabilized after about two
million time slots. This indicates that each agent has success-
fully acquired an effective and stable policy, resulting in a
stable and good cumulative reward.

Using separate policies for the same graph, rewards for
the 19 agents’ rewards are plotted in Fig. 8. In the initial
training stage of training, agents with fewer devices to manage,
such as agent 3 (which serves only one device), and those with
minimal conflict with neighboring agents, such as agents 5
and 7, quickly achieved good rewards. In contrast, agents
like number 11, handling more devices, and agent 1, deal-
ing with significant neighbor interference, encountered early
challenges. Despite the fluctuations, all agents’ reward trends
upward in general, and they converge to efficient policies
somewhat more rapidly than the shared policy approach,
achieving convergence within approximately 600,000 time
slots. These policies not only benefit the individual agents but
also contribute to a stable and favorable cumulative reward for
the entire network.

E. Model Mismatch

We also investigate the robustness of the MARL method
when trained and tested under mismatched traffic conditions.
We characterize the performance as “unstable” if the queue
lengths are observed to generally increase persistently. Con-
versely, the performance is deemed “good” if it demonstrates
satisfactory QoS performance when compared to the bench-
mark. The term “mixed” is used to describe a mixture of both
“good” and “unstable” performance amongst the agents.

Table I demonstrates that policies trained under heavier
traffic loads exhibit better performance when handling lighter
traffic loads. For instance, policies trained in heavy traffic
loads demonstrate satisfactory behavior in both light and
medium traffic environments. Conversely, policies trained in
light traffic loads show inadequate performance under medium
and heavy traffic conditions.

V. CONCLUSION

We have introduced a novel multi-agent deep reinforcement
learning framework for addressing the distributed scheduling
problem in partially observable conflict graphs. The proposed
method adopts a “modified” centralized training and dis-
tributed execution paradigm. The simulation results demon-
strate the efficacy, scalability, and robustness of the trained
policies. The proposed framework for conflict graphs can be
potentially extended to signal-to-interference-based models as
well as a broader set of resource allocation problems.
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