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Abstract—Construction workers regularly perform walking
locomotion on level and inclined surfaces. It is critical to detect
walking activity and estimate body postures in real time for
monitoring workers’ safety and health conditions. This article
presents a machine learning-based framework for real-time
activity detection and posture estimation during human walking
on level and sloped terrains using a single wearable inertial
measurement unit (IMU). The framework integrates recurrent
neural networks with Gaussian process dynamical models to
achieve accurate predictions of walking activity, floor slope
angles, and workers’ turning angles and full-body limb joint
angles estimation in real time. The proposed design offers a
streamlined, cost-effective solution with significant advantages
over multi-sensor systems. Extensive experiments of different
walking activities on level and sloped surfaces are conducted
to validate and demonstrate the design. The proposed algorithm
detects gait activities with 96% accuracy, the estimated human
limb joint angle errors are within 11 deg, the predicted turning
angles have an error less than 16 deg and the end-to-end detection
latency is within 21 ms using only one single IMU attached to
the human shank.

Note to Practitioners—Construction workers exert intense
physical effort, and they experience serious safety and health
risk in hazardous, dynamic working environments. As a result,
the construction industry is one of the highest-risk industrial
sectors in most countries. Real-time monitoring of workers’
walking gait plays a critical role in construction safety. Wearable
IMUs are particularly attractive for walking activity recognition
because they are small, inexpensive, and non-intrusive. This
study aims to develop machine learning-enabled, real-time IMU-
based walking activity recognition and full-body posture and
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floor slope angle estimation. The main approach is built on long
short-term memory (LSTM)-based recurrent neural networks
and a manifold learning method to process time-series data
from the IMU to predict human motion. The LSTM model
achieves over 96% accuracy to classify various walking activities
on different floor slopes. Additionally, the design also estimates
human limb joint angles, floor slope angle and the worker’s body
turning angle. A noteworthy aspect of the detection system is the
minimal detection latency of 18 ms, ensuring the reliability and
effectiveness of real-time monitoring and evaluation. This feature
is particularly beneficial for immediate feedback and intervention
systems that help protect workers from work-related injuries.
The simplicity and efficiency of using a single IMU are attractive
for a practical solution for real-time automation applications in
dynamic environments.

Index Terms—Posture estimation, activity detection, construc-
tion workers, construction automation, wearable inertial sensors.

I. INTRODUCTION

ONSTRUCTION workers are exposed to serious safety

and health risks in hazardous, dynamic environments.
Walking on level and sloped surfaces is one of the most
common gaits in construction trades (e.g., roofers, scaffold
builders, etc.) It is critical to monitor workers’ activity and
body posture in real time for safety and health conditions
assessment [1]. Visual cameras, inertial measurement units
(IMUs) and motion sensors are among the most widely used
sensing systems for activity tracking, monitoring and evalua-
tion [2]. For example, computer vision techniques are used to
extract features from images or videos for pose estimation or
body landmark detection [3]. Wearable sensor networks, such
as IMUs, enable posture estimation and activity recognition
even without direct visual observation [4]. Wearable IMUs are
particularly attractive for gait detection and posture estimation
in construction because they are small-size, low-cost, and
non-intrusive [5]. In [6], two IMUs were attached to the
back of the helmet and the worker’s back for head, neck
and trunk inclination estimation. In [7], eight IMUs were
attached to the trunk and limbs to detect gaits and motion of
construction workers. In [8], 17 IMUs were used to identify
poses of masonry workers using support vector machines.
Comparison results of various IMU locations on the human
body segments were reported in [9]. Inertial sensor-based
gait classification and detection were also applied to human
kneeling, squatting and foot slip activities (e.g., [10], [11],
[12], [13], [14]). Comparing with vision cameras, IMUs do
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not need any infrastructure support and can perform under
various weather and terrain conditions [5].

Few of the aforementioned studies focus on wearable IMU-
based, real-time applications. In [15], a real-time gait event
detection was presented to capture walking gait events over
level and inclined floors and staircases using a single IMU.
Similar real-time walking gaits detection approaches were also
reported in [16] and [17] for periodic gait movement using
machine learning methods. For gait detection of non-periodic
human movements, the work in [7] and [14] used a set of wear-
able IMUs on human limbs and trunk to monitor construction
workers’ gait activities. In [13], seven wearable IMUs were
used to detect sudden foot slip during walking. Wearable IMU-
based human activity detection was also presented in [18] for
real-time applications. The work in [19] explored using IMUs
for horse limb lameness detection and pose estimation in real
time.

Floor slope information is important for assessing safety and
ergonomics of construction workers. Sloped surfaces directly
influence the postures and movements of construction work-
ers. Prolonged stance and walking gaits on sloped surfaces
can potentially lead to work-related musculoskeletal disor-
ders (WMSDs) or even injuries [20]. Empirical studies have
demonstrated a significant correlation between slope angles
and the incidence of musculoskeletal disorders. Emerging
technologies such as wearable sensing and exoskeletons appear
to be a promising intervention to mitigate the WMSDs in
construction [20], [21]. By harnessing accurate slope esti-
mation, wearable exoskeletons have been demonstrated to
provide dynamic, context-sensitive support, thereby mitigating
the ergonomic risks associated with walking on sloped sur-
faces [22], [23]. Real-time slope angle estimation and human
walking activities detection were conducted with IMUs and
encoders in [24].

Machine learning techniques were used in recent years
for human activity detection and posture estimations [25],
[26]. Deep convolutional neural networks and long short-
term memory networks (CNN-LSTM) architectures were used
to improve human activity recognition [27], [28]. Diffusion
models were also used in 3D human pose estimation from
single 2D observations [29], [30]. Hybrid and ensemble
learning approaches have significantly improved performance
of gait and activity recognition systems. Integrated CNN
and LSTM architectures effectively capture both spatial and
temporal dynamics, enabling robust classification of complex
motion patterns [31]. Furthermore, compressed deep neural
networks have been employed for lightweight implementations
tailored for real-time rehabilitation robotics applications [32].
However, few of the above-mentioned machine learning-based
methods focus on real-time applications.

In this paper, we present a real-time walking activity detec-
tion and pose estimation scheme on level and sloped floor
surfaces using only a single IMU. We take advantage of the
periodical motion property of walking gaits to predict full
body motions through a low dimensional representation. An
LSTM approach is used to detect the walking gaits and predict
the floor slope angle and human turning angle. A learned
motion manifold is then constructed using the walking activity
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information. The pose estimation is built on the learned motion
walking manifold and the IMU measurements. We use the
Gaussian process dynamic model (GPDM) to construct the
human motion manifold [33]. Similar to [34], due to the
periodic feature in human walking, the learned GPDM is
represented as a closed-curve (manifold) in latent space and
a phase variable is used to parameterize the GPDM model to
predict the joint angles in real time. Compared with traditional
kinematic-based models in gait estimation, GPDM shows
improved accuracy and fast computation.

The proposed integrated activity detection and posture
estimation provides a holistic assessment of worker safety
and ergonomics in demanding construction environments.
This integration design also simplifies the system architec-
ture, reduces sensor requirements, and improves real-time
response, making it highly practical for real-world applications
in construction. Extensive human experiments are conducted
on level and sloped surfaces that represent roof workers in
construction. The experimental results demonstrate the efficacy
and effectiveness of the design. By using only one single
IMU, the synchronization and sensing latency between sensors
are minimized and this reduces the design complexity. This
property is particularly attractive for monitoring worker’s
activity and posture in real time since that it is inconve-
nient to wear a complex monitoring system in construction
work site.

In contrast to prior works that require multiple sensor
inputs (e.g., IMUs on various body parts, goniometers (GONs),
electromyography (EMG), etc.), the proposed framework uti-
lizes a single shank-mounted IMU. Despite its simplicity,
the main contribution of this work also lies in the novel
integration of LSTM and GPDM for real-time walking activity
detection and limb posture estimation as well as floor slope and
turning angles prediction. This approach significantly advances
real-time worker gait monitoring in physically demanding
environments such as construction sites, reducing system com-
plexities while achieving high classification accuracy across
diverse floor slopes. The use of GPDM for real-time limb
joint angle prediction provides a potential enabling tool
for integrated wearable robotic systems to mitigate the risk
of WMSDs in construction. Compared with the previous
conference presentation [35], the current work presents a
comprehensive study, introducing new elements such as the
estimation of human turning angles. The experiments are
extensive, incorporating an analysis of the algorithm’s perfor-
mance on interpolated slopes and its adaptability to alternative
datasets. Furthermore, the presented work offers an in-depth
discussion and comparison of the algorithms with other
reported results. These results highlight the significance of the
proposed framework for enhancing safety and ergonomics in
construction, which are not presented in [35].

The remainder of the paper is organized as follows. We
present the problem statement in Section II. Section III
discusses the experiment configuration and data collection.
Section IV presents the walking activity detection and posture
estimation algorithms. Experimental results are presented in
Section V, followed by discussions in Section VI. We finally
summarize the conclusion in Section VII.
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(a) Experimental setup for training data collection. (b) Real-time walking test on different slope angles and turning radius. (c) Experimental test for walking

on the sloped surfaces with angles that were not among the training data.
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Fig. 2. (a) Human body joint angles in the sigittal plane with a single wearable
IMU and optical markers in experiments. (b) Illustrative schematic of the
human turning angle  on the level and sloped surfaces.

II. PROBLEM STATEMENT

We consider human walking gaits on level and sloped floor
surfaces as shown in Fig. 1. The sloped floor surface is
captured by the slope angle, denoted by ¢. We denote the
walking activity pattern set Ay = {a,as,- - ,ay}, where a;,
i=1,...,N, represents the ith walking pattern and N is the
total number of walking patterns. The walking activity pattern
refers to continuous walking gaits with subjects’ self-selected
speeds on level or sloped floors. Turning is not considered as
a separate walking activity pattern in this study and instead,
turning angle is part of the kinematics variables that will be
estimated in real time.

As shown in Fig. 2(a), the human walker wore a single IMU
at the shank location. We chose this IMU location because the
previous study in [9] confirmed that it gave high sensitivity
for detecting walking gaits. The joint angles of the human
lower- and upper-limb in the sagittal plane are considered
and illustrated as shown in Fig. 2(a). A total of 12 joint
angles from lower- and upper-limbs are defined and introduced
in this study, namely, left- and right-side shoulder, elbow,
wrist angles, denoted by 6, = {6 qer Pibows Paurise)» and hip,

6 .}, in

knee, and ankle angles, denoted by 6; = {Qiﬁp, Hl"mee, ! oKle

the sagittal plane, i = [,r for left- and right-limb. Fig. 2(b)
illustrates the schematic of the human turning angle, denoted
by ¢, which is defined as the angle between the walker’s facing
direction and the X-axis of the global frame. In experiments,

the subjects were asked to start at the same location with
a same facing direction to ensure left/right symmetry and
repeatability. For simplicity, we define the X-axis direction
as the initial facing direction such that the turning angle is
around zero at the beginning of each trial.

In walking gait, one stride period is defined as the time
duration between consecutive heel strikes (i.e., touchdowns)
of the same foot. We introduce the phase variable, denoted by
s, to represent the normalized gait progression. The values of
the phase variable s at the current and next foot heel strikes are
s = 0 and 100%, respectively. The walking gait progression is
represented as a continuous function of s that smoothly varies
from O to 100% over the course of a single stride. With the
above configuration, we consider the following problem.

Problem Statement: For given walking activity set Ay, the
goal of this study is to detect the walking activity a;, 1 <k <
N, and estimate the upper- and lower-limb joint angles (6, and
6)), turning angle ¥, slope angle ¢ and phase variable s in real
time by only using a single wearable IMU.

In this study, we mainly focus on five types of human
walking activity patterns, that is, N = 5. These activities
include: straight walking on the level ground (a;), walk-
ing up on the slope (az), body turning (include turning in
place and turning while walking) (a3), walking transverse
the slope (as) and walking down the slope (as); see illus-
trative examples in Fig. 1. We chose these walking activities
primarily because they are common in construction and the
methodologies developed here are extendable to other walking
activities.

III. EXPERIMENTS AND DATA COLLECTION

In this section, we first present the experimental configura-
tions and protocols and then discuss data collection.

A. Experimental Setup and Protocols

Fig. 1 shows the overview of the experimental setups. A
laboratory setup was created to mimick a construction work
environment for human subjects walking on the level and
sloped surfaces. A wooden slope structure with glued anti-
skid tapes was designed as a roof structure and the slope
angle can be adjusted up to 40 deg. In training experiments,
a level floor surface (i.e., ¢ = 0 deg) and a set of slope angles
(i.e., ¢ = 5,10,15 deg) were selected to represent common
roof slopes encountered in construction. These angles span a
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range of biomechanical challenges, from mild to steep inclines,
and therefore, experiments would be used to comprehensively
evaluate the system’s performance. Intermediate angles (i.e.,
¢ = 8 and 12 deg) were included in experiments to test the
model’s generalization capability.

To measure the human kinematics and motion, a small-size
IMU (from LP-RESEARCH Inc.) was attached to the right
shank of the subject; see Fig. 2(a). The Bluetooth IMU mea-
surements include 4 quaternions readings for attitude angles,
3-axial gyroscope rates and 3-axial linear accelerations. The
gyroscope offers a measurement range of up to £2000 deg/s
with a 16-bit resolution, while the accelerometer supports
measurements of up to +16 g, also with a 16-bit resolution.
The orientation capabilities include roll (=180 deg), pitch
(£90 deg), and yaw (180 deg), with a resolution of finer
than 0.01 deg and an accuracy of less than 0.5 deg in static
conditions and 2 deg root mean square (RMS) in dynamic
conditions. The IMU was carefully placed on the same location
of the right shank segment (around 20 cm above the ankle
joint) before each trial and the orientation was the same across
subjects. The IMU captured the dynamic features of turning
motions, which exhibited consistent temporal patterns across
both left and right turns. By taking advantages of these shared
patterns, the framework was able to robustly classify turning
motions as a single class.

To record reference motion data, a motion capture system
(8 Vantage cameras, Vicon Motion Systems Ltd.) was used
to collect marker positions. The Vicon full-body plugin gait
marker set was used and the optical markers were placed
on subjects’ lower and upper limbs, trunk and head to rep-
resent full-body motion. The ground truths for joint angles
(6, and 6)), turning angle ¥, and gait phase s were calcu-
lated using custom algorithms in MATLAB software (Version
R2020a, MathWorks Inc.) and the optical marker positions.
The slope angles were carefully measured and recorded before
each experimental trial. These ground truth data were used
for model training, validation, and real-time performance
evaluation.

Eight healthy subjects (six males and two females, age:
304+3 years, weight: 73.3+6.5 kg, height: 172.0+£6.7 cm) were
recruited for experiments. The subjects were capable of walk-
ing on level and sloped surfaces and were reported without
any orthopedic disease history. The subjects were instructed
to use their normal gaits and self-selected walking speeds. An
informed consent form was signed by all the subjects, and the
Institutional Review Board at Rutgers University approved the
testing protocols.

The experimental design was divided into two main phases:
Training data collection and real-time validation and evalu-
ation. Each phase consisted of multiple sessions that were
designed to capture a variety of walking patterns under differ-
ent conditions. The training data collection phase comprised
three sessions, focusing on walking activity patterns on level
floor and slopes with varying angles.

e Session El1 (Level ground walking): Subjects were
instructed to walk straight back and forth on level ground
for four minutes. This session aimed to establish a base-
line for walking patterns on level floors.
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e Session E2 (Turning while walking): Participants fol-
lowed the marked trajectories with small and large turning
radii on level ground, making turns while walking for
four minutes. This session evaluated the subjects’ turning
behavior on flat surfaces.

e Session E3 (Slope walking): Three slope angles (¢ =
5,10, 15 deg) were tested. As shown in Fig. 1(a), for
each slope, subjects started on the slope, walked up the
slope, made a sharp turn, traversed across the slope,
made another sharp turn, walked down the slope, turned,
and traversed back to the starting point in a clockwise
direction. This sequence was repeated for four minutes,
followed by trials in the reverse (counter-clockwise)
direction for the same amount of time to ensure left and
right turns are equally represented, with a two-minute
break between trials. This session assessed walking
patterns on slopes, incorporating turns and transverse
movements.

The real-time validation and evaluation experiments con-
sisted of two sessions, aiming at testing the robustness of
the algorithms and evaluating the algorithm’s performance on
untrained slopes.

e Session E4 (Slope walking with marked trajectory): Sub-
jects followed a marked trajectory on the floor and
slope in a clockwise direction for four minutes for each
slope angle set, and then reversed (counter-clockwise) the
walking direction for another trial. Two turning radii were
considered, as shown in Fig. 1(b).

e Session E5 (Untrained slope angles): This session aimed
to evaluate the algorithm’s adaptability to new conditions
by testing its performance on slopes not encountered
during the training phase. The experimental platform
was adjusted to inclines of 8 and 12 deg, ie., ¢ =
8, 12 deg. Subjects replicated the tasks from Session
E4 under these two slope angles. To demonstrate the
setup for assessing continuous performance on untrained
slopes, Fig. 1(c) illustrates the experimental platform.
Participants first ascended an 8-deg slope, turned 90 deg,
and then descended a 12-deg slope, followed by a trial
in the reverse direction. This session aimed to test and
evaluate the algorithm with slopes and turning angles not
encountered during the training phase in real time.

B. Data Processing

Fig. 3 shows the system design architecture for the real-
time activity detection and posture estimation. During data
collection, motion data were collected at a sampling frequency
of 100 Hz and processed using Vicon Nexus software for
accurate ground truth validation. IMU measurements were
wirelessly transmitted to the Raspberry Pi at a frequency
of 100 Hz via Bluetooth. The Raspberry Pi received and
synchronized data from up to seven IMUs. The processed IMU
data was then transmitted to a portable embedded computer
(Intel NUC7i7DNK, Intel Corp.) via a serial communication
connection. A Python multiprocessing pipeline synchronized
both the IMU and motion data during offline collection and
real-time testing. The IMU and motion capture data were
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Fig. 4. (a) Flowchart of the human walk gait detection process, illustrating the stages from activity detection to slope and turning angle estimation, gait phase
detection, and pose estimation. (b) Detailed architecture of the LSTM-based RNN neural network for predicting walking activities, slope angle, gait phase,

and turning angle.

further pre-processed using customized MATLAB scripts on
a desktop computer (Dell XPS-8953, Dell Inc.), which was
equipped with an Intel i7-8700 CPU, Nvidia 1030 GPU,
Samsung 860 EVO SSD, and 16 GB RAM. Walking activities
were labeled according to distinct patterns. Stride information,
including heel strike time, stride length, and walking speeds,
was extracted from the motion capture data.

The beginning and end of each stride were defined using the
location of heel markers. IMU data were concatenated for the
same activities, and the corresponding sections were extracted
based on the motion capture data. For training purposes,
IMU data were reshaped, and 60 consecutive frames were
combined into a single frame of data. The IMU sequence
data were normalized using the mean and standard deviation
of the dataset, which was then used as input for the model.
In the testing phase, 59 past frames and one current frame
were combined to form the input to the activity detection
and posture estimation model. The same mean and standard
deviation were used to standardize and normalize the real-time
IMU data, i.e., the IMU sequence was subtracted by the mean
and divided by the standard deviation of the training data. Each
experimental trial lasted approximately 5 minutes. The dataset
was evenly distributed among different gait activities to ensure
balanced model training and evaluation. For experiments El
to E3, a total of 3,200,000 data points were collected and an
80-20 split of the dataset was used for LSTM-GPDM training
and model development.

The pre-trained models and neural network parameters were
stored on the same desktop computer, which was also used for
real-time testing. For real-time testing and evaluation purpose,
the IMU sequence data were streamed into the learned model,
enabling the detection of the subject’s walking activities and

estimation of human posture. In a real-time application, foot
strikes were detected by inspecting the sudden drop in the gait
phase variable and the linear acceleration data. When each
walking cycle ended and a foot strike was detected, the gait
phase variable s was reset to the beginning of the stride (i.e.,
s = 0). For real-time performance evaluation experiments E4
and ES5, a total of about 800,000 data points were used and
they were not for any model training purposes.

IV. LEARNING-BASED GAIT DETECTION AND
POSE ESTIMATION

A. Design Overview

Fig. 4(a) illustrates the design flowchart of the walking
activity detection and pose estimation scheme. The design
contains five modules: walking activity a; detection, slope
angle ¢ and turning angle ¢ estimation, gait phase s and full-
body posture (joint angles) estimations for any given time. An
LSTM-based classification and regression model is used to
identify the walking activity a; € Ay (for N = 5 in the study).
The estimated slope angle ¢ and the turning angle y are also
obtained for identified activity by using the LSTMs. The gait
phase variable s € [0, 1] are estimated using the LSTM-based
RNN. Finally, the full-body posture (i.e., joint angles 6, and
6;) estimation scheme is obtained using the GPDM model. In
the following, we describe each of these modules in details.

B. RNN-Based Activity Detection and Gait Estimation

Fig. 4(b) shows the schematic of the four-layer of the
LSTM-based design. The module detects the walking activity
a; for N-activity classification (i.e., selection of a; € Ay),
slope angle ¢, gait phase s, and turning angle ¢ estimation. The
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LSTM is an RNN architecture to learn sequential information
using memory cells that stores and outputs information to
capture the temporal relationships. Using a single IMU for
gait detection presents several challenges, primarily due to
the limited scope of measurements that it provides. The
LSTM network effectively compensates for this limitation by
exploiting the temporal correlations in the IMU data.

LSTM networks are chosen for their ability to model long-
term temporal dependencies in sequential data, such as gait
cycles and transitions. Their internal gating mechanisms allow
the model to retain information over time and to capture com-
plex temporal patterns and dependencies in human gait data.
By using LSTM networks, we extract meaningful patterns
from the IMU data, leading to robust and reliable estimations
of gait and posture. As shown in Fig. 4(b), the information
update is through various gates and the relationships among
the input gate, forget gate and output gates [36]. The first stage
of the method includes the LSTM-based classification and
regression models. The LSTM model is built on the training
data collected from IMUs and motion capture system.

For training purposes, the raw IMU data were collected
and labeled for Ay with five walking patterns and different
slope angles (i.e., ¢ = 0, 5, 10, and 15 deg). The raw
IMU data consisted of 10 channels (3-axial gyroscope rates,
3-axial linear accelerations, and 4 quaternions) directly from
a single IMU that was manually labeled using ground truth
data from the motion capture system. The IMU data were
scaled to fit between zero and one and reshaped to three-
dimensional inputs (i.e., samples, time steps, features) for the
LSTM models. The reshaped data was split into training and
validation datasets using an 80-20 split. This split was used
to evaluate the LSTM’s performance during development and
ensured its ability to generalize to unseen data within the
training process. For real-time testing and final evaluation, the
model was evaluated on completely separate trials, which were
not included in the training dataset.

The activity classification model consists of a single LSTM
hidden layer with 50 neurons. To mitigate overfitting, the
output of the LSTM layer is passed through a Dropout layer,
which randomly drops 20% of the units during training. The
outputs from the Dropout layer are then fed into a fully
connected layer with 50 neurons using a rectified linear unit
(ReLU) activation function. The ReLU activation function is
selected to handle large-scale data efficiently and address
the vanishing gradient issue to ensure stable training of the
model. Finally, the fully connected hidden layer connects to a
Softmax activation function, which converts class scores into
probabilities to identify the activity with the highest likelihood.

The slope angle ¢ and turning angle i estimation modules
are implemented using a two-layer stacked LSTM network.
The first LSTM layer contains 64 neurons, followed by a
Dropout (20%) layer. The output of the first LSTM is passed
to the second LSTM layer, which is followed by another
Dropout (20%) layer to further mitigate overfitting. The final
output layers of these modules generate regression outputs for
the slope and turning angles. It is important to note that the gait
phase variable s is assumed to increase monotonically within
each stride. This implies that it increases consistently from
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the beginning to the end of each stride. This observation is
crucial for the accurate estimation of s using the LSTM-based
RNN model. To estimate the s values, we develop another
LSTM-based RNN and the lower layer in Fig. 4(b) shows the
corresponding network architecture. The gait phase estimation
model contains a two-stacked LSTM-based networks with one
Dropout (20%) layer between them, while both LSTM hidden
layers have 32 neurons.

For all models, appropriate task-specific loss functions were
applied. The activity classification model employed categori-
cal cross-entropy loss function to accurately predict discrete
activity labels, while the mean squared error (MSE) was used
for regression tasks, including estimating joint angles, slope
angles, turning angles, and gait phases. The model fit was
assessed by examining the loss and accuracy curves during
training. All modules were trained simultaneously in a multi-
task learning framework, with the Adam optimizer employed
to update the weights efficiently. This simultaneous train-
ing allowed the shared LSTM to learn generalized temporal
features, while the task-specific layers refined outputs for
their respective objectives. Extensive ablation studies were
conducted during model development to evaluate the impact
of shared LSTM structures, task-specific output layers, and
loss function choices for the final configuration that balanced
accuracy and robustness effectively.

C. GPDM Model and Full-Body Pose Estimation

The GPDM framework is selected for its ability to represent
human motion in a low-dimensional latent space with physical
interpretability. Unlike deep learning models that often require
additional analysis to interpret learned features, GPDM natu-
rally provides a meaningful manifold reflecting biomechanical
relationships. Additionally, the low inference cost of GPDM
makes it particularly suitable for real-time applications.

The cyclic walking gaits in the high-dimensional joint
angle space are represented in low-dimensional latent space
as learned closed-shape manifolds. We denote the full-body
joint angle as 6 € R and the latent state variable as x € RY,
where d and D (d < D) are the dimensions of the latent space
and the joint angle space, respectively. For each type of the
walking activity a;, i = 1,--- , N, and slope angle ¢, the latent
dynamics for human motion are formulated as

dx;
L= fixn @) + W,

Mi(¢): 4 ds
0i = gi(xi’ﬂ[’ ul) + w()i

where x; = x;(s), 8 = 0;(s), and u; = u;(s) are latent state,
joint angles and IMU measurements at gait phase variable s,
respectively. @; and ; are GP parameters and obtained from
learning process, w, and w,; are zero mean model noises
for the state dynamics and output models, respectively. In
the training phase, the IMU data set U; = {u;}" and joint
angle set Y; = o.M (with M data points) are obtained for
walking on the surface with slope angle ¢. We then estimate
the mappings f;(-) and g;(-) in (1) by identifying parameters
«; and B; through minimizing the posterior probability

(D

Li=—InpX;,a;,BY;,U;, X)), ()
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Fig. 5. Schematic of the learned manifolds M;(¢;) and M,(¢,) that are
obtained at slope angles ¢; and ¢, for activity a;. Manifold M;(¢*) is an
estimated from interpolation from M;(¢;) and M;(¢7).

Zy

where X; = {(#}” is used to initialize X in the
optimization process . (i.e., label of X), and probabAil-
ity p(Xi, @i, BilYi, Ui, Xi) o p(YilX;, B)p(XilU;, @;)p(XilX;)
p(a@)p(B)).

It is known that nearby points in the joint angle space are
likely located close together in the latent space [37]. Therefore,
level curves associated with the same activity share the same
topological shapes in the latent space with small variations.
This dimensionality reduction and latent representation allow
us to efficiently model complex human motions in a com-
pact form, which is crucial for generalizing across different
walking activities and slope angles. Fig. 5 illustrates the above-
discussed learned motion manifold concept. Manifolds M;(¢,)
and M;(¢,) are obtained respectively by training the GPDM
models with datasets at slope angles ¢; and ¢, for a specific
activity (a;). Poses 1 and 2 represent specific postures on
the manifold at the corresponding phase variables s; and s,
respectively. The phase-based interpolation ensures a smooth
transition between manifolds and enables accurate prediction
of kinematic variables. To estimate the manifold M;(¢*) at a
given slope angle ¢*, we use interpolation between M;(¢;)
and M;(¢,), as illustrated in Fig. 5. The slope angle ¢* is
represented as ¢* = y¢p; + (1 — y)¢p,, where 0 <y < 1 is a
weight factor that determines the contribution of ¢; and ¢, to
the interpolation. This formulation ensures the interpolation is
proportional to the proximity of ¢* to the learned manifolds. It
also enables the system to generalize its joint angle estimations
to novel slope angles not explicitly included in the training
data.

The GPDM captures the inherent structure and dynamics
of human motion in a low-dimensional latent space, offering
several key advantages for pose estimation. GPDM reduces the
dimensionality of the joint angle space, making real-time pose
estimation computationally feasible. As a probabilistic model,
GPDM captures the uncertainty in the mapping between the
latent space and the joint angle space, enabling robust pose
estimation in the presence of noise and variability. Comparing
with other techniques in [33], the model in (1) is progressed
with phase variable s, rather than time ¢. The advantage of this
treatment is from the observation that the manifold M;(¢) is a
closed-curve in latent space, effectively capturing the periodic
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Fig. 6. Confusion matrix for classification of five different activities.

nature of human walking motion. This parameterization facil-
itates the estimation of poses at different gait phases. Once
GPDM M;(¢*) is obtained from activity a; with slope angle
¢*, the latent state x;(s) is predicted using variable s and the
learned latent dynamics, and the corresponding joint angles
0:(s) are estimated using the output equation of (1).

V. EXPERIMENTAL RESULTS

In this section, we present the real-time performance eval-
uation results from experiments E4 and E5. We first present
the real-time walking activity detection results. Fig. 6 shows
the confusion matrix for the real-time activity classification
from all subjects and trials. The results confirm that the model
performs exceptionally well in classifying upslope, downslope,
and transverse walking, with accuracies around 96%. The
model occasionally mis-classified the the level walking with
transverse walking while turning, which can be attributed
to the subtle differences in the motion patterns of these
activities. The overall accuracy of the activity classification
model remains high, indicating its effectiveness in identifying
different walking conditions.

Fig. 7 shows a comprehensive analysis of the real-time
prediction performance by comparing the actual gait activity,
slope angle ¢, and turning angle y with the model’s predictions
for a 15-deg sloped walking trial. The top plot demonstrates
the model’s ability to accurately predict gait activities a;, with
only occasional mis-classifications. The middle and bottom
plots illustrate the performance of the slope and turning angles
estimation models, respectively. The slope angle predictions
closely match the actual values, with the relatively large
errors occurring during downslope walking. The turning angle
predictions also exhibit a strong correspondence with the
actual values, capturing the dynamic changes in the subject’s
orientation throughout the trial. Slight deviations are observed
during transitions between different walking activities, indicat-
ing the challenges in estimating turning angles during these
dynamic phases. The zoom-in plot in Fig. 7 provides the
gait phase variable s estimation for five complete gait cycles.
A representative length of a gait cycle is also marked, as
s increases from 0 to 100%. The model’s estimates closely
follow the ground truth values and this demonstrates its ability
to capture the temporal evolution of the gait phase.
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Fig. 7. Real-time gait activity detection, slope angle ¢ estimation, and turning angle ¢ prediction results during one complete 15-deg sloped walking trial.
Predicted values (blue solid lines) versus the actual values (red dashed lines). The results demonstrate the model’s capacity to predict walking activities with
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Fig. 8. Real-time slope angle ¢ and turning angle ¢ prediction results for the proposed method. The x-axis data is normalized with respect to the running time
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and turning angle y predictions, respectively. The solid lines represent the mean error profiles, and the shaded areas indicate the standard deviation bands.

Fig. 8 shows multi-subject results for the slope and turning
angles estimation errors over 30-s experiment trials. The time
is normalized to the trial duration for consistent comparison
across different walking conditions. The left column of the
figure focuses on the prediction errors for trained slope angles
(¢ = 5,10, and 15 deg), while the right column presents the
results for untrained slope angles (¢ = 8 and 12 deg). For
the trained slope angles, the system demonstrates higher accu-
racy throughout the gait cycle. The small standard deviations
indicate consistent performance across different gait phases
and subjects. On the other hand, the results for the untrained
slope angles provide insights into the system’s generalization
capability. Despite not being explicitly trained on slopes of
8 and 12 deg, the prediction algorithm maintains a reliable
performance.

Table I lists the root mean square error (RMSE) results
for slope angle, turning angle, and gait phase estimation
across different walking activities. The proposed algorithm

TABLE 1

RMSES FOR SLOPE ANGLE ¢, TURNING ANGLE ¢, AND GAIT PHASE s
ESTIMATION FROM DIFFERENT WALKING ACTIVITIES

Slope ¢ Slope angle v Turning angle Gait phase s
(deg) estimation (deg) estimation (deg) estimation

5 1.19 £0.10 13.85 £ 3.88 5.44 + 0.86%

10 1.18 £ 0.11 15.24 £+ 2.47 5.94 +0.87%

15 1.59 +0.23 18.23 £4.38 6.42 +1.62%

8 2.454+0.34 16.80 £ 3.08 6.08 +1.71%

12 2.47+0.26 15.68 +£4.31 6.13 +1.24%

and design demonstrate high accuracy, with RMSE values
ranging from 1.19 to 2.47 deg for slope angle estimation,
indicating its ability to precisely estimate the inclination of the
walking floor. Similarly, the RMSE values for turning angle
estimation range from 13.85 to 18.23 deg, showcasing the
system’s capability to accurately capture the changes in body
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orientation during walking gait. The low RMSEs for gait phase
estimation, ranging from 5.44 to 6.42%, highlight the system’s
proficiency in tracking the progression of the gait cycle. These
results underscore the overall effectiveness of the proposed
approach in accurately estimating key gait parameters across
various walking activities.

Fig. 9 shows the comparison of joint angle errors for dif-
ferent slope angles and walking activities. The figure focuses
on the right-limb joint angles, namely, right shoulder, elbow,
wrist, hip, knee and ankle angles. It is clear that the shoulder
and knee joint angle estimates exhibit slightly larger errors
compared to that of the hip joint angle, particularly during
the stance phase (0 < s < 50%). This may be attributed to
the greater range of motion and variability in the shoulder
and knee joints during walking. Despite these variations,
the overall joint angle estimation accuracy remains high and
this demonstrates the system’s ability to capture the dynam-
ics of lower limb movements during gait on uneven floor
surfaces.

Table II lists of the RMSEs of the joint angle estimation for
all activities on sloped floors. Due to the symmetric motion
patterns between the left- and right-limb in walking gait,
the listed RMSEs were computed by combining the corre-
sponding limb joint angles. The results demonstrate varying
levels of accuracy across joints, activities, and inclines. The
elbow and wrist joints demonstrate the lowest RMSE values,
ranging from approximately 1.17 to 4.25 deg, indicating high

estimation accuracy. In contrast, the knee joint consistently
exhibits the highest RMSE values among all joints, peaking
at 17.09 £ 1.10 deg for transverse movement on the 15-deg
floor surface. Hip and shoulder joints show moderate errors,
typically between 3 and 9 deg. The estimation accuracy on
the flat surface is generally higher than that on the sloped
surface, with lower RMSE values across all joints for straight
walking. The data also suggests that estimation accuracy tend
to decrease with increasing slope angle, particularly for lower-
limb joints, likely due to the complex biomechanics involved
in navigating steep inclines.

Table III lists the computational and latency results to show
the real-time performance of the proposed system on the
desktop computer mentioned in Section III-B. The average
processing time per frame is 18.1 ms and the average latency
is 21.6 ms. These results demonstrate the system’s capabil-
ity to process and respond to incoming data quickly. The
breakdown of computation times for different stages of the
pipeline reveals that the pose estimation stage was the most
time-consuming, requiring 9.6 ms per frame. This highlights
the computational complexity associated with estimating full-
body postures. Nevertheless, the overall computation time
remains within acceptable limits, allowing for real-time oper-
ation of the system. These performance metrics underscore
the efficiency and practicality of the proposed approach for
real-time activity detection and pose estimation in industrial
applications.
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TABLE I
RMSES OF 12 JOINT ANGLES FOR ALL SUBJECTS DURING DIFFERENT ACTIVITIES

Slope Angle ¢ (deg) Activity Oshoulder (deg) | Opbow (deg) Owrist (deg) Onip (deg) Oxnee (deg) Oanke (deg)
Up 5.89 + 0.60 2.00 +0.13 2.78 +0.26 8.45 + 0.93 11.08 £ 1.57 4.21 £ 0.50
5 Transverse 7.87 +0.54 2.11 +£0.17 3.49 +0.27 8.99 +0.44 10.84 + 1.77 4.72 +0.63
Down 7.624+0.71 1.92 £+ 0.08 3.21+0.34 9.87 + 0.59 11.14 £1.10 5.08 & 1.02
Up 3.63 + 0.27 1.56 £ 0.23 1.85 +£0.19 6.86 & 0.65 9.63 & 1.47 5.48 +0.28
10 Transverse 4.32+0.33 1.354+0.14 2.83+0.21 5.56 + 0.44 8.39 £ 0.61 6.52 + 0.45
Down 6.68 + 0.56 2.14 +0.22 2.78 +£0.18 8.13 +0.46 13.95 £+ 1.00 7.59 + 1.00
Up 6.94 + 0.49 2.66 + 0.20 3.71+£0.33 6.53 + 0.54 13.11 £ 0.88 6.14 £0.71
15 Transverse 6.58 + 0.54 2.44 4+ 0.19 3.93 +0.32 9.01 +£0.93 17.09 £ 1.10 7.96 £+ 0.82
Down 8.26 + 0.63 2.11 +0.16 4.25+0.25 8.98 +0.81 12.71 £ 1.52 8.04 +0.52
Up 6.54 +0.47 2.244+0.15 3.44 +0.31 8.89 + 0.53 12.45 £ 0.95 3.75+0.97
8 Transverse 7.81 +£0.77 1.91 £0.21 3.77+0.33 8.65 + 0.48 11.67 £ 1.27 4.32 +1.00
Down 8.37 £ 0.87 2.36 £ 0.21 3.06 = 0.19 9.57 £ 0.58 12.87 £ 0.81 5.51 £ 0.51
Up 3.57+0.23 1.46 £0.17 1.92 +0.19 5.76 = 0.65 9.04 + 1.51 5.774+0.33
12 Transverse 4.19 £0.29 1.53 £0.14 2.46 +0.19 6.27 + 0.58 9.16 = 1.01 7.22 +£0.51
Down 6.91 +0.37 2.36 +0.12 2.78 +£0.19 8.96 + 0.25 13.61 £ 1.10 7.25 + 0.48
0 (evel) Straight Walk 3.16 +£0.31 1.174+0.23 2.89 +0.33 5.37 +0.97 10.16 £ 1.58 3.61 +£0.47
Turn & Walk 4.53 + 0.45 1.52 £0.30 3.22 + 0.40 7.03 +1.21 12.31 £1.80 5.33 + 0.68

TABLE III TABLE IV

AVERAGE COMPUTATION AND LATENCY OF THE PROPOSED SYSTEM

Estimation latency (ms)

AN ¢ P s 0
18.1 2.2 2.7 3.1 3.5 9.2

Processing time per frame (ms)

VI. DISCUSSIONS

In this work, we presented a machine learning-based
approach for walking activity classification, slope angle and
human turning angle estimation, and human joint angle predic-
tion using a single IMU. The choice of LSTMs was motivated
by their ability to effectively capture the sequential and tempo-
ral dependencies in gait dataset, while the spatial relationships
of joint positions are handled by the GPDM. The hybrid frame-
work integrates both spatial and temporal analysis for robust
activity recognition and posture estimation. To further validate
the system design, we extended our evaluation to an alternative
data set in [38]. The data set contains sensor data from 3 IMUs
and 3 electrogoniometers, and 13 static-slope and 4 dynamic-
slope trials. The static-slope trials involves walking on fixed
slopes at varying walking speeds and the dynamic-slope trials
involves walking on variable slopes at fixed walking speeds.
By assessing the proposed algorithm’s performance on this
diverse data set, we aim to affirm its adaptability to different
walking conditions and sensor configurations.

We implemented the proposed algorithm using only the
IMU data mounted on the shank, as described in [38], and
conducted performance evaluation. The outputs of the pro-
posed model included slope angle, gait phase, and lower-limb
joint angles (hip, knee, and ankle angles in the sagittal plane).
Table IV lists the comparison results with other related works,
as well as the sensor types. For slope angle estimation, the
proposed algorithm achieved an RMSE of 2.1 deg, which is

PERFORMANCE AND SENSOR COMPARISON BETWEEN THE PROPOSED
METHOD AND OTHER APPROACHES (ENC., FSR AND FP STAND
FOR ENCODER, FORCE SENSITIVE RESISTOR, AND FORCE PLATE,

RESPECTIVELY)
Algorithm | ThS 111 1 gy | 241 | 381 | 139)
RMSE

Slope Angle (deg) 2.1 N/A 1.5 1.25 1.7 1.3
Gait Phase 10.8%| 5.04%| N/A | N/A | N/A N/A
Joint Angle (deg) 8.7 N/A | N/A | NJA | N/A N/A
IMU, | IMU, | IMU, | IMU, | IMU,

Used sensors IMU | Enc., | Enc., | EMG, | GON, | Enc.,
FSR | FSR | GON | FP EMG

comparable to 1.5 deg in [22], 1.25 deg in [24], 1.7 deg in [38],
and 1.3 deg in [39]. This demonstrates the competitiveness of
the proposed approach with the established methods. Despite
of using a single IMU, the gait phase estimation of the
proposed method also exhibits a comparable error (10.8%)
with that in [17] (5.04%). Furthermore, the proposed algorithm
demonstrated significant versatility by estimating three joint
angles (hip, knee, and ankle) with an RMSE of 8.7 deg, a
capability not provided by any of the other aforementioned
works. This highlights the comprehensive gait analysis and
posture estimation potential of the proposed approach.

The above comparative analysis with the other state-of-the-
art methods highlights the competitiveness of the proposed
approach, despite relying on only a single IMU. Notably,
[17] used IMUs on the trunk and thighs, bilateral hip joint
encoders, and heel force sensitive resistors. The work in
[22] employed absolute knee joint encoders, shank and thigh-
cuff 6-axis IMUs, and heel FSRs. Reference [24] unilaterally
instrumented 11 EMG sensors, 3 GONSs, and 4 IMUs. Three
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6-axis IMUs, three two-degree-of-freedom GONSs, and force
plates were used in [38]. Reference [39] fused measurements
from a hip joint encoder with the trunk and thigh IMUs, along
with 8-channel EMG sensors. The authors also compared the
results from the IMU and encoder with EMG measurements.
The proposed system also achieved an average 21.6 ms latency
due to the the multithreaded network design and sensor
simplicity. In comparison, [17] and [40] reported 29 ms and
20 ms of real-time latencies, respectively. While incorporating
additional sensors can potentially further improve the accuracy,
the proposed approach showcases the potential of achieving
comprehensive gait analysis with a streamlined sensor setup
and comparable results with minimal sensor requirements.

The single-IMU design was chosen to ensure simplicity and
practicality for real-time applications. The confusion matrix
analysis in Fig. 6 highlights the model’s high accuracy in
classifying distinct activities such as upslope and downslope
walking. However, misclassifications were observed between
activities with subtle differences in IMU signal patterns, such
as level walking, transverse walking, and turning. These find-
ings suggest that distinguishing activities with overlapping
kinematic features using a single IMU remains a challeng-
ing task. The chattering behavior in the error profiles in
Figs. 8 and 9 does not indicate poor performance but rather
reflects the inherent sensitivity of error calculations. This
behavior might arise from noise in the IMU signals, which
can be amplified when predicting high-dimensional outputs
like joint angles. In such cases, small inaccuracies in IMU
measurements might propagate through the model, resulting
in oscillations in the predicted angles. Despite this, the actual
predicted angles closely align with the ground truth, and the
overall trends and mean errors remain well within acceptable
ranges.

As shown in Fig. 8, in contrast to the slope angle ¢, the
turning angle y predictions exhibit slightly larger variability
throughout the gait cycle. This can be attributed to the complex
nature of turning movements, which involve multiple degrees
of freedom and can be influenced by factors such as walking
speed, stride length, and individual gait characteristics. It is
worth noting that the largest turning angle errors occurred
when the subjects’ facing directions align with the X-axis. The
system might have difficulty accurately capturing the turning
angles during these specific orientations. Despite these chal-
lenges, the overall turning angle prediction accuracy remains
reasonably high. The prediction errors for slope and turning
angles (Fig. 8) demonstrate the model’s consistency across
trained angles. The slightly increased variability in untrained
slopes indicates that while the model exhibits generalization
capability, there exists room to improve its ability to handle
conditions beyond the training scope. Expanding the train-
ing data set to include a broader range of gait conditions
or employing transfer learning techniques could potentially
enhance the performance.

The proposed approach demonstrates superior performance
in joint angle estimation, with the lowest RMSE as 1.17 deg
for the elbow joint. This level of accuracy is particu-
larly impressive when compared to the overall error of
approximately 16 deg for joint angle reconstruction in various
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Fig. 10. Averaged GPDM latent space manifolds of walking on different
slopes. The manifolds represent the GPDM-embedded gait dynamics on level
ground and slopes with ¢ = 5, 10, 15 deg. Each trajectory depicts a continuous
evolution of the gait cycle in the latent space, illustrating the model’s ability
to distinguish gait patterns between different slope inclinations.

non-walking 3D human motions using multiple IMUs that was
reported in [41]. The gait motion considered in this study
is periodic and this may contribute to the higher accuracy
achieved by the proposed method. Nevertheless, the findings
confirm that a single IMU-based approach achieves a level of
accuracy commensurate with multi-IMU systems for human
walking posture estimation. The knee joint exhibited a higher
RMSE compared to upper-limb joints due to its greater
biomechanical complexity, its crucial role in stabilization and
adaptation on sloped terrains, and the increased variability of
knee motion in such conditions, as demonstrated in previous
studies [42]. Soft tissue artifacts and vibrations, which tend
to be pronounced in lower-limb IMU readings, contribute to
noise in knee angle predictions. Given the knee’s large range
of motion, even small relative errors result in high RMSE
values, as reflected in Table II.

One advantage of the used GPDM for posture estimation
lies in its representation in low-dimensional space. We took
the latent space dimension d = 3 and the dimension of the
joint angle space was D = 12 in this study. Fig. 10 shows
the motion trajectory in the latent space for walking activities
at level ground and at slope angles of ¢ = 5,10, 15 deg. The
distinct and non-intersecting surfaces represent the manifold
of each activity, highlighting the model’s ability to distinguish
walking gaits across different slopes. The clear separation
among these manifolds validates the GPDM’s capacity for
interpolating latent states for untrained slopes.

The proposed work has significant real-world implications,
particularly in construction where monitoring workers’ gait
and posture is critical for ensuring work safety and produc-
tivity. The developed system has the potential to be integrated
into existing workflows and technologies, enabling real-time
monitoring and feedback to prevent work-related injuries
and improve ergonomics. By providing accurate and timely
information on workers’ gait, posture, and floor slope angles,
the system can contribute to the development of personalized
assistive robotics, training programs, and safety protocols [20],
[23]. Furthermore, the real-time nature of the system allows for
prompt detection of potential hazards or deviations from safe
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working practices, enabling timely corrective or intervention
actions.

While the proposed approach demonstrates promising out-
comes, there remain several areas for further development and
enhancement. The proposed methodology is primarily suited
for walking gait and might not fully capture the complex-
ities of non-periodic or irregular human movements often
encountered in daily activities in construction. Moreover, the
increased error during transitions between different types of
activities underscores the need for further improvements in
capturing these crucial moments for comprehensive human
motion understanding. Additionally, the joint angle estimation
in this study focused on steady-state walking on level and
sloped floors, excluding many other work activities in con-
struction such as stair walking. Extending the model to include
ascent and descent stair climbing, similar to the work in [14]
and [22], as well as other gaits, such as squatting and kneeling,
could broaden its applicability. Finally, the experiment study in
this work used healthy, young participants who were selected
from university student population. Although inter-subject
variability in walking gait is not significant, it is desirable to
conduct additional experiments and validate the method with
construction workers or professionals.

VII. CONCLUSION

This paper presented a real-time walking gait prediction
and posture estimation method for construction workers on
level and sloped floors. A combination of the LSTM-based
network and the GPDM was mainly used in the estimation
scheme. The walking activities were predicted, the slope
angle and turning angle were estimated, and human pose was
predicted in real time with relatively low average joint angle
errors. The experimental results demonstrated the effectiveness
and efficacy of the walking activity detection and posture
estimation design. A key attractive of the proposed scheme
was the real-time capability with 21 ms latency using a single
IMU attached to the distal portion of the right shank. We
are currently working on improving the real-time performance
and also integrating the design with wearable assistive robotic
devices for construction workers (e.g., [20], [23]).
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