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Accelerating Multiuser Beamforming with
Full-Dimension One-Bit Chains
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Abstract—Massive multiple-input multiple-output (MIMO)
systems are vital for achieving high spectral efficiencies at mid-
band and millimeter wave frequencies. Conventional hybrid
MIMO architectures, which use fewer digital chains than an-
tennas, offer a balance between performance, cost, and energy
consumption but often prolong channel estimation. This paper
proposes a novel architecture that integrates a set of full-
dimension digital chains with one-bit analog-to-digital converters
(ADCs) to overcome these limitations and provide an alternative
trade-off. By assigning one digital chain to each receive antenna,
the proposed approach captures energy from all receive antennas
and accelerates angle-of-arrival (AoA) estimation and beam
computation. Likelihood-based AoA estimation methods are de-
veloped to optimize analog beamforming in narrowband and
wideband channels, in both single-user and multiuser scenarios.
Numerical results, including the equivalent signal-to-noise ratio
per bit post-equalization, demonstrate that full-dimension one-bit
digital chains significantly improve the efficiency of beamforming.

Index Terms—Angle-of-arrival (AoA) estimation, analog beam-
forming, massive MIMO, millimeter wave (mmWave), multiuser
communication.

I. INTRODUCTION

Millimeter wave and mid-band frequencies are susceptible
to free-space path loss and penetration losses, but they offer
substantial bandwidth, and their shorter wavelengths allow
for the integration of compact, high-density antenna arrays,
enhancing antenna gain and improving the signal-to-noise ratio
(SNR). Multiple-input multiple-output (MIMO) technology
increases the effective aperture and directs transmission or
reception more precisely.

Effective beamforming is crucial for ensuring efficiency
and reliability in those frequencies. However, deploying high-
resolution digital chains for numerous antenna elements leads
to high hardware costs and energy consumption, mainly
due to high-rate digital-to-analog converters/analog-to-digital
converters (DACs/ADCs) [1]. A common compromise is the
hybrid beamforming architecture, which typically employs far
fewer digital chains than the number of transmit or receive
antennas [2]. However, because analog arrays provide only
weak signals until they are properly trained, the reduced
dimensionality of the digital signal often requires extended
pilot transmissions and feedback processes, posing challenges,
particularly in mobile communication environments.

In this paper, we consider a receive architecture that incor-
porates a full set of digital chains with 1-bit ADCs to assist
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in beamforming [3]. These chains are specifically employed
during the beamformer estimation stage to capture energy
from all receive antennas in order to optimize the beams. In
the subsequent data communication stage, traditional receive
architectures, such as analog or hybrid beamforming, are
employed for the remainder of the channel coherence time.
This paper demonstrates the effectiveness of full-dimension 1-
bit chains in enabling beamforming across diverse scenarios,
ranging from single-user MIMO with analog beamforming to
multiuser MIMO with hyprid beamforming. Across a wide
range of SNRs, our approach requires up to a few hundred
pilot symbols, which results in a very low duty cycle for beam
acquisition, thereby minimizing energy consumption.

A. Related Work

Analog and digital beamforming have been extensively stud-
ied for MIMO systems (see e.g., [4]-[7]). Hybrid beamforming
combines the benefits of analog and digital methods, providing
a practical solution for supporting multiple data streams or
users. Each digital chain may connect to all antennas [8], [9]
or a subset of antennas [10]. In subarray-based architectures,
multi-beam designs have been developed to steer beams to-
ward arbitrary directions [11].

When channel state information (CSI) is unavailable, full-
resolution ADCs support channel estimation methods like
those in [12]-[16], while low-resolution ADCs used to reduce
power consumption require specialized estimation techniques
based on quantized outputs. For generalized MIMO chan-
nel models, such as complex Gaussian distributions, various
techniques have been developed [17]-[20]. At mid-band and
higher frequencies, the structured nature of channels allows
exploitation of angular-domain sparsity to various extents. This
often leads to framing the estimation process as quantized
compressed sensing problems [21]-[23], which depend on
well-designed pilot sequences to minimize sensing matrix
coherence and generally require adequate pilot length and
SNR for convergence. The Bussgang decomposition has been
proposed to approximately linearize quantization effects [24]-
[26], where uniform mid-rise quantization is needed for few-
bit ADCs to avoid correlation matrix calculations. Alterna-
tively, quantization effects can be modeled through likelihood
functions [27]-[29]. Sparsity-regularized likelihood maximiza-
tion has been addressed via expectation-maximization [27].
In narrowband channels with uniform linear arrays (ULAs),
maximum-likelihood (ML) estimation has been applied to the
angles of departure/arrival (AoDs/AoAs) and corresponding
path coefficients, iteratively refining each path until conver-
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gence [28]. Deep learning solutions have also been devel-
oped by approximating likelihood functions using sigmoid
activations [29]. In narrowband systems with 1-bit ADCs,
alternative methods resolve quantization effects by recover-
ing missing amplitude information [30] or by incorporating
quantization as constraints or loss functions into optimization
frameworks [31], [32].

Hierarchical codebooks, consisting of low-resolution code-
words for wide-angle coverage and high-resolution codewords
for enhanced directional gain, have been proposed to accel-
erate beamforming [33], [34]. This method reduces search
complexity to logarithmic order with respect to the number
of antennas. However, each beamforming vector must be
tested through a separate measurement, leading to substantial
overhead and constrained beam resolution.

Prior works have explored joint channel estimation and
beamforming [35]-[37], primarily focusing on reconstructing
the full channel matrix for beamforming. In contrast, [38]
proposes AoA-based channel estimation via beam scanning
to enable hybrid beamforming in multiuser narrowband sys-
tems. Meanwhile, [39] employs analog beamforming based on
AoA/AoD estimation for wideband point-to-point communica-
tion, optimizing beamforming to align with the AoA/AoD that
maximizes overall power gain across clusters. Other designs
include the deep-unfolding neural network [40]. Notably, spa-
tial multiplexing is primarily governed by the angular-domain
characteristics of the channel, which are largely independent
of time-domain factors like varying transmit symbols and path
delay responses. Prior work [3] leverages this property by
extracting angular parameters to enable analog beamforming in
a single-user MIMO scenario. In narrowband channels with a
known number of well-separated paths, [3] designs the analog
beamformer to incorporate all estimated AoAs. For wideband
channels, [3] optimizes beamforming to target the AoA that
captures the most significant energy across all clusters.

B. Contributions

Our key contributions are summarized as follows:

o We first evaluate a likelihood-based AoA estimation and
beamforming in a narrowband model in a single-user
MIMO scenario. Simulation results demonstrate that the
proposed beamforming effectively recovers significant
received energy, even with a moderately large angular
spread of an unknown number of clusters.

e We then extend AoA estimation to the uplink of a
multiuser system. By utilizing the distinct pilot sequences
of different users, we are able to isolate individual users’
AoAs. We then design analog beamforming techniques
that maximize the signal-to-interference-plus-noise ratio
(SINR) for each user.

o We further assess the preceding techniques within a
hybrid receive architecture capable of supporting mul-
tiple users concurrently. In narrowband scenarios, this
approach significantly reduce inter-user interference,
achieving a sum spectral efficiency that approaches that
of an ideal scenario with perfect channel state and trans-
mit beamforming information. In wideband scenarios,

it enables effective equalization to combat inter-symbol
interference, achieving an SNR per bit post-equalization
that closely matches the optimal performance.

C. Organization and Notations

The remainder of this paper is organized as follows. Sec. II
introduces a unified model for both single-user and multiuser
uplink systems. Sec. III describes a single-user likelihood-
based angular-domain channel estimation method, which is
evaluated in Sec. IV. Sec. V extends the techniques to mul-
tiuser systems, where the performance is eavluated in Sec. VI.
Sec. VII concludes the paper.

We adopt the following convention: Let a denote a scalar, a
a column vector, A a matrix, and A a set. (-)7 and (-)¥ rep-
resent transpose and conjugate transpose, |-| denotes absolute
value, 0,; is an M-dimensional all-zero column vector, and
I,/ is the M x M identity matrix. sign(-), Re(-), and Im(-)
indicate the sign, real, and imaginary parts, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an uplink system with V,, users, each equipped
with M, transmit antennas and transmitting a single data
stream to a common access point (AP). The AP is equipped
with M, receive antennas and a set of full-dimension digital
chains, where each digital chain is equipped with a pair of 1-
bit ADCs to process the in-phase and quadrature components
of the received signals. Each communication period within
the channel coherence time is divided into two stages. In
the first stage, the full-dimension 1-bit chains are utilized to
estimate analog beamformers to maximize each user’s SINR.
In the second stage, the estimated analog beams are applied
for communication of the N, data streams. In particular,
when N, = 1, only one analog beamformer is needed for
a single digital chain equipped, eliminating the need for
digital processing. When N,, > 1, a fully connected hybrid
architecture is adopted, comprising /V,, digital chains, where
each analog beamformer serves a dedicated digital chain for
one user. On each digital chain, a pair of high-resolution ADCs
are employed, whose quantization errors are negligible. These
two stages are repeated during each period, with the first stage
being executed only during initial beam acquisition or beam
recovery phases. A block diagram depicting the two-stage
solution is shown in Fig. 1.

A. The MIMO Channel

A general wideband MIMO channel in higher frequencies
can be modeled using a number of paths at different AoAs
and AoDs, which typically form separated angular clusters.
We assume that both the users’ transmitters and the AP’s
receiver are equipped with uniform planar arrays (UPAs). Let
My and My represent the horizontal and vertical dimensions
of the UPA, respectively, such that the total number of antenna
elements are given by M = My x Mpy. Then, the [-th path
can be characterized by the parameters «;, &;, ¢, 6;, wi,
and 1)y, representing the complex gain, delay, azimuth AoA,
elevation AoA, azimuth AoD, and elevation AoD, respectively.
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Fig. 1. The two-stage receiver: the analog beams computed in the estimation
stage are applied during the communication stage.

We assume the UPA has a uniform antenna spacing of half a
wavelength in both the horizontal and vertical dimensions. The
UPA coordinates are defined such that ¢;, 6;, w;, and ¥, lie
within the range (—7/2,7/2). Define

o (0) = [1,ed™5n0

eM(<p,9) _ [Lejwcosﬂsinap’ .

76j7r(M71)Sin9]T’ (1)

jm(M—1) cos 0sin 1T
7eﬁf( ) 7. ()
In general, we also use

an,m(p,8) =on(0) ®en(p,0) 3)

to represent the response vector of an N x M UPA to an
incoming planar wave with an azimuth AoA of ¢ and an
elevation AoA of 0, where ® denotes the Kronecker product.
For ease of notation, we introduce the following shorthand

ar(p,0) = an, ar, (0, 0) € CM (4)
at(Wﬂﬁ) = aMk/,M}_I (Wﬂﬁ) S (CMl (5)

to represent the response vector of the My, x M}, receive UPA
and the M3, x M}, transmit UPA, respectively. Assume that the
common maximum delay spread of the channel is limited to D
symbol intervals for all users. The baseband channel response
for user w at lag d € {0,---,D — 1}, can be represented as
an M, x M, matrix:

L.,
H,[d] = ) a,p(dT = 61,)a( 1, 01,)al (wi,,vu,), (6)

l,=1

where the subscript u denotes the user index, L,, is the number
of propagation paths for user u, and p(-) accounts for the
effects of pulse shaping and filtering. Let s, [7] € C represent
the transmitted symbol in interval 7, and f, € CM: denote
user w’s transmit beam. In interval 7, the received signal sans
noise can be expressed as

N, D—-1

x[r]=)

Let w[T] ~ CN(0yy,,1Is) denote the additive white Gaussian
noise. The unquantized received signal is given by

H, [d|f,s,[r — d] € CM:. (7
=0

z[7] = x[7] + wW][T]. (8)
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Fig. 2. Quantized noiseless output of an 4x4 UPA for AoA pairs with 0, ¢ €
{_%7 _%70) %7 % .

B. The Beamformer Estimation Stage

Following each receive antenna, a digital chain is equipped
with a pair of 1-bit ADCs which separately quantize the in-
phase and quadrature components of the received signal. The
1-bit quantization function can be described as

9Q(z) = sign (Re(z)) + j - sign (Im(z)) . )

The element-wise quantized output in symbol interval 7 (in
the estimation stage) can be written as

r[7] = Q(z[7]).

Although 1-bit quantization retains only the sign of the signals,
spatial diversity across antenna elements allows one to infer
about the channel. Fig. 2 illustrates how different AoAs
result in distinct patterns in the 1-bit quantized noiseless
outputs, assuming a single user, a single path, and zero
delay spread. Suppose the estimation stage spans /N4 symbol
intervals, i.e., Ny pilot symbols are used. The goal is to
extract essential channel information from the observations
R =[r[1], - ,r[Ny]] to assist the analog beamforming.

(10)

C. The Analog Beamforming Stage

Throughout this paper, analog beamformers are imple-
mented using phase shifters. For user u, we seek a beam
b, € CMr that maximizes the SINR of the u-th digital chain’s
output after analog beamforming:

Yyu[T] = sz[T].

u (11)
Let &, denote the phase of the m-th phase shifter for
beam b,. The analog beamformer b, € C™r is determined
element-wise by by, = eIéum m = 1,---, M;. During the
communication stage, s,[7] are assumed to be independent
across 7 and wu, with zero mean and unit variance. The SINR
of user u after analog beamforming then can be simplified as

D—1
bf (£ mlan ) b,
SINR,, = d=0

,» (12)

D-1
bl > X H[df£THT[d] | by + M,
v#u d=0
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since E; [[bZw[r]|?] = M,. For user u, we aim to solve the
beamforming problem:

SINR,,. (13)

max
bul |bu71|:~~-:|bu71\4‘.‘:1

III. SINGLE-USER CHANNEL ESTIMATION

In this section, we present a likelihood-based angular-
domain method for single-user MIMO channel estimation.
There is no need for the user index in this case. We begin
with a simplified channel model with zero delay spread:

L

H = aapn 0)al (wi, ),

=1

(14)

which is subsequently referred to as the narrowband model.
The quantized output becomes

r[r] = Q(Hfs[r] + w[r]). (15)

Once we develop an algorithm for this model, it shall be
extended to the wideband model described by (6). Finally, we
demonstrate that the developed algorithm is adaptable to non-
coherent channel models, where the complex path gain o; may
vary over time in both narrowband and wideband scenarios
(while other parameters ¢y, 0;,w; and 1; remain constant),
with arbitrary and unknown pilot sequences.

A. Angle Estimation for Narrowband Channels

In the narrowband setting, during the estimation stage, we
set s[7] =1, for 7 =1,---, Ng, ensuring that Hf s[7] = Hf.
Notably, as long as the pilot sequence consists of repetitive
symbols, the algorithm remains effective, with only the SNR
being affected. In the following, we first describe an algorithm
under the simplifying assumption that the channel consists
of a single path. We then extend the algorithm to multiple
well-separated paths and demonstrate the effectiveness of the
algorithm for a general channel model, where paths may be
clustered.

1) A Single Path: With a single path, we omit the subscript
I =1 in (14). We first estimate the elevation angle ¢ and then
use the result to estimate the azimuth angle ¢. To estimate
f, we examine the received signal due to the columns of the
receiver’s UPA. During interval 7, let w;[r] € CMv denote
the additive Gaussian noise at the i-th column of the antenna
array. The signal received by the ¢-th column is expressed as

7i[r] = Q (CGionry, (0) + Wil7])

which is a sub-vector of r[7] given by (15), where ox, (0) is
given by (1), and

(16)

C’L — aejﬂ'(ifl) cos@singpa[H(w, w)f (17)

represents a complex-valued coefficient. From (16), if (; were
known, the only remaining uncertainty in the observation,
conditioned on 6, arises from the Gaussian noise. While the
expression of (17) for (; includes 6, the uncertainty about the
other angles ¢,w, v allows a good approximation to assume
that (; follows a distribution that is not dependent on 6.

Let R; = [f;[1],- -+ ,T:[Vy]] represent the received signals
at the i-th column. We next focus on the likelihood £(R;|6).
For convenience, we define

fxw.) = (Q(~vaw)) (@(vaw)"

where Q(-) denotes the Q-function. We interpret fxn (v, \) as
the probability that, exactly A out of N measurements of a
real-valued constant v, each corrupted by independent zero-
mean Gaussian noise with variance 1/2, are positive. For a
complex-valued signal z, we define

(18)

In(zp,v) = fu(Re(2), 1) - fr(Im(2),v).  (19)
With model (16) in mind, we further define
PR O, 1,03 C) = Fv (¢ ), @)

where the measurements due to the real and imaginary sig-
nal components from the m-th antenna element of a UPA
column are accounted across a pilot sequence of length V.
Let 7, [7] denote the m-th element of T;[7]. Throughout
this paper, let H(-) denote the Heaviside step function, i.e.,
H(z)=1if 2 > 0and H(z) = 0 if x < 0. Then fi; ., =
SN H(Re (Fim[r])) and T = SN H(Im (70 [7]) )
count the numbers of positive observations in the real and
imaginary parts of 7; ,, across the training period, respectively.
The likelihood £(R;|#) can be approximated within a con-
stant multiplier by aggregating (20) across relevant antenna
elements and averaging over the distribution of (;:

My,
gi0) =>_ T o, (0, fii.m: Pims )

¢eZm=1

21

where we have assumed that (; is uniformly distributed over
ion k) Ne
Z = {Be]% e }
k

, where 8 denotes the amplitude, and

N¢ represents the number of discrete phases.'

Subsequently, we derive the likelihood £(R|¢) by combing
the measurements from all UPA columns. While (3,...,( M1,
are correlated, we ignore their dependence to obtain the
following likelihood-based objective:

My
9(0) = T 9:(0)- (22)
i=1
Our goal is to find the optimal 6 that maximizes (22). To
improve the numerical accuracy of floating-point operations,
we work with the logarithm of the objective value and plot it
with a constant offset in later sections for convenience.

The objective function defined in (22) is nonconvex, but it
typically exhibits a distinct and narrow peak around the true
0 value. Leveraging this characteristic, a two-step estimation
approach is proposed. Initially, we sample # according to

0, = arcsin (=14 (¢ — 1)/My,),

g=1,...,2M, (23)

I'We estimate 6 by identifying the peak locations of the likelihood-
based function, which are insensitive to the assumed distribution of ;. For
implementation, we assume a uniform distribution with NQ = 100 and
B = 0.1, corresponding to a path SNR of —20 dB, since |(;|? controls
the path SNR, as shown in (16).
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and compute the corresponding objective function values. The
most prominent sampling peak provides a coarse estimate,
and a constrained region around it is used for fine estimation
with a gradient-based algorithm. If ¢ maximizes g (Qq), then
the constrained feasible region is set as [0, ;,0,,,], and 0,
serves as both a coarse estimate of 6 and the initial point in
the gradient-based algorithm.

Denote by 6 the refined estimate after the preceding two-
step estimation process. We substitute it into antenna response
a, (¢, 0) given in (3) in order to derive the likelihood for the az-
imuth AoA ¢ using a similar approach as for §. While £(R|60)
is derived using column-wise received signals to minimize the
impact from ¢, we now leverage the signals from all UPA
antenna elements modeled as r[r] = Q (far(w, 5) + W[T]),

where ¢ = aa/?(w,1))f € C. We then define

PR, 0, 11,15 C) = fv (Cam(p,0), 11, v) (24)

where a,,(p,0) denotes the m-th element of the antenna
Ng

response vector a;(¢, 0). Let p,,, = Y%, H (Re(rp,[7])) and

Vi = S04 H(Im(r,[7])). The likelihood-based objective

function with respect to ¢ can be expressed as

ae) =) ﬁ PN, (%5, Uman;C) -

cezm=1

(25)

We then estimate ¢ using the same two-step process compris-
ing coarse sampling followed by refinement.

2) Multiple Well-Separated Paths with Known L: We in-
troduce J,; ~ A14.77_81’ representing the angular resolution (3-
dB beamwidth) for far-field radiation in a linear array with
M antenna elements [41]. When the paths are separated by
at least 29 M, in the elevation angle direction and 29 M, in
the azimuth angle direction, the proposed algorithm invariably
resolves individual paths with high fidelity in our experiments.
Assuming the number of paths L is known a priori, we first
obtain fine estimates for the L elevation angles, denoted as
61,---,0r, corresponding to the L most prominent peaks
of the likelihood-based function in (22). Subsequently, the
azimuth angles are estimated path by path, leveraging the cor-
responding elevation angle estimate for each path. Specifically,
; for the [-th path is estimated by substituting 6; into (25).

3) Clustered Paths with Unknown L: In practice, paths
are not always well separated and the number of paths are
unknown a priori. In particular, paths resulting from similar
multipath propagation effects often form a cluster, sharing
similar AoAs/AoDs. A single cluster may consist of up to tens
of paths. The proposed algorithm remains effective in iden-
tifying the dominant path directions. Specifically, the process
begins by estimating the number of separate clusters, followed
by determining their dominant paths’ respective AoAs. We
note that closely spaced paths in the elevation (resp. azimuth)
direction may contribute to a single peak in the likelihood
function with respect to 6 (resp. ¢). In such cases, the AoA
estimation may yield a compromise, reflecting the combined
influence of paths with similar AoAs while still identifying a
direction capable of receiving substantial energy.

In the most general case, we begin by estimating the number
of paths in the elevation perspective, Ly, as the number

of dominant peaks observed in the sampled g(6), following
sampling rule (23). A threshold-based approach is used, where
peaks are counted if their values exceed a predefined threshold
o0 as a proportion of the total sum of sampled peak values.
These Ly peak locations provide coarse estimates of the
elevation angle, which are then refined using the likelihood-
based objective in (22). With the refined elevation estimates
0;, 1 = 1,---, Ly obtained, each 6; is substituted into (25)
to identify associated azimuth angles. The number of azimuth
peaks for each elevation estimate is denoted as L., (> 1),
determined after sampling for ¢ based on (25). These fw
peaks are subsequently refined. Finally, the total number of
identified paths is given by L = ElL:el fw, with their AoAs
estimated as described.

B. Wideband and Noncoherent Channels

The proposed algorithm for narrowband angular estimation
can be extended to the wideband case, where the MIMO
channel matrix at different lags are described by (6). We first
consider a simple scenario with a single AoA and a delay
spread. By sending all 1 pilots and rearranging the parameters
in (6), the signal received by the i-th column of the UPA can
be expressed as (16) with

D—-1

G = aeljﬂ(i—l)cosesin LpatH(w7w)f Z p(dT o 5)
d=0

(26)

The channel estimation in this case then follows the same
approach as in the narrowband case described in Sec. III-A.

The channel estimation described above assumes a coherent
channel, where « in (6) remains constant during the channel
coherence time, and repetitive pilot symbols are used. The
proposed technique can be extended to accommodate arbitrary
time-varying channel gains, fast fading, as well as unknown
pilots, as long as the signal remains a planar wave with fixed
AoAs and AoDs during the estimation period. In the remainder
of this section, we develop a corresponding algorithm under
the assumption of a single path. Extension and application of
the algorithm to multiple well-separated paths and clustered
paths follow the same approach outlined in Sec. III-A.

With «fr] and s[r] unknown and varying over time, we
can still express the signal received by the i-th column in the
form of (16), but instead with a time-varying complex-valued
coefficient:

In particular, in the narrowband case, (;[7] =
afr]s[r]elmi=t cosOsinga (¢, 4))f,  For the wideband

case, ([r] = afr]el(mDcosOsineall () 3107 p(dT —
d)s[t — d]. As we need to account for the unknown (;[7]
in each time interval, we define 47, = H(Re(Fim[r]))
and 7], = H(Im(;,[7])). Using a similar approach, the
likelihood-based objective for € can be derived as

Ny My M,
rO) =TT TL{DC T1 A (0, 7 s 770 €) (28)
T=14i=1 \(€eZm=1
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Fig. 3. Mean absolute angle estimation error vs. SNR.

After obtaining an estimate é\, we obtain the likelihood-based
objective for estimating ¢ as

_ Na M; ~
o) =11 énlﬁin(%&lﬂm%;() SNeD)
T= c€Zm=

where 7, = H(Re(ry,[7])) and v, = H (Im(ry,[7])).

IV. SINGLE-USER ANALOG BEAMFORMING

In this section, we evaluate single-user analog beamforming
based on estimation methods outlined in Sec. III. All numerical
results are averaged over 200 random channel realizations.

A. Evaluation of Angle Estimation

We evaluate angle estimation performance in challenging
wideband scenarios to demonstrate the method’s effectiveness.
We adopt the Urban Microcell (UMi) fast fading model from
the 3GPP standard [42], focusing on non-line-of-sight prop-
agation at a center frequency of f. = 28 GHz. We consider
three well-separated clusters of equal power, each consisting
of 20 rays of identical power. We define the angular range as
the maximum angular difference within a cluster. The angular
spread is set such that the angular range is 0.19 radians in
both the azimuth and elevation directions. The transmitter and
receiver arrays are configured as M, = 4x4 and M, = 16x 16,
respectively. The ML-based angle estimation method is applied
to identify the dominant path directions associated with the
clusters. The pilot length is fixed at Ny = 100, and we plot
the mean absolute error between the estimated cluster-wise
AoAs and the true cluster centers across varying SNR regions
before beamforming. As shown in Fig. 3, Ng = 100 suffices
for SNRs > —13 dB, beyond which the estimation error
stabilizes. For lower SNRs, a longer pilot length can further
improve accuracy. Due to the clustered nature of the channel,
the estimation compromises across rays but still aligns with the
cluster center, demonstrating the algorithm’s ability to reliably
identify cluster directions.

B. Beamforming for Narrowband Channels

In a generalized narrowband channel, we compute an ana-
log beam that maximizes the post-beamforming SNR, which
ideally solves the following optimization problem:

b Hf|”. (30)

max
b: by |==|bas|=1

In the communication stage, we assume the transmitted data
streams follow s[7] ~ CA/(0, 1), and evaluate the performance
of different schemes by averaging over 1,000 symbols.

In the following, we describe three different benchmarks
followed by the proposed estimation-based beamforming.

1) Ideal Beam as a Benchmark: Given perfect knowledge
of CSI and transmit beam f, the optimal solution to (30) is

L
bipeaL = exp (JZ <Z Gia; (801791))) . 31

=1

where ¢ = aall (w;,y;)f, Z(-) extracts the element-wise
phases, and exp(-) computes the element-wise exponentials.
2) “Strongest Beam”.’AAs another benchmark, when esti-
mating the AoAs, we set L = 1 so that a single most prominent
peak of the objective function is identified. The corresponding

N

estimate, (@, 9), is treated as the strongest beam direction,
yielding a straightforward choice, which is referred to as the
strongest beam: bgtr = a; (g’é, é\)

3) Hierarchical Beamformer: We also evaluate the hierar-
chical search method based on codebook design, an efficient
approach for channel estimation and beamforming vector de-
sign, as proposed in, e.g. [43]. In this evaluation, the algorithm
is adapted for UPA scenarios while keeping the transmitter side
fixed, with the corresponding beamformer denoted as bygg.

4) Estimation-Based Beamformer: After estimating the
Ao0As as described in Sec. III, we compute the ML estimates
of (1,...,(r based on the model described by (6)—(10).
The resulting beam bggr is then obtained by plugging these
estimates into (31). Instead of reconstructing the channel
matrix H, we rely on the estimates of the AoAs (61,...,0
and ¢1,...,¢r) and the effective path gains (C1,...,(r).

We evaluate the average SNRs achieved by bgsrr, buigr,
and bggr. Specifically, we plot the “SNR ratio”, which is the
ratio of the SNR (in linear scale) achieved by the proposed
beamformer and the SNR benchmark achieved by the ideal
beam bipgar. We simulate three clusters which have equal
power levels, with each path within a cluster exhibiting the
same SNR. The cluster AoA/AoD centers @, 0, w, 1) are uni-
formly generated within (—7/2 + X/2,7/2 — X/2), where
X = ¢ 6% W, and ¥° represent the respective angu-
lar ranges. AoA centers are designed to maintain minimum
separations of 1.519M{/ and 1.519MrH at the receiver. Each
cluster is assumed to consist of 10 paths. Specifically, for a
cluster with L. paths, the deviations in the elevation direction

for each path relative to the cluster center are defined as

—%,—% Lf;1""v%}- The same applies to the the
azimuth direction. Afterwards, paths are coupled randomly
in terms of 6, ¢ pair within a cluster. Note that when 6° >
L50ng, or ¢° > 150, clusters may overlap. Such overlap

is not excluded in our evaluations. We set M; = 4 x 4 and
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Fig. 4. SNR ratio vs. angular range for various beamforming schemes in
narrowband channels.

evaluate performance for M, = 16 x 16. For the proposed
estimation-based beamformer (labeled as EST), we utilize
N4 = 60 and 120 pilot symbols, respectively. The hierarchical
beamformer (HIER) is evaluated based on the number of
multipath components to estimate, with average measurement
counts of 66 and 131, respectively. For the strongest beam
(STR), Ng = 120 is used. The three clusters have equal power
levels, with each path within a cluster exhibiting the same
SNR. The average SNR per antenna before beamforming is
approximately —10.7 dB, while the average SNR after ideal
beamforming is about 13.3 dB.

Fig. 4 plots the average SNR ratios for various levels of
angular range, where we set ¢©* = 6° = w* = 9° The
estimation-based beamformer outperforms both the strongest
beam and the hierarchical beamformer. The estimation-based
beamformer also demonstrates robust performance, recovering
75%-96% of the ideal SNR, even in clustered multipath
environments. Despite not directly reconstructing the channel
matrix or having knowledge of the transmit beam, the combi-
nation of AoA estimation and path gain estimation is sufficient
to account for the joint effects of all clusters. On the other
hand, the hierarchical beamformer demonstrates suboptimal
performance; it needs significantly more measurements to
achieve comparable performance.

C. Beamforming for Wideband Channels

With a wideband channel model, the SNR maximization
problem can be formulated as

1

D7
max 1%l E
b:|bi|=:=|bas, |=1 d=0

H[d]ﬁ‘HH[d}H) b. (32)

We set My =4 x 4 and M, = 8 x 8. We use the same UMi
fast fading channel model as in Sec. IV-A, with the angular
range as 0.38 radians in both azimuth and elevation directions.
SNR performance is evaluated by averaging over 1,000 data
symbols s[7] ~ CN(0,1).

In the following, we describe our proposed beamforming
approach and compare the resulting beamformers with those
derived from estimated channels using existing methods based
on quantized observations.
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Fig. 5. SNR ratio vs. SNR before beamforming for various beamforming
schemes in wideband channels.

1) Wideband Optimal Beam as a Benchmark: Without
the constant modulus constraint, the optimal solution to
problem (32) is the principal eigenvector of the matrix

D-'H[dff"H[d]", up to a scaling factor. This digital
beamformer is denoted as bywpgrt. With the constant modulus
constraint and full channel knowledge, we propose a numerical
solution as a benchmark. We initialize the beamformer phases
with Z(bwpgr) and iteratively optimize each phase &, for
m = 1,..., M, using a block coordinate descent (BCD)
algorithm, where &, denotes the m-th phase component. The
resulting solution is denoted as bwopr.

2) Wideband “Strongest Beam”: While the matrix

5;01 H[d]ff"H[d]" can be estimated by expressing H[d]f
as Zlel Clp(dT - 5l)ar((pl,9l) with ¢ = alaH(wl,z/)l)f,
doing so requires estimating all path delays. As an alternative,
we apply the proposed ML-based method to estimate the
most prominent peak, which is treated as the dominant beam
direction. The resulting beamformer is denoted as bwsrr-

Prior work has investigated channel estimation from quan-
tized observations, specifically estimating H[d] for d =
0,...,D—1. Given the estimated channel and known transmit
beamforming, receive beamformers can be computed accord-
ingly. In the following, we describe two representative channel
estimation methods for comparison.

3) Bussgang Decomposition-Baesd Method: With Buss-
gang decomposition, the quantization effect is approximated
as a linear operation, enabling channel estimation by exploit-
ing angular-domain sparsity. Techniques such as orthogonal
matching pursuit (OMP) can be employed for this purpose
[25]. The resulting analog beamformer is denoted as bgp.omp-

4) Approximate Message Passing (AMP)-Based Method:
The generalized AMP algorithm can be applied [22] to esti-
mate the channel by solving the quantized compressed sensing
problem. The corresponding analog beamformer, denoted as
bgamp, can then be computed.

We evaluate the average SNRs achieved by bwstr, bep.omp,
and bgamp, and plot the SNR ratio compared to the SNR
benchmark achieved by bwopr. For OMP and AMP based-
method, training pilot during the estimation stage is chosen
as Zadoff-Chu sequence. We test over different SNR regions
before beamforming. In Fig. 5, as SNR increases, NV is set to
80, 60, 40, 40, 30, 20, 10, and 8, respectively. Unlike existing
methods that estimate the full channel and require knowledge
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of the transmit beamforming, our approach only estimates the
Ao0As and does not rely on any transmit beam information.
Remarkably, our method outperforms both the Bussgang-based
OMP and the Generalized AMP approaches.

D. Efficiency Comparison

We evaluate the beamforming SNR performance against the
number of pilot symbols for different schemes.

In the narrowband case, we compare our estimation-based
beamforming with hierarchical beamforming, which does not
rely on full-dimension digital chains. Hierarchical beamform-
ing requires more than L(2% — 25, + 2log, M,) measure-
ments, where L is the number of paths and Sy is the index
of the initial search layer [43]. At low-to-moderate SNRs,
limited gain from low-resolution codewords demands a finer
beam resolution (larger Sy). Moreover, increasing M, further
raises the overhead. In the wideband case, we compare our
beamformers with those obtained via existing channel estima-
tion methods, assuming the same full-dimension 1-bit ADC
receiver architecture. As an additional benchmark, we replace
1-bit ADCs with full-resolution ADCs at the receiver. This
removes quantization effects in the beamformer estimation
stage. We compute the analog beamformers accordingly in
both narrowband and wideband cases. To distinguish between
configurations, we label the results with “1-bit” and “full-res”,
respectively.

Fig. 6(a) shows the SNR ratio versus pilot length in the
narrowband case, where the channel model follows the de-
scription in Sec. IV-B with an angular range of 0.26 radians.
The pre-beamforming SNR is —12.24 dB, and the post-

beamforming SNR is 11.11 dB. By exploiting spatial diversity
through large M,, our method enables significantly faster
beamforming than hierarchical beamforming. The wideband
channel model is based on Sec. IV-C, with an angular range
of 0.19 radians. The pre-beamforming SNR is —8.53 dB, and
the post-beamforming SNR is 8.87 dB. Fig. 6(b) presents the
wideband case. Under the same full-dimension digital chain
configuration, our method requires far fewer pilot symbols to
achieve comparable SNR after beamforming, outperforming
existing channel estimation-based approaches. Notably, the 1-
bit ADC system performs closely to the full-resolution ADC
baseline, requiring fewer than 10 additional pilot symbols.

Our approach focuses on receiver-side beamforming design
and can be effectively applied when reasonable transmit beam-
forming is in place. Under such conditions, energy concentra-
tion in the angular domain allows for reliable AoA estimation
and efficient analog beamforming.

E. Computational Complexity

We focus on the coherent channel setting, which is more rel-
evant to beamforming. In this case, measurements only affect
the calculation of certain exponent terms used in evaluating
the objective functions. These include [; ,, Vi m for g(6) and
L, Vm for g(e) (e.g., in (21)). Computing these exponent
terms involves a complexity of O(M,;N,). Once computed, the
subsequent likelihood evaluations’ complexity are independent
of Ny. Given these exponents, in both narrowband and wide-
band scenarios, evaluating ¢g(6) in (22) has a complexity of
O (M;N¢). Coarse sampling over My, elevation angles incurs
O(M;j, M N;) complexity. Gradient descent is then applied
to Eg coarse elevation estimates, with gradients computed
numerically. Suppose each gradient descent implementation
requires [, iterations for convergence. The total cost for
elevation angle estimation is thus O ( (M, + Igzg)MrNg)
Similarly, the complexity for azimuth angle estimation is
O (M + LL)MN; ).

For estimation-based beamforming in the narrowband case,
we estimate both amplitude and phase of the effective
path gain ( for each (5, ) pair, requiring O (Igf,Mr)
for all L paths. The total complexity hence becomes
O (M, + Mj; + I,L)M;N + MN;). In the wideband
case with “strongest beam” (Ee =1 = 1), the complexity
simplifies to O ((M;, + M}, + I,) M;N¢ + M;Ng).

In the wideband scenarios, the complexity of
the Bussgang decomposition-based method is
O (I} + In(N2M? + DNyM?2M,)), where I, is the number
of OMP iterations [25]. For the AMP-based method, the
complexity is O (I,DNgM2M,), where I, denotes the AMP
iteration count [44]. In contrast, our method is independent of
the number of transmit antennas ();) and scales linearly with
(M}, + M%) M, instead of M2, offering better scalability.

F. Comparison to Digital Beamforming

To provide a more comprehensive evaluation, we compare
the analog beamformer with the digital beamformer. For fair
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Fig. 7. SNR after beamforming vs. SNR before beamforming.

comparison, we consider the constraint for digital beamform-
ing as b: ||b||? = M,.

1) Narrowband Digital Beamformer: Assuming perfect
CSI and transmit beamformer f, the optimal digital receive
beamformer, denoted by bnpgr, is a scaled version of Hf.
Since Hf = Zle Gar(¢1,0;), we estimate it via our ML-
based method when H and f are unknown, yielding the
estimated digital beamformer bnpgst.

2) Wideband Digital Beamformer: We have introduced the
ideal digital beamformer bwpgr when discussing wideband
optimal beam in Sec. IV-C. To estimate the corresponding
digital beamformer via channel estimation, we will need to
compute H[d|f for different delay taps. As shown in Fig. 5, the
wideband “strongest beam” performs close to the wideband
optimal beam while requiring significantly less computation,
i.e., only the AoA of the dominant path is needed. Thus,
we bypass multi-path AoA and delay estimation and directly
compare performance against bwstr. This delay estimation
problem will later be addressed in the wideband multiuser
setting in Sec. V-B.

The narrowband channel model is based on the description
in Sec.IV-B, with an angular range of 0.26 radians. The wide-
band channel model follows Sec.IV-C, with an angular range
of 0.19 radians. We plot the average SNR after beamforming
achieved by bnpar, bnpest, bipear, best, bwper, bwopr and
bwstr in Fig. 7. While digital beamforming offers greater flex-
ibility, the improvement in beamforming gain is modest, i.e.,
approximately 0.83 dB in the narrowband case and 0.52 dB
in the wideband case. In the narrowband case, we have shown
that our method extends naturally to digital beamforming. In
the wideband case, the estimated bwstg achieves competitive
performance to bwpgr with a modest gap of approximately
1.22 dB. The gap between the narrowband and wideband
curves primarily stems from the different beamforming gains
resulting from the different receive UPA sizes.

V. MULTIUSER CHANNEL ESTIMATION

Assume each user v transmits a random pilot s,[7] as an
independent random binary phase-shift keying (BPSK) symbol
forr=1,---, Ng. We show that the angular-domain channel
estimation method introduced in Sec. III can be extended to
the multiuser scenario and achieve good performance.

A. Angle Estimation for Narrowband Channels

We first consider a simplified scenario with two users,
each with a single path. The relevant parameters are therefore
directly indexed by user u. For user u € {1,2}, define

Gui = o @/ TIT D cosOsinea (1, ), (33)
Following (16), we write
Fi,m[T] =Q (§1,i31[7}€jw(m_l)sm 01
(34)

+§277;82[T]€j7r(m71) sin 02 + wz,m[’r}) ’

where w; ., is the m-th element of w;. We assume that 1,
and ¢ ; are uniformly distributed over discrete sets of sizes
N, , and N, ,, respectively, while 0~Uniform(—m/2,7/2).
Computing the likelihood £ (ﬁi|91, s1> as by averaging the
interfering user’s parameters is rather complicated. Since the
contribution of user 2’s information diminishes in the condi-
tional likelihood function, when conditioned on 6; and s1[7],
we take the approximation

Fimlr] 2 Q (q,islmeﬂ'ﬂm*”si"el i wi,m[ﬂ) . (35)

where user 2’s signal is treated as white noise and ab-
sorbed into the noise component w; ., [7]. Using the symmetry
Q(—z) = —Q(z) for all z € C and the fact that the BPSK
pilot symbols s,[r] € {—1,1} are known, we introduce
Fu,im|T] = 8u[T]Tim[T] to write a statistically equivalent
model for user u:

Fu,im|T] =2 Q (gu,z-emm*”““ Ou 1y [T]) ) (36)

This approximation is also applicable to scenarios with
N, > 2 users, each with multiple paths. The com-
plete received signal at time 7 is expressed as r[r] =
Q (Zju\’;l H,f,s.[7] + W[T]) with the measurements from
the i-th column of the UPA denoted as T;[7]. As in the single-
user case in Sec. III, even when the user has multiple paths,
the likelihood-based objective conditioned on a single path
is utilized to detect the directions of all dominant paths. Let
Rui = [Fuill], -, Fui[Na]], where ¥,;[7] = s,[7]Fi[7].
Following Sec. III-A, the likelihood for the elevation angle
0 of user u with known pilot sequence s,, is approximated as:

L(Ry,i]0) < gu,i(0) (37)
M,
= Z H p%d (ea/lu,i,ma Uy ioms S), (38)
sEZm=1
where fiim = Sont H(Re(Fuiml7])) and Zym =

SN H (Im(Fy 5, [7])) . Combining the likelihoods due to all
columns of the UPA, we arrive at the following likelihood-
based objective function for the elevation angle of user wu:

My
9u(0) = TT 9u:i(0)- (39)
i=1
The effectiveness of this approximation is demonstrated in
Fig. 8, where there are two users, each with two well-separated
paths in the elevation direction. The results demonstrate that
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pilots yields prominent peaks at —0.2161 and —0.6420.

even with very different signal strengths between the users, the
approximation in (36) remains valid and aids in the angular
domain estimation.

With the estimate 6, the same approximation applies to (.
Let T,[7] = syu[7]r[7], with 7y ., [7] being the m-th element
of T, [7]. The associated objective function follows (25) as

M,
gu(e)=>_ ] A%, (<p,9,ﬂu,m,l7u,m;§) (40)

seZm=1

where fiym, = Zivil H(Re(Fuuml7])) and Dymm =
quyi1 H(Im(Fu,m[TD)'

In the preceding narrowband scenario, multiple paths are
handled using the same procedure outlined in Sec. III-A.

B. Angle Estimation for Wideband Channels

For wideband channels, the analysis for each user u begins
with a single-path scenario. Extending this to multiple paths
requires additional considerations, particularly when account-
ing for pilot sequences during the likelihood derivation, as
asynchrony arises from unknown delay taps. We focus on
the case of well-separated paths for illustration, which can be
seamlessly applied to identify dominant paths from separated
clusters. Given that the exact number of clusters or paths for
user w is unknown, the objective is to identify the L, most
well-separated dominant paths.

1) A Single Path per User: We aim to express the signal
received by the ¢-th column in the form of (16). With some
rearrangement, conditioned on 6, and s,[7], we take the
approximation

Fi [T} =9 (gu,igu [T]OIW{, (Gu) + W, [T]) ’ (41)
where ¢, ; is given in (33),
D—1
Sulr] = > p(dT = 6,)sulr — d, (42)
d=0

and all other users’ signals are treated as white noise and
absorbed into the noise component w;[7]. Since user identity
and its association with the corresponding AoA estimates rely
on the users’ pilot sequences, we aim to use the true S, [7]
values, which incorporates pilot information, while assuming a

uniform distribution only for g, ; when deriving the likelihood-
based objective. While s, is known, the knowledge of s,
depends on the pulse shaping effect, as well as the unknown
parameters D and §,. We assume that the pulse shaping
function is known at the AP. We then use an estimated
value D, chosen to be large enough such that it exceeds the
true D value with high probability.> Afterwards, we estimate
d, to enable further analysis. To minimize computational
complexity, discrete values of 9, are evaluated, and the optimal
estimate, denotAed as 0y, is selected. This optimal value &,
together with D, is then substituted into (42) to compute the
approximate S, [7], which is subsequently used to derive the
conditional likelihood functions.
The discrete test set for 6u/\ is defined as D =

{0,T/6,-~- (e—=1T/e, T, - (D — 1)T}, where ¢ > 1

can be tuned. When D and & are sufficiently large, the set
D will contain a value that closely approximate the true &,.
With this close estimate, the corresponding likelihood-based
objective typically yields a prominent peak near the true AoA
in both the elevation and azimuth angles. Note that while
choosing a large D increases computational complexity, it does
not compromise estimation accuracy. A larger D ensures that
the true §,, is included in the tested range without prematurely
truncating the search region. On the other hand, using a
larger D will not significantly affect the accuracy of S, [7]
calculation. This is because the light-tailed nature of a typical
pulse shaping function p(dT — §,,), such as the raised cosine-
filter [45], [46]. Consequently, the term p(dT — §,)s[t — d]
has minimal impact on s, [7] when d is large for a given J,,.

We now describe the selection of gu in detail. Given the
true 4y, the likelihood-based objective exhibits a prominent
peak. Therefore, the goal is to select a d,, that maximizes
the prominence of the peak in the derived likelihood function
among all candidate values. With argument ¢, we first derive
the corresponding likelihood-based objective conditioned on
0 and the calculated $,(0) = [5,(0)[1], - ,5.(6)[N4]], as
a function of § and J. We observe that (41) represents a

2We can estimate the value of D based on the propagation environment and
system settings. For instance, according to the clustered delay line (CDL)-C
channel model, § = é‘nnrmalized X DSgesired> With 5n0rmalized ranging from 0
to 8.6523. For a nominal delay spread with DSgesirea = 100 ns and a 10
MHz bandwidth, D is calculated as 9. Therefore, setting D = 15 provides a
sufficient estimate, even for environments with rich multipath propagation.
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Fig. 9. Simulation settings: M; = 4 X 4 for both users, M; = 8 X 8, Ng =

200. Path parameters: User 1 has path 1 with —15 dB, path 2 with —20

dB; 01 = 0.2270, 02 = —0.3335; 1 = 0.98797T, §2 = 0.09987. User 2 has path 1 with —5 dB, path 2 with —10 dB; 61 = 0.1954, 92 = —0.6202;
01 = 0.4532T, &3 = 0.0662T". (a)-(c): For User 1, the two largest peaks for sampled (6,6) pairs with distinct 0’s are (61 = 0. 2527, 61 = T) and

£\92

—0.3844, 52 = 0). (d) and (e): Likelihood functions conditioned on §; with (51 = T and 62 = 0 yield refined estimates of 91 = 0.2262 and

62 = —0.3581, respectively, through refinement around A1 and 3. (f)-(h): For user 2, the two largest peaks for sampled (6, ) pairs with distinct 0’s are
(91 = 0.2527, (51 = 0.5T) and (02 = —0.6751 62 = 0). (i) and (j): Likelihood functions conditioned on S with §; = 0.57" and 62 = 0 yield refined
estimates of 91 = 0.1964 and 62 = —0.6236, respectively, through refinement around 0, and 05.

combination of models (16) and (27) in the sense that the
coefficient of o1, (6,,) consists of a time-invariant component
Gu,; and a time-varying component S, [7]. Consequently, the
likelihood-based function can be derived by accounting for
$4(0)[7] in each time interval, while assuming a uniform
distribution for ¢, ; after considering all N; measurements
across the ¢-th column of the UPA, yielding

My Ng My,

TTUD S TT T o (0,57 7 s s5() (7))

1=1 ceEZT=1m=1

ha(0,8) =

(43)

Using (43), we first quantize both # and 0 to find the
optimal pair. We evaluate all combinations of § € D and
0, for ¢ = 1,--- ,2Mj,, resulting in 2Mj, (e(D — 1) + 1)
palrs Each combmatlon is substituted into (43) to compute
the corresponding objective value. The pair (0,,, 5 ) is selected
as the maximizer of h,(6,5) among all tested combinations,
where 5u is the discrete delay estimate for user u. Using ¢ 5u,
we derive the likelihood function for 6, denoted as h, (6, Su ).
Afterwards, 6, provides a coarse estimate and serves as Athe
initial point for gradient-based refinement utilizing ., (6, d.),
yielding the refined estimate 0,,.

Once we obtain ,,, we can estimate ¢ using the following
objective function:

No M,
)= ST I A (0 s v s5uB)151) » @)
ceEZT=1m=1
which is derived as a combination of (25) and (29).

2) Multiple Well-separated Paths per User: When user u
has well-separated paths, the goal is to identify the L,, distinct
A0A pairs corresponding to prominent peaks in the likelihood-
based objective function.

We first use (43) to estimate L elevation angles. Specif-
ically, we evaluate all combinations of 6 € D and 6, for
q = ,2M,, yielding 2M, (E(ﬁ — 1) + 1) objective
values. From these, we select the L, pairs of (6, 0) that have

the largest objective values with distinct 6 values, denoted

(Hlu,él )by = 1,- , L. While each path typically has
a unique delay, the dlscrete candidate set D may lead to
duplicate delay estimates for 61 For each [,, we substitute
5lu into (43) to obtain the likelihood function h,(0,d;,, ). The
coarse estimate ), is then refined using h,(6,d;,) with a
gradient-based method, yielding the elevation angle estimate
0:,. Finally, ¢;, is estimated using (44) by substituting the
corresponding 6, .

The estimation process for # and ¢ is illustrated in Fig. 9,
considering two users, each with two paths, and D = 2. For
simplicity in illustration, we set D=L =Ly=¢=2 We
have verified via such experiments that the proposed approach
enables the estimation of AoA pairs for the L, paths with
high fidelity.

The multiuser wideband angular-domain estimation method
naturally extends to scenarios with clustered paths. In such
cases, dominant paths within separate clusters are identified,
accounting for the combined effect of closely spaced AoAs.
A potential concern occurs when clusters have similar AoA
pairs but different delays, possibly causing paths from distinct
clusters to be treated as a single path. However, as long as the
correct AoA is detected, beamforming will still capture energy
from that direction.

VI. MULTIUSER ANALOG BEAMFORMING

This section evaluates the performance of analog beamform-
ing based on the angle estimates in Sec. V and examines its
impact on overall signal processing at the receiver.

A. Beamforming for Narrowband Channels
In the narrowband case, given an analog beam for user u,

b,,, the SINR maximization problem follows (12) and (13):
[bITH,f, |

S |bEH,f, > + bib,
v#U

(45)

bu:lbu,l|:"':‘bu,lvlr‘:1
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1) Optimal Beamformer: Without the constant modulus
constraint on phase shifters, this problem admits a closed

Lo, + Y, 40 HoE,£7HE )T H.f, up
to a scalar factor [47]. Under the constant modulus con-
straint and assuming full channel knowledge, we optimize
the beamformer phases using the BCD algorithm, initialized
with Z(b%). The obtained solution is denoted as B =
b, b

2) Estimation-Based Beamformer: Without channel knowl-
edge, we estimate the AoAs of dominant paths. Introducing

s, = ag,all (wi,, i, )fu,
H.f, = Zlu gluar(@lu; elu)-

Given the estimated number of dominant paths and ¢, 60
estimates following Sec. V-A, we determine the corresponding
ML estimate of ¢,. These parameters suffice for analog
beamforming computation, eliminating the need to reconstruct
the full channel matrix. Following the methodology of opti-
mal beamforming, we plug in the estimates instead. Given
knowledge of f, the resulting analog beams are denoted as
Best — [bﬁst, . ’b%lu}‘

With the two analog beamforming schemes described above,
we can assess the effectiveness of our proposed angular do-
main channel estimation by comparing the post-beamforming
SINR. As a benchmark, we also calculate the maximum
achievable SNR for each user using an ideal beam as defined
in (31), assuming full channel knowledge and neglecting
interference from other users. The performance is evaluated
for three users, where each user’s channel matrix consists
of three clusters, each containing 10 equal-power paths. The
cluster power levels are configured as follows: for user 1, all
clusters have power P; for user 2, the clusters have power
levels P,0.5P, and 0.25P; and for user 3, the clusters have
power levels P,0.25P and 0.06 P. The power P is set so that,
the average SINR per receive antenna for the three users, prior
to beamforming, is about —13.5 dB, —15.9 dB, and —17.1
dB, respectively. After optimal beamforming, the SINR for
the three users is approximately 9.8 dB, 7.5 dB, and 6.4
dB, respectively. The AoDs and AoAs for each cluster are
uniformly generated, ensuring separations of Jas;, and s,
at the receiver. Within each cluster, the AoD/AoA paths are
generated following the model described in Sec. IV. Cluster
overlaps are permitted. We set M; = 4 x 4 for each user and
M; = 16 x 16 for the AP. During the estimation process, we
assume no prior knowledge of the number of clusters or paths.
The algorithm begins by estimating the number of dominant
paths and subsequently determines their parameters.

Fig. 10 presents the evaluations as the ratio of the SINR
achieved to the SNR due to the ideal beam. The results for
N4 = 200 are illustrated, with performance plotted across
varying angular ranges. Evidently, optimal beamformer (OPT)
performs close to the ideal case, even with interfering users,
demonstrating the robustness and effectiveness of our proposed
numerical solution. As angular spreads increase, the separa-
tion and power distribution of paths make angular-domain
channel estimation more challenging. While the estimation-
based beamformer (EST) shows a decrease in the SINR

form solution b =

(46)
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Fig. 10. SINR ratio vs. angular range for narrowband channels. N; = 200.
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Fig. 11. Sum spectral efficiency vs. SINR of the weakest user.

ratio as the angular spread widens, it still captures significant
energy, particularly for small and moderate angular ranges.
This suggests that the proposed algorithm with angular-domain
estimation effectively separates individual users’ signals onto
their respective digital chains.

We fix the angular range at 0.2618 radians and vary P
to evaluate the sum spectral efficiency in different SNR
settings. The results, shown in Fig. 11, depict the sum spectral
efficiency as a function of the average SINR per receive
antenna for the user with the weakest signal. Beyond analog
beamforming, we extend our analysis to digital beamforming
without the constant modulus constraint. The optimal digital
beamformer is derived as bg, whose expression can be found
in Sec. VI-A when we introduce optimal beamformer. We
also derive the corresponding digital beamformer with AoA
and gain estimates. To differentiate the digital beamformer and
analog beamformer, they are denoted as Digital/Analog OPT
for optimal digital/analog beamformer, and Digital/Analog
EST for optimal digital/analog esimation-based beamformer,
respectively. For the first two data points, Ny = 480. Ny is
then halved every two data points untill reaching N; = 60
for the last three data points. We then compare the sum
spectral efficiency of all users across various beamforming
schemes. Digital beamforming provides only marginal im-
provement over analog beamforming, whether using optimal or
estimation-based approaches. This demonstrates the effective-
ness of our proposed analog beamforming in enhancing users’
SINR. Furthermore, our angular-domain estimation enables
beamforming to achieve a sum spectral efficiency comparable
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to that obtained with perfect channel and transmit beamform-
ing knowledge.

B. Beamforming for Wideband Channels

We begin by assessing the effectiveness of analog beam-
forming in reducing inter-user interference through the analy-
sis of the post-beamforming SINR.

1) Wideband Optimal Beamformer: Without the constant
modulus constraint, the optimal solution to problem (13) can
be derived in closed form, denoted as bg. We then initialize
the solution to (13) as £ (b%) and adopt a BCD-based
algorithm to refine the phase components, with all ground-
truth parameter values.

2) Wideband Estimation-Based Beamformer: When chan-
nel information is unknown, our goal is to reconstruct H, [d]f,,
which can be expressed as

Ly,
H,[d)f, = ) «,p(dT — 6, )an(¢1,,00,).  (47)

lu=1

We optimize over the parameters 6, ¢, and 6 for the Eu dom-
inant paths. Afterwards, we compute the ML estimate of ¢, .
Following this, we proceed with the procedure described for
Wideband Optimal Beamformer to determine the beamformer.

The simulations are based on the UMi fast fading chan-
nel model [42]. We simulate three users, where each user’s
channel matrix consists of four clusters, each containing 20
paths. We fix M, = 8 x 8 at the AP, M, = 4 x 4 for
each user, and adopt Ny = 200. The heights of the user
equipments are 1.75 m, 1.55 m, and 1.65 m, while the AP
is 10 m. The AP is positioned at the origin, and a radiation
range of 7 is defined to simulate signals from the front of
the UPA at the AP. User 1 is located at an angle of 0.7728
radians, User 2 at 1.5674 radians, and User 3 at 2.5337 radians.
We evaluate two scenarios: In the first scenario, users are
placed at similar distances from the AP (dy, 1.15dy, and
1.30dp), resulting in similar path loss and signal strengths. In
the second scenario, users are positioned at varying distances
(dy, 1.5d},, and 2dy), leading to much more different signal
strengths. The locations and heights of the user equipments
remain fixed during the simulation, and path loss for each
user is calculated to set the relative received power levels. Path
propagation parameters, including delays and AoAs/AoDs, are
independently and randomly generated in each realization.
When multiple users transmit to the same AP, these parameters
exhibit correlations, modeled as an exponential decay function
with distance, as described in [48]. Despite the angular spreads
defined in the UMi model, we adjust them to evaluate the
robustness of our algorithm. We assume identical angular
spreads for all AoAs and AoDs, representing them through
angular ranges. Notably, under the given simulation settings,
clusters may share similar AoAs/AoDs but differ in their
delays. In the first setting, the average SINR per receive
antenna before beamforming is approximately —10.8 dB,
—13.1 dB, and —14.6 dB for users 1, 2, and 3, respectively.
In the second setting, the average SINR is about —1.5 dB,
—8.4 dB, and —12.6 dB, respectively. During the estimation,
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Fig. 12. SINR ratio vs. angular range for wideband channels. Ny = 200.

we adopt Eu = 4 paths for all users. During communication,
random BPSK symbols are transmitted to obtain the post-
beamforming SINR. Similar results will be obtained for other
constellations, as long as independence and power constraints
are met. Simulation results are obtained by averaging over 200
independent random channel realizations, each spanning 1,000
symbol intervals during the communication phase.

Figure 12 illustrates the SINR ratio relative to the ideal
scenario, which assumes full channel and transmit beamform-
ing knowledge and no interference from other users. With
wideband optimal beamformers, the SINRs for the three users
are approximately 7.3, 5.0, and 3.7 dB, respectively, in Setting
1; and 17.3, 11.4, and 7.4 dB, respectively, in Setting 2. As
shown in Fig. 12, with full channel and transmit beamforming
knowledge, wideband optimal beamformer (OPT) achieves
performance that closely approaches the ideal case. When
users exhibit similar signal strengths, our proposed wideband
estimation-based beamformer (EST) achieves SINR ratios of
over 80% for all users across all tested angular ranges. With
varying signal strengths, EST achieves SINR ratios of over
76% for all users across all angular ranges. Since user 2
is positioned between user 1 and user 3, its channel matrix
exhibits the highest correlation with the other users, making
it more susceptible to interference, particularly in Setting 1.
As the angular range increases for user 2, channel estimation
becomes more challenging, leading to a more pronounced
decline in the SINR ratio. In contrast, the trend for the other
users is less pronounced, especially when compared to the
narrowband case. This can be attributed to the richer multipath
propagation with delay spreads, where clusters can share
angular similarities even with different delays. These similar
AoAs enhances the effectiveness of our angular-domain-based
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beamforming computation.

C. Computational Complexity

In the narrowband multiuser case, the received measure-
ments are first multiplied element-wise by each user’s pi-
lot sequence, incurring a complexity of O(N,M,N,). Each
user then performs angle and gain estimation following the
single-user procedure, resulting in a total complexity of
o) ENM (g + My + LL)MNg + MNy ) ).

In the wideband multiuser case, all users share the same
exponent terms for likelihood computation, ie., 47,07,
for hy,(6,6) and pul,v7 for h,(¢) (e.g., in Eq. (43)).
Calculating these exponents incurs a one-time cost of
O(M;Ny). Each user u performs joint coarse sampling over
elevation angles , (as defined in (23)) and delays 6 € D,
where |D| = O(elA)A). With a selected §, the computation
of $,(8) costs O(DNy). Given s,(§) and precomputed
exponents, the evaluation of h,(6,0) has a complexity
of O(M;NgN¢). Therefore, coarse sampling over all ¢
and § combinations requires O(M{/slA)]\A/[rNdNC). Refined
elevation angle estimation is applied to L, selected coarse
elevation angle estimates associated with their delay estimates
using gradient descent, where each refinement involves
I, iterations. Thus, the elevation estimation cost becomes

@) ((M{,sf) + IgEU)MrNdNC). For azimuth estimation, the
delay estimates are utilized, and the cost of coarse sampling
and refinement is O ((M;, n Igfu)MrNdNC). With the final
estimates (6., ?,) and ,, each user estimates the effective
path gain (amplitude and phase), requiring O (M, N,) per path.
Hence, the total computational complexity across all users is:

0 <MI.Nd +N, (5132Nd + (MieD + Mt + Igzu)MrNdNC))

D. Equalization

With the analog beamforming, we can separate individual
users’ signals onto distinct digital chains, where the SINR of
each user is maximized. However, due to varying path delays,
inter-symbol interference remains on each digital chain. To
address this, an equalization stage is introduced. We test for
two different equalization schemes as outlined below. After-
wards, the equivalent F}, /Ny (SNR per bit) is evaluated based
on the achieved symbol error rate (SER). To facilitate SER-
based analysis, the communication phase is set to span 10,000
symbol intervals, disregarding the coherence time constraint.

1) Adaptive Equalization: We employ the complex-valued
recursive least squares algorithm to perform an adaptive equal-
ization [49] for each user. To obtain the filter parameters, we
introduce a training period with the hybrid architecture after
applying the obtained analog beamformer. Let N, denote the
number of BPSK symbols used for adaptive training After a
total training period comprising Ny + N, symbols, we will
have gained knowledge of both the analog beamforming and
the equalization components.
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Fig. 13. Equivalent SNR per bit after equalization vs. reference signal length
for adaptive equalization. Ng = 200.

2) Joint Equalization: Following analog beamforming, we
apply equalization collectively to all users. We employ this
scheme only when full channel knowledge is available. By
leveraging full channel and transmit beamforming knowledge,
it addresses both inter-user and inter-symbol interference in
equalization design, serving as the upper bound for adaptive
equalization performance. Specifically, we employ an MMSE
decision feedback equalizer (DFE) as described in [50].

We adopt the same simulation settings as those for the
post-beamforming SINR evaluation to assess the equalization
performance following analog beamforming. The equivalent
Ey /Ny is plotted against N, for adaptive equalization, as
shown in Fig. 13. In the figure, joint equalization with full
channel knowledge is labeled as JOPT, represented by a
constant line since its performance is independent of N,.
We test with uncoded BPSK symbols, while higher-order
constellations can be applied in scenarios with higher SNR.
As N, increases, the gap in the resulting FE}/N, between
wideband optimal beamformer and wideband estimation-based
beamformer reduces. For N, > 400, adaptive equalization
with wideband estimation-based beamformer (AEST) achieves
a gap of within 0.36 dB for User 1, 0.64 dB for User 2,
and 0.74 dB for User 3, compared to that with wideband
optimal beamformer (AOPT) under setting 1. AEST achieves
a gap of within 0.06 dB for User 1, 0.35 dB for User 2,
and 0.63 dB for User 3, compared to AOPT under setting
2. This shows that our angular-domain channel estimation
effectively supports wideband estimation-based beamformer,
canceling the inter-user interference and enabling equalization
to achieve performance close to that obtained with full channel
and transmit beamforming knowledge, when the adaptive
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training is sufficient. Additionally, the user with stronger signal
strength experiences a smaller gap. In Setting 1, when users
are positioned closer to each other, the increased interference
and correlation between channel matrices lead to an overall
larger gap, compared to Setting 2. We also observe that when
users have similar power levels, joint equalization outperforms
individual adaptive equalization by more effectively mitigat-
ing inter-user interference, but the performance gap between
AEST and JOPT remains small when NV, is sufficiently large.

VII. CONCLUSION

We have proposed methods for angular-domain channel
estimation and beamforming accelerated by full-dimension
digital receive chains with 1-bit ADCs. The methods has been
evaluated in narrowband and wideband channel scenarios in
both single-user and multiuser systems, demonstrating robust
performance across various conditions. In the narrowband
case, the proposed analog beamforming effectively enhances
users’ SINRs, achieving sum spectral efficiency comparable
to hybrid beamforming with perfect channel and transmit
beamforming knowledge. In the wideband case, it enables
signal equalization to further resolve inter-symbol interference,
achieving SNR per bit performance close to the optimal
scenario with perfect channel and transmit beam knowledge.
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