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and Jingang Yi , Senior Member, IEEE

Abstract—Construction workers regularly perform walking
locomotion on level and inclined surfaces. It is critical to detect
walking activity and estimate body postures in real time for
monitoring workers’ safety and health conditions. This article
presents a machine learning-based framework for real-time
activity detection and posture estimation during human walking
on level and sloped terrains using a single wearable inertial
measurement unit (IMU). The framework integrates recurrent
neural networks with Gaussian process dynamical models to
achieve accurate predictions of walking activity, floor slope
angles, and workers’ turning angles and full-body limb joint
angles estimation in real time. The proposed design offers a
streamlined, cost-effective solution with significant advantages
over multi-sensor systems. Extensive experiments of different
walking activities on level and sloped surfaces are conducted
to validate and demonstrate the design. The proposed algorithm
detects gait activities with 96% accuracy, the estimated human
limb joint angle errors are within 11 deg, the predicted turning
angles have an error less than 16 deg and the end-to-end detection
latency is within 21 ms using only one single IMU attached to
the human shank.

Note to Practitioners—Construction workers exert intense
physical effort, and they experience serious safety and health
risk in hazardous, dynamic working environments. As a result,
the construction industry is one of the highest-risk industrial
sectors in most countries. Real-time monitoring of workers’
walking gait plays a critical role in construction safety. Wearable
IMUs are particularly attractive for walking activity recognition
because they are small, inexpensive, and non-intrusive. This
study aims to develop machine learning-enabled, real-time IMU-
based walking activity recognition and full-body posture and
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floor slope angle estimation. The main approach is built on long
short-term memory (LSTM)-based recurrent neural networks
and a manifold learning method to process time-series data
from the IMU to predict human motion. The LSTM model
achieves over 96% accuracy to classify various walking activities
on different floor slopes. Additionally, the design also estimates
human limb joint angles, floor slope angle and the worker’s body
turning angle. A noteworthy aspect of the detection system is the
minimal detection latency of 18 ms, ensuring the reliability and
effectiveness of real-time monitoring and evaluation. This feature
is particularly beneficial for immediate feedback and intervention
systems that help protect workers from work-related injuries.
The simplicity and efficiency of using a single IMU are attractive
for a practical solution for real-time automation applications in
dynamic environments.

Index Terms—Posture estimation, activity detection, construc-
tion workers, construction automation, wearable inertial sensors.

I. INTRODUCTION

C
ONSTRUCTION workers are exposed to serious safety

and health risks in hazardous, dynamic environments.

Walking on level and sloped surfaces is one of the most

common gaits in construction trades (e.g., roofers, scaffold

builders, etc.) It is critical to monitor workers’ activity and

body posture in real time for safety and health conditions

assessment [1]. Visual cameras, inertial measurement units

(IMUs) and motion sensors are among the most widely used

sensing systems for activity tracking, monitoring and evalua-

tion [2]. For example, computer vision techniques are used to

extract features from images or videos for pose estimation or

body landmark detection [3]. Wearable sensor networks, such

as IMUs, enable posture estimation and activity recognition

even without direct visual observation [4]. Wearable IMUs are

particularly attractive for gait detection and posture estimation

in construction because they are small-size, low-cost, and

non-intrusive [5]. In [6], two IMUs were attached to the

back of the helmet and the worker’s back for head, neck

and trunk inclination estimation. In [7], eight IMUs were

attached to the trunk and limbs to detect gaits and motion of

construction workers. In [8], 17 IMUs were used to identify

poses of masonry workers using support vector machines.

Comparison results of various IMU locations on the human

body segments were reported in [9]. Inertial sensor-based

gait classification and detection were also applied to human

kneeling, squatting and foot slip activities (e.g., [10], [11],

[12], [13], [14]). Comparing with vision cameras, IMUs do
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not need any infrastructure support and can perform under

various weather and terrain conditions [5].

Few of the aforementioned studies focus on wearable IMU-

based, real-time applications. In [15], a real-time gait event

detection was presented to capture walking gait events over

level and inclined floors and staircases using a single IMU.

Similar real-time walking gaits detection approaches were also

reported in [16] and [17] for periodic gait movement using

machine learning methods. For gait detection of non-periodic

human movements, the work in [7] and [14] used a set of wear-

able IMUs on human limbs and trunk to monitor construction

workers’ gait activities. In [13], seven wearable IMUs were

used to detect sudden foot slip during walking. Wearable IMU-

based human activity detection was also presented in [18] for

real-time applications. The work in [19] explored using IMUs

for horse limb lameness detection and pose estimation in real

time.

Floor slope information is important for assessing safety and

ergonomics of construction workers. Sloped surfaces directly

influence the postures and movements of construction work-

ers. Prolonged stance and walking gaits on sloped surfaces

can potentially lead to work-related musculoskeletal disor-

ders (WMSDs) or even injuries [20]. Empirical studies have

demonstrated a significant correlation between slope angles

and the incidence of musculoskeletal disorders. Emerging

technologies such as wearable sensing and exoskeletons appear

to be a promising intervention to mitigate the WMSDs in

construction [20], [21]. By harnessing accurate slope esti-

mation, wearable exoskeletons have been demonstrated to

provide dynamic, context-sensitive support, thereby mitigating

the ergonomic risks associated with walking on sloped sur-

faces [22], [23]. Real-time slope angle estimation and human

walking activities detection were conducted with IMUs and

encoders in [24].

Machine learning techniques were used in recent years

for human activity detection and posture estimations [25],

[26]. Deep convolutional neural networks and long short-

term memory networks (CNN-LSTM) architectures were used

to improve human activity recognition [27], [28]. Diffusion

models were also used in 3D human pose estimation from

single 2D observations [29], [30]. Hybrid and ensemble

learning approaches have significantly improved performance

of gait and activity recognition systems. Integrated CNN

and LSTM architectures effectively capture both spatial and

temporal dynamics, enabling robust classification of complex

motion patterns [31]. Furthermore, compressed deep neural

networks have been employed for lightweight implementations

tailored for real-time rehabilitation robotics applications [32].

However, few of the above-mentioned machine learning-based

methods focus on real-time applications.

In this paper, we present a real-time walking activity detec-

tion and pose estimation scheme on level and sloped floor

surfaces using only a single IMU. We take advantage of the

periodical motion property of walking gaits to predict full

body motions through a low dimensional representation. An

LSTM approach is used to detect the walking gaits and predict

the floor slope angle and human turning angle. A learned

motion manifold is then constructed using the walking activity

information. The pose estimation is built on the learned motion

walking manifold and the IMU measurements. We use the

Gaussian process dynamic model (GPDM) to construct the

human motion manifold [33]. Similar to [34], due to the

periodic feature in human walking, the learned GPDM is

represented as a closed-curve (manifold) in latent space and

a phase variable is used to parameterize the GPDM model to

predict the joint angles in real time. Compared with traditional

kinematic-based models in gait estimation, GPDM shows

improved accuracy and fast computation.

The proposed integrated activity detection and posture

estimation provides a holistic assessment of worker safety

and ergonomics in demanding construction environments.

This integration design also simplifies the system architec-

ture, reduces sensor requirements, and improves real-time

response, making it highly practical for real-world applications

in construction. Extensive human experiments are conducted

on level and sloped surfaces that represent roof workers in

construction. The experimental results demonstrate the efficacy

and effectiveness of the design. By using only one single

IMU, the synchronization and sensing latency between sensors

are minimized and this reduces the design complexity. This

property is particularly attractive for monitoring worker’s

activity and posture in real time since that it is inconve-

nient to wear a complex monitoring system in construction

work site.

In contrast to prior works that require multiple sensor

inputs (e.g., IMUs on various body parts, goniometers (GONs),

electromyography (EMG), etc.), the proposed framework uti-

lizes a single shank-mounted IMU. Despite its simplicity,

the main contribution of this work also lies in the novel

integration of LSTM and GPDM for real-time walking activity

detection and limb posture estimation as well as floor slope and

turning angles prediction. This approach significantly advances

real-time worker gait monitoring in physically demanding

environments such as construction sites, reducing system com-

plexities while achieving high classification accuracy across

diverse floor slopes. The use of GPDM for real-time limb

joint angle prediction provides a potential enabling tool

for integrated wearable robotic systems to mitigate the risk

of WMSDs in construction. Compared with the previous

conference presentation [35], the current work presents a

comprehensive study, introducing new elements such as the

estimation of human turning angles. The experiments are

extensive, incorporating an analysis of the algorithm’s perfor-

mance on interpolated slopes and its adaptability to alternative

datasets. Furthermore, the presented work offers an in-depth

discussion and comparison of the algorithms with other

reported results. These results highlight the significance of the

proposed framework for enhancing safety and ergonomics in

construction, which are not presented in [35].

The remainder of the paper is organized as follows. We

present the problem statement in Section II. Section III

discusses the experiment configuration and data collection.

Section IV presents the walking activity detection and posture

estimation algorithms. Experimental results are presented in

Section V, followed by discussions in Section VI. We finally

summarize the conclusion in Section VII.
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Fig. 1. Laboratory experimental setup mimicking roofer trade in construction, including different walking setup on variable sloped wooden structure.
(a) Experimental setup for training data collection. (b) Real-time walking test on different slope angles and turning radius. (c) Experimental test for walking
on the sloped surfaces with angles that were not among the training data.

Fig. 2. (a) Human body joint angles in the sigittal plane with a single wearable
IMU and optical markers in experiments. (b) Illustrative schematic of the
human turning angle ψ on the level and sloped surfaces.

II. PROBLEM STATEMENT

We consider human walking gaits on level and sloped floor

surfaces as shown in Fig. 1. The sloped floor surface is

captured by the slope angle, denoted by φ. We denote the

walking activity pattern set AN = {a1, a2, · · · , aN}, where ai,

i = 1, . . . ,N, represents the ith walking pattern and N is the

total number of walking patterns. The walking activity pattern

refers to continuous walking gaits with subjects’ self-selected

speeds on level or sloped floors. Turning is not considered as

a separate walking activity pattern in this study and instead,

turning angle is part of the kinematics variables that will be

estimated in real time.

As shown in Fig. 2(a), the human walker wore a single IMU

at the shank location. We chose this IMU location because the

previous study in [9] confirmed that it gave high sensitivity

for detecting walking gaits. The joint angles of the human

lower- and upper-limb in the sagittal plane are considered

and illustrated as shown in Fig. 2(a). A total of 12 joint

angles from lower- and upper-limbs are defined and introduced

in this study, namely, left- and right-side shoulder, elbow,

wrist angles, denoted by θu = {θ
i
shoulder, θ

i
elbow, θ

i
wrist}, and hip,

knee, and ankle angles, denoted by θl = {θ
i
hip, θ

i
knee, θ

i
ankle}, in

the sagittal plane, i = l, r for left- and right-limb. Fig. 2(b)

illustrates the schematic of the human turning angle, denoted

by ψ, which is defined as the angle between the walker’s facing

direction and the X-axis of the global frame. In experiments,

the subjects were asked to start at the same location with

a same facing direction to ensure left/right symmetry and

repeatability. For simplicity, we define the X-axis direction

as the initial facing direction such that the turning angle is

around zero at the beginning of each trial.

In walking gait, one stride period is defined as the time

duration between consecutive heel strikes (i.e., touchdowns)

of the same foot. We introduce the phase variable, denoted by

s, to represent the normalized gait progression. The values of

the phase variable s at the current and next foot heel strikes are

s = 0 and 100%, respectively. The walking gait progression is

represented as a continuous function of s that smoothly varies

from 0 to 100% over the course of a single stride. With the

above configuration, we consider the following problem.

Problem Statement: For given walking activity set AN , the

goal of this study is to detect the walking activity ak, 1 ≤ k ≤

N, and estimate the upper- and lower-limb joint angles (θu and

θl), turning angle ψ, slope angle φ and phase variable s in real

time by only using a single wearable IMU.

In this study, we mainly focus on five types of human

walking activity patterns, that is, N = 5. These activities

include: straight walking on the level ground (a1), walk-

ing up on the slope (a2), body turning (include turning in

place and turning while walking) (a3), walking transverse

the slope (a4) and walking down the slope (a5); see illus-

trative examples in Fig. 1. We chose these walking activities

primarily because they are common in construction and the

methodologies developed here are extendable to other walking

activities.

III. EXPERIMENTS AND DATA COLLECTION

In this section, we first present the experimental configura-

tions and protocols and then discuss data collection.

A. Experimental Setup and Protocols

Fig. 1 shows the overview of the experimental setups. A

laboratory setup was created to mimick a construction work

environment for human subjects walking on the level and

sloped surfaces. A wooden slope structure with glued anti-

skid tapes was designed as a roof structure and the slope

angle can be adjusted up to 40 deg. In training experiments,

a level floor surface (i.e., φ = 0 deg) and a set of slope angles

(i.e., φ = 5, 10, 15 deg) were selected to represent common

roof slopes encountered in construction. These angles span a
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range of biomechanical challenges, from mild to steep inclines,

and therefore, experiments would be used to comprehensively

evaluate the system’s performance. Intermediate angles (i.e.,

φ = 8 and 12 deg) were included in experiments to test the

model’s generalization capability.

To measure the human kinematics and motion, a small-size

IMU (from LP-RESEARCH Inc.) was attached to the right

shank of the subject; see Fig. 2(a). The Bluetooth IMU mea-

surements include 4 quaternions readings for attitude angles,

3-axial gyroscope rates and 3-axial linear accelerations. The

gyroscope offers a measurement range of up to ±2000 deg/s

with a 16-bit resolution, while the accelerometer supports

measurements of up to ±16 g, also with a 16-bit resolution.

The orientation capabilities include roll (±180 deg), pitch

(±90 deg), and yaw (±180 deg), with a resolution of finer

than 0.01 deg and an accuracy of less than 0.5 deg in static

conditions and 2 deg root mean square (RMS) in dynamic

conditions. The IMU was carefully placed on the same location

of the right shank segment (around 20 cm above the ankle

joint) before each trial and the orientation was the same across

subjects. The IMU captured the dynamic features of turning

motions, which exhibited consistent temporal patterns across

both left and right turns. By taking advantages of these shared

patterns, the framework was able to robustly classify turning

motions as a single class.

To record reference motion data, a motion capture system

(8 Vantage cameras, Vicon Motion Systems Ltd.) was used

to collect marker positions. The Vicon full-body plugin gait

marker set was used and the optical markers were placed

on subjects’ lower and upper limbs, trunk and head to rep-

resent full-body motion. The ground truths for joint angles

(θu and θl), turning angle ψ, and gait phase s were calcu-

lated using custom algorithms in MATLAB software (Version

R2020a, MathWorks Inc.) and the optical marker positions.

The slope angles were carefully measured and recorded before

each experimental trial. These ground truth data were used

for model training, validation, and real-time performance

evaluation.

Eight healthy subjects (six males and two females, age:

30±3 years, weight: 73.3±6.5 kg, height: 172.0±6.7 cm) were

recruited for experiments. The subjects were capable of walk-

ing on level and sloped surfaces and were reported without

any orthopedic disease history. The subjects were instructed

to use their normal gaits and self-selected walking speeds. An

informed consent form was signed by all the subjects, and the

Institutional Review Board at Rutgers University approved the

testing protocols.

The experimental design was divided into two main phases:

Training data collection and real-time validation and evalu-

ation. Each phase consisted of multiple sessions that were

designed to capture a variety of walking patterns under differ-

ent conditions. The training data collection phase comprised

three sessions, focusing on walking activity patterns on level

floor and slopes with varying angles.

• Session E1 (Level ground walking): Subjects were

instructed to walk straight back and forth on level ground

for four minutes. This session aimed to establish a base-

line for walking patterns on level floors.

• Session E2 (Turning while walking): Participants fol-

lowed the marked trajectories with small and large turning

radii on level ground, making turns while walking for

four minutes. This session evaluated the subjects’ turning

behavior on flat surfaces.

• Session E3 (Slope walking): Three slope angles (φ =

5, 10, 15 deg) were tested. As shown in Fig. 1(a), for

each slope, subjects started on the slope, walked up the

slope, made a sharp turn, traversed across the slope,

made another sharp turn, walked down the slope, turned,

and traversed back to the starting point in a clockwise

direction. This sequence was repeated for four minutes,

followed by trials in the reverse (counter-clockwise)

direction for the same amount of time to ensure left and

right turns are equally represented, with a two-minute

break between trials. This session assessed walking

patterns on slopes, incorporating turns and transverse

movements.

The real-time validation and evaluation experiments con-

sisted of two sessions, aiming at testing the robustness of

the algorithms and evaluating the algorithm’s performance on

untrained slopes.

• Session E4 (Slope walking with marked trajectory): Sub-

jects followed a marked trajectory on the floor and

slope in a clockwise direction for four minutes for each

slope angle set, and then reversed (counter-clockwise) the

walking direction for another trial. Two turning radii were

considered, as shown in Fig. 1(b).

• Session E5 (Untrained slope angles): This session aimed

to evaluate the algorithm’s adaptability to new conditions

by testing its performance on slopes not encountered

during the training phase. The experimental platform

was adjusted to inclines of 8 and 12 deg, i.e., φ =

8, 12 deg. Subjects replicated the tasks from Session

E4 under these two slope angles. To demonstrate the

setup for assessing continuous performance on untrained

slopes, Fig. 1(c) illustrates the experimental platform.

Participants first ascended an 8-deg slope, turned 90 deg,

and then descended a 12-deg slope, followed by a trial

in the reverse direction. This session aimed to test and

evaluate the algorithm with slopes and turning angles not

encountered during the training phase in real time.

B. Data Processing

Fig. 3 shows the system design architecture for the real-

time activity detection and posture estimation. During data

collection, motion data were collected at a sampling frequency

of 100 Hz and processed using Vicon Nexus software for

accurate ground truth validation. IMU measurements were

wirelessly transmitted to the Raspberry Pi at a frequency

of 100 Hz via Bluetooth. The Raspberry Pi received and

synchronized data from up to seven IMUs. The processed IMU

data was then transmitted to a portable embedded computer

(Intel NUC7i7DNK, Intel Corp.) via a serial communication

connection. A Python multiprocessing pipeline synchronized

both the IMU and motion data during offline collection and

real-time testing. The IMU and motion capture data were
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Fig. 3. Data streaming overview: During data collection, we collected and synchronized the motion data with IMU signals on a portable Intel NUC computer.
The training data were processed and input to the neural networks to build the models on a PC. Finally, The system runs in real-time with the training models
on the same PC and output estimation results. The motion capture data serves as ground truth during model training and real-time testing.

Fig. 4. (a) Flowchart of the human walk gait detection process, illustrating the stages from activity detection to slope and turning angle estimation, gait phase
detection, and pose estimation. (b) Detailed architecture of the LSTM-based RNN neural network for predicting walking activities, slope angle, gait phase,
and turning angle.

further pre-processed using customized MATLAB scripts on

a desktop computer (Dell XPS-8953, Dell Inc.), which was

equipped with an Intel i7-8700 CPU, Nvidia 1030 GPU,

Samsung 860 EVO SSD, and 16 GB RAM. Walking activities

were labeled according to distinct patterns. Stride information,

including heel strike time, stride length, and walking speeds,

was extracted from the motion capture data.

The beginning and end of each stride were defined using the

location of heel markers. IMU data were concatenated for the

same activities, and the corresponding sections were extracted

based on the motion capture data. For training purposes,

IMU data were reshaped, and 60 consecutive frames were

combined into a single frame of data. The IMU sequence

data were normalized using the mean and standard deviation

of the dataset, which was then used as input for the model.

In the testing phase, 59 past frames and one current frame

were combined to form the input to the activity detection

and posture estimation model. The same mean and standard

deviation were used to standardize and normalize the real-time

IMU data, i.e., the IMU sequence was subtracted by the mean

and divided by the standard deviation of the training data. Each

experimental trial lasted approximately 5 minutes. The dataset

was evenly distributed among different gait activities to ensure

balanced model training and evaluation. For experiments E1

to E3, a total of 3, 200, 000 data points were collected and an

80-20 split of the dataset was used for LSTM-GPDM training

and model development.

The pre-trained models and neural network parameters were

stored on the same desktop computer, which was also used for

real-time testing. For real-time testing and evaluation purpose,

the IMU sequence data were streamed into the learned model,

enabling the detection of the subject’s walking activities and

estimation of human posture. In a real-time application, foot

strikes were detected by inspecting the sudden drop in the gait

phase variable and the linear acceleration data. When each

walking cycle ended and a foot strike was detected, the gait

phase variable s was reset to the beginning of the stride (i.e.,

s = 0). For real-time performance evaluation experiments E4

and E5, a total of about 800, 000 data points were used and

they were not for any model training purposes.

IV. LEARNING-BASED GAIT DETECTION AND

POSE ESTIMATION

A. Design Overview

Fig. 4(a) illustrates the design flowchart of the walking

activity detection and pose estimation scheme. The design

contains five modules: walking activity ak detection, slope

angle φ and turning angle ψ estimation, gait phase s and full-

body posture (joint angles) estimations for any given time. An

LSTM-based classification and regression model is used to

identify the walking activity ak ∈ AN (for N = 5 in the study).

The estimated slope angle φ and the turning angle ψ are also

obtained for identified activity by using the LSTMs. The gait

phase variable s ∈ [0, 1] are estimated using the LSTM-based

RNN. Finally, the full-body posture (i.e., joint angles θu and

θl) estimation scheme is obtained using the GPDM model. In

the following, we describe each of these modules in details.

B. RNN-Based Activity Detection and Gait Estimation

Fig. 4(b) shows the schematic of the four-layer of the

LSTM-based design. The module detects the walking activity

ak for N-activity classification (i.e., selection of ak ∈ AN),

slope angle φ, gait phase s, and turning angle ψ estimation. The
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LSTM is an RNN architecture to learn sequential information

using memory cells that stores and outputs information to

capture the temporal relationships. Using a single IMU for

gait detection presents several challenges, primarily due to

the limited scope of measurements that it provides. The

LSTM network effectively compensates for this limitation by

exploiting the temporal correlations in the IMU data.

LSTM networks are chosen for their ability to model long-

term temporal dependencies in sequential data, such as gait

cycles and transitions. Their internal gating mechanisms allow

the model to retain information over time and to capture com-

plex temporal patterns and dependencies in human gait data.

By using LSTM networks, we extract meaningful patterns

from the IMU data, leading to robust and reliable estimations

of gait and posture. As shown in Fig. 4(b), the information

update is through various gates and the relationships among

the input gate, forget gate and output gates [36]. The first stage

of the method includes the LSTM-based classification and

regression models. The LSTM model is built on the training

data collected from IMUs and motion capture system.

For training purposes, the raw IMU data were collected

and labeled for AN with five walking patterns and different

slope angles (i.e., φ = 0, 5, 10, and 15 deg). The raw

IMU data consisted of 10 channels (3-axial gyroscope rates,

3-axial linear accelerations, and 4 quaternions) directly from

a single IMU that was manually labeled using ground truth

data from the motion capture system. The IMU data were

scaled to fit between zero and one and reshaped to three-

dimensional inputs (i.e., samples, time steps, features) for the

LSTM models. The reshaped data was split into training and

validation datasets using an 80-20 split. This split was used

to evaluate the LSTM’s performance during development and

ensured its ability to generalize to unseen data within the

training process. For real-time testing and final evaluation, the

model was evaluated on completely separate trials, which were

not included in the training dataset.

The activity classification model consists of a single LSTM

hidden layer with 50 neurons. To mitigate overfitting, the

output of the LSTM layer is passed through a Dropout layer,

which randomly drops 20% of the units during training. The

outputs from the Dropout layer are then fed into a fully

connected layer with 50 neurons using a rectified linear unit

(ReLU) activation function. The ReLU activation function is

selected to handle large-scale data efficiently and address

the vanishing gradient issue to ensure stable training of the

model. Finally, the fully connected hidden layer connects to a

Softmax activation function, which converts class scores into

probabilities to identify the activity with the highest likelihood.

The slope angle φ and turning angle ψ estimation modules

are implemented using a two-layer stacked LSTM network.

The first LSTM layer contains 64 neurons, followed by a

Dropout (20%) layer. The output of the first LSTM is passed

to the second LSTM layer, which is followed by another

Dropout (20%) layer to further mitigate overfitting. The final

output layers of these modules generate regression outputs for

the slope and turning angles. It is important to note that the gait

phase variable s is assumed to increase monotonically within

each stride. This implies that it increases consistently from

the beginning to the end of each stride. This observation is

crucial for the accurate estimation of s using the LSTM-based

RNN model. To estimate the s values, we develop another

LSTM-based RNN and the lower layer in Fig. 4(b) shows the

corresponding network architecture. The gait phase estimation

model contains a two-stacked LSTM-based networks with one

Dropout (20%) layer between them, while both LSTM hidden

layers have 32 neurons.

For all models, appropriate task-specific loss functions were

applied. The activity classification model employed categori-

cal cross-entropy loss function to accurately predict discrete

activity labels, while the mean squared error (MSE) was used

for regression tasks, including estimating joint angles, slope

angles, turning angles, and gait phases. The model fit was

assessed by examining the loss and accuracy curves during

training. All modules were trained simultaneously in a multi-

task learning framework, with the Adam optimizer employed

to update the weights efficiently. This simultaneous train-

ing allowed the shared LSTM to learn generalized temporal

features, while the task-specific layers refined outputs for

their respective objectives. Extensive ablation studies were

conducted during model development to evaluate the impact

of shared LSTM structures, task-specific output layers, and

loss function choices for the final configuration that balanced

accuracy and robustness effectively.

C. GPDM Model and Full-Body Pose Estimation

The GPDM framework is selected for its ability to represent

human motion in a low-dimensional latent space with physical

interpretability. Unlike deep learning models that often require

additional analysis to interpret learned features, GPDM natu-

rally provides a meaningful manifold reflecting biomechanical

relationships. Additionally, the low inference cost of GPDM

makes it particularly suitable for real-time applications.

The cyclic walking gaits in the high-dimensional joint

angle space are represented in low-dimensional latent space

as learned closed-shape manifolds. We denote the full-body

joint angle as θ ∈ RD and the latent state variable as x ∈ Rd,

where d and D (d � D) are the dimensions of the latent space

and the joint angle space, respectively. For each type of the

walking activity ai, i = 1, · · · ,N, and slope angle φ, the latent

dynamics for human motion are formulated as

Mi(φ) :

8

<

:

dxi

ds
= f i(xi,αi,ui) + wpi,

θi = gi(xi,βi,ui) + woi

(1)

where xi = xi(s), θ = θi(s), and ui = ui(s) are latent state,

joint angles and IMU measurements at gait phase variable s,

respectively. αi and βi are GP parameters and obtained from

learning process, wpi and woi are zero mean model noises

for the state dynamics and output models, respectively. In

the training phase, the IMU data set Ui = {ui}
M and joint

angle set Yi = {θi}
M (with M data points) are obtained for

walking on the surface with slope angle φ. We then estimate

the mappings f i(·) and gi(·) in (1) by identifying parameters

αi and βi through minimizing the posterior probability

Li = − ln p(Xi,αi,βi|Yi,Ui, X̂i), (2)
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Fig. 5. Schematic of the learned manifolds Mi(φ1) and Mi(φ2) that are
obtained at slope angles φ1 and φ2 for activity ai. Manifold Mi(φ

∗) is an
estimated from interpolation from Mi(φ1) and Mi(φ2).

where X̂i = {x̂i}
M is used to initialize X in the

optimization process (i.e., label of X), and probabil-

ity p(Xi,αi,βi|Yi,Ui, X̂i) ∝ p(Yi|Xi,βi)p(Xi|Ui,αi)p(Xi|X̂i)

p(αi)p(βi).

It is known that nearby points in the joint angle space are

likely located close together in the latent space [37]. Therefore,

level curves associated with the same activity share the same

topological shapes in the latent space with small variations.

This dimensionality reduction and latent representation allow

us to efficiently model complex human motions in a com-

pact form, which is crucial for generalizing across different

walking activities and slope angles. Fig. 5 illustrates the above-

discussed learned motion manifold concept. Manifolds Mi(φ1)

and Mi(φ2) are obtained respectively by training the GPDM

models with datasets at slope angles φ1 and φ2 for a specific

activity (ai). Poses 1 and 2 represent specific postures on

the manifold at the corresponding phase variables s1 and s2,

respectively. The phase-based interpolation ensures a smooth

transition between manifolds and enables accurate prediction

of kinematic variables. To estimate the manifold Mi(φ
∗) at a

given slope angle φ∗, we use interpolation between Mi(φ1)

and Mi(φ2), as illustrated in Fig. 5. The slope angle φ∗ is

represented as φ∗ = γφ1 + (1 − γ)φ2, where 0 ≤ γ ≤ 1 is a

weight factor that determines the contribution of φ1 and φ2 to

the interpolation. This formulation ensures the interpolation is

proportional to the proximity of φ∗ to the learned manifolds. It

also enables the system to generalize its joint angle estimations

to novel slope angles not explicitly included in the training

data.

The GPDM captures the inherent structure and dynamics

of human motion in a low-dimensional latent space, offering

several key advantages for pose estimation. GPDM reduces the

dimensionality of the joint angle space, making real-time pose

estimation computationally feasible. As a probabilistic model,

GPDM captures the uncertainty in the mapping between the

latent space and the joint angle space, enabling robust pose

estimation in the presence of noise and variability. Comparing

with other techniques in [33], the model in (1) is progressed

with phase variable s, rather than time t. The advantage of this

treatment is from the observation that the manifold Mi(φ) is a

closed-curve in latent space, effectively capturing the periodic

Fig. 6. Confusion matrix for classification of five different activities.

nature of human walking motion. This parameterization facil-

itates the estimation of poses at different gait phases. Once

GPDM Mi(φ
∗) is obtained from activity ai with slope angle

φ∗, the latent state xi(s) is predicted using variable s and the

learned latent dynamics, and the corresponding joint angles

θi(s) are estimated using the output equation of (1).

V. EXPERIMENTAL RESULTS

In this section, we present the real-time performance eval-

uation results from experiments E4 and E5. We first present

the real-time walking activity detection results. Fig. 6 shows

the confusion matrix for the real-time activity classification

from all subjects and trials. The results confirm that the model

performs exceptionally well in classifying upslope, downslope,

and transverse walking, with accuracies around 96%. The

model occasionally mis-classified the the level walking with

transverse walking while turning, which can be attributed

to the subtle differences in the motion patterns of these

activities. The overall accuracy of the activity classification

model remains high, indicating its effectiveness in identifying

different walking conditions.

Fig. 7 shows a comprehensive analysis of the real-time

prediction performance by comparing the actual gait activity,

slope angle φ, and turning angle ψ with the model’s predictions

for a 15-deg sloped walking trial. The top plot demonstrates

the model’s ability to accurately predict gait activities ai, with

only occasional mis-classifications. The middle and bottom

plots illustrate the performance of the slope and turning angles

estimation models, respectively. The slope angle predictions

closely match the actual values, with the relatively large

errors occurring during downslope walking. The turning angle

predictions also exhibit a strong correspondence with the

actual values, capturing the dynamic changes in the subject’s

orientation throughout the trial. Slight deviations are observed

during transitions between different walking activities, indicat-

ing the challenges in estimating turning angles during these

dynamic phases. The zoom-in plot in Fig. 7 provides the

gait phase variable s estimation for five complete gait cycles.

A representative length of a gait cycle is also marked, as

s increases from 0 to 100%. The model’s estimates closely

follow the ground truth values and this demonstrates its ability

to capture the temporal evolution of the gait phase.
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Fig. 7. Real-time gait activity detection, slope angle φ estimation, and turning angle ψ prediction results during one complete 15-deg sloped walking trial.
Predicted values (blue solid lines) versus the actual values (red dashed lines). The results demonstrate the model’s capacity to predict walking activities with
infrequent misclassifications.

Fig. 8. Real-time slope angle φ and turning angle ψ prediction results for the proposed method. The x-axis data is normalized with respect to the running time
of each trial. The left column shows the prediction errors for trained slope angles φ = 5, 10, 15 deg, while the right column presents the results for untrained
slope angles, i.e., φ = 8 and 12 deg. The prediction errors are normalized to the trial time length. The top and bottom rows correspond to the slope angle φ
and turning angle ψ predictions, respectively. The solid lines represent the mean error profiles, and the shaded areas indicate the standard deviation bands.

Fig. 8 shows multi-subject results for the slope and turning

angles estimation errors over 30-s experiment trials. The time

is normalized to the trial duration for consistent comparison

across different walking conditions. The left column of the

figure focuses on the prediction errors for trained slope angles

(φ = 5, 10, and 15 deg), while the right column presents the

results for untrained slope angles (φ = 8 and 12 deg). For

the trained slope angles, the system demonstrates higher accu-

racy throughout the gait cycle. The small standard deviations

indicate consistent performance across different gait phases

and subjects. On the other hand, the results for the untrained

slope angles provide insights into the system’s generalization

capability. Despite not being explicitly trained on slopes of

8 and 12 deg, the prediction algorithm maintains a reliable

performance.

Table I lists the root mean square error (RMSE) results

for slope angle, turning angle, and gait phase estimation

across different walking activities. The proposed algorithm

TABLE I

RMSES FOR SLOPE ANGLE φ, TURNING ANGLE ψ, AND GAIT PHASE s

ESTIMATION FROM DIFFERENT WALKING ACTIVITIES

and design demonstrate high accuracy, with RMSE values

ranging from 1.19 to 2.47 deg for slope angle estimation,

indicating its ability to precisely estimate the inclination of the

walking floor. Similarly, the RMSE values for turning angle

estimation range from 13.85 to 18.23 deg, showcasing the

system’s capability to accurately capture the changes in body

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on June 08,2025 at 08:46:10 UTC from IEEE Xplore.  Restrictions apply. 



16152 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Fig. 9. Comparison of the joint angle error profiles for variable slope angles (φ = 5, 10, 15, 8, 12 deg) during different activities A5 among all subjects. The
plot show the error profiles (i.e., mean ± std) in the order of right shoulder (eshoulder), elbow (eelbow), wrist (ewrist), hip (ehip), knee (eknee), and ankle (eankle).
The thick curves are the mean error profiles, while the shaded ares show the one standard deviation around the mean values of all subjects.

orientation during walking gait. The low RMSEs for gait phase

estimation, ranging from 5.44 to 6.42%, highlight the system’s

proficiency in tracking the progression of the gait cycle. These

results underscore the overall effectiveness of the proposed

approach in accurately estimating key gait parameters across

various walking activities.

Fig. 9 shows the comparison of joint angle errors for dif-

ferent slope angles and walking activities. The figure focuses

on the right-limb joint angles, namely, right shoulder, elbow,

wrist, hip, knee and ankle angles. It is clear that the shoulder

and knee joint angle estimates exhibit slightly larger errors

compared to that of the hip joint angle, particularly during

the stance phase (0 ≤ s ≤ 50%). This may be attributed to

the greater range of motion and variability in the shoulder

and knee joints during walking. Despite these variations,

the overall joint angle estimation accuracy remains high and

this demonstrates the system’s ability to capture the dynam-

ics of lower limb movements during gait on uneven floor

surfaces.

Table II lists of the RMSEs of the joint angle estimation for

all activities on sloped floors. Due to the symmetric motion

patterns between the left- and right-limb in walking gait,

the listed RMSEs were computed by combining the corre-

sponding limb joint angles. The results demonstrate varying

levels of accuracy across joints, activities, and inclines. The

elbow and wrist joints demonstrate the lowest RMSE values,

ranging from approximately 1.17 to 4.25 deg, indicating high

estimation accuracy. In contrast, the knee joint consistently

exhibits the highest RMSE values among all joints, peaking

at 17.09 ± 1.10 deg for transverse movement on the 15-deg

floor surface. Hip and shoulder joints show moderate errors,

typically between 3 and 9 deg. The estimation accuracy on

the flat surface is generally higher than that on the sloped

surface, with lower RMSE values across all joints for straight

walking. The data also suggests that estimation accuracy tend

to decrease with increasing slope angle, particularly for lower-

limb joints, likely due to the complex biomechanics involved

in navigating steep inclines.

Table III lists the computational and latency results to show

the real-time performance of the proposed system on the

desktop computer mentioned in Section III-B. The average

processing time per frame is 18.1 ms and the average latency

is 21.6 ms. These results demonstrate the system’s capabil-

ity to process and respond to incoming data quickly. The

breakdown of computation times for different stages of the

pipeline reveals that the pose estimation stage was the most

time-consuming, requiring 9.6 ms per frame. This highlights

the computational complexity associated with estimating full-

body postures. Nevertheless, the overall computation time

remains within acceptable limits, allowing for real-time oper-

ation of the system. These performance metrics underscore

the efficiency and practicality of the proposed approach for

real-time activity detection and pose estimation in industrial

applications.
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TABLE II

RMSES OF 12 JOINT ANGLES FOR ALL SUBJECTS DURING DIFFERENT ACTIVITIES

TABLE III

AVERAGE COMPUTATION AND LATENCY OF THE PROPOSED SYSTEM

VI. DISCUSSIONS

In this work, we presented a machine learning-based

approach for walking activity classification, slope angle and

human turning angle estimation, and human joint angle predic-

tion using a single IMU. The choice of LSTMs was motivated

by their ability to effectively capture the sequential and tempo-

ral dependencies in gait dataset, while the spatial relationships

of joint positions are handled by the GPDM. The hybrid frame-

work integrates both spatial and temporal analysis for robust

activity recognition and posture estimation. To further validate

the system design, we extended our evaluation to an alternative

data set in [38]. The data set contains sensor data from 3 IMUs

and 3 electrogoniometers, and 13 static-slope and 4 dynamic-

slope trials. The static-slope trials involves walking on fixed

slopes at varying walking speeds and the dynamic-slope trials

involves walking on variable slopes at fixed walking speeds.

By assessing the proposed algorithm’s performance on this

diverse data set, we aim to affirm its adaptability to different

walking conditions and sensor configurations.

We implemented the proposed algorithm using only the

IMU data mounted on the shank, as described in [38], and

conducted performance evaluation. The outputs of the pro-

posed model included slope angle, gait phase, and lower-limb

joint angles (hip, knee, and ankle angles in the sagittal plane).

Table IV lists the comparison results with other related works,

as well as the sensor types. For slope angle estimation, the

proposed algorithm achieved an RMSE of 2.1 deg, which is

TABLE IV

PERFORMANCE AND SENSOR COMPARISON BETWEEN THE PROPOSED

METHOD AND OTHER APPROACHES (ENC., FSR AND FP STAND

FOR ENCODER, FORCE SENSITIVE RESISTOR, AND FORCE PLATE,

RESPECTIVELY)

comparable to 1.5 deg in [22], 1.25 deg in [24], 1.7 deg in [38],

and 1.3 deg in [39]. This demonstrates the competitiveness of

the proposed approach with the established methods. Despite

of using a single IMU, the gait phase estimation of the

proposed method also exhibits a comparable error (10.8%)

with that in [17] (5.04%). Furthermore, the proposed algorithm

demonstrated significant versatility by estimating three joint

angles (hip, knee, and ankle) with an RMSE of 8.7 deg, a

capability not provided by any of the other aforementioned

works. This highlights the comprehensive gait analysis and

posture estimation potential of the proposed approach.

The above comparative analysis with the other state-of-the-

art methods highlights the competitiveness of the proposed

approach, despite relying on only a single IMU. Notably,

[17] used IMUs on the trunk and thighs, bilateral hip joint

encoders, and heel force sensitive resistors. The work in

[22] employed absolute knee joint encoders, shank and thigh-

cuff 6-axis IMUs, and heel FSRs. Reference [24] unilaterally

instrumented 11 EMG sensors, 3 GONs, and 4 IMUs. Three
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6-axis IMUs, three two-degree-of-freedom GONs, and force

plates were used in [38]. Reference [39] fused measurements

from a hip joint encoder with the trunk and thigh IMUs, along

with 8-channel EMG sensors. The authors also compared the

results from the IMU and encoder with EMG measurements.

The proposed system also achieved an average 21.6 ms latency

due to the the multithreaded network design and sensor

simplicity. In comparison, [17] and [40] reported 29 ms and

20 ms of real-time latencies, respectively. While incorporating

additional sensors can potentially further improve the accuracy,

the proposed approach showcases the potential of achieving

comprehensive gait analysis with a streamlined sensor setup

and comparable results with minimal sensor requirements.

The single-IMU design was chosen to ensure simplicity and

practicality for real-time applications. The confusion matrix

analysis in Fig. 6 highlights the model’s high accuracy in

classifying distinct activities such as upslope and downslope

walking. However, misclassifications were observed between

activities with subtle differences in IMU signal patterns, such

as level walking, transverse walking, and turning. These find-

ings suggest that distinguishing activities with overlapping

kinematic features using a single IMU remains a challeng-

ing task. The chattering behavior in the error profiles in

Figs. 8 and 9 does not indicate poor performance but rather

reflects the inherent sensitivity of error calculations. This

behavior might arise from noise in the IMU signals, which

can be amplified when predicting high-dimensional outputs

like joint angles. In such cases, small inaccuracies in IMU

measurements might propagate through the model, resulting

in oscillations in the predicted angles. Despite this, the actual

predicted angles closely align with the ground truth, and the

overall trends and mean errors remain well within acceptable

ranges.

As shown in Fig. 8, in contrast to the slope angle φ, the

turning angle ψ predictions exhibit slightly larger variability

throughout the gait cycle. This can be attributed to the complex

nature of turning movements, which involve multiple degrees

of freedom and can be influenced by factors such as walking

speed, stride length, and individual gait characteristics. It is

worth noting that the largest turning angle errors occurred

when the subjects’ facing directions align with the X-axis. The

system might have difficulty accurately capturing the turning

angles during these specific orientations. Despite these chal-

lenges, the overall turning angle prediction accuracy remains

reasonably high. The prediction errors for slope and turning

angles (Fig. 8) demonstrate the model’s consistency across

trained angles. The slightly increased variability in untrained

slopes indicates that while the model exhibits generalization

capability, there exists room to improve its ability to handle

conditions beyond the training scope. Expanding the train-

ing data set to include a broader range of gait conditions

or employing transfer learning techniques could potentially

enhance the performance.

The proposed approach demonstrates superior performance

in joint angle estimation, with the lowest RMSE as 1.17 deg

for the elbow joint. This level of accuracy is particu-

larly impressive when compared to the overall error of

approximately 16 deg for joint angle reconstruction in various

Fig. 10. Averaged GPDM latent space manifolds of walking on different
slopes. The manifolds represent the GPDM-embedded gait dynamics on level
ground and slopes with φ = 5, 10, 15 deg. Each trajectory depicts a continuous
evolution of the gait cycle in the latent space, illustrating the model’s ability
to distinguish gait patterns between different slope inclinations.

non-walking 3D human motions using multiple IMUs that was

reported in [41]. The gait motion considered in this study

is periodic and this may contribute to the higher accuracy

achieved by the proposed method. Nevertheless, the findings

confirm that a single IMU-based approach achieves a level of

accuracy commensurate with multi-IMU systems for human

walking posture estimation. The knee joint exhibited a higher

RMSE compared to upper-limb joints due to its greater

biomechanical complexity, its crucial role in stabilization and

adaptation on sloped terrains, and the increased variability of

knee motion in such conditions, as demonstrated in previous

studies [42]. Soft tissue artifacts and vibrations, which tend

to be pronounced in lower-limb IMU readings, contribute to

noise in knee angle predictions. Given the knee’s large range

of motion, even small relative errors result in high RMSE

values, as reflected in Table II.

One advantage of the used GPDM for posture estimation

lies in its representation in low-dimensional space. We took

the latent space dimension d = 3 and the dimension of the

joint angle space was D = 12 in this study. Fig. 10 shows

the motion trajectory in the latent space for walking activities

at level ground and at slope angles of φ = 5, 10, 15 deg. The

distinct and non-intersecting surfaces represent the manifold

of each activity, highlighting the model’s ability to distinguish

walking gaits across different slopes. The clear separation

among these manifolds validates the GPDM’s capacity for

interpolating latent states for untrained slopes.

The proposed work has significant real-world implications,

particularly in construction where monitoring workers’ gait

and posture is critical for ensuring work safety and produc-

tivity. The developed system has the potential to be integrated

into existing workflows and technologies, enabling real-time

monitoring and feedback to prevent work-related injuries

and improve ergonomics. By providing accurate and timely

information on workers’ gait, posture, and floor slope angles,

the system can contribute to the development of personalized

assistive robotics, training programs, and safety protocols [20],

[23]. Furthermore, the real-time nature of the system allows for

prompt detection of potential hazards or deviations from safe
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working practices, enabling timely corrective or intervention

actions.

While the proposed approach demonstrates promising out-

comes, there remain several areas for further development and

enhancement. The proposed methodology is primarily suited

for walking gait and might not fully capture the complex-

ities of non-periodic or irregular human movements often

encountered in daily activities in construction. Moreover, the

increased error during transitions between different types of

activities underscores the need for further improvements in

capturing these crucial moments for comprehensive human

motion understanding. Additionally, the joint angle estimation

in this study focused on steady-state walking on level and

sloped floors, excluding many other work activities in con-

struction such as stair walking. Extending the model to include

ascent and descent stair climbing, similar to the work in [14]

and [22], as well as other gaits, such as squatting and kneeling,

could broaden its applicability. Finally, the experiment study in

this work used healthy, young participants who were selected

from university student population. Although inter-subject

variability in walking gait is not significant, it is desirable to

conduct additional experiments and validate the method with

construction workers or professionals.

VII. CONCLUSION

This paper presented a real-time walking gait prediction

and posture estimation method for construction workers on

level and sloped floors. A combination of the LSTM-based

network and the GPDM was mainly used in the estimation

scheme. The walking activities were predicted, the slope

angle and turning angle were estimated, and human pose was

predicted in real time with relatively low average joint angle

errors. The experimental results demonstrated the effectiveness

and efficacy of the walking activity detection and posture

estimation design. A key attractive of the proposed scheme

was the real-time capability with 21 ms latency using a single

IMU attached to the distal portion of the right shank. We

are currently working on improving the real-time performance

and also integrating the design with wearable assistive robotic

devices for construction workers (e.g., [20], [23]).
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“Musculoskeletal disorders in construction: A review and a novel system
for activity tracking with body area network,” Appl. Ergonom., vol. 54,
pp. 120–130, May 2016.

[3] W. Supanich, S. Kulkarineetham, P. Sukphokha, and P. Wisarnsart,
“Machine learning-based exercise posture recognition system using
MediaPipe pose estimation framework,” in Proc. 9th Int. Conf. Adv.

Comput. Commun. Syst. (ICACCS), vol. 1, Coimbatore, India, Mar.
2023, pp. 2003–2007.

[4] Q. Mascret, G. Gagnon-Turcotte, M. Bielmann, C. L. Fall, L. J. Bouyer,
and B. Gosselin, “A wearable sensor network with embedded machine
learning for real-time motion analysis and complex posture detection,”
IEEE Sensors J., vol. 22, no. 8, pp. 7868–7876, Apr. 2022.

[5] S. S. Bangaru, C. Wang, and F. Aghazadeh, “Data quality and reliability
assessment of wearable EMG and IMU sensor for construction activity
recognition,” Sensors, vol. 20, no. 18, p. 5264, Sep. 2020.

[6] X. Yan, H. Li, A. R. Li, and H. Zhang, “Wearable IMU-based real-
time motion warning system for construction workers’ musculoskeletal
disorders prevention,” Autom. Construct., vol. 74, pp. 2–11, Feb. 2017.

[7] E. Valero, A. Sivanathan, F. Bosché, and M. Abdel-Wahab, “Analysis of
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