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Abstract

Droplet impacts are of fundamental importance to the natural water cycle as collision
and coalescence of droplets are the primary mechanism by which warm rain forms.
Additionally, droplet impacts are of paramount significance in a variety of industrial
processes, including spray cooling, wet scrubbing, and even play a role in cooling
nuclear reactors. Throughout this work, we utilize a combination of theoretical mod-
eling and experiments to elucidate the dynamics of these common phenomena. The
first problem we analyze is a droplet impacting a deep fluid bath. Millimetric drops
are generated using a piezoelectric droplet-on-demand generator and normally impact
a bath of the same fluid. The limit where capillarity and fluid inertia dominate the
interfacial dynamics is investigated. This so-called inertio-capillary limit is shown to
define an upper bound on the possible coefficient of restitution for droplet–bath im-
pact. We then consider the scenario where the substrate is no longer deformable, and
study the dynamics of non-wetting droplets impacting on stationary and vibrating
substrates, with deterministic chaos emerging in the latter case. Extending beyond
axisymmetric impacts, we then analyze droplet impact scenarios where there is some
relative tangential velocity between the substrate and droplet. We determine the
thresholds for coalescence, and our results suggest that substrate deformability plays
an important role in transitions between the bouncing and merging regimes. Finally,
we consider an analogous solid case to the normal droplet impact studies, where a
small rigid sphere impacts and rebounds from a deformable elastic membrane. We
perform experiments and identify new previously unreported behaviors in this simple
system which are attributed to the non-negligible inertia of the membrane. Overall,
the dynamics of these impact scenarios are extremely rich, producing physical phe-
nomena that are inherently multi-scale, requiring information and knowledge from
micron to centimeter scales. As showcased here, reduced-order modeling and con-
trolled experiments are essential in distilling some simplicity out of the complexity.

Thesis Supervisor: Daniel M. Harris
Title: Assistant Professor
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Chapter 1

Introduction

On a mid-March day in 2021, I took a short walk over to Gano Park on the east

side of Providence. The weather was mild for the season, and a light drizzle devel-

oped. I stopped near the Seekonk river to seek shelter under a tree, and, like many

times before, I began to watch the motion of the river. Surprisingly, the surface of

the river was almost perfectly smooth, as the coming of the rain had quieted the

wind. This is a rare sight, as even the slightest breeze can create a rich variety of

capillary-scale surface waves on a body of water. Turbulence in the wind induces

these little waves, and the excess pressure on the downwind side of the disturbance

causes the small waves to grow. While these waves seem small and inconsequential

relative to the overall surface motion, they modify the inherent roughness of the sea

surface, which effectively modulates how well the large-scale flow "grips" the surface

[Munk, 1951]. This effect comes into play in all different kinds of physical scenar-

ios, from the generation of currents, storm surges, and even larger wavelength waves

[Munk, 1951]. Replacing the typical wave interactions on the surface was a pattern

equally as complex; a form of deterministic chaos. Each droplet was impacting in a

seemingly random location, mimicking the diffuse motion of molecules in a gas.

Warm rain droplets form roughly 2,000 feet above sea level in the lower atmo-

sphere. The Sun creates localized regions of warm air, which rapidly rise into the

atmosphere due to buoyancy. These convection rolls are commonplace and occur

in miso soup as well as the plasma which makes up the sun itself. This warm air
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carries with it the two necessary ingredients for cloud formation: water vapor and

seeding particles. These seeding particles can be any small aerosol, and include tree

pollen, ash, dirt, sea-spray [Bird et al., 2010]. As the warm air rises, it expands into

a larger volume and cools, which decreases the total amount of water vapor that can

be stored in a given air volume. The seeding particles act as heterogeneous nucleation

sites, and small water droplets form en masse, with upwards of tens of thousands of

droplets in a single square meter [Testik and Barros, 2007]. These droplets then are

clustered together via the action of turbulence and interact. They can bounce off

one another, coalesce, or even breakup if they have too much initial kinetic energy

[Pan and Law, 2007].

In interfacial fluid dynamics, the Young-Laplace law describes the capillary pres-

sure difference sustained across the interface between two static fluids due to surface

tension. The law states that the difference in pressure between the inside of the

drop or bubble and the outside is proportional to the mean curvature of the interface.

Thus, small drops and bubbles have a comparatively larger pressure inside than larger

drops. This difference in pressures causes coarsening, in which a cascade in the drop

size distribution occurs, where small drops coalesce to form into larger drops, shifting

the mean droplet size to larger values. In clouds, the process is more complicated,

yet despite the many turbulent interactions, droplet rebounds and breakups, the size

distribution of the warm rain cloud coarsens and eventually the droplets become too

heavy and fall towards the Earth’s surface. (This process is not the only way that

rain forms, ice may also form on the seeding particles. If the ice falls through warmer

air on its way toward the surface a phase change may occur.) As the droplets fall,

they interact with their turbulent surroundings, and depending on their size, may

even fall faster than they would in still air, selectively riding vorticies that are push-

ing fluid downwards [Good et al., 2014]. The trajectory of a droplet (or any inertial

particle) as it travels in another fluid is a non-linear process [Maxey and Riley, 1983].

The particular combination of inertia, viscosity, and surface tension present in the

dynamics of falling droplets, in addition to turbulence in the background flow, created

the seemingly random impact location that I was observing.

24



Upon impact on the river, the droplets coalesced with the still air-water interface,

and had just enough initial energy to create a Worthington jet. These little jets are

common when an object crosses a fluid interface, and are caused by the collapse of

the cavity that forms behind the impacting object [Worthington, 1908]. Sometimes

the conditions are just right, and small daughter droplets can pinch off from the jet

via a surface tension driven instability. The daughter droplets have a short life time,

resting on the interface for a few milliseconds before vanishing into the bulk, injecting

a small vortex into the bath, hidden from the observer [Thomson and Newall, 1886].

The impact and coalescence of each droplet induces gravity-capillary waves to form on

the surface, rapidly propagating outward in a series of perfectly concentric rings, sort-

ing themselves by their own respective phase speeds. Both the initial impact of the

rain drops and coalescence event of the daughter droplets have their own generated

wavefield, a mark that they leave on the overall surface before vanishing completely.

The waves communicate the event to the surrounding fluid, and dissipate the initial

impact energy via the action of viscosity. The calm surface conditions helped me see

just how far these small capillary waves would travel before becoming imperceptible.

The natural water cycle is not the only place where a deep understanding of

droplet physics is essential. It is very common in fluid mechanics and engineering to

come across collections of droplets in the form of sprays. Sprays are used in pesticide

application, medicine, de-icing of plane wings, internal combustion engines, nuclear

reactors, cooling of hot surfaces, coating applications, and, as we are all painfully

aware of now, even play a role in pathogen transport. Due to the extremely diverse

range of applications, these physical scenarios have been studied extensively by scien-

tists and engineers for more than a hundred years [Lefebvre and McDonell, 2017]. In

this work, we are going to remove some of the complexities of these applications and

focus on the fundamental unit in all of these processes: the droplet. In particular, we

are going to study in detail the interactions of a single droplet in a variety of different

scenarios. These droplets can bounce, coalesce, roll, float, and surf in a complex in-

terplay between the surrounding gas and the droplet. We will utilize a combination of

mathematical modeling, computer simulation, and experiments to understand these
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processes. Typically, certain parameters are utilized in existing literature to study

these impacts. The coefficient of restitution, which we denote as ↵, is a metric of

energy transfer occurring during an impact and is defined in this work as a ratio of

the exiting velocity of the droplet to the impacting velocity. The contact time, tc is

commonly reported in the literature as well, as this metric can potentially be used

in determining the heat transferred to the drop during an impact, for instance. Ad-

ditionally, we report the maximum surface deformation, �. This thesis is organized

as follows: First in Chapter 2, the interfacial flow models utilized throughout the

work will be derived in detail. Then in Chapter 3, we analyze our first problem, the

normal impact of a droplet on a bath of the same fluid, focusing on the regime where

the presence of a low density interstitial gas always prevents initial coalescence. We

run a series of experiments to elucidate the dynamics of the interfaces, and com-

pare the results of the experiments to our mathematical model and direct numerical

simulations. Then in Chapter 4, we extend our exploration to situations where the

surrounding gas no longer can support the impacting droplet and coalescence occurs

during the initial impact. We examine the role that motion in the bottom fluid has

on coalescence thresholds through new experiments, and visualize how the wavefield

and droplet deform due to the underlying motion of the interface. In Chapter 5 we

extend our analysis to study the impact of a droplet on a rigid non-wetting surface,

and attempt to explain some of the interesting trends in experimental data collected

across the literature utilizing our mathematical model. We further extend the model

to study another form of deterministic chaos that produces period-doubling cascades

with a simple drop and vibrating plate system. Finally, we consider an analogous case

to the normal impact of a droplet, where a small dense sphere impacts and rebounds

from an elastic membrane. In contrast to the droplet impact case, the speed of the

wave generated is much faster, and thus the dynamics of the impacting object and

substrate are more tightly coupled. We run experiments to elucidate the details of the

impact, compare them to simulations, and find interesting regimes of behavior that

have been previously unreported. We conclude the work by discussing future direc-

tions and outstanding questions. A gallery of interfacial fluid dynamical phenomena
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Figure 1-1: The bursting of a bubble on a droplet of silicone oil resting on a bath of
the same fluid produces an extremely small aerosol droplet. This aerosol is ejected
from the singular jet formed, seen in the 6th panel. Aerosols are formed via the same
mechanism when sea foam bubbles burst, and these have been demonstrated to act
as cloud seeding particles [Bird et al., 2010].

is included at the end of this section in figures (1-1 - 1-7).
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Figure 1-2: The coalescence of droplet of water containing fluorescein produces a
vortex ring in a bath of water. The vortex will travel down until viscosity breaks it
into smaller vorticies.

Figure 1-3: A surface tension driven instability pinches off a daughter droplet.
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Figure 1-4: After bouncing once on a clean interface, a water droplet partially coa-
lesces with the bath and produces a smaller droplet, which then also bounces. This
spatiotemporal diagram, also called a kymograph, stiches together a single pixel wide
center stripe from raw video data and plots time along the x-axis.

Figure 1-5: The coalescence of droplet of water with radius near the capillary length
lc =

p
�/⇢g creates a Worthington jet, shown in the left panel. If the droplet impact

velocity is just right, this jet will collapse and pinch off daughter droplets.
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Figure 1-6: A small droplet of water bouncing on a chaotic, wavy surface.

Figure 1-7: A spray of water droplets of different sizes are emitted from the tip of a
syringe. These droplets contain fluorescein, which when exposed to blue light glows
green. These droplets not only bounce off the free surface, but off each other.
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Chapter 2

Weakly Viscous Interfacial Flow

Modeling

In this section, we will detail two weakly viscous interfacial flow models to describe

the motion of droplet interfaces and planar fluid interfaces. These derivations hold

for fluid interfaces where the density and viscosity of the surrounding fluid are much

smaller than the other fluid. In this work, we will assume that the surrounding fluid is

a gas, and the other fluid is some Newtonian liquid. Both of these models are derived

from first principles and require no fitting parameters. We then apply orthogonal

function decompositions for the flow variables used in these models, and derive sets

of ordinary differential equations that describe the flow variables. This reduction in

complexity comes with it a large decrease in computational time, which will allow

us to model many different inertio-capillary impact problems. These models, as well

as the expressions for the surplus energies, have been previously derived, yet the

derivations are repeated here for clarity. Some relevant aspects of the final equations

from this chapter are repeated in the following chapters when applied.

2.1 Bath Interface Model

We aim to develop a theory governing the impact of capillary-scale objects on a

free interface. Presently, direct numerical simulation has been utilized to study these
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problems, yet this approach comes with high computational cost. The present work

attempts to solve this problem using a linearized, quasi-potential flow model follow-

ing the work of [Galeano-Rios et al., 2017] and [Blanchette, 2016]. For the problem

of an object impacting on a free interface, the Navier-Stokes equations govern the

flow generated by the fluid-object interaction. Ordinary differential equations can be

written for the motion of the object itself. Assuming the flow to be incompressible

and isothermal, we can write these equations as

@u
@t

+ (u ·r)u = �
1

⇢

@P

@x
+

1

⇢
r · T + g , (2.1)

r · u = 0 , (2.2)

where u = [u, v, w]T is the fluid velocity vector, T is the viscous stress tensor, P is

the pressure field, g = r[0, 0, gz]T is the gravitational force vector, and ⇢, ⌫ = µ

⇢
are

the fluid density and kinematic viscosity. For the current problem, these equations

are subject to the following boundary conditions: a kinematic and dynamic condition

for the flow at the interface, and that far away from the interface, viscosity dampens

out any motion. The dynamic boundary condition can be written as

�Pn̂+ T · n̂ = (�� ps)n̂. (2.3)

Here,  is the mean curvature of the interface, ps is a forcing pressure evaluated at

the fluid interface due to the impact of an object, � is the fluid surface tension, and

n̂ is the outward facing unit normal vector. If a function describing the motion of

the free interface is represented by ⌘ = ⌘(r, ✓, t), then we can define a functional

F = F (x, t) = ⌘ � z, assuming the undisturbed interface is situated in the r-✓ plane.

Then, the normal vector can be written as

n̂ =
rF

|rF |
=

1q
1 + (@r⌘)2 + (1

r
@✓⌘)2

[�@r⌘,�
1

r
@✓⌘, 1]. (2.4)
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In this notation, @i denotes partial differentiation with respect to the ith variable.

The kinematic condition can be formulated as

@t⌘ + u ·r(⌘ � z) = 0. (2.5)

The final boundary condition is that the fluid velocity vanishes on the bottom of the

bath, that is u|z=h0 = 0, where h0 is the depth of the bath. We also assume that

the bath is deep, and thus � ⌧ |h0|, where � is some characteristic wavelength of

the flow. That is, far away from the free surface, u approaches zero via the action of

viscosity. Furthermore, we will assume the fluid to be Newtonian, and utilizing the

continuity equation r · u = 0, the viscous stress tensor can be written as the sum of

a symmetric and anti-symmetric tensor T = µ(ru +ruT ).

We will assume that the deformation of the interface is small, and thus that the

waves created by impact are well within a linear approximation. We therefore can

linearize the dynamic and kinematic boundary conditions about z = 0, and neglect

any powers of the velocity u or product of the velocity and surface elevation ⌘.

Therefore, the governing equations of motion reduce to

r · u = 0, (2.6)

@u
@t

= �
1

⇢

@P

@x
+ ⌫�u + g, (2.7)

with boundary conditions

@zu+ @rw = 0, (2.8)

@zv +
1

r
@✓w = 0, (2.9)

�P + 2µ@zw = �� ps, (2.10)

and

@t⌘ = w. (2.11)
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These boundary conditions are applied at the undisturbed free surface at z = 0.

We will use a Helmholtz decomposition, where u = r�+r⇥ . Here, � is the scalar

potential and  = [ 1, 2, 3]T is the vector stream function. In order to ensure

that the decomposition satisfies the bottom boundary conditions, we require that
⇥
@r�,

1
r
@✓�, @z�

⇤T
|h0 = 0 and r⇥ = 0 at z = h0.

Substituting this decomposition into the governing equations transforms the prob-

lem to

�� = 0, (2.12)

r(@t�) + @t(r⇥ ) = �r

eP
⇢
+ ⌫�(r⇥ ), (2.13)

where we have used eP = P + g and a few useful vector calculus identities. If we

choose @t� = �
eP
⇢

and @t(r⇥ ) = ⌫�(r⇥ ) then equation (2.13) is satisfied then

our governing equation becomes

�� = 0. (2.14)

Applying the decomposition to the boundary conditions gives us

0 = @z(@r�+  1) + @r(@z�+  3), (2.15)

0 = @z(
1

r
@✓�+  2) +

1

r
@✓(@z�+  3), (2.16)

@t�+ g⌘ = �2⌫@2
z
�� 2⌫@z 3 +

�

⇢
�

ps
⇢

, (2.17)

where we have again used eP = P + gz and @t� = �
eP
⇢
. If we take a derivative of

equation (2.15) and add it to a derivative of (2.16), and use (2.13) written for the z

coordinate, we obtain

@t 3 = 2⌫r2(@z�+  3), (2.18)

where we have also taken advantage of the fact that r ·  = 0. Here, r2 = @2
r
+

(1/r)@r+(1/r2)@2⇥ is the surface Laplacian, not to be confused with the full Laplacian,

which we denote in this text by �. Substituting the decomposition into the kinematic
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boundary condition (2.11), we have

@t⌘ = @z�+  3. (2.19)

Combining equation (2.18) and (2.19) yields

@t 3 = 2⌫r2(@t⌘). (2.20)

Since the fluid is initially at rest with an undisturbed interface, this expression implies

that

 3 = 2⌫r2(⌘). (2.21)

Following [Galeano-Rios et al., 2017], if we non-dimensionalize equation (2.17), use

the result from (2.21), and make a high-Reynolds number flow assumption, we can

eliminate  3 from the dynamic boundary condition (2.17), writing

@t� = �g⌘ � 2⌫@2
z
�+

�

⇢
�

ps
⇢

. (2.22)

Here, we define the Reynolds number as Re = RU

⌫
, with U being some characteristic

velocity and R is the undeformed radius of the droplet. Then, the kinematic boundary

condition can be reformulated without using the stream function as

@t⌘ = @z�+ 2⌫r2⌘, (2.23)

even though we have assumed that there is non-negligible vorticity in the flow. In

summary, we have

r
2�+ @2

z
� = 0, z  0, (2.24)

@t⌘ = @z�+ 2⌫r2⌘, z = 0, (2.25)

@t� = �g⌘ � 2⌫@2
z
�+

�

⇢
�

ps
⇢

, z = 0, (2.26)

u = r� = 0 at z = h0. (2.27)

35



2.1.1 Eigenfunction Decomposition of Surface Waves

We seek to apply the above linearized theory to the impact of capillary-scale

objects on a free, undisturbed interface. We assume that the impact occurs in a bath

of some viscous fluid which is subject to two important boundary conditions, mainly

that @n� = 0 on the walls of the bath and that @z� = 0 on the bottom of the bath.

If we take @n of (2.23),

@t@n⌘ = 2⌫r2@n⌘.

In order to satisfy this additional boundary constraint, we will assume that

@n⌘ = 0

on the walls of the container. Thus, the free surface of the bath is required to maintain

a constant contact angle of 90� on the walls. Applying the same operation to (2.22),

making use of @n� = 0 on the walls, we obtain

0 =
�

⇢
@n(@

2
r
⌘ +

1

r2
@2
✓
⌘),

where we have utilized  ⇡ r
2⌘, consistent with our linear approximation. Then,

following [Benjamin and Ursell, 1954], since this expression for the dynamic boundary

condition will hold on any bounding curve K, we can utilize an orthogonal function

expansion for the unknowns ⌘, � and their derivatives.

These orthogonal functions Sj,m(x, y) must satisfy

(r2 + k2
j,m

)Sj,m = 0, (2.28)

inside of any bounding curve K that exists on the border of the bath and the boundary

condition of @nSj,m = 0 on K. kj,m are the eigenvalues of the system, and depend

on the choice of the physical domain of the problem. If the boundary curve K is a

circle, the functions become Sj,m = Jj(kj,mr) cos j⇥. Here Jj are Bessel functions of

the first kind and kj,m are the solutions to J 0
j
(kj,mb) = 0, where b is the bath radius.
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If we further assume the problem to be axisymmetric, then we can choose j = 0, and

write S0,m = J0(k0,mr). For convenience, we define k0,m = km henceforth. We then

can express the free surface elevation as

⌘ =
1X

m=0

amJ0(kmr).

In order to determine �, we will employ separation of variables. Assume �(r, z, t) =

R(r)T (t)Z(z). We have, from the continuity equation,

�� = 0 (2.29)

subject to the boundary conditions

@z�|z=0 =@t⌘ � 2⌫r2⌘, (2.30)

@z�|z=�h0 =0, (2.31)

�|z=�h0 =0. (2.32)

In cylindrical coordinates, the Laplacian operator can be written as

�f = @2
r
f +

1

r
@rf +

1

r2
@2
✓
f + @2

z
f = 0. (2.33)

Substituting � into this expression yields

@2
r
R(TZ) +

1

r
@rR(TZ) + @2

z
Z(RT ) = 0.

Separating the variables again and doing a little rearrangement gives us

1

R
(@2

r
R +

1

r
@rR) = �

1

Z
@2
z
Z = �k2

m
.

This yields two ordinary differential equations for two of the three unknown functions.

@2
r
R +

1

r
@rR + k2

m
R = 0,
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@2
z
Z � k2

m
Z = 0.

The first equation is simply Bessel’s equation, and as such has solution Rm(r) =

CJ0(kmr)+DY0(kmr). Since the solution must be defined over the entire domain and

Y0 is singular at the origin, we set D = 0, and we can set C = 1. The second ODE

has a known solution as well, and is

Zm(z) = A sinh kmz +B cosh kmz.

Utilizing the boundary condition that @z�|z=�h0 = @zZ|z=�h0 = 0 we determine

A = B tanh kmh0.

Additionally, the value of B is arbitrary and we can set it to B = 1. Now,

�m = TmJ0(kmr)(tanh kmh0 sinh kmz + cosh kmz), (2.34)

where Tm = Tm(t) is yet to be determined. Applying the final boundary condition,

equation (2.30), gives us

TmJ0(kmr)km tanh kmh0 =
dam
dt

J0(kmr) + 2⌫k2
m
amJ0(kmr). (2.35)

Rearranging, we get

Tm =
1

km tanh kmh0

✓
dam
dt

+ 2⌫k2
m
am

◆
. (2.36)

Therefore, the completed expression for � is

�m =

✓
dam
dt

+ 2⌫k2
m
am

◆
J0(kmr)

cosh km(h0 + z)

km sinh kmh0
, (2.37)

which we have utilized some useful hyperbolic trigonometric identities. This expres-

sion is for one mode only. To get the complete expression we must sum over all modes
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m. In summary, we have

⌘ =
1X

m=0

amJ0(kmr), (2.38)

r
2⌘ = �

1X

m=0

k2
m
amJ0(kmr), (2.39)

� =
1X

m=0

✓
dam
dt

+ 2⌫k2
m
am

◆
J0(kmr)

cosh km(h0 + z)

km sinh kmh0
. (2.40)

In order to arrive at the final equations of motion for the free surface, we take the

decompositions (2.38-2.40) and substitute them into the dynamic boundary condition

(2.26). Rearranging, we find

1X

m=0


d2am
dt2

+ 4⌫k2
m

dam
dt

+

✓
�k2

m

⇢
+ g

◆
km tanh (kmh0)am

�
J0(kmr) = �

ps
⇢
km tanh (kmh0).

(2.41)

Each wave mode in the bath is described by a forced, damped harmonic oscillator

equation.

2.1.2 Bath Energy Expressions

We can also utilize the expansions for the bath interface to write down expressions

for the surface energy, kinetic energy, and gravitational potential energy of the waves

generated on the surface in terms of the mode amplitudes and their derivatives. In

the expressions that follow, � represents the excess surface energy relative to the

undisturbed free surface. Following Appendix B in [Durey and Milewski, 2017], we

write

�SE =

ZZ
�(
p

1 + |⌘|� 1)dA (2.42)

For small deformations, |⌘| ⌧ 1, and

�SE = ⇡�

Z
b

0

|r⌘|2rdr (2.43)
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Expanding the derivative in the above expression as |r⌘|2 = r · (⌘r⌘)� ⌘r2
H
⌘ and

using the divergence theorem in 2D yields

�SE = �⇡�

Z
b

0

⌘r2⌘rdr. (2.44)

Substituting the expressions (2.38) and (2.39) yields

�SE =
⇡b2�

2

1X

m=0

k2
m
a2
m
J2
0 (kmb) . (2.45)

The excess gravitational potential energy can be written as

�GPE =
1

2
⇢g

Z
b

0

Z 2⇡

0

⌘2rd✓dr, (2.46)

=
⇡b2⇢g

2

1X

m=0

a2
m
J2
0 (kmb) . (2.47)

We can perform the same analysis for the excess kinetic energy of the wave. Starting

with the definition

�KE =

Z
b

0

Z 2⇡

0

Z
⌘

�h0

1

2
⇢|r�|2rdzd✓dr. (2.48)

From the continuity equation, we write |r�|2 = r · (�r�), and we utilize the diver-

gence theorem again to write

�KE = ⇡p

Z
b

0

�
@�

@z
rdr. (2.49)

Substituting in (2.40)

�KE =
⇡b2⇢

2

1X

m=0

1

km

✓
dam
dt

+ 2⌫k2
m
am

◆2

coth (kmh0) J
2
0 (kmb) . (2.50)
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In summary:

�E = 4SE +4GPE +�KE,

�SE =
⇡b2�

2

1X

m=0

k2
m
a2
m
J2
0 (kmb) ,

�GPE =
⇡b2⇢g

2

1X

m=0

a2
m
J2
0 (kmb) ,

�KE =
⇡b2⇢

2

1X

m=0

1

km

✓
dam
dt

+ 2⌫k2
m
am

◆2

coth (kmh0) J
2
0 (kmb) .

2.2 Droplet Interface Model

In this section, we will derive the interfacial model that we utilize throughout this

work for the droplet. Similar to the previous section, we decompose the deformation

of the interface into a set of mode amplitudes which are functions of time only. That

is, r = ⇠(✓,', t) and

⇠(✓, t) = R +
1X

l=0

lX

n=�l

�n

l
(t)Y n

l
(✓,'), (2.51)

with Y n

l
= P n

l
(cos ✓)ein', where P n

l
(cos ✓) are the Legendre polynomials. Addition-

ally, consistent with our previous derivation, we assume the problem to be axisym-

metric, and set n = 0. We will drop the n from the expressions for convenience.

Then, following [Chandrasekhar, 2013, Reid, 1960, Miller and Scriven, 1968], we as-

sume that the flow is incompressible, and a velocity potential function can be written

that satisfies

�� = 0 (2.52)

Again, utilizing separation of variables, the solution to Laplace’s equation can be

found, [Chandrasekhar, 2013, Reid, 1960], and is written as

� =
1X

l=0

Bl(t)
⇣ r

R

⌘l
Pl, (2.53)
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where Bl(t) is some other unknown amplitude coefficient for the lth mode. As in

the prior section, we assume linearity of the deformations and thus the kinematic

boundary condition can be written as

@t⇠ = @r�, (2.54)

leading to
1X

l=0

d�l
dt

Pl =
1X

0

Bl

l

R
Pl. (2.55)

Dropping the sums, we have
d�l
dt

= Bl

l

R
(2.56)

We then turn to a statement of the conservation of energy,

T = Ẇ � " (2.57)

where T = K +G is the sum of the kinetic and gravitational potential energies, Ẇ is

the rate of surface work done on the droplet, and " is the rate of energy dissipation

due to viscosity. These expressions can be written as

Ẇ =

Z

dS

SEd ·r�dS, (2.58)

SEd = (�ps + �)n̂, (2.59)

K =

Z

V

⇢r� ·r�dV, (2.60)

G =
4

3
⇡⇢R3g�1, (2.61)

" =

Z

dV

2µD · DdV. (2.62)

We take the outward facing normal vector n̂ = [êr, 0, 0]
>, the differential surface

element as dS = r2 sin ✓d✓d�, and D = (ru +ruT ) is the deviatoric stress tensor.
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Then, the contribution of the droplet curvature to the rate of surface work is

� = �
2�

R
�
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R2

1X

l=0

�lPl. (2.63)

We can express Ẇ as
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Assuming linear deformations, evaluating at r = R, and utilizing the kinematic

boundary condition, we arrive at

Ẇ =� 2⇡R2

Z
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1X
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sin ✓Pld✓ (2.66)
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We can express T and " as

T =
1X

l=0

2⇡l

2l + 1
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3
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" =
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µ

R
B2

l
. (2.69)

Additionally, we recognize that the contribution of the zeroth mode must be zero

at all times �0 = 0, otherwise our assumption of incompressibility will be violated

[Chandrasekhar, 2013, Moláček and Bush, 2012]. Taking the time derivative of T and
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substituting the expressions into (2.57) yields
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Now, we again utilize the linearized kinematic boundary condition, and divide out

one d�l

dt
, rearrange and arrive at the final result,
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We can rearrange the result and drop the sums for convenience to yield a set of ODE’s

that govern each individual droplet mode �l(t),
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dt2
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2.2.1 Droplet Energy Expressions

We summarize the expressions for the excess droplet kinetic, gravitational potential,

and surface energies relative to the undeformed state here in terms of the decompo-

sition variables as
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2
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�2
l
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These expressions have also been derived in [Moláček and Bush, 2012, Balla et al., 2019].

In the following sections, we will apply these models to help further our understanding

of inertio-capillary impact problems, and compare the results of the models directly

to experiments and direct numerical simulations.
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Chapter 3

Inertio-capillary rebound of a droplet

impacting a fluid bath

The work presented in this chapter appears as part of a publication in the Journal

of Fluid Mechanics as Alventosa, L. F., Cimpeanu, R., and Harris, D. M. (2023).

Inertio-capillary rebound of a droplet impacting a fluid bath. Journal of Fluid Me-

chanics, 958, A24. LFA wrote the quasi-potential models, performed and analyzed

the experiments, wrote and utilized the simulation code, with assistance and mentor-

ship from DMH. DMH performed the scaling analysis and RC contributed the DNS.

All authors contributed to the writing of the paper.

3.1 Introduction

Droplet impacts occur frequently in both natural and industrial settings. Rain drops

impacting on leaves have been shown to be a primary mechanism for pathogen trans-

port among plants [Kim et al., 2019] and birds with superhydrophobic feathers stay

warmer in a cold rain due to a reduced droplet contact time [Shiri and Bird, 2017].

Spray cooling devices have attracted the attention of researchers due to the large

heat transfer rates and high uniformity of heat transfer [Kim, 2007]. Wet scrubbing

of exhaust gases relies on the inertial impaction of small particles and aerosols on

the surface of freely falling droplets [Park et al., 2005]. Various other drop impact
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Figure 3-1: A small water droplet (R ⇡ 0.4 mm) rebounds from a bath of the same
fluid.

phenomena, such as splashing, were experimentally documented by Worthington at

the start of the 20th century [Worthington, 1908]. More recently, droplets bounc-

ing repeatedly on a vertically oscillated bath have received considerable interest as a

macroscopic pilot-wave system capable of reproducing some behaviors reminiscent of

quantum particles [Couder et al., 2005b, Bush and Oza, 2020]. For instance, bounc-

ing droplets confined to submerged cavities can exhibit wave-like statistical behav-

ior analogous to electrons in quantum corrals [Harris et al., 2013, Sáenz et al., 2018].

Droplet impact onto solid surfaces is also an extremely well-studied field [Yarin, 2006,

Josserand and Thoroddsen, 2016], with the combination of high quality experiments

and direct numerical simulation (DNS) leading to a deep understanding of the multi-

scale dynamics.

The problem of droplet coalescence onto a bath of the same fluid has also been

studied extensively over the last century and a half, beginning with [Rayleigh, 1879]

and [Thomson and Newall, 1886]. These early works included sketches of drop-interface

coalescence, as well as a detailed description of the vortices that are formed in the

fluid bath. Preceding coalescence, the thin gas film that forms between the two

interfaces drains until van der Waals forces act to initiate coalescence. Coales-
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cence of a drop into a bath occurs when the film is on the order of 100 nm thick

[Couder et al., 2005a, Yarin, 2006, de Ruiter et al., 2012, Kavehpour, 2015]. The de-

velopment of accessible high-speed photography and high performance computing

has ushered in a rapid expansion in quantity and quality of data on these free surface

problems. [Thoroddsen and Takehara, 2000] used a high-precision and high-speed

visualization setup to quantify the coalescence time of droplets on an air-liquid in-

terface. [Tang et al., 2019] studied the dynamics of the gas layer on a liquid bath

whose depth was similar to that of the droplet radius. The rich class of outcomes and

dynamics that arise from such a simple interaction between droplet, surrounding gas,

and interface proves that these fundamental problems merit considerable attention.

During contact, the combined effects of inertia, surface tension, gravity, and vis-

cosity govern the hydrodynamic interaction between the droplet and the interface,

and the complex balance of forces within this regime creates the variety of distinct

phenomena. The Weber number We = ⇢V 2
0 R/�, the Bond number Bo = ⇢R2g/�,

and the Ohnesorge number Oh = µ/
p
�R⇢ are often used to describe these capillary-

scale dynamics. In this work, R represents the undeformed droplet radius, ⇢, �, µ

are the density, surface tension, and viscosity of the fluid in both the droplet and

bath, V0 is the impact velocity of the droplet, and g is the gravitational accelera-

tion. The present work focuses on the inertio-capillary regime, where fluid inertia

and surface tension dominate viscous and gravitational effects (specifically, Oh ⌧ 1

and Bo ⌧ 1). During impact, a thin gas film develops between the free interface and

surface of the droplet. The drainage of this thin film plays a crucial role in determin-

ing the fate of the droplet: specifically whether it rebounds from or coalesces with the

underlying bath [de Ruiter et al., 2012]. At sufficiently low We , the droplet and the

interface never come into physical contact and remain separated by a stable air film.

The droplet then levitates on this thin film and can eventually rebound due to the

relaxation of the bath and droplet interface. Droplets bouncing on a free interface

were first documented by Reynolds in 1881, when he noted that drops can “float” on

a bath of the same liquid if the impact velocity is sufficiently small [Reynolds, 1881].

In cases of droplet-bath impact, as well as droplet-droplet impact, there exists
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a parameter regime where droplets bounce completely (Figure 3-1). The bouncing-

coalescence threshold is often characterized by a critical We that depends sensi-

tively on all parameters in the problem [Tang et al., 2019]. Droplet bouncing on

an undisturbed interface at variable impacting angles was first studied in detail by

[Jayaratne and Mason, 1964] experimentally. They were able to determine a relation-

ship between the drop radius, impact speed, and impact angle at which the bouncing-

coalescence threshold occurs between uncharged drops. Building on the work of

[Gopinath and Koch, 2001], [Bach et al., 2004] studied droplet impact of small (R 

50 µm) aerosol droplets impacting a fluid bath. They developed a rarefied gas model

to describe the dynamics of the gas layer separating the droplet and bath, and used

an inviscid potential flow model to describe the transfer of energy from the droplet to

the bath during impact. The authors determined that the criterion for drop bouncing

is more sensitive to gas mean-free path and gas viscosity than to the Weber num-

ber itself. [Zou et al., 2011] investigated water droplets bouncing on an air-water

interface, and examined the role of bath depth in bounce-back behavior. They deter-

mined that the contact time was independent of the impact velocity for a large range

of Bond numbers. [Wu et al., 2020] used a drop-on-demand generator to study the

bouncing of water droplets, developed a model for the maximum penetration depth,

and compared it to their experimental study. They varied the droplet diameter, and

found that the maximum rebound height decreased with increasing diameter. An ex-

perimental work utilizing three different fluids was completed by [Zhao et al., 2011].

They chose water, 1-propanol, and ethanol as the working fluids and found good

agreement in measured contact times to [Jayaratne and Mason, 1964]. Also, they

determined that the contact time of the droplet was relatively independent of the im-

pact velocity, similar to that found by [Richard et al., 2002] for a droplet impacting a

non-wetting, dry surface. In the variety of experimental work on this particular prob-

lem, the scaling for contact time tc of the droplet appears to be mostly independent

of We , except at very low We [Zhao et al., 2011, Zou et al., 2011, Wu et al., 2020].

Additionally, numerous papers report a saturation of translational energy recovery

by the droplet at intermediate We , as measured by the coefficient of restitution
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↵ [Jayaratne and Mason, 1964, Bach et al., 2004, Zhao et al., 2011, Zou et al., 2011,

Wu et al., 2020]. These observations have not yet been fully explained nor their para-

metric dependencies clearly elucidated to the best of the current authors’ knowledge.

This motivates the development of a first principles model that can accurately and

efficiently describe the dynamics of both the droplet and the fluid bath over the phys-

ically relevant parameter regime.

The multi-scale hydrodynamics present in these impact problems creates signifi-

cant challenges for numerical simulations, and all but eliminates analytical solutions

to these problems. [Wagner, 1932] proposed the first theoretical study of an ob-

ject impacting on an inviscid, incompressible fluid, utilizing linearized free-surface

kinematic and dynamic conditions to develop a theory that decomposed the fluid

domain into two parts, one where the applied pressure is unknown but the inter-

face shape is known, and vice versa. The so-called Wagner theory was extended

to a solid of revolution by [Schmieden, 1953] and eventually to three dimensions by

[Scolan and Korobkin, 2001]. These models assume that the working fluid is ideal,

and thus any waves generated upon impact are not subject to viscous dissipation.

[Dias et al., 2008] derived a theory to include the effects of weak damping in free sur-

face problems, which appear as leading order corrections in the free surface boundary

conditions. The inclusion of damping in this method provides a mechanism for the

waves generated by impact to decay in time. The [Dias et al., 2008] theory is valid

in the weakly viscous regime and represents a rigorous derivation of a linearized free

surface model first proposed by [Lamb, 1895].

More recently, [Galeano-Rios et al., 2017, Galeano-Rios et al., 2021a] applied the

quasi-potential model of [Dias et al., 2008] to free surface impact problems and solves

the problem of the unknown, time evolving contact region through the use of a so-

called “kinematic match”. In the kinematic match framework, the free surface shape

within the region of contact is determined by the geometry of the problem, and

the extent of this region can be computed with the use of a tangency boundary

condition. The model in [Galeano-Rios et al., 2017] worked well in determining the

trajectory of the droplet in some cases, however neglected any deformations of the
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droplet. [Blanchette, 2016, Blanchette, 2017] modeled the impact of a droplet onto a

still and oscillating bath, where a simplified version of the kinematic match concept

was used by assuming that the shape and radial extent of the pressure distribution

in the contact region are known a priori. Additionally, droplet deformations were

modeled as a vertical spring or as an octahedral network of springs and masses. For

still bath impacts, only very limited direct comparison to experimental measurements

were made, with mixed success. [Moláček and Bush, 2012] developed a quasi-static

model for a droplet impacting on a non-wetting rigid solid surface with fixed cur-

vature. They compared this quasi-static model to a dynamic model that described

the droplet-air interface using spherical harmonics derived from a balance of surface,

kinetic, and potential energies and found good agreement between the two at low

We numbers, as compared to experiments and the model of [Okumura et al., 2003].

However, these models do not predict the energy transfer and time dependent waves

on a fluid bath. [Terwagne et al., 2013] wrote a linear mass-spring-damper model for

a bouncing droplet on a vertically oscillated bath. Similarly, this model assumed

that the bath surface was non-deformable. Additionally, [Moláček and Bush, 2013]

studied silicone oil droplets bouncing on a vertically oscillated bath and developed

linear and logarithmic spring models to classify bouncing dynamics. While efficient

to solve, these models require the input of free parameters determined from exper-

imental data and thus cannot independently predict bouncing metrics such as the

coefficient of restitution or contact time. Other linear spring-type models have been

proposed in the literature, but again such models generally rely on fitting parameters

obtained from experimental data or direct numerical simulation [Sanjay et al., 2022].

Direct numerical simulations of free surface impact problems have been completed

in other recent works [Pan and Law, 2007, He et al., 2015, Sharma and Dixit, 2020,

Fudge et al., 2021], and provide very good results, even in regimes presently inac-

cessible to experiments. From these simulations the droplet shape, trajectory, and

waves, as well as the flow within the droplet and bath, can be captured and ana-

lyzed in detail. However, due to the high computational cost of these free surface

flow problems, the vast parameter space encompassed by this problem renders large
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sweeps impractical for direct simulation, and leaves much to be understood about the

overall dynamics over a more complete space.

In this work, we develop an efficient model that accurately predicts the trajectory

of the impacting droplet, the instantaneous droplet shape, and the transient waves

generated on the bath interface by impact, without any adjustable parameters. First,

we use the Navier-Stokes equations with linearized free surface conditions and include

viscosity as leading order corrections to these boundary conditions, which holds in the

limit of large Re. We then derive a set of ordinary differential equations to describe

the motion of the bath interface. The droplet shape is modeled by another set of or-

dinary differential equations that govern the weakly-damped oscillation of individual

modes on the droplet interface that hold for small Oh. Both the bath and droplet

models are the result of linearizing about their undeformed states, and thus we an-

ticipate best agreement when deformations are small. The bath and drop models are

coupled using a single-point kinematic match condition and evolved simultaneously in

time. We validate this model with new experimental data as well as direct numerical

simulations. We then apply the validated model over a wide range of parameters

where the relative influence of the hydrodynamic, surface tension, and gravitational

forces on the rebound behavior of the bouncing droplet will be elucidated.

3.2 Experimental Methods

3.2.1 Experimental setup

A series of droplet impact experiments were conducted utilizing two working fluids:

deionized water and silicone oil with viscosity of 5 cSt. A drop-on-demand generator

is used to reliably produce droplets with a maximum variation in the diameter of less

than 1% [Ionkin and Harris, 2018]. This device, along with a schematic of the exper-

imental setup is shown in Figure 3-2(a). The drop generator is entirely 3D printed,

with the exception of a small piezoelectric disk, hardware, and connective tubing.

The deformation of the piezoelectric disk due to an applied voltage pulse acts to ex-
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pel fluid through a small nozzle. As the fluid exits the nozzle, the piezoelectric disk

relaxes, initiating pinch off of the droplets. The droplets then fall under the action

of gravity toward the bath. Two visualizations of droplet impact and rebound are

shown in Figures 3-2(b) and 3-2(c). The drop generator is mounted on a 3D-printed

translation stage, allowing for repeatable changes to the impacting velocity via height

increases of the droplet generator. Directly underneath the drop generator is a 3D

printed fluid bath. The bath is 70 mm in width and length, and 50 mm deep. The

impact location was 25 mm from the front wall of the bath. This impact location

allowed for consistent focus above and below the free surface yet was still sufficiently

far from the front panel that the waves created during impact do not have time to

reflect and interact with the droplet during contact. For the water experiments, the

front and rear walls are constructed using polystyrene that has an equilibrium contact

angle of 87.4� [Ellison and Zisman, 1954]. Being close to 90�, this creates a negligi-

bly small meniscus that allows for detailed photography of the impact from the side

[Galeano-Rios et al., 2021a]. For the silicone oil experiments, we use a shorter bath

window panel, constructed of extruded acrylic and a thin transparent plastic sheet.

The bath was brim-filled to the height of the acrylic window panel, such that the

contact line was pinned with angle held at approximately 90�. The drops are imaged

using a high-speed camera (Phantom Miro LC 311) and illuminated by a Phlox LED-

W back light. Video data is taken at 10,000 frames-per-second (fps) with an exposure

time of 99.6 µs.

3.2.2 Experimental procedure

Care must be taken to ensure that both the fluid interface and the fluid in the reservoir

of the drop generator are contaminant-free, as dust or surfactants can modify the

physics involved. Prior to each experiment, the bath and tubing are thoroughly

cleaned with an isopropyl alcohol solution, flushed with deionized water, and then left

to dry in a fume hood with particulate filtering for 30 minutes. The drop generator

and nozzle are cleansed with an ethanol solution, and then flushed with deionized
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Table 3.1: Relevant parameters and their range of values in our experimental study.

Parameter Symbol Definition Value
Impact speed V0 – 20� 100 cm/s
Droplet radius R – 0.035 cm
Density (water) ⇢ – 0.998 g/cm3

Surface tension (water) � – 72.2 dynes/cm
Kinematic viscosity (water) ⌫ – 0.978 cSt
Density (silicone oil) ⇢ – 0.96 g/cm3

Surface tension (silicone oil) � – 20.5 dynes/cm
Kinematic viscosity (silicone oil) ⌫ – 5 cSt
Gravitational acceleration g – 981 cm/s2
Weber Number We ⇢V 2

0 R/� 0.5� 8.0
Bond Number Bo ⇢gR2/� 0.017� 0.056
Ohnesorge Number Oh µ/

p
�R⇢ 0.006� 0.057

Reynolds Number Re =
p
We/Oh ⇢V0R/µ 15� 280

High speed camera

Droplet generator Piezoelectric disk

Nozzle

Fluid bath

(a)

(b)

(c) (d)

Backlight

Figure 3-2: (a) A rendering of the experimental setup. (b) Experimental montage of
impact of a deionized water droplet on a bath of the same fluid. Images are spaced
0.7 ms apart. (c) Spatiotemporal diagram of a deionized water droplet bouncing. The
image is constructed by taking a single pixel wide stripe of the raw video footage,
and plotting time along the x-axis. Panels (b) and (c) correspond to an impact
of deionized water on a bath of the same fluid with We = 0.7, Bo = 0.017, and
Oh = 0.006. (d) Schematic of the problem.
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water for 5 minutes. Gloves are worn at all times to minimize contamination. The

drop generator is controlled by an Arduino Uno board, with a simple H-bridge circuit

initiating the voltage switching of a DC power supply [Ionkin and Harris, 2018]. The

fluid within the bath is periodically flushed, approximately after every 15 droplet

impacts to reduce surface contamination [Kou and Saylor, 2008]. Overflow from the

flushing is caught by a small lip in the bottom of the bath, which is then drained to

a waste container. There are two syringes connected to the bath, which allow for fine

adjustments of the equilibrium bath depth after flushing.

We collect experimental data for the top and bottom of the droplet during free

flight. During contact, we track the height of the top of the droplet and that of the

center of the deformed free surface. Since the air layer that separates the droplet and

the interface is negligibly thin relative to the scale of the droplet, we assume that

this point is also effectively the location of the droplet’s south pole. Just after the

drop rebounds off the surface, the axisymmetric surface wave created by the impact is

partially in the line of sight of the camera, and obscures the bottom of the droplet for

a brief period during take-off. These data points have been omitted from the bottom

trajectory when reported. The raw video data are post-processed using a custom

Canny edge detection software implemented in MATLAB 2021b, which quantifies

the droplet trajectory, and then computes impact parameters and bouncing metrics

[Galeano-Rios et al., 2021a].

There are several metrics of interest in our study, which we define in what follows.

The maximum penetration depth, �, of a bounce is defined as the position of the

bottom of the droplet at the lowest point in the trajectory (relative to the undisturbed

interface height). In our experiment, the contact time, tc, is defined as the time

duration from which the top of the droplet crosses the height z = 2R to the time the

top of the droplet returns to that height. Due to the nature of visualisation setup it

was impossible to determine precisely when the droplets lost physical contact with

the fluid; however, this always occurred before the top of the drop returned to the

level z = 2R. Each bounce was also characterised by its coefficient of restitution, ↵,

which is defined here as the negative of the normal exit velocity, Ve, divided by the
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normal impact velocity, V0. This parameter ranges between 0 and 1, and is related

to the momentum exchange during impact.

In order to determine the contact time (tc) and coefficient of restitution (↵), a

parabola was fitted using a least-squares method to the incoming and outgoing tra-

jectories, separately, with at least 30 data points prior to impact and at least 40

data points following rebound. The analytical form of the parabolic fit was then

used to extrapolate the time at which the sphere crosses the still air-water inter-

face height (which corresponds to a root of the parabolic function). The derivative

of the parabolic fit function was then computed analytically and its value evalu-

ated at these times in order to calculate the impact speed, V0, and exit speed, Ve

[Galeano-Rios et al., 2021a].

3.3 Linearized quasi-potential fluid model

In this section, we develop a model for droplet impact on a flat fluid interface from

first principles. First, we use the linearized Navier-Stokes equations to model the

flow within the bath and the shape of the bath interface. Then, we use an orthogonal

function decomposition of the bath model to derive a single set of linear ordinary

differential equations (ODEs) that govern the bath mode amplitudes. We then write

a similar model for the droplet interface, which reduces to another set of linear ODEs

governing droplet mode amplitudes. Finally we propose a model for the pressure

distribution and its extent acting on the bath and droplet during contact, couple the

two sets of ODEs together using a single-point kinematic match condition, and solve

the system implicitly using standard numerical integration techniques. A schematic

of the problem is illustrated in Figure 3-2(d).

3.3.1 Bath interface model

The present work models the bath interface dynamics using a linearized, quasi-

potential flow model following the work of [Galeano-Rios et al., 2017]. For the prob-

lem of a droplet impacting on a free interface, the Navier-Stokes equations govern

57



the flow generated by the bath-droplet interaction. Assuming the flow to be in-

compressible, isothermal, and Newtonian, we can define the fluid velocity vector

u = [u, v, w]T = r�+r⇥ and the bath interface shape ⌘ = ⌘(r,⇥, t), Here, � is the

scalar potential and  is the vector stream function. We then linearize the governing

equations and boundary conditions about the undisturbed free surface z = 0. Utiliz-

ing the arguments presented in [Galeano-Rios et al., 2017] and [Dias et al., 2008], we

can recast the governing equations to be

r
2�+ @2

z
� = 0, z  0, (3.1)

@t⌘ = @z�+ 2⌫r2⌘, z = 0, (3.2)

@t� = �g⌘ � 2⌫@2
z
�+

�

⇢
�

ps
⇢

, z = 0, (3.3)

@z� = 0 at z = h0. (3.4)

Here, ps(r,⇥, t) is the contact pressure, g is the gravitational acceleration, (r,⇥, t) =

r
2⌘ is twice the linearized mean curvature of the interface, h0 is the depth of the

undisturbed bath, and ⇢, �, ⌫ = µ/⇢ are the fluid density, surface tension, and kine-

matic viscosity, respectively. In this notation, @() denotes partial differentiation with

respect to the variable given in the parenthesis and r
2 = @2

r
+(1/r)@r+(1/r2)@2⇥. The

tangential stress boundary conditions are automatically satisfied in these approxima-

tions. As detailed in [Galeano-Rios et al., 2017], this leading order theory is valid in

the weakly viscous limit when Re =
p
We/Oh � 1. A similar bath model was used

by [Blanchette, 2016, Blanchette, 2017], although the viscous correction term was not

included in the dynamic boundary condition (3.3).

We assume that the impact occurs in a bath of some viscous fluid which is subject

to two boundary conditions, @n� = 0 on the walls of the bath and @z� = 0 on the

bottom of the bath, where n is the outward facing normal of the walls of the bath

[Benjamin and Ursell, 1954]. The former condition implies that @n⌘ = 0 on the walls

of the container. These conditions correspond physically to a bath where the working

fluid maintains a constant contact angle of 90� at the walls, and has no-flux boundary

conditions along the walls and bottom. Applying these conditions to the governing
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system of equations, an orthogonal function expansion for the unknowns ⌘, � and

their derivatives can be explicitly written.

The orthogonal basis functions Sj,m(r,⇥) ultimately must satisfy

(r2 + k2
j,m

)Sj,m = 0, (3.5)

inside of any bounding curve K that exists on the border of the bath and the boundary

condition of @nSj,m = 0 on K. kj,m are the eigenvalues of the system, and depend

on the choice of the physical domain of the problem. If the boundary curve K is a

circle, the functions become Sj,m = Jj(kj,mr) cos j⇥. Here Jj are Bessel functions of

the first kind and kj,m are the solutions to J 0
j
(kj,mb) = 0, where b is the bath radius.

If we further assume the problem to be axisymmetric, then we can choose j = 0, and

write S0,m = J0(k0,mr). For convenience, we define k0,m = km henceforth. We then

can express the free surface elevation as

⌘(r, t) =
1X

m=0

am(t)J0(kmr). (3.6)

We then re-write all of the unknowns of the axisymmetric bath problem, using (3.1)

and (3.2), as a function of the time varying amplitude coefficients, am(t):

⌘(r, t) =
1X

m=0

am(t)J0(kmr), (3.7)

(r, t) = r
2⌘ = �

1X

m=0

k2
m
amJ0(kmr), (3.8)

�(r, z, t) =
1X

m=0

✓
dam
dt

+ 2⌫k2
m
am

◆
J0(kmr)

cosh km(h0 + z)

km sinh kmh0
. (3.9)

In order to arrive at the final equations of motion for the free surface, we take the

decompositions (3.7-3.9) and substitute them into the dynamic boundary condition
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(3.3). Rearranging, we find

1X

m=0


d2am
dt2

+ 4⌫k2
m

dam
dt

+

✓
�k2

m

⇢
+ g

◆
km tanh (kmh0)am

�
J0(kmr) = �

ps
⇢
km tanh (kmh0).

(3.10)

Each wave mode in the bath is described by a forced, damped harmonic oscillator

equation.

3.3.2 Droplet interface model

Additionally, we wish to recover a similar set of equations that describe the gravity-

capillary waves present in the droplet, and then couple these equations to the motion

of the bath. The full derivation of the droplet oscillation model can be found through-

out prior works [Lamb, 1924] [Tsamopoulos and Brown, 1983, Courty et al., 2006]

[Chevy et al., 2012, Balla et al., 2019] and is briefly summarized below.

We begin by utilizing spherical harmonics to decompose the droplet radius in a

spherical domain,

⇠(✓, t) = R +
1X

l=1

lX

n=�l

�n

l
(t)Y n

l
(cos ✓,�), (3.11)

with Y n

l
= P n

l
(cos ✓)ein�. Due to the axisymmetry of the problem, we set n = 0 and

the spherical harmonics reduce to associated Legendre polynomials, P n

l
(cos(✓)). For

convenience, we write �n

l
= �l henceforth. We assume that the velocity potential takes

the same form as the decomposition of the interface [Lamb, 1924, Balla et al., 2019].

We then turn to an energy conservation equation of the form

dT

dt
= Ẇ � ✏, (3.12)

with T = K + G, Ẇ , and ✏, as the total energy (sum of the kinetic energy K and

potential energy G) of the drop, the rate of work done on the droplet interface,

and the viscous dissipation, respectively. We can express T , Ẇ , and ✏ using the

decomposition (4.1), and substitute these expressions into the conservation of energy

equation. Then, utilizing the linearized kinematic boundary condition yields a set of
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forced, damped harmonic oscillators that describe the amplitude of each individual

spherical mode,

1X

l=1


d2�l
dt2

+ 2↵l

d�l
dt

+ !2
l
�l

�
=

1X

l=1


�
(2l + 1)l

2⇢R

Z
⇡

0

ps(✓) sin ✓Pl(cos ✓)d✓ + g�1l

�
.

(3.13)

We drop the sums, and arrive at the result

d2�l
dt2

+ 2↵l

d�l
dt

+ !2
l
�l = �

(2l + 1)l

2⇢R

Z
⇡

0

ps(✓) sin ✓Pl(cos ✓)d✓ + g�1l, (3.14)

with

↵l = (2l + 1)(l � 1)
µ

⇢R2
, (3.15)

!2
l
= l(l � 1)(l + 2)

�

⇢R3
, (3.16)

and �1l is the Kronecker delta function. This model is valid in the weakly viscous

limit, when Oh ⌧ 1. An extension of the free droplet model to arbitrary Oh

can be found in other prior works [Chandrasekhar, 2013, Moláček and Bush, 2012,

Miller and Scriven, 1968].

3.3.3 Pressure forcing during impact

There is still an additional unknown in the bath mode (3.10) and drop mode (3.14)

equations: the applied pressure distribution ps(r, t). This is generally a function of

the properties of the fluid medium, the impacting speed of the object, the shape of the

impacting object, and the motion of the gas that surrounds the fluid. However, in this

work, we will assume that the viscosity of the ambient gas is small relative to the fluid

bath such that the flow within the small air film is negligible, and the pressure acts

solely to apply an upwards hydrodynamic force on the droplet. In non-dimensional

terms, we can construct two additional restrictions for our model, ⇢g/⇢ ⌧ 1 and

Oh g = µg/
p
⇢�R ⌧ Oh following prior work [Moláček and Bush, 2012]. In the

current experimental and direct numerical simulation work, ⇢g/⇢ ⇠ O(10�3) and
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Oh g ⇠ O(10�4), thus the influence of these two additional parameters is indeed

negligible. We have verified this for our typical experimental parameters through

DNS, and find that both a 4-fold increase and decrease in the ambient density and

viscosity from air properties at standard temperature and pressure (STP) produces

negligible changes to the trajectory, instantaneous shape of the droplet, and free

surface shape throughout the interaction of the droplet and bath (see section (3.6)).

The radial extent of the pressure distribution is generally unknown for impact

problems, and constitutes an additional problem that we must solve. In the present

work, we assume that this unknown pressure distribution takes the form

ps(r, t) =
F (t)

⇡R2
Hr(r/rc(t)) (3.17)

where F is the instantaneous magnitude of the contact force, evaluated at r = 0 and

Hr is an assumed spatial profile of the pressure in the contact region. For this distribu-

tion, we can use a function that resembles the true shape of the pressure distribution

during contact. The contact region, Ac, will be assumed to a simply-connected disk,

following [Galeano-Rios et al., 2017] and [Korobkin, 1995]. This allows us to write a

single unknown rc(t) to fully describe the temporal evolution of this region of contact.

[Blanchette, 2016, Blanchette, 2017] used a fixed parabolic pressure shape function

Hr(r) =

8
><

>:

C
�
1� ( r

R
)2
�

r  R

0 r > R.
(3.18)

Here, C is the constant magnitude of the pressure at r = 0 and R is the unde-

formed radius of the droplet. [Blanchette, 2016, Blanchette, 2017] chose the value of

the magnitude C such that
R

b

0 psrdr = ⇡R2. Thus, the pressure acting on the bath

interface in the respective models had a constant pressure shape function Hr for all

times during contact. However, simulation results from [Galeano-Rios et al., 2017,

Galeano-Rios et al., 2021a] show that the shape of the pressure distribution at the

surface of a fluid bath due to an impacting, non-wetting sphere is flatter and more sim-

ilar to a top-hat function for most times, and that the spatial extent of the distribution
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changes continuously with time during impact. Additionally, for a droplet impacting

on a solid surface, the pressure in the air film has been inferred by [de Ruiter et al., 2015b].

The air film thickness during a bounce was measured using interferometry and the

pressure estimated using a lubrication model. The film pressure in both the impacting

and rebounding regimes is approximately uniform, with deviations from uniformity

only near the edge of the film. In related work, the impact pressure between a droplet

and a wettable solid substrate has been studied extensively by [Mandre et al., 2009]

and [Mani et al., 2010], and their results indicate that the impact pressure increases

sharply near the contact line, likely a consequence of the decreased air film thickness

in that region. For the case of droplets bouncing on a deep pool, [Tang et al., 2019]

measured the air film thickness and found the film thickness to be significantly more

uniform in both impacting and rebounding stages for We values similar to those ex-

plored in the present work, presumably as a result of the deformability of the substrate

and impactor. Our predictions from direct numerical simulation similarly suggest a

more uniform air film thickness for the present problem, and a nearly uniform pres-

sure profile during all stages of rebound.

We will use a simple polynomial that resembles a smoothed top hat in this work,

with

Hr(r/rc(t)) =

8
><

>:

C
⇣
1� ( r

rc(t)
)6
⌘

r  rc(t)

0 r > rc(t).
(3.19)

In order to remain consistent with our linearization, we do not allow rc to exceed

R. Requiring that the integral of the pressure over the contact area is F (t), we find

Z
b

0

Hr(r/rc)r dr =
R2

2
, (3.20)

which sets the constant C in the pressure shape function Hr(r/rc). Our bath model

relies on the decomposition of the fluid motion into a linear superposition of infinitely

many waves with wavenumbers km. Therefore, we apply a similar decomposition to

this pressure function ps =
P1

m=0 dmJ0(kmr). Since we are working in a cylindri-
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cal domain, we will choose the zeroth order Bessel function of the first kind as our

orthogonal basis function, and thus the dm are the Fourier-Bessel coefficients of the

function Hr,

dm =
2

(bJ1(km))2

Z
b

0

Hr(r)rJ0(kmr)dr, (3.21)

with the domain extending from r = [0, b]. The reconstruction of the top-hat func-

tion in Fourier-Bessel space converges too slowly to be of practical use [Storey, 1968],

also noted by [Blanchette, 2016], and as such we use a polynomial expression that

resembles a smoothed top hat. Additionally, we tested higher order polynomials (cor-

responding to a larger flat region), and found increasingly poor convergence behavior,

similar to that of the top hat (see section (3.6) for a case study on the sensitivity of

the results to the choice of shape function). The ultimate choice of shape function

used here thus represents a practical compromise.

Substituting in the definition of the pressure (3.17) into (3.10), performing the

Fourier-Bessel decomposition, we find

d2am
dt2

+ 4⌫k2
m

dam
dt

+

✓
�k2

m

⇢
+ g

◆
km tanh (kmh0)am = �

F

⇢⇡R2
dmkm tanh (kmh0),

(3.22)

which govern the evolution of bath wave modes m. Similarly, substituting the pressure

(3.17) into (3.14), we write

d2�l
dt2

+ 2↵l,0
d�l
dt

+ !2
l,0�l = �

F

2⇡⇢R3
cl(2l + 1)l + g�1l. (3.23)

The coefficients cl result from the mode decomposition of the projection of the pressure

into spherical space,

cl =

Z
⇡

0

Hr(✓) sin(✓)Pl(cos ✓)d✓, (3.24)

which naturally arise in the derivation of equation (3.14). Additionally, the definition

of the pressure (3.17) reduces the governing equation of the l = 1 “translational” mode

to
d2�1
dt2

= �
F

m
+ g, (3.25)
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which clearly governs the droplet center of mass motion �1 = �zcm. Evidence from

the simulations of [Galeano-Rios et al., 2017] indicates that impact trajectory is very

sensitive to the instantaneous size of the contact area. Utilizing a constant pressed

area for the pressure, as done in [Blanchette, 2016], does not produce results that

compare well with experiment, particularly for cases of small We. Figure 3-12 in

section (3.6) depicts how the choice of this pressure shape function modifies the pre-

dicted trajectory of the droplet for typical experimental parameters. The trajectory is

largely insensitive to the choice of pressure shape function, but incorporating a time-

dependent contact radius is essential for agreement. The method for determining

both F (t) and rc(t) are discussed in the next section.

3.3.4 Modeling contact

The contact force F (t) is determined through the use of a “1-Point” kinematic match

(1PKM) condition. Essentially, we enforce contact only at a single point; the center

of our axisymmetric domain. Thus, the additional constraint can be written as

⌘(r = 0, t) = zcm(t)� ⇠(✓ = 0, t) =
1X

m=0

am(t) = zcm(t)�

 
R +

1X

l=2

�l(t)

!
. (3.26)

This additional constraint allows us to determine the unknown contact force F (t).

Contact between the droplet and the bath ends when the magnitude of the contact

force as predicted by the kinematic match becomes negative. We note that this 1PKM

model is a significant simplification of the full kinematic match successfully used to

study related impact problems [Galeano-Rios et al., 2017, Galeano-Rios et al., 2019,

Galeano-Rios et al., 2021a]. The full kinematic match predicts the evolution of the

contact area and the contact pressure distribution (without requiring an assumption

for Hr) by imposing natural geometric and kinematic constraints, essentially consid-

ering additional equations to solve at each time step. The algorithm requires iteration

at each time step, and the minimization of a tangency boundary condition is used to

determine the correct contact area and pressure shape.

Lastly we turn to the unknown contact radius rc(t). By not restricting the de-
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formations of the bath and droplet interface with the use of additional tangency and

distributed kinematic match conditions, we find that the results of our simulation

consistently produce interfacial shapes that cross each other. The amount of overlap

between the two interfaces is generally small, for instance, in the comparison in Figure

3-3 the maximum overlap is less than 0.05R. However, we can use the predictions

from both interfacial models to determine the exact location where the two interfaces

cross and separate, and use this as the instantaneous radius of contact rc(t). Thus, at

each time, contact between the bath and drop is ensured at both r = 0 and r = rc(t).

In order to enforce contact within the entirety of the contact region, a full kinematic

match would be required - this circumvents the need for any assumptions on the pres-

sure profile shape, but is substantially more computationally expensive. Our contact

radius criterion is similar to that of the numerical model presented in prior work on

droplet rebound from solid substrates [Moláček and Bush, 2012]. While this method

is unphysical, it yields accurate predictions for the contact radius as compared to

DNS (Figure 3-3(b)).

3.3.5 Summary

Choosing a timescale of t� =
p
⇢R3/� (with ⌧ = t/t�), a length scale of R, and

a force scale of 2⇡�R (with f = F/2⇡�R), we recast the governing equations in
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non-dimensional form as

⌘(r, ⌧) =
MX

m=0

am(⌧)J0(kmr), (3.27)

⇠(✓, ⌧) = 1 +
LX

l=2

�l(⌧)Pl(cos ✓), (3.28)

d2am
d⌧ 2

+ 4Ohkm
2dam
d⌧

+
�
km

2 +Bo
�
km tanh (kmh0)am =� 2fdm,0km tanh (kmh0),

(3.29)

d2�l
d⌧ 2

+ 2Oh (2l + 1)(l � 1)
d�l
d⌧

+ l(l � 1)(l + 2)�l =� fcl(2l + 1)l +Bo �1l,

(3.30)

d2zcm
d⌧ 2

=
3

2
f � Bo , (3.31)

⌘(0, ⌧) = zcm(⌧)� ⇠(✓ = 0, ⌧). (3.32)

Equations (3.29) and (3.30) describe the evolution of the bath and droplet oscillation

modes, respectively. Equation (3.31) governs the vertical motion of the droplet’s

center of mass. Equation (3.32) couples these equations all together, with r = 0 as

the single point of “contact” enforced between the droplet and the bath and allows

for determination of the unknown f(⌧). These equations are solved using standard

ordinary differential equation numerical integration techniques. The shape of the

bath and droplet can be reconstructed at any time t via the sums in equations (3.27)

and (3.28), respectively.

The complete model is valid when Re =
p
We/Oh � 1 and Oh ⌧ 1. Also,

since the model is linearized about the undeformed state, we anticipate it to hold

when deformations remain small, further suggesting Bo ⌧ 1 and We ⌧ 1. However,

we later demonstrate through direct comparison with experiment and DNS that the

model remains predictive even for moderate We.
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3.3.6 Numerical methods

We solve these equations using a backward Euler method, ensuring a minimum

of 100 time steps within the inertio-capillary time t�. An implicit method was cho-

sen, following [Galeano-Rios et al., 2021a], as the instantaneous size of the pressure

distribution acting on both the droplet and bath at the next time step is unknown.

Treating the pressure explicitly on either the droplet or the bath can lead to non-

physical behavior in the system. We used M = 150 modes for the bath interface and

L = 55 modes for the droplet interface. These values were determined by running

simulations of a We = 0.7, Bo = 0.017, Oh = 0.006 impact and assessing conver-

gence as described in what follows. First, we kept the number of droplet modes fixed

at L = 15 and increased the number of bath modes from 30 to 500 in increments

of 25. Then, the simulation was run again, fixing the number of bath modes at 75

and increasing droplet modes from 15 to 200. Sufficient convergence was determined

if the maximum absolute value of the difference in center of mass trajectories dur-

ing contact changed by less than 1%. Finally, both the droplet and bath number

of modes were increased simultaneously, and convergence was still observed. These

values are similar to comparable to those found in [Blanchette, 2016] (M = 200, using

sine functions as the basis functions in a square bath), and [Moláček and Bush, 2012]

(L = 150, but found good accuracy in comparison to experimental data at L = 20).

Additionally, once mode convergence was determined, we decreased the time step of

the simulation in increments until time step convergence was similarly reached using

the same criterion. Unexpectedly, in a fully-converged simulation, there is a time

step threshold below which the algorithm results in unstable oscillations in the mag-

nitude of F (t). This time step threshold is typically at least three orders of magnitude

smaller than t�. This apparent instability deserves awareness and future attention,

but does not affect the results presented in the present work. The bath size was set

to b = 25R which was determined to be sufficiently large such that reflected waves

did not influence the droplet during impact. In order to find the instantaneous con-

tact radius, we take two line segments from the reconstruction of the droplet and
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bath interface shapes. From these we can write a linear system of equations for

four unknowns: the (r, z)-pair of the intersection location, the normalized distance

from the starting point of the first line segment to the intersection, and the normal-

ized distance from the starting point of the second line segment to the intersection

[Schwarz, 2022]. We then loop over every line segment to find every intersection.

We take the largest of this set as rc(t). In the reconstructions of the interfaces at

each time step, at least 5000 points are used in both ✓ and r to ensure that error is

minimized. All code associated with the implementation of the model is available at

https://github.com/harrislab-brown/BouncingDroplets.

3.4 Results

In this section, we first present the results of a direct comparison between experiment,

quasi-potential model, and DNS for a single impact We . Then, we vary We for two

working fluids, and compare the results of the three different impact metrics between

the experiment, DNS, and model. Having validated the model and DNS, we then run

sweeps over Bo and Oh to deduce the effect that these non-dimensional constants

have on droplet rebound metrics, and compare predictions to existing experimental

data sets available in the literature.

3.4.1 Comparison to experiment

We first consider a single impact of a deionized water droplet with R = 0.35 mm. A

direct comparison of the trajectory results of the model, DNS, and the experiments

is depicted in Figure 3-3(a). We find excellent agreement for the top, center of

mass, and bottom trajectories between the experiment, quasi-potential model, and

DNS. Additionally, we make a direct comparison between the quasi-potential model

and the DNS for the prediction of the radius of contact in Figure 3-3(b). During

impact, the quasi-potential model accurately predicts the instantaneous contact area,

as well as the maximum contact area. The DNS, which accurately resolves the air

film, shows that a finite region of contact is already developed prior to impact. At
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Figure 3-3: Rebound of a R = 0.35 mm deionized water droplet from a bath of the
same fluid corresponding to We= 0.7, Bo= 0.017, and Oh = 0.006. (a) Trajectory
comparison between the experiment (red dashed line with typical variation shown
as dotted red lines), DNS (black dashed line), and quasi-potential model (blue solid
line). (b) Instantaneous contact radius, normalized by the undeformed radius R,
as a function of time for the quasi-potential model and DNS. (c) Maximum width
of the droplet w, as a function of time for the quasi-potential model and DNS. (d)
Comparison of droplet shape between experiment, DNS, and quasi-potential model.
Video supplementary material is available.
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Figure 3-4: (a) Coefficient of restitution, (b) contact time, and (c) maximum pene-
tration depth for a R = 0.35 mm deionized water droplet rebounding from a bath of
the same fluid as a function of We (with Bo = 0.017 and Oh = 0.006). Error bars
on experimental data points are quantified as the standard deviation of at least 5
experimental trials. Predictions of the quasi-potential model are shown as blue solid
lines, DNS as black dashed lines.
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Figure 3-5: (a) Coefficient of restitution, (b) contact time, and (c) maximum pen-
etration depth for a R = 0.35 mm 5 cSt oil droplet rebounding from a bath of the
same fluid as a function of We (with Bo = 0.056 and Oh = 0.058). Error bars on
experimental data points are quantified as the standard deviation of at least 5 exper-
imental trials. Predicitions of the quasi-potential model are shown as blue solid lines,
DNS as black dashed lines.
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t/t� > 3, the two models deviate from each other, and this is most likely due to

suction effects as the droplet pulls away from the surface. These effects cannot be

predicted while neglecting the motion of the air, as in the current quasi-potential

model, however do not appear consequential to the overall droplet trajectory. A

comparison between the two models for the maximum width of the droplet is depicted

in Figure 3-3(c). As is the case with the contact radius, the deformation of the droplet

in the DNS occurs slightly before that of the quasi-potential model, as the pressure

in the film is already building prior to contact. This leads to an overall phase shift of

the oscillation between the models, although the maximum value for the deformation

between both models remains in very good agreement. We also compare the droplet

and interface shape between the experiments, DNS, and linearized model can be

seen in the panels of Figure 3-3(d). The impact is depicted for six different instants

during contact. As the droplet deforms the interface, a capillary wave travels from the

impact location to the north pole of the droplet. The collapse of this wave onto itself

occurs just before the time of maximum deformation of the bath, and corresponds

to the maximum deformation of the droplet. After this time, surface tension in the

bath begins to act to restore the equilibrium, having redistributed some of the initial

impact energy in the form of interfacial waves. The droplet remains mostly spherical

as the bath relaxes, until contact is lost. During free flight, the droplet oscillates as

an underdamped harmonic oscillator, dissipating additional energy through viscosity.

Both the DNS and experiment show slightly stronger oscillations in the top of the

droplet as compared to the model, to the point which the instantaneous slope at the

top is occasionally close to zero. Overall, the DNS and quasi-potential model are in

excellent agreement and predict the bath shape, droplet shape, and droplet trajectory

with high accuracy for these parameters.

As we begin to explore the larger parameter space, we consider three different

output parameters for the rebounds, namely: coefficient of restitution (↵), contact

time (tc), and maximum surface deflection (�). As mentioned in section 3.2.2, given

the experimental difficulty to accurately determine the time of surface detachment

of the droplet, contact time, tc, is defined in the experiment as the interval between
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the two instances when the north pole of the droplet crosses level z = 2R and the

coefficient of restitution, ↵, is defined as minus the ratio of the vertical velocities at

those times. For the model and DNS, we define the metrics in the same way, but when

the center of mass of the droplet crosses z = R. This is chosen because a measure on

the center of mass more accurately describes the total translational energy transfer

from the droplet. However, in comparing the results from the model and DNS using

both top (measured at z = 2R) and center of mass (measured at z = R), we found

a typical difference of 2% for ↵ and tc/t� in the silicone oil experiments, and 5% for

the same parameters in the deionized water experiments.

Figure 3-4 outlines a variation of impact We for a deionized water droplet onto a

water bath. In this parameter sweep, the coefficient of restitution generally decreases

as the We number is increased, eventually saturating at a value just below 0.3,

and remaining nearly independent of the We number thereafter. The contact time

also decreases as the We number is increased, but remains relatively independent of

the We number at an earlier value, consistent with results found for impact on a

solid surface [Richard et al., 2002] and for previous experiments for impact on a deep

pool [Zhao et al., 2011]. The maximum penetration depth increases monotonically

with We . We find good agreement between the model, DNS, and experiments with

regard to the restitution coefficient, contact time, and maximum surface deflection

for these experiments. Additionally, the quasi-potential model is able to predict ↵ for

the entire range of experiments. Both the model and DNS slightly underpredict the

dimensionless contact time at intermediate We , yet do agree with the experimental

data for We  1. The quasi-potential model also underpredicts the penetration

depth and contact time at moderate We . Nonlinear effects associated with larger

deformation have been neglected in this model, and are most likely the cause of this

discrepancy.

Figure 3-5 depicts a We number variation using 5 cSt silicone oil. In non-

dimensional terms, this represents an increase in both the Bo and Oh numbers.

Similar trends in tc/t� and � are observed for the silicone oil as compared to the

deionized water. However, ↵ tends to generally increase with We in this case, as
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opposed to water which showed the opposite trend. The quasi-potential model ac-

curately predicts ↵ for almost the full range of We , with slight underprediction for

We < 2. Similar to the water case, the quasi-potential model underpredicts tc/t�

and � at intermediate We , with the DNS capturing these metrics more accurately.

Although not verified experimentally, the model and DNS predict that droplets with

very, very low We numbers cease to return to their original height at all. Note that

We  0.5 is challenging to explore experimentally for these parameters, as pinch

off of the droplets from the generator induces oscillations that need to dampen out

prior to impact. The short free flight time and low viscosity of these extremely

low We cases mean that there is still oscillation present at impact, which has been

shown in prior work to influence rebound dynamics in related droplet impact problems

[Biance et al., 2006, Yun, 2018].

3.4.2 Inertio-capillary limit

The validated quasi-potential model can now be used to explore other sets of param-

eters. In particular, based on the assumptions of the model, we expect the model to

remain accurate (and even perhaps improve) for cases of even smaller Bo and Oh

than achieved in experiments. As a grounding point, we first turn our attention to the

pure inertio-capillary limit, where both gravitational and viscous effects are ignored

(i.e. Bo = 0 and Oh = 0). This case reduces the number of dimensionless parameters

that describe the physical problem to just one: the We number. The results in the

inertio-capillary limit are presented in Figure 3-6, along with the droplet and bath

shape predictions for various We . The penetration depth �⇤ increases monotonically

with increasing We , as found for both the water and oil experiments. Additionally,

the contact time t⇤
c

decreases before becoming mostly independent of We . However,

in this limiting case, the coefficient of restitution ↵⇤ monotonically decreases with

We and does not have a local maximum in the restitution coefficient, and droplets

can even retain a majority of their impacting energy at sufficiently low We . Further-

more, the coefficient of restitution then remains nearly independent of We above We

> 1.75, and is predicted to saturate to a value of approximately ↵⇤
s
= 0.31.
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Figure 3-6: (a-c) Rebound parameters of a droplet in the inertio-capillary regime (as
denoted by the asterisk). d) Droplet and bath shape in the pure inertio-capillary
regime (Bo = 0, Oh = 0) for three different We.
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3.4.3 Influence of viscosity and gravity

We then individually probe the parameter space by increasing either Bo or Oh .

These variations are presented in Figures 3-7 and 3-8. The result of increasing Bo ,

while keeping Oh constant (yet negligibly small), is depicted in Figure 3-7. At low

values Bo , the curves converge to the inertio-capillary limit as presented in the prior

section. For a given We , the coefficient of restitution decreases monotonically with

Bo , until eventually ceasing to return to its original height. At intermediate values of

Bo the curves exhibits an interesting non-monotonic dependence on We , with a local

maxima at finite We . Furthermore, the contact time of the droplets is predicted to

increase with increasing Bo . These qualitative trends are consistently reproduced by

the DNS, with satisfactory quantitative agreement between the quasi-potential model

and DNS for Bo . 0.1. For larger Bo , and for the highest We cases explored, the

model generally underpredicts the coefficient of restitution as compared to the DNS.

Increasing Oh while keeping Bo negligibly small, is shown in Figure 3-8, and also

predicts a monotonic decrease in the restitution coefficient, with curves converging

to the inertio-capillary limit for small Oh . Unlike the Bo variation, the shape of the

curve remains relatively unchanged. The non-dimensionalized contact time changes

only marginally, even over an order of magnitude increase in Oh . Very similar trends

are predicted by DNS, with models diverging quantitatively beyond Oh & 0.1, con-

sistent with a breakdown of the weakly viscous modeling assumptions. For larger Oh ,

the quasi-potential model overpredicts the coefficient of restitution and underpredicts

the contact time, as compared to the DNS.

3.4.4 Scaling analysis

In this subsection we present scaling arguments to rationalize the dependence of the

coefficient of restitution on Bo and Oh detailed in Figures 3-7(a) and 3-8(a), respec-

tively. As revealed in the prior section, at a fixed We , the coefficient of restitution

decreases monotonically from the inertio-capillary limit (Fig. 3-6(a)) as either Bo or

Oh is increased. Due to the number of parameters involved, in order to proceed, we
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Figure 3-7: (a) Coefficient of restitution and (b) contact time as a function of the Bond
number Bo . Viscous effects are set to be finite but negligible, with Oh = 6 ⇥ 10�4.
Predicitions of the quasi-potential model are shown as solid lines, DNS as individual
markers. The vertical dashed lines in panel (b) reference the critical We for each Bo
below which droplets do not bounce.
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Figure 3-9: (a) Coefficient of restitution predictions from the quasi-potential model
for Oh = 6 ⇥ 10�4 (Fig. 3-7(a)) re-plotted as informed by the scaling in equation
(3.35). (b) Critical We as a function of Bo ; the points are predictions from the
quasi-potential model, and the dotted curve is a parabolic fit (We c = 11.43Bo 2/↵⇤2)
consistent with the scaling in equation (3.36). (c) Coefficient of restitution predictions
from the quasi-potential model for Bo = 1⇥10�3 (Fig. 3-8(a)) re-plotted as informed
by the scaling in equation (3.37).

will assume that this additional energy transfer (or loss) due to weak gravitational

(or viscous) effects is independent of the baseline energy transferred (�E⇤) in the

inertio-capillary limit. Mathematically, this assumption can be expressed in the form

↵2 =
Eo ��E⇤

��Eg,µ

Eo

= ↵⇤2
�
�Eg,µ

Eo

, (3.33)

or

↵⇤2
� ↵2 =

�Eg,µ

Eo

, (3.34)

where Eo = 2⇡
3 ⇢R

3U2 is the initial droplet kinetic energy, and �Eg,µ is the supple-

mental energy transferred or lost due to gravity or viscosity, respectively. In what

follows, we propose scalings for these energies.

Since gravity is a conservative force, increases in Bo must lead to an overall in-

crease in the deformation (and subsequent oscillation) of the bath and droplet. In

the capillary-dominated regime, the gravity-induced deformation can be estimated to

scale with ⇢R3g/�, corresponding to an additional surface energy scaling as �Eg ⇠

⇢2R6g2/�. Normalizing this estimate by the incident kinetic energy, we find an addi-
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tional fractional energy transfer to droplet-bath deformations that scales as

�Eg

Eo

⇠
⇢R3g2

�U2
=

Bo 2

We
. (3.35)

Motivated by equations (3.34) and (3.35), we re-plot the data from Figure 3-7(a) in

3-9(a), and find a satisfactory collapse. In particular, the scaling in equation (3.35)

correctly predicts that bounces at lower We will be more heavily penalized in terms of

their coefficient of restitution. This inequity rationalizes the observed non-monotonic

behavior of ↵ with We predicted for intermediate Bo (Figure 3-7(a)). Furthermore,

equations (3.34) and (3.35) suggest a scaling for the “critical” Weber number We c

below which the droplet ceases to bounce (i.e. ↵2 < 0):

Wec ⇠
Bo2

↵⇤2 . (3.36)

The data for the critical Weber number as predicted by the quasi-potential model is

shown in Figure 3-9(b), and follows the proposed scaling in equation (3.36). We note

that [Blanchette, 2016] observed a parabolic scaling for the critical Weber number

with Bo in prior work, also finding this threshold to be largely independent of Oh .

Upon the inclusion of viscosity, there is viscous dissipation in the drop and bath

that now occurs during contact. The rate of viscous energy dissipation (per unit

volume) can be estimated to scale as µ(ru)2 ⇠ µU2/R2. Assuming a characteristic

fluid volume R3, we find a viscous energy dissipation rate that scales like µU2R.

As demonstrated in the prior sections, the contact time tc ⇠ t�, and thus we may

estimate the additional fractional energy loss during contact as

�Eµ

Eo

⇠
µ

p
�⇢R

= Oh. (3.37)

Replotting the data from Figure 3-8(a) in 3-9(c) shows that apart from the very lowest

We cases considered, the curves collapse to a single line, confirming the proposed

scaling. For all We , the curves are approximately linear in Oh (consistent with

equation (3.37)) with the slope evidently depending on We for the smallest We
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cases.

In summary, our models predict an additional energy transfer (or loss) over the

pure inertio-capillary limit when gravitational (or viscous) effects are introduced. Our

scaling suggests that gravity leads to additional deformations in the system, coming at

an additional energetic cost. Additionally, viscosity provides a mechanism for energy

dissipation, occuring over the finite contact time of the droplet. Computing the vari-

ous energies directly in direct numerical simulations (such as in [Sanjay et al., 2022])

may provide additional insight to the remaining subtleties present in the data.

3.4.5 Comparison to prior literature data

In the works of [Jayaratne and Mason, 1964, Bach et al., 2004, Zhao et al., 2011,

Zou et al., 2011, Moláček and Bush, 2013] there is a reported saturation in the en-

ergy transfer from the drop during rebound at modest We > 1 and low Oh , as

measured by the coefficient of restitution. The exact value of the saturation restitu-

tion coefficient does seem to vary however, from 0.2 in [Moláček and Bush, 2012] for

more viscous drops, to 0.3 in [Bach et al., 2004, Zhao et al., 2011], to as low as 0.1

[Zou et al., 2011] for large Bo impact scenarios. Remarkably, recent experiments on

rebound of liquid metal droplets in viscous media also showed similar values of the

coefficient of restitution with ↵ = 0.27 [McGuan et al., 2022]. A similar saturation

is also observed in our experimental results presented herein, with water droplets

generally bouncing higher that the 5 cSt silicone oil droplets. In Figure 3-10, we

overlay existing available experimental data for ↵ from numerous sources and find

that the prediction from the quasi-potential model accurately captures much of this

data. The grey line represents the extrapolation of data from non-normal impacts by

[Jayaratne and Mason, 1964] over the range of We reported in their work. Data from

the experiments completed in this work utilizing 5 cSt silicone oil and deionized water

are included with error bars. The historical data generally indicates a decrease in ↵

with Bo , as captured by the present model. Despite the relatively large variation in

Oh , the experimental data appear to match the results of the quasi-potential model

quite well.
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Figure 3-10: Comparison of model Bo predictions (Figure 3-7(a)) to existing lit-
erature data where We was reported. The grey markers represent data points
where the exact value of Bo is unknown, with only ranges reported. The grey dot-
dashed line represents the extrapolation of oblique impact data to normal impacts by
[Jayaratne and Mason, 1964]. Data from the experiments completed in the present
work are included with error bars. Studies included here are summarized in Table 3.2

Furthermore, the existing experimental data (apart from a small number of outly-

ing points) is well bounded by the inertio-capillary limit presented earlier. This curve

thus appears to define a universal upper bound on the coefficient of restitution for a

droplet rebounding from a deep pool of the same fluid as a function of We , regardless

of any other parameters.

There is substantially less data available on contact times for low Oh impacts, but

when reported they generally take values within the range of 4�6t� [Zhao et al., 2011,

Moláček and Bush, 2013, Wu et al., 2020].

3.5 Discussion

In this work we have used a combination of custom experiments, state-of-the-art direct

numerical simulation techniques, and a new quasi-potential model to study the bounc-

ing of millimetric droplets on a deep bath of the same fluid in the inertio-capillary
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Table 3.2: Relevant publications and ranges of droplet parameters for experiments
presented in Figure 3-10.

Publication Bo Oh Symbol
[Bach et al., 2004] 5⇥ 10�5

� 2⇥ 10�4 0.31� 0.69 ⌅
[Zhao et al., 2011] > 0.005 > 0.008 C
[Zou et al., 2011] 0.10� 0.48 0.0026� 0.0039 ⇧

[Moláček and Bush, 2013] 0.027� 0.2 0.16� 0.27 �

[Wu et al., 2020] 0.016� 0.04 0.005� 0.006 ⇥

This work 0.017� 0.056 0.006� 0.058 M

regime. Weakly viscous models for the bath and droplet interfaces are coupled to one

another through the use of a simplified kinematic matching condition, and allow us

to make accurate predictions for the droplet trajectory and time-dependent droplet

and bath shapes. Furthermore, the quasi-potential model is relatively efficient to

compute and uses only standard off-the-shelf algorithms, resolving multiple bounces

in less than 5 minutes on a standard desktop computer. Both the quasi-potential

model and DNS are demonstrated to accurately predict the coefficient of restitution,

contact time, and maximum surface deflection, validated by direction comparison to

experiments with two different working fluids.

Starting from the inertio-capillary limit (where both gravitational and viscous are

negligible) in the model, as we increase Bo, we see a decrease in the coefficient of

restitution and an increase in the contact time. Additionally, a local maximum de-

velops in ↵ at low We as Bo increases. As Bo increases further, droplets cease to

return to their original height. Furthermore, as Oh is increased away from the inertio-

capillary limit, a simpler, monotonic decrease in ↵ is observed, with the contact time

remaining almost unchanged for the much of the Oh range explored in this work.

By further comparison with DNS, the complete model is shown to hold in the limit

of small Bo and Oh, and up to intermediate We, provided that the influence of the

intervening gas layer that inhibits coalescence on the overall dynamics is minimal.

These trends can be rationalized using simple scaling arguments, with gravity result-

ing in additional droplet-bath deformations (and thus energy transfer), and viscosity

providing a mechanism for energy dissipation in the fluid during contact. Addition-
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ally, the model can be used to connect much of the existing experimental data on

this particular topic. In particular, the inertio-capillary limit appears to define an

upper bound on the possible coefficient of restitution for droplet-bath impact, with

the value depending only on the Weber number, and saturating to a near constant

value at intermediate We.

The related problem of a droplet impactor rebounding off a solid surface has been

considered in numerous previous works [Anders et al., 1993, Richard and Quéré, 2000,

Richard et al., 2002, Gilet and Bush, 2012]. The dependence of the coefficient of

restitution on the Weber number has previously been reported [Biance et al., 2006,

Aussillous and Quéré, 2006, Gilet and Bush, 2012], and the trend observed in these

studies is similar to what is found in this work for low We and low Bo , however the

typical values of restitution coefficients in these studies are significantly larger. This

is likely due to the fact that a large portion of the initial droplet energy in the present

case is carried away by surface waves excited in the fluid bath. Our general findings

also have many similarities with the investigation of [Galeano-Rios et al., 2021a], in

which non-wetting spheres impact and rebound from a water bath. In particular,

the general trends for maximum penetration depths and contact times are consistent

with the present work. However, spheres with density most similar to that of water

show a consistent monotonic increase in the coefficient of restitution with increasing

We rather than saturating to a near constant value for the case of droplet-bath re-

bound. Furthermore, at intermediate We , coefficients of restitution can take values

as high as ↵ ⇡ 0.5, distinctly greater than otherwise equivalent droplet-bath rebounds

considered in the present work. Evidently, the nature of the impactor and substrate

influences the subtle energy transfer mechanisms across these different capillary re-

bound problems.

The model presented here is highly versatile, with only a single embodiment

thereof considered here in terms of target canonical physical scenario. Future work

will consider the effect of relative surface tension and viscosity, where the droplets are

composed of a different fluid than the bath. Also, in the present work we have specif-

ically selected the size of the bath to be much greater than that of the droplet radius
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to eliminate any possible wave reflection and interaction effects. In [Zou et al., 2013],

experimental results indicate that reducing the size of the bath (such that the im-

pacting wave on the bath has time to travel to the edge and return to the impact

point) can increase the coefficient of restitution with the droplet recovering energy

initially lost to waves. Furthermore, the effects of incident droplet or bath deforma-

tions could be readily studied, and has been shown to influence bouncing behavior

in similar systems [Biance et al., 2006, Yun, 2018]. There are a number of possible

additions to the existing model that could expand its reach to other related problems.

For instance, the model for the droplet deformation can be extended into a regime

where the dynamics of the gas layer does matter, and the gas layer dynamics cou-

pled to the droplet deformation through the use of lubrication equations. The model

can also be adapted to non-axisymmetric domains, or to droplet impacts at varying

angles of incidence. However, in these cases the full kinematic match should be uti-

lized, as the shape of the pressure distribution would likely change at each time step.

Moreover, numerous authors have studied the variety of phenomena that occur when

a droplet impacts another droplet [Qian and Law, 1997, Tang et al., 2012]. Droplet-

droplet collisions are of extreme importance in combustion science [Jiang et al., 1992]

and cloud formation [Grabowski and Wang, 2013], for instance, the general effect

of cloud turbulence acts to increase droplet-droplet interaction, and droplet impact

and coalescence is postulated as the primary mechanism by which warm rain forms

[Grabowski and Wang, 2013]. With such motivation in mind, the present model could

be readily extended to cases where equal and unequal sized droplets impact and re-

bound from one another. Overall, the quasi-potential model developed in this work

has the potential to continue to inspire and inform the rich subject of capillary re-

bounds.
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Figure 3-11: DNS predictions of the trajectory of a deionized water droplet with
R = 0.35 mm in air at We = 0.7 (with Bo = 0.017, Oh = 0.006). The ambient
gas density and viscosity are increased and decreased independently by a factor of 4.
These simulations are compared to the case with the reference case of air properties
at standard temperature and pressure (STP).

3.6 Additional Supporting Information

3.6.1 Influence of ambient gas properties

In order to verify our assumption that the flow within the air layer is negligible

to the droplet and bath dynamics in our parameter regime of interest, we run DNS

simulations where the ambient gas density and viscosity are varied. First, the gas

viscosity is held fixed for air at 21�C and 1 atm and the density is increased by a

factor of four, and then decreased by a factor of four, respectively. Then the variation

process is repeated for the gas viscosity, with density held fixed. The results of these

simulations are presented in Figure 3-11 and are nearly indistinguishable, particularly

during contact.

3.6.2 Influence of pressure shape function

Additionally, we tested several pressure shape functions Hr to assess the relative

influence of this choice. In the simulations show in Figure 3-12 a parabola, 4th-order,
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Figure 3-12: Quasi-potential model and DNS predictions for a deionized water droplet
with R = 0.35 mm corresponding to Bo = 0.017 and Oh = 0.006. Droplet center
of mass trajectories for (a) We = 0.07, (b) We = 0.36, and (c) We = 1.36. (d)
Coefficient of restitution ↵ and contact time tc/t� as a function of We. (e) Plots of
the pressure shape functions Hr(r/rc) tested in this figure, shown for reference.
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and 6th-order polynomial with time varying contact areas set as described in the

modeling section are compared as well as to a parabola with fixed contact radius

rc(t) = R. These results all correspond to Bo = 0.017 and Oh = 0.006 impacts. The

parabola with the fixed contact area performs the most poorly, especially at lower

impact We . At higher impact We , the fixed radius rc(t) = R parabolic distribution

prediction becomes similar to the time evolving parabolic case. For the simulations

presented in this work, the contact radius is defined to have a maximum value of R,

as the projection of the pressure distribution onto the undisturbed spherical surface

is no longer well defined for rc > R. The value for rc(t) quickly saturates to R

at higher impact We , and the agreement between the constant contact radius and

the contact radius model used in the present work improves. Overall, inclusion of

a time-varying contact radius appears necessary to capture the correct trends in ↵

and tc/t� over the range of We presented in this work. In addition, as the order of

the polynomial increases, the shape of the pressure function more closely resembles a

top hat, and the predictions of the model improves as compared to the corresponding

DNS. The 6th-order polynomial was ultimately chosen for the present work, as higher

polynomials (corresponding to broader flat regions) converged more slowly with only

marginal changes in the quantitative predictions.
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Chapter 4

Non-wetting Droplet Impact on a

Rigid Substrate

4.1 Introduction

The next problem that we will study is where a droplet impacts axisymmetri-

cally on a dry, rigid surface. This case has been studied extensively due to the

relatively simple setup of experiments and the wide range of applications. In this

experiment, the droplets can either bounce, wet the surface, or splash. It has been

demonstrated that the most important factor determining the fate of an impact-

ing droplet in this scenario is actually the surrounding fluid [Driscoll et al., 2010,

Mandre et al., 2009, Mani et al., 2010]. The lubricating film that develops has a

large pressure gradient toward the edge of the region of contact, and this pressure

induces an axisymmetric fluid sheet, called a lamella, that ejects out from the region

of impact. The lamella either sticks to the surface, or, if the impact has substan-

tial inertia, breaks up into secondary droplets. These splashes can be modified or

even entirely suppressed by controlling the ambient pressure and surface roughness of

the substrate [Latka et al., 2012]. Droplets can also bounce off of wettable surfaces

[de Ruiter et al., 2015b, Kolinski et al., 2014], via the identical mechanism of droplet

bouncing on a pool where a stable air film is created due to drop deformability. How-

ever, most work on droplet bouncing on rigid substrates has focused on non-wetting
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Figure 4-1: Left : Large water droplets resting on a lotus leaf. Right : Microstructure
of the lotus leaf. The small paraboloids of revolution on the surface of the leaf are
coated with epiticular wax crystals that help produce a static contact angle of 162�
with water. Image from [Neinhuis and Barthlott, 1997], with scale bar of 20µm.

impact or partially wetting impact. There are over 200 known species of plants that

have textured micro-structures on their leaves in addition to wax coatings that keep

the leaves dry, with the most well known example being the lotus, Nelumbo nucifera

[Neinhuis and Barthlott, 1997]. These micro-structures are depicted in the right

panel of figure 4-1. With advances in understanding of the science of wetting, vari-

ous surface treatment methods are available to produce surfaces that are effectively

non-wetting for a variety of different fluids [Tuteja et al., 2007, Ohkubo et al., 2010,

Li et al., 2016, Li et al., 2007, Wang et al., 2020, Yang et al., 2011, Lu et al., 2015].

Typically, there exists two wetting states on a textured substrate, the Cassie-Baxter

state and the Wenzel state, depicted in figure 4-2. In the Cassie-Baxter state, sur-

face microstructures act to trap small gas pockets between the drop interface and

the surface. This effectively reduces the total contact area of the droplet, and allows

the droplet to move freely on the surface. In the Wenzel state, these air pockets

have drained, and the drop has fully wet the surface. Now, moving the droplet be-

comes more challenging, as the surface structures act as "pins", holding the contact

line of the droplet in place as the bulk is deformed. In fact, defects as small as

10 nm can pin the contact line, and create contact line dynamics that cannot be

fully described by continuum mechanics [Colosqui et al., 2016]. Various methods

to make a surface superhydrophobic have been utilized in the literature, from de-

veloping micro- and nanostructures on the surface [Wang et al., 2020, Quéré, 2005],
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(a) (b)

Figure 4-2: Droplets resting on a model surface. Intrinsic surface roughness is rep-
resented by rectangular pillars. Left : In the Wenzel state, the fluid penetrates the
surface layer, creating an equilibrium contact angle ✓w. Right : In the Cassie-Baxter
state, the interstitial gas is trapped in the surface layer, leading to an equilibrium
angle ✓cb > ✓w.

coating the surface with a textured hydrophobic surface layer (typically a wax or

Teflon based spray), or possibly even using photocatalytic materials that transform

as UV light is applied [Lu et al., 2015, Callies and Quéré, 2005]. These superhy-

drophobic surfaces are not perfectly non-wetting, but they have been successfully

modeled as such in prior work [Galeano-Rios et al., 2021a], and exhibit extremely

large equilibrium contact angles ✓c > 160�. Superoleophobic surfaces that prevent

wetting of organic liquids are somewhat more difficult to design, as the extremely

low surface tension of organic liquids would require a substrate with a surface en-

ergy lower than any currently known substance [Tuteja et al., 2007]. However, re-

cent progress has demonstrated that it is possible to make a surface superoleo-

phobic by taking advantage of a different kind of surface structure and coatings

[Tuteja et al., 2007, Li et al., 2016]. Droplet impact on these surfaces has been stud-

ied extensively [Clanet et al., 2004, Richard and Quéré, 2000, Richard et al., 2002]

There is yet another scenario where non-wetting of droplets can occur, one where

no surface treatments are necessary, and that is the well studied Leidenfrost ef-

fect. This effect occurs when a fluid comes interacts with a hot surface which is

above a critical temperature called the Leidenfrost temperature [Harvey et al., 2021,
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Figure 4-3: Three different "non wetting" impact scenarios considered in this chapter.

Pomeau et al., 2012]. In this scenario, the heat flux from the surface is large enough

that some portion of the fluid can levitate on a stable film of its own vapor. Studying

the Leidenfrost effect is extremely accessible, and something that almost everyone

has experienced but may not be aware of. Most people have tried to check if a pan

is hot enough to cook an egg by flicking a little bit of water onto it. Next time you

are cooking breakfast, throw some droplets on the pan and watch as the Leidenfrost

effect scatters the drops about. These droplets are very stable, lasting for minutes on

the hot surface [Biance et al., 2003], much longer than expected as the vapor layer

has the secondary effect of insulating the droplet. These droplets can self propel

[Wang et al., 2021, Linke et al., 2006], stably oscillate [Ma and Burton, 2018], and

bounce repeatedly [Tran et al., 2012, Biance et al., 2006]. Additionally, Leidenfrost

droplets can even launch themselves off the surface from rest via pressure fluctuations

caused by interfacial instabilities and waves [Graeber et al., 2021]. Some literature

has been devoted to understanding the vapor layer which separates the droplet and
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surface via interferometry [Pomeau et al., 2012, Burton et al., 2012]. Mathematical

models have been written to describe the motion of the droplets, as well as the

shapes they take during their lifespan [Sobac et al., 2014, Myers and Charpin, 2009].

There has been work on the so called dynamic Leidenfrost effect, where a non-

negligible droplet velocity modifies the required minimum temperature for this effect

[Tran et al., 2012]. The bouncing of ethanol droplets at oblique angles off hot sur-

faces was studied in detail experimentally by [Anders et al., 1993, Karl et al., 1996].

DNS of the problem were presented in [Karl et al., 1996] with excellent agreement to

experiments for the droplet shape during impact.

Additionally, droplets of low viscosity silicone fluid impacting on extremely viscous

thin films can also bounce [Sanjay et al., 2022, Gilet and Bush, 2012]. The very large

viscosity of the fluid in the film and the high energy dissipation rates present due

to the small thickness effectively eliminates substrate deformation. Thus, the film

acts as non-wetting rigid surface. Another method of creating non-wetting droplets is

through the use of hydrophobic powders. Liquid marbles are droplets of water coated

in hydrophobic powders [Aussillous and Quéré, 2006, Aussillous and Quéré, 2001]. Com-

mon powders utilized in the literature include teflon (PTFE) spheres, glass spheres

chemically treated by silanization [Planchette et al., 2012], polyethylene, hydropho-

bized copper, and lycopodium powder which is derived from the spores of the Ly-

copodium Clavatum clubmoss [Aussillous and Quéré, 2001, Bormashenko, 2011]. Liq-

uid marbles show promising applications in remote gas sensing and as micro bioreac-

tors [Vadivelu et al., 2017b, Vadivelu et al., 2017a, Tian et al., 2010].

4.2 Normal Impact

Across the literature of non-wetting and partially wetting droplets, there are a

number of works dedicated to the dynamic scenario of normal droplet impact. Strik-

ingly, despite the extremely different physics of each experimental setup, the droplet

impact and subsequent bounce show similar dynamics across all known scenarios.

Specifically, in [Anders et al., 1993, Gilet and Bush, 2012, Richard and Quéré, 2000,
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Biance et al., 2006, Planchette et al., 2012, Wang et al., 2022, de Ruiter et al., 2015a],

non-monotonic trends are found in the coefficient of restitution as the impact We is

increased. At very low impact We, droplets dissipate most of their initial impact en-

ergy and do not bounce. As the impact velocity in increased, there is a rapid increase

in the restitution coefficient, approaching unity. Further increase in We decreases the

restitution coefficient, albeit at a much slower rate. Much of the work has focused on

experiments and DNS of these complex, multi-phase fluid structure interactions and

there is a lack of fully predictive, first principles reduced order models that accurately

describe these phenomena. Luckily, the droplet model developed in Section 3.3.2 can

be utilized to study these diverse phenomena. However, as before, we will assume

that the air or vapor film does not induce additional dissipation and solely acts to

prevent contact.

4.2.1 Droplet Interface Model

As outlined in Section (3.3.2) , we re-use the droplet model, summarized here.

⇠(✓, t) = R +
1X

l=1

�l(t)P
n

l
(cos ✓), (4.1)

d2�l
dt2

+ 2↵l

d�l
dt

+ !2
l
�l = �

(2l + 1)l

2⇢R

Z
⇡

0

ps(✓) sin ✓Pl(cos ✓)d✓ + g�1l, (4.2)

with

↵l = (2l + 1)(l � 1)
µ

⇢R2
, (4.3)

!2
l
= l(l � 1)(l + 2)

�

⇢R3
, (4.4)

and �1l is the Kronecker delta function. In this model, we replace the bath interface

model and state that the height of the rigid, non wetting substrate is zero,

hd(t) = 0. (4.5)
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We utilize the "1PKM" model again and write

hd(t) = zcm(t)� ⇠(✓ = 0, t) = zcm(t)�

 
R +

1X

l=2

�l(t)

!
, (4.6)

closing the system and allowing us to determine the unknown contact force. Again,

we assume that this unknown pressure distribution takes the form

ps(r, t) =
F (t)

⇡R2
Hr(r/rc(t)) (4.7)

where F is the instantaneous magnitude of the contact force, evaluated at r = 0 and

Hr is an assumed spatial profile of the pressure in the contact region. In this section,

we will use a 4th order polynomial to model the impact pressure shape,

Hr(r/rc(t)) =

8
><

>:

C
⇣
1� ( r

rc(t)
)4
⌘

r  rc(t)

0 r > rc(t).
(4.8)

We choose this reduced order of the polynomial compared to the previously utilized

6th order polynomial due to the same 1PKM instability that occurred in section 3.4.

The 4th order polynomial is much more stable for this problem.

4.3 Experiments

We complete three separate experiments for each of the impact scenarios depicted in

figure 4-3. We generate droplets with the same droplet generator utilized in section

3.2, taking high speed videos at 10000 fps with a Phantom Miro LC 311 camera. We

set the camera with a slight angle ⇠ 5� such that the time of initial contact is resolved.

For the superhydrophobic coating case, we spray an acrylic sheet with commercially

available Never-Wet Teflon-based spray, which has an equilibrium contact angle with

water of 155� [Galeano-Rios et al., 2021a]. For the Leidenfrost scenario, we utilize a

Thermo-Fischer hot plate, and clamp a carbon steel plate onto the heating element.

The steel plate is first cleaned with soap and water to remove oil residue, then, once
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Figure 4-4: (a) Restitution coefficient as a function of We for a de-ionized water
droplet R = 0.4 mm impacting on a superhydrophobic surface (b) Normalized contact
time as a function of We

dry, it is cleaned again with isopropyl alcohol and a dust free lens cleaning paper. In

order to prepare the surface for the non-wetting oil droplet impact, we 3D print a

custom holding plate with a small indent in the center. The small plate is first cleaned

with a solution of isopropyl alcohol, and the circular indentation in the center is filled

with 0.2 mL of 10000 cSt silicone oil. The surface is then scraped with a clean razor

blade to ensure that there is no local curvature on the interface. We take data and

record a series of bounces. In each case, the droplet can bounce up to 10 times

before coming to rest on the surface. We take each bounce and fit a parabola to

the incoming and outgoing trajectories, utilizing at least 40 data points to minimize

error. From the fitted parabolas, we extract the impact and exit velocities, compute

the restitution coefficient and contact time.

4.4 Model and Experiment Comparison

We summarize the results of the experiments and quasi-potential model in figures

4-4, 4-5, and 4-6. In figure 4-4 the quasi-potential model accurately predicts the

restitution coefficient and contact time up until We ⇠ 2. The experimental data
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Figure 4-5: (a) Restitution coefficient as a function of We for a 2 cSt silicone oil
droplet R = 0.3 mm impacting on a thin, 10000 cSt film. (b) Normalized contact
time as a function of We
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Figure 4-6: (a) Restitution coefficient as a function of We for an de-ionized water
R = 0.35 mm droplet impacting on a superheated metal plate that maintains a
constant temperature of 190�C, which is above the Leidenfrost temperature for this
fluid. (b) Normalized contact time as a function of We
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shows considerable scatter, which is expected due to a lack of control on droplet

initial shape since the data is collected following multiple bounces. However, the data

is centered enough to show the trend. As We is increased, the restitution coefficient

rapidly approaches 0.95, and then decays as the impact speed is further increased. The

same trends occur in figure 4-5, however the magnitude of the restitution coefficient

is decreased. This is expected due to the higher kinematic viscosity of the impacting

droplet. The Leidenfrost droplet impact shows similar trends in data, depicted in

figure 4-6. For all impact scenarios considered in this section, we find that the quasi-

potential model accurately describes the impact, suggesting the air layer or contact

line motion only plays a secondary role in the liquid dynamics, as with the drop-bath

impact case. Furthermore, in all experiments completed in this section, the coefficient

of restitution is substantially higher than the equivalent droplet-bath impacts. When

analyzing the relevant energies, the drop-bath impact problem is dominated by energy

transferred to the highly deformable bath, with the droplet oscillations and dissipation

playing a more minor role.

4.5 Oscillating Plate Experiment

A classical problem in dynamical systems theory is one where an elastic ball

bounces on a substrate that is oscillating vertically. The non-linear coupling induces,

at particular forcing frequencies and accelerations, a form of deterministic chaos.

The ball’s height as a function of time typically displays a period-doubling transition

to chaos as the acceleration of the plate is increased [Holmes, 1982]. The elegance

of this problem is evident, as such a simple experiment can be utilized to produce

extreme cases of complexity. These fundamental interactions can be applied help fur-

ther the understanding of granular materials [Dorbolo et al., 2005, Farkas et al., 1999,

Jaeger et al., 1996] and molecular collisions [Fermi, 1949]. Granular matter deforms

and flows under certain conditions, yet it is static friction that induces energy dissipa-

tion, and metastable states that depend very sensitively on initial conditions dominate

the dynamical evolution of these flows. Within these flows, collisions between par-
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ticles and boundaries are of paramount importance, as such, there exists a need to

fully understand these seemingly simple interactions. The analysis of the bouncing

ball on a plate system is very important in this regard, as typical machinery used

to transport granular materials tends to rely on container vibrations to induce mass

transport [Hongler and Figour, 1989]. Various experiments and mathematical mod-

els have been utilized to analyze the system for the case where the ball is perfectly

elastic ↵ = 1, inelastic 0 < ↵ < 1, and perfectly inelastic ↵ = 0, where ↵ is the coeffi-

cient of restitution [Tufillaro et al., 1992]. Previous studies on the perfectly inelastic

case have explored dynamical regimes of "transmitting" and "absorbing", where the

period-doubling transition to chaos is prevented. Additionally, a numerical study on

the inelastic case has provided evidence that the period doubling transition to chaos

can also be prevented [Luck and Mehta, 1993], and there exists "chattering" regimes

in the dynamics. Interestingly, breaking symmetries in the problem induces entirely

novel dynamics as well. A bouncing inelastic ball on a slightly parabolic surface

has been studied previously [McBennett and Harris, 2016], as well as on a periodic

surface [Halev and Harris, 2018]. Even if the ball bounces perfectly vertically at the

minimum of the surface, horizontal motion can be induced by modifying the curva-

ture at the minimum above a critical threshold. These impacts can have a preferred

direction if left-right symmetries are broken in the problem, leading to regimes of

"walking".

Many models on the inelastic cases assume a constant restitution coefficient, that

is ↵ = C which holds for all impacts, as well as a contact time that is instantaneous

[Tufillaro et al., 1992]. However, for real materials, the inelasticity of impact is a

function of the impact speed and the contact time is finite. As evidenced above, the

non-wetting bouncing droplets have a restitution coefficient that is a function of im-

pact speed. We wish to analyze the system where a non-wetting droplet impacts and

rebounds from an oscillating surface. The experiment that we complete is depicted

in figure 4-7. It is a small bass speaker, mounted on an 80-20 aluminum frame, with

Bluetooth enabled control from a Python-based application. The membrane of the

speaker holds a bolt and linear shaft, and the shaft can be connected to a custom
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Figure 4-7: Setup for oscillating plate experiments.
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3D-printed plate. The small plate is first cleaned with a solution of isopropyl alcohol,

and has a circular indentation in the center, which is filled with 0.2 mL of 10000 cSt

silicone oil. The high viscosity of the oil renders the substrate effectively rigid, as the

short time scale of droplet impact forcing cannot substantially move the free surface

during impact. The surface of the plate is then scraped with a razor blade to ensure

that the oil has no indentations. The plate has a 3-axis accelerometer mounted un-

derneath, which records acceleration data and sends it to the Python application. We

set the frequency and acceleration of the plate, and deposit a single droplet of silicone

fluid in the center of the dimple. The vibrating plate is enclosed by a small acrylic box

to prevent air currents from disturbing the experiment.1 In this section, we utilize

droplets of 2 cSt silicone fluid. Droplets are generated with the same method utilized

in all prior section, see Chapter 3.2. After the droplet bouncing settles into a stable

periodic regime, we step up the acceleration of the plate in uniform steps of 0.05g.

After each increase in acceleration, we hold the forcing acceleration constant for at

least 8 seconds to allow for transient behavior to disappear. The speaker application

has an open-loop control that allows the user to sweep over plate accelerations. The

Python application also ensures that a smooth, overdamped increase to the set point

is achieved so that the droplet does not coalesce with the oil on the plate because of

sudden changes in forcing amplitude during contact. An Allied Vision Mako U-130B

USB camera with a Nikon 200 mm lens takes an single image every plate oscillation,

producing a video file that appears to be strobed at the same frequency of oscillation

as the plate. The camera is triggered with an acceleration threshold, read directly

from the plate’s accelerometer, triggering image capture when the acceleration crosses

the 0g mark from below.

1The author would like to thank Eli Silver and Ray Gresalfi for the design and construction of
the shaker setup.
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4.6 Extension of Droplet Model

In this section, we account for the bottom substrate’s oscillation as,

hd(t) = A0 sin(!st). (4.9)

No other modifications are made to the model. We also define an acceleration pa-

rameter

� =
A0!2

s

g
. (4.10)

This simulation takes substantial time, as we need to wait for unstable transient

solutions to die out at each increase in acceleration. In order to simulate the same

amount of time, we must speed up our code. When the droplet is in free flight, each

individual mode behaves as an underdamped harmonic oscillator, and we can write

down analytical solutions that hold until the next contact occurs. It is possible to

have overdamped droplet modes at high values of l, but for the 2 cSt oil bifurcation

run, we truncate the series before these occur as the dynamics have already converged.

In order to determine the time of next contact, we reconstruct the droplet interface

and measure the trajectory of the south pole of the droplet. We then search for

intersections of the south pole with the oscillating plate. In the nonlinear regime, it

is possible for "skipping" contacts to occur, where the droplet and oscillating plate

begin contact with almost identically matched velocities. This leads to many short

(⇠ �t) contacts and is a numerical artifact associated with the time discretization.

In the experimental system, the lubricating layer which separates the droplet and

substrate provides suction forces, which would smooth out and eliminate such skipping

behavior. Since we do not model these forces, we set each contact to have a minimum

number of time steps, typically 3�t. In free flight, each �l(t) can be described as

�l(t) = Ae�↵l(t�t0) cos (!d(t� t0) + �), (4.11)

where t0 is the last point in time where the droplet and substrate are in contact,

!d =
p
1� ⇣2

l
!l, and ⇣l = ↵l/!l. We solve for the unknown constants � and A using
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the initial conditions �l|t0 and d�l

dt
|t0 , yielding

� = arctan
�(d�l

dt
|t0 + �l|t0↵l)

�l|t0!d

(4.12)

A =
�l|t0
cos �

. (4.13)

The height of the center of mass follows a parabolic trajectory, with

zcm(t� t0) = �
g

2
(t� t0)

2 +
dzcm
dt

|t0(t� t0) + zcm|t0 (4.14)

These analytical models speed up our code substantially, as the drop spends most of

the time in free flight. We start the acceleration sweep at 0.5g, and sweep in steps of

0.025g until we reach 2.4g. We hold the amplitude as fixed for 5 s of simulation time

and discard the first 20 bounces to eliminate transients.

4.7 Results

We drive the system at 50 Hz, and utilize an R = 0.5 mm droplet. The experimen-

tal results are depicted in figure 4-8. Initially, the droplet and plate system exhibit

a period-1 bounce, where the drop contacts once every plate oscillation cycle at the

same relative phase. As the acceleration is increased, we recover the onset of a period

doubling transition to chaos, with a period-2 mode occurring at � ⇠ 0.85, lasting

for a fairly large range of plate accelerations. There appears to be another period

doubling event to period-4 occurring at around � = 1.3. Another period-4, which

due to experimental noise looks similar to period-3, interrupts the chaotic regime at

� = 1.5, beyond which the system becomes increasingly chaotic.

Now, we can utilize our code to see if the model captures this physical transition to

chaos using the same physical paramters as the experiment. We run for 100 simulation

seconds with a time-step of �t = 30µs . The results of this simulation are depicted in

figure 4-10 The model captures the period-1 to period-2 transition, with the model

predicting this event at approximately � = 0.9. This event occurs at approximately
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Figure 4-8: Experimental bifurcation diagram for the bouncing droplet oscillating
plate system for an R = 0.5 mm droplet driven at 50 Hz.
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Figure 4-9: Regimes of R = 0.5 mm droplet driven at 50 Hz. (a) Period-1 at � = 0.7
(b) Period-2 at � = 1.2 (c) Period-4 at � = 1.3 (d) Chaos at � = 2.2.

� = 0.9 in the experimental system as well. The system continues on its bifurcating

path, exhibiting a period-2 to period-4 bifurcation in both the model and experiment

at � = 1.4 The system becomes increasingly chaotic as � is further increased for both

the model and experimental system.
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Figure 4-10: Theoretical bifurcation diagram for the bouncing droplet oscillating plate
system for an R = 0.5 mm droplet driven at 50 Hz.
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Chapter 5

Droplet Impact on Moving Liquid

Layers

5.1 Introduction

Now that we have illuminated some of the finer details of the dynamics of the

normal droplet impact problem, we turn to a scenario which is much more common

in applications, one where the droplet and fluid bath have some relative velocity

between them. In this instance, little is known about the overall dynamics, and in

particular, the regimes of bouncing, coalescing, and splashing are still not well de-

fined. Previous work has focused on streams of droplets impacting at some oblique

angle to an undisturbed bath, and have found that the normal component of the

velocity is sufficient to determine the transition between regimes [Schotland, 1960,

Jayaratne and Mason, 1964] [Bradley and Stow, 1978, Burrill and Woods, 1969]. Ad-

ditionally, the effect of droplet charge on these transitions in physical behavior has

been quantified [Jayaratne and Mason, 1964]. Ultimately, these thresholds are strongly

dependent on the intervening gas layer, and little is known about the lubricating flow

in that layer for non-axisymmetric impacts. Prior work has focused on high energy

oblique impact, and looked at the dynamics of cavity formation and the onset of

splashing [Gielen et al., 2017]. The presence of shear in this lubrication flow has

the potential to produce a rotating flow within the droplet, which has been shown
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Rotating Table

Figure 5-1: Schematic of the moving liquid layer setup. A droplet impacts normally
on a deep layer of the same liquid that is moving at a uniform speed. We utilize
rotation to achieve plug flow in the bath.

in prior work to induce a stable lubricating film that levitates very large droplets

[Sreenivas et al., 1999, Castrejón-Pita et al., 2016, Thoroddsen and Mahadevan, 1997].

These larger droplets then enter into regimes of ’surfing’. Additionally, splashing of a

droplet onto a moving layer produces striking vortices, as the shear difference between

the moving layer and the droplet induces a Kelvin-Helmholtz type instability upon

coalescence [Castrejón-Pita et al., 2016].

5.2 Rotating Table

In this work, we utilize a large rotating table that consists of two concentric

cylinders on a flat PVC plate. The outer cylinder has a diameter of Do = 0.8 m,

and the inner has a diameter of Di = 0.7 m. The height of the cylinders are both

10 cm. The table is filled with working fluid, and is driven by a friction wheel on
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a motor.1The motor is directly controllable, and can continuously vary the angular

rotation rates from [0� 1] Hz, as measured via a rotary encoder placed at the center

axle. We take the centerline velocity at ri = 75 cm as the droplet impact location,

thus the range of table speed is from [0 � 75] cm s�1. At rotation rates above 0.8

Hz, a standing wave appear in the bath and slowly migrates around the table, so we

restrict our analysis from [0 � 0.66] Hz, or [0 � 50] cm s�1 at the centerline. This

wave is most likely the result of a slight warping in the bottom PVC plate. The

fluid in the channel approaches a rigid-body rotation state, with a uniform plug flow.

Before performing experiments, we wait a minimum of 5 min such that the fluid in the

layer is at steady state. Minimal interfacial disturbances are observed for the entire

range of table rotation speeds. As the table rotates, the interface develops a parabolic

surface shape, which only has significant slope at rotation speeds much larger than

that used in this work. In steady state, the surface shape of the fluid in the table can

be written as

h0(r) =
⌦2r2

2g
+ C, (5.1)

where ⌦ is the angular velocity of the table, r is the radial coordinate as measured

from the center of rotation, and C is a volume dependent constant. The surface slope

is dh0
dr

= ⌦2 r

g
, and thus at the maximum table speed utilized in this work, the slope at

the centerline is dh0
dr

|r=ri = 0.03. The entire rotating table setup is controlled through

the use of an Arduino Uno board, and is mounted on an optical table to isolate the

experiment from building vibrations. In order to generate droplets, we utilize the same

experimental setup as in section (3.2). The depth of the bath is approximately 3 cm,

which allows for all of our experiments to be considered in the deep-pool limit. Due

to the large table size and sensitivity of the problem to Marangoni effects, we decided

to utilize a working fluid that was less sensitive to contamination to Marangoni flows

and surfactant. In this work, we utilize 2 cSt silicone oil as the working fluid, as this

fluid is significantly less sensitive to these effects.

1The author would like to thank Oliver Sand for the design and construction of the rotating
table. His design was based on the MIT Weather-in-a-Tank apparatus [Marshall et al., ].
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Figure 5-2: The rotating table setup.

5.3 Coalescence Thresholds

We begin the experiments by taking our reference coalescence threshold, where the

surface is not moving. This threshold has been studied previously for a variety of

different working fluids by [Tang et al., 2018], and found that in the deep pool limit,

the threshold is characterized by the We and Oh numbers. In particular, increases

in viscosity increase the critical Wen,cr number above which coalescence occurs, and

gravitational effects only weakly modify the threshold. However, as the thickness of

the impacting layer varies, different regimes were identified. In these experiments, we

used a slightly downward angled view of 5� such that we see over the meniscus that

forms on the walls of the bath and the slight surface tilt when the table is in rotation,

as previously discussed. In figure 5-3, we plot the critical normal impact velocity for

coalescence for a R = 0.24 mm silicone oil droplet as a function of table speed. We

find that there is a monotonic trend, with increases in table speed decreasing the

critical normal impact velocity required to drain the interstitial air layer. In this plot,

the solid line represents the normal velocity for droplets above which all coalesce, and
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the dashed line represents droplets that bounce. To classify a normal velocity value as

"bouncing" or "coalescing" at least 10 trials of each behavior are observed. We then

take high speed video of the impacts. We fit a parabola to the incoming and outgoing

trajectories to determine the impact and exit velocities. At least 40 frames are taken

to minimize error. Dotted lines represent the standard error associated with each

velocity measure. Each data point represents the average of at least 7 trials. The

exact transition point occurs somewhere between the two curves. We plot the trend

in Wen,cr as a function of Bo in figure 5-4 where there is no rotation in the bath.

There is a slight non-monotonicity in the curve, however we would need to span a

larger range of Bo to determine if this effect continues. Generally, an increase in Bo

increases the Wen,cr. In figure 5-5, we determine the thresholds of coalescence for

4 different droplet diameters and 5 different table rotation speeds, and summarize

the results. The curves depict almost identical trends, with increases in table speed

monotonically decreasing the critical Wen,cr. For the case where there is no table

rotation, we determine a critical We for coalescence to be between We = [6 � 8].

These values are very similar to the bouncing to coalescence transition found for a

variety of working fluids by [Tang et al., 2018]. For 5 cSt silicone fluid with similar

density and surface tension relative to our working fluid, they found the critical We

number for the transition to be ⇠ 8. For n-decane, which has a similar surface tension

and kinematic viscosity but lower density, relative to the fluid used in these exper-

iments, they determined the critical We number for the transition to be ⇠ 6.5. In

all, the threshold for no rotation determined in this work is largely insensitive to the

Bo, with a decrease in the Bo weakly decreasing the threshold for transition. This

effect is replicated in [Tang et al., 2018], as the thresholds for n-heptadecane and 5

cSt silicone fluid only differ by �Wen,cr ⇠ 1. These fluids have similar surface tension

and viscosities but different densities, and thus, for a fixed droplet size different Bo.

In figure 5-6, we plot the critical Wecr,|U | as defined utilizing the velocity scale of

|U | =
p

U2
n
+ U2

t as a function of normalized table speed. The collapse of the data is

excellent, however there seems to be an additional effect which is not perfectly cap-

tured by this scaling. It is most likely that this effect is dependent on the Bo. Now,
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Figure 5-3: Critical normal velocity for the bouncing to coalescence transition as
a function of table speed for a Bo = 0.0265 silicone oil droplet. The dashed line
represents the normal velocity for droplets that bounce, and the solid line represents
droplets that coalesce. Dotted line represent the standard error associated with each
velocity measure. Each data point represents the average of at least 7 trials.
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Figure 5-4: (a) Critical normal velocity for the bouncing to coalescence transition as
a function of undisturbed droplet radius R for a still interface. (b) Critical normal
Wen,cr for the bouncing to coalescence transition as a function of Bo for a still inter-
face. The dashed line represents the normal velocity for droplets that bounce, and
the solid line represents droplets that coalesce. Dotted line represent the standard
error associated with each velocity measure. Each data point represents the average
of at least 7 trials.

we move the high speed camera to the side, such that we are viewing perpendicular

to the direction of rotation. With this view the deformation of the droplet and bath

are more visible. We also are able to visualize the capillary waves generated by the

impact. Figures (5-7), (5-8), (5-9), (5-10), and (5-11) depict the impact of the droplet

at each layer speed utilized in this work for one bouncing impact and one coalescing,

just above the threshold. In these images, the layer velocity is from left-to-right and

each image is separated by 10 frames, which corresponds to 2 ms. Initially, when

there is no rotation in the bath, the droplet impacts and rebounds from the same

point, creating an axisymmetric capillary wave. As the table speed is increased, the

droplet begins to deform on the upstream side of the moving liquid layer’s interface.

In cases of rebound, the droplet lift-off location drifts to the left of the center point

of the corresponding capillary wave as the table speed is increased. For coalescing

droplets, noticeable asymmetries begin appearing in the capillary wave field for the

highest two tables speeds for both bouncing and coalescing impacts. This is a mark
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Figure 5-5: Critical Wen,cr for the bouncing to coalescence transition as a function of
normalized table speed for silicone oil droplets with (a): Bo = 0.0265 , R = 0.24 mm
, (b): Bo = 0.05 , R = 0.33 mm,(c): Bo = 0.061, R = 0.36 mm,(d): Bo = 0.0735,
R = 0.4 mm. The dashed line represents the normal velocity for droplets that bounce,
and the solid line represents droplets that coalesce. Dotted line represent the standard
error associated with each velocity measure. Each data point represents the average
of at least 7 trials.
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t ,
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(a)

(b)

Figure 5-7: Oblique view for an (a) R = 0.33 mm, Un = 64 cm s�1 and (b) R = 0.33
mm, Un = 75 cm s�1 impacting droplet with no table rotation. Each image is spaced
2 ms in time from the previous image.

(a)

(b)

Figure 5-8: Oblique view for an (a) R = 0.33 mm, Un = 62 cm s�1 and (b) R = 0.33
mm, Un = 76 cm s�1 impacting droplet with Ut = 5.5 cm/s. Each image is spaced 2
ms in time from the previous image.

of the highly deformable substrate. As the rotation speed of the table is increased,

there is a similar monotonic decrease in the Wecr for each Bo, depicted in figure

5-5. At the largest table speed, this critical value is almost half of the value for no

rotation. We hypothesize that the lateral motion forces to droplet to press against

its self generated capillary wave, which asymmetrically deforms the interstitial gas

layer such that drainage is enhanced. Thus, the additional flow caused by the table

rotation drains the lubricating air layer between the interfaces at a rate faster than

the still layer impact. This is a somewhat counter-intuitive result, as previous results
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(a)

(b)

Figure 5-9: Oblique view for an (a) R = 0.33 mm, Un = 55 cm s�1 and (b) R = 0.33
mm, Un = 66 cm s�1 impacting droplet with Ut = 15 cm/s. Each image is spaced 2
ms in time from the previous image.

(a)

(b)

Figure 5-10: Oblique view for an (a) R = 0.33 mm, Un = 48 cm s�1 and (b) R = 0.33
mm, Un = 59 cm s�1 impacting droplet with Ut = 32 cm/s. Each image is spaced 2
ms in time from the previous image.
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(a)

(b)

Figure 5-11: Oblique view for an (a) R = 0.33 mm, Un = 42 cm s�1 and (b) R = 0.33
mm, Un = 59 cm s�1 impacting droplet with Ut = 40 cm/s. Each image is spaced 2
ms in time from the previous image.

for droplet impact on moving layers suggest that flow in the bottom fluid layer will

suppress coalescence [Dell’Aversana et al., 1996, Thoroddsen and Mahadevan, 1997,

Sreenivas et al., 1999]. However, these works either utilized very large droplets, much

larger than the capillary length, or used thermally induced flows to suppress coales-

cence. Additionally, the liquid layers in these problems were very thin, relative to the

undeformed diameter of the droplet. It is most likely that substrate deformability is

the key to the decrease in critical We number for coalescence in our deep pool experi-

ments, as no significant substrate deformation is observed in thin layers. In addition,

there are different physics present in the gas layer for these other scenarios could also

contribute to the discrepancy. This gas layer only needs to be modified by a fraction

of a micron to induce coalescence. It is also possible that the rotation of the table in-

duces a rolling flow during impact, much like a rolling droplet on a tilted non-wetting

surface [Mahadevan and Pomeau, 1999]. In this scenario, the droplet would roll like

an elastic ball, possibly adding additional unresolved dynamics in the gas layer to

enhance drainage. Additional experiments are ongoing to help uncover the physics of

the new trend discovered in this work, as well as companion DNS simulations which

resolve the gas layer dynamics.
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5.4 Cleaning Methods

We originally planned on using de-ionized water as the working fluid, in order to

provide an exact fluid match to collaborators studying the splashing regime with the

same experimental setup. However, completing bouncing droplet experiments with

water poses a unique challenge, as it is readily contaminated and can result in surface

tension gradients and Marangoni flows at interfaces. Surfactants are special molecules

that have a hydrophillic head and a hydrophobic tail. These molecules love to aggre-

gate at interfaces, and can be the source of surface flows. Collectively, these molecules

act to decrease the surface tension of the fluid. Locally, however, there is a distribution

of molecules that potentially is non-uniform. In other words, there are local gradi-

ents in the surface tension of interfaces with surfactant, which drive additional flows,

called Marangoni flows. If you look at a soap bubble in good lighting, you will be

able to see the rapid flows on the surface of the bubble induced by the inhomogeneous

distribution of surfactant. These flows will modify the dynamics of the droplet-bath

interactions in ways which are not directly controllable. In the experience of the au-

thor, surface contamination inhibits bouncing by changing the deformability of the

gas layer. Near the bouncing-to-coalescence transition, contamination creates regimes

of partial coalescence, where the droplet impacts and begins to rebound from the sur-

face, yet just as it is about to lift off, the lubrication layer drains and coalescence

occurs. However, the droplet has enough inertia to stretch into a liquid ligament

which is unstable due to a surface tension driven instability. This daughter droplet

will then bounce, giving the illusion of a true bounce. As a result, bouncing to coa-

lescence thresholds become more difficult to define and potentially change based on

the current level of contamination. Additionally, it has been shown that Marangoni

flows induced by thermal gradients can modify the dynamics of a lubricating vapor

layer, potentially changing the physics entirely [van Limbeek et al., 2021]. Thus, we

need a robust method for cleaning the air-fluid interface to minimize these effects.

In [Kou and Saylor, 2008], a variety of cleaning methods are discussed, in particular,

surfactant raking, surface vacuuming, electrostatic methods, and overflowing. We
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attempted every practical cleaning method, with the exception of overflowing, and

found no success in removing dust and surfactant from the interface. Surfactant rakes

are small glass capillaries that are attached to a peristaltic pump. The action of the

pump effectively sucks up a small volume of fluid from the interface, taking with it

small particles and surfactant. Unfortunately, due to the small size of the capillaries,

it was impractical for our experiment as the size of the table is very large, and thus

all of the surface area cannot be covered by the capillaries. Surface vacuuming is

roughly the same concept as the surfactant rake, yet removes a substantially larger

volume of fluid from the bath. This method was the best performing out of those

tested in eliminating surface contamination, however, removed such a large portion

of the working fluid that the bath needed to be refilled after every cleaning. Once the

bath is refilled, the table needs additional time to spin up into rigid body rotation.

During this time, dust particles and surfactant could enter the bath, thus requir-

ing re-cleaning, creating a seemingly never-ending cycle. This method was deemed

impractical for experimentation and potentially would lead to challenges in reproduc-

tion of results. Electrostatic cleaning methods involve a glass cylinder that is swept

along the surface, or in our case held in one place as the table rotates around, with

the hope that the electrostatic charge on the glass rod is large enough to trap dust

particles. Unfortunately, dust particles in the Harris Lab do not all have the same

charge, leading to the glass rod selectively cleaning dust. Overflowing would require

serious modification of our current working setup, and we chose not modify the table

further. Overflowing has proven to be a successful technique in our prior experiments

with water, albeit in a much smaller bath [Galeano-Rios et al., 2021a] and in section

3.2.
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Chapter 6

Impact of a Rigid Sphere on an

Elastic Membrane

The work presented in this chapter appears as part of a publication in the Proceedings

of the Royal Society A as Agüero, E. A., Alventosa, L., Harris, D. M., and Galeano-

Rios, C. A. (2022). Impact of a rigid sphere onto an elastic membrane. Proceedings

of the Royal Society A, 478(2266), 20220340. LFA performed and analyzed the

experiments and discovered the new behaviors associated with non-Hertzian effects.

DMH performed the scaling analysis and wrote the quasi-static model. EAA and

CGR wrote the mathematical model, created the simulation software, and utilized

the software. All authors contributed to the writing of the paper.

6.1 Introduction

Mechanical contact problems arise naturally in countless industrial and scientific ap-

plications. Classical examples include the study of the deformation and stress in gear

teeth [Bruzzone et al., 2021a, Bruzzone et al., 2021b, Rosso et al., 2019], ball bear-

ings and ball joints [Askari, 2021], impact absorbers [Hundal, 1976], propagation of

stress waves in colliding solids [Johnson and Johnson, 1987], and models of granular

materials [Cundall and Strack, 1979]. Contact problems also frequently arise in prob-

lems relating to material characterisation, where a localized indenter is used to infer
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properties of solid substrates [Herbert et al., 2001]. In particular, the mechanical re-

sponse of elastic films and membranes under indentation [Begley and Mackin, 2004,

Komaragiri et al., 2005, Selvadurai, 2006] has seen recent interest for applications in

characterising soft polymeric and biological materials [Ahearne et al., 2005], or ‘2D

materials’ such as graphene [Gupta et al., 2015].

Several studies in contact mechanics have stemmed from the seminal works of

Hertz [Hertz, 1896, Hertz, 1882]; in which, friction effects are neglected, the shape

of the contact region (in the vicinity of the initial contact point) is approximated

by a paraboloid, and the resulting contact surfaces are elliptical. The work of Hertz

covered mainly static contacts, yielding predictions that have held remarkably well.

Moreover, Hertz also considered impacts of deformable solids, working within the

framework of quasi-static approximations. In particular, waves generated by the

impact were ignored [Hertz, 1896, Johnson, 1982].

6.1.1 Non-Hertzian problems

Problems that do not conform to the simplifying hypotheses of Hertz are called non-

Hertzian. The solution to contact problems of this kind involves a free-boundary

problem on 2-dimensional (2D) surface, i.e. finding the bounding curve of the por-

tion of the outer surface of the solids, where contact happens. Moreover, this free-

boundary problem is embedded within a 3D free-boundary problem, i.e. finding where

the deformed external surfaces of the contacting solids lie in the first place.

These nested free-boundary problems are also coupled; as the extent of the pressed

surface influences the pressure distribution, which in turn influences the shape of the

solids, on whose outer surface lies the contact surface. The coupling of these free-

boundary problems brings in non-linearities of geometric origin, even when the partial

differential equations that govern the deformation of the solids are linear.

Non-Hertzian contact problems represent a substantial number of cases of inter-

est in engineering applications. Due to their complexity, analytical solutions are

often unavailable and, thus, they are typically tackled using numerical methods

[Karami, 1989]. The nested free-boundary problems they involve are solved using
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strategies that include imposing energy minimisation principles [Kalker and Van Randen, 1972],

and iterating on the extent of the pressed surface until the pressures obtained are all

positive and there is no superposition of the solids outside the region where the pres-

sure is applied [Paul and Hashemi, 1981].

6.1.2 The model problem

In the present work, we consider the problem of a rigid sphere impacting on an elastic

membrane and we formulate its mathematical representation along the lines of the

Kinematic Match (KM) method. Moreover, we improve the original form of the KM,

expanding the compatibility conditions in the pressed area, while also reducing the size

of the resulting system of equations. The resulting equations are solved numerically,

yielding predictions for the contact time, trajectory of the impactor, deflection of the

membrane, coefficient of restitution of the impacting sphere, and the evolution of

the pressed surface as well as the pressure distribution supported on it. As the KM

model was developed and implemented by collaborators, its details have not been

included in this thesis but are available in the publication associated with this work

[Agüero et al., 2022]. In some cases, it is possible that a decidedly simpler quasi-static

model may be appropriate to model impacts on an elastic membrane. We anticipate

this to occur when the kinetic energy of the membrane during the impact process is

negligible as compared to its elastic energy. Such kinetic and elastic energies can be

estimated to leading order by Ek ⇠ µ⇤2(�/tc)2 and Ee ⇠ ⌧�2 [Courbin et al., 2006],

respectively, where µ is the area density of the membrane, ⇤ is the membrane radius,

⌧ is the membrane tension, and � is the maximum deflection of the membrane during

an impact occuring over a time scale tc. By requiring Ek ⌧ Ee we find the condition

⌧ t2
c

µ⇤2
� 1 (6.1)

that thus corresponds to the quasi-static limit.

In a tensioned membrane the wave speed is known to be C =
p
⌧/µ, and thus a

timescale for wave propagation in the membrane can be defined as tp = ⇤/C. Upon
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substitution, our quasi-static condition (6.1) can also be reinterpreted as a ratio of

time scales:
t2
c

t2
p

� 1, (6.2)

or that the timescale of impact must be sufficiently long as compared to the time

scale of wave propagation. Finally, for a freely impacting mass m, the contact time

on a membrane of constant tension scales like tc ⇠
p

m/⌧ [Gilet and Bush, 2009],

and thus our condition can also be rewritten as a mass ratio:

m

µ⇤2
� 1, (6.3)

or that the mass of the impactor is much greater than the total mass of the membrane.

Should the our impact parameters occur outside of this limit, we expect dynamic

processes to be important in determining the subsequent dynamics, requiring a non-

Hertzian model.

An experimental set-up was designed to test the predictions produced by our

model against controlled experiments. Our predictions for contact time and maximum

surface deflection match our experimental results remarkably well, while also being

in line with prior experimental results reported in [Courbin et al., 2006].

Section 6.2 presents the mathematical formulation of the impact problem. The

experimental set-up and procedures are detailed in section 6.3. Comparisons to our

experimental data, together with other predictions of the model are presented in

section 6.4. We discuss the implications of our findings and describe ongoing direc-

tions of development in section 6.5. Julia, Python and Matlab codes, used for the

computational implementations of the methods here presented are made available in

a public repository, while videos of the experiments, and animations of the results

are made available as supplementary material of the publication associated with this

work [Agüero et al., 2022].
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Figure 6-1: Schematic representation of the impact. The elastic membrane is shown
with thin grey solid lines outside the contact surface S(t), and with a thick grey
solid line inside S(t). It should be noted that, in this model S(t) is a subset of the
graph of ⌘(t), and that the separation shown is merely for illustrative purposes. The
orthogonal projection of S(t) onto the (r, ✓)-plane, A(t), is shown with a thick dark
grey dashed line. Curves C(t) and L(t), which respectively bound S(t) and A(t), are
seen as points in this cross-section. Variables h(t) and rc(t) correspond to the height
of the centre of mass of the sphere and the radius of A(t), respectively.

6.2 Problem formulation

We consider the case of an elastic membrane of mass per unit area µ, supported by a

circular rim of radius ⇤, and subject to initial isotropic stress ⌧ (see figure 6-1). We

introduce cylindrical coordinates (r, ✓, z) with the rim on the z = 0 plane, the origin

at the centre of the rim, and gravity given by ~g = �gẑ.

At time t = 0, this elastic membrane lies in equilibrium, deformed by the action of

its own weight, as the lowest point (the "south pole") of a homogeneous rigid sphere

of radius R and mass m, that moves with a velocity ~v(t = 0) = �V0ẑ, is in imminent

contact with the centre of the mesh (i.e. the height of the south pole coincides exactly

with the height of the centre of the at-rest membrane).

We will consider only axisymmetric impacts in the present work and, therefore, we

ignore all dependence on the ✓ variable from here on. Non-axisymmetric impacts can

also be modelled by the methods here introduced; however, these will be the subject

of a separate article.
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6.2.1 Governing equations

We take R, C =
p
⌧/µ and P = ⌧/R as the characteristic length, velocity and

pressure, respectively; and we define the following dimensionless numbers

F =
gµR

⌧
, L =

⇤

R
, U =

V0

C
, M =

µR2

m
. (6.4)

We make the simplifying assumptions that the displacement of all points in the mem-

brane happens exclusively along the z direction and that the tension on the membrane

⌧(r, t) is constant everywhere and throughout the impact.

We define ⌘(r, t) : [0,L] ⇥ [0,+1) ! R as the deflection of the membrane, and

we introduce the vertical surface velocity u(r, t) = @t⌘. Disregarding friction between

the sphere and the membrane, the effect of the impact can be modelled by a pressure

distribution p = p(r, t) supported on A(t), the orthogonal projection of the contact

surface S(t) onto the (r, ✓)-plane (see figure 6-1).

We define  = (⌘) as twice the mean curvature of membrane, i.e.

 =
@rr⌘

⇥
1 + (@r⌘)

2⇤ 3
2

+
@r⌘

r
⇥
1 + (@r⌘)

2⇤ 1
2

; (6.5)

and thus the elevation of the membrane is governed by

@tt⌘ = �F+ � p, 8 (r, t) 2 [0,L]⇥ (0,1), (6.6)

subject to

p(r, t) = 0, 8 r, t; r /2 A(t), (6.7)

p(r, t = 0) = 0, 8 r 2 [0,L], (6.8)

⌘(L, t) = 0, 8 t � 0, (6.9)

with the initial conditions given by

(⌘(r, t = 0)) = F, 8r 2 [0,L] (6.10)
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and

u(r, t = 0) = 0, 8 r 2 [0,L]. (6.11)

We note that equation (6.10) imposes that, as the membrane is about to be hit,

it is found at its equilibrium shape, as dictated by its own weight distribution and

initial tension.

We define h = h(t) as the z coordinate of the centre of mass of the sphere and

v(t) = h0(t). By Newton’s second law we have

v0(t) = �F+M

Z

A(t)

p dA, 8 t 2 (0,1) (6.12)

subject to

v(t = 0) = �U (6.13)

and

h(t = 0) = 1 + ⌘(r = 0, t = 0). (6.14)

6.2.2 Kinematic Match

Four compatibility conditions are imposed. First, on the contact area A(t), the two

surfaces must coincide. Secondly, the velocity of the membrane u must be equivalent

to the sphere’s velocity within the contact region. Here, we are implicitly assuming

that the deformation of the elastic membrane is such that the surface can be de-

scribed at all times by a well-defined function of r. This assumption is extremely

reasonable for the present case, though it is not strictly required by the KM formu-

lation. The third condition requires that, at the boundary of the contact surface

S(t) (i.e. the contact curve C(t)), the deformable surface be differentiable. Our final

compatibility condition requires that there be no superposition between the sphere

and the membrane outside of the pressed surface. The mathematical formulations of

these compatibility conditions can be found in [Agüero et al., 2022]. In the present
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problem, we further assume that the pressed area is simply connected; which, within

our axially symmetric configuration, is equivalent to S(t) being a spherical cap cen-

tred at the lowest point of the sphere and, consequently, A(t) being a circle of radius

rc(t). Moreover, we note that, in the equations above, the only non-linear term is

the one given by  = (⌘), in equation (6.6); however, this is by no means the only

non-linearity in the problem. The other source of non-linearity is "hidden" in the

problem of finding the pressed area. This full kinematic match can be considered the

natural extension of the "1PKM" utilized in chapter 3, where we assume the droplet

interface and bath interface contact at a single point. The full kinematic match ap-

plies this restriction over the entire contact region, simultaneously solving for the size

and shape of the pressure distribution within the contact region. The "1PKM" can be

considered as a further approximation of the full KM, and can potentially be applied

to the current problem, but was not tested.

6.2.3 Quasi-static model

In the quasi-static limit discussed earlier, the free membrane (outside of the contact

region) satisfies Laplace’s equation r
2⌘ = 0 to linear order for rc  r  L (ne-

glecting the weight of the elastic sheet). rc = sin is the radius of contact between

the sphere and membrane, ⌘ is the deflection of the membrane, and all lengths non-

dimensionalised by R. Under these assumptions, the deformation has a known ana-

lytical solution (with the outer boundary of the membrane fixed such that ⌘(L) = 0),

⌘(r) = A0 ln
⇣ r
L

⌘
. (6.15)

To determine A0, the tangency boundary condition at the point of contact is applied.

In other words,

@r⌘(rc) = tan . (6.16)
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Thus the solution for the membrane shape becomes

⌘(r) = rc tan ln
r

L
. (6.17)

Now, we need to determine the radius of contact, rc, that occurs when a sphere is

resting statically on the membrane and displaces the center of the membrane by an

amount �s. We can thus write

�s = �⌘(rc) + (1� cos ) = �rc tan ln
rc
L

+ (1� cos ). (6.18)

This algebraic equation can be solved numerically for rc for each �s.

Furthermore, in this limit, the non-dimensional trajectory equation for the sphere

(6.12) reduces to

v0(t) = �F+ 2MA(t). (6.19)

In the quasi-static model, A(t) is fully determined by the instantaneous �s at time t.

6.3 Experiments

A rendering of the experimental set-up is depicted in figure 6-2. In each trial, spheres

were dropped from a mechanical iris that is connected to a 2 degree-of-freedom lin-

ear stage that allows for precise and repeatable release of the spheres. The elastic

membrane is clamped to a square holding plate with circular cut-out, which is then

stretched over a hollow vertical cylinder of mean diameter 105 mm. The membranes

used in these experiments are HYTONE LS-034 natural rubber latex sheets of thick-

ness 0.3 mm and have a material density of 0.98 g/cm3. The top edge of the cylinder

is rounded with a 5 mm radius to ensure smooth contact with the membrane. The

vertical cylinder can be precisely levelled by adjusting three levelling spring supports.

The membrane holding plate is then securely fastened to an optical table. The vi-

bration isolation provided by the optical table ensured minimal disturbances on the

membrane prior to impact. A Phantom Miro LC311 camera with a Nikon Micro
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Figure 6-2: (a) A 3D rendering of the experimental setup. (b) Ceramic sphere resting
on a tensioned membrane. (c) A sequence of images depicting the initial stages of
impact and subsequent bounce for a ceramic sphere of diameter D = 4.73 mm. The
time interval between images is 1 ms.
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200 mm lens was used for the video capture. The camera was mounted directly on

the optical table with the back edge of the camera elevated slightly for a downward

viewing angle of ⇠ 5�. Images were captured at 10,000 frames per second with an

exposure time of 99.6 µs. Two spheres of diameter 4.73 mm and different densities

were used in this study: one of SAE 304 stainless steel ⇢s = 7.93 g/cm3 and the other

of Silicon Nitride ceramic ⇢s = 3.25 g/cm3. Release heights were varied to achieve

impact velocities from 25 to 100 cm/s .

Spheres were released from the mechanical iris at a range of heights, beginning

at approximately one sphere diameter above the membrane. To characterise error,

a minimum of 5 trials were completed at each height, and spheres were routinely

cleaned using isopropyl alcohol and dried before being re-used in the experiments.

After each increase in height, the membrane was wiped using dust-free optical lens

cleaning paper. The raw video data was processed using a custom code written in

MATLAB that uses a Canny edge detection. The top and bottom edges in the image

corresponding to the north and south poles of the sphere, respectively, were then

recorded. Initial contact (t = 0) was determined as the time where the actual sphere

and its reflection in the membrane first met. Due to the slight downward angle of the

camera toward the membrane, this instant was resolved in all trials. During contact,

the south pole was obscured by the membrane edge, and the trajectory of the south

pole of the sphere was determined by shifting the top trajectory down by one sphere

diameter. For the range of impact speeds tested, the top point on the sphere was

resolvable for all times during contact.

To determine the membrane tension, we placed a large solid stainless steel sphere

of radius R = 15.875 mm at the centre of the membrane and measured the maxi-

mum static displacement �s. To relate these to the membrane tension ⌧ , we balance

the vertical forces on the sphere at equilibrium using the static membrane solution

outlined in §6.2.3 and rearrange to get

⌧ =
2⇢sR2g

3r2
c

. (6.20)
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In summary, we measured �s from a still camera image, then solved for rc numer-

ically in equation (6.18) and use equation (6.20) to determine the tension. Ad-

ditionally, we compared the solution of the linearized problem above to the solu-

tion including the fully nonlinear curvature term (which yields a catenoid solution

[Gilet and Bush, 2009]) and found negligible quantitative differences for our current

experimental parameters.

In the present work, contact time, tc, is defined as the time duration from when

the bottom of the sphere touches the membrane to the time the bottom of the sphere

returns to that height. Due to the nature of visualisation set-up, it was impossible

to accurately determine when the spheres lost physical contact with the membrane.

Each bounce is also characterised by its coefficient of restitution, ↵, which is defined

here as the negative of the normal exit velocity, Ve, divided by the normal impact

velocity, V0. The exit velocity is taken to be the velocity of the top of the sphere

measured exactly at the contact time, tc. Ve and V0 are determined by fitting a

quadratic polynomial to both the incoming and outgoing trajectories in MATLAB,

ensuring that at least 30 data points (frames) were used in each fit to minimise error.

Additionally, we measure the maximum membrane deflection � as the lowest point

in the bottom trajectory of the sphere. Error bars are quantified as the standard

deviation of the respective measurement over at least 5 experimental trials.

6.4 Results

Our simulations show the sphere landing on the membrane, deforming it as the pressed

surface expands, and bouncing back as the pressed surface contracts and then van-

ishes. Simulations are run until the centre of the membrane starts to move downward,

following lift-off. However, the method is able to capture repeated bounces, as shown

in a video animation of these results, which is made available as supplementary ma-

terial found in [Agüero et al., 2022]. We follow [Galeano-Rios et al., 2021b] and we

check that all simulations satisfy the condition |r⌘(r, t)| < 1, throughout the simu-

lation, as a consistency check for our linear approximation of curvature outside the
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pressed area.

To facilitate comparisons with the experimental results, we measure tc, � and ↵ (as

defined in the experiments). However, it should be noted that there is no difficulty

in obtaining the exact time at which the sphere detaches from the membrane in

our simulations, therefore it is also possible to use such instant as the basis for the

definition of contact time and coefficient of restitution, if needed.

6.4.1 Comparisons to experiments

We compare our full simulation and corresponding quasi-static model predictions

to our experimental results for the set-up described in section 6.3 using two dif-

ferent sphere densities over a range of impact velocities. In our experiments, the

non-dimensional quantity m/(µ⇤2) defined in equation (6.3) takes a value 0.22-0.54,

signifying that we are outside of the quasi-static regime for the parameters considered

here. Our predictions for contact time tc and maximum surface deflection � are in

line with our experimental results for both sphere densities used, and our predictions

for the coefficient of restitution ↵ match the experiments for the lower sphere density

case, as can be seen in figure 6-3. Agreement in the coefficient of restitution is not

equally good for the larger density sphere. This error in the coefficient of restitution

is, to some extent, expected in the case of heavier spheres; in which the resulting

larger deformation may mean that dissipation mechanisms and material nonlinear-

ities, not considered in the present model, are of importance to the rebound. The

quasi-static model underpredicts the contact time and overpredicts the maximum

surface deflection for the cases studied in figure 6-3. Furthermore, we measure ↵ < 1

indicative of energy transfer to the membrane during impact, an effect that is cap-

tured by the full model but not the quasi-static model. The general trends in our

data and predictions, specifically the near independence of the contact time and coef-

ficient of restitution with the impact velocity and the approximate linear relationship

between the maximum deformation and impact velocity, are consistent with classical

predictions of the rebound of a linear mass-spring-damper model under weak gravity

[Nagurka and Huang, 2004].
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Figure 6-3: Comparison of full simulation predictions (solid lines), quasi-static model
predictions (dotted lines), and experimental measurements for contact time (a), max-
imum surface deflection (b), coefficient of restitution (c), and south pole trajectory
(d) for ⇤ = 52.5 mm, R = 2.38 mm, µ = 0.3 kg/m2 and ⌧ = 107 N/m (i.e. L = 22.06,
F = 6.54 ⇥ 10�5), for both ⇢s = 3.25 g/cm3 (blue lines and markers) and ⇢s = 7.93
g/cm3 (red), (i.e. M = 9.26 ⇥ 10�3 and M = 3.79 ⇥ 10�3). Experimental values
are shown with error bars using the same colour coding as solid lines that repre-
sent model predictions. Trajectories of the south pole are compared for L = 22.06,
F = 6.54⇥ 10�5, M = 9.26⇥ 10�3, and U = 3.34⇥ 10�2.
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The agreement of our predictions with the experiments is not limited to the met-

rics mentioned above, the full trajectory is also well predicted by our method. In panel

d of figure 6-3, we compare the prediction for the trajectory of the "south pole" of the

sphere with the experimental measurement of the trajectory for the same physical pa-

rameters. The corresponding prediction of the quasi-static model is also shown, with

poorer agreement to the measured trajectory. In particular, the quasi-static model

is unable to capture the asymmetry between the incoming and outgoing segments of

the trajectory. Videos of an experiment and an animation of the simulation results

for this bounce are made available as part of the supplementary material.

We also attempted a comparison of our model predictions with the results re-

ported in [Courbin et al., 2006]. Unfortunately, a direct comparison was impossi-

ble, as the membrane tension used for each bounce was not reported. Instead,

[Courbin et al., 2006] reports a range of tensions used in their experiments. Given

the information provided, the best that we could do was to test whether our pre-

dictions for that range of tensions was in line with their results. Indeed, our results

for the minimum and maximum tensions reported in [Courbin et al., 2006] produce

an interval of possible values for the maximum deflection and the contact time that

is consistent with the experimental results obtained in [Courbin et al., 2006] for the

lighter spheres used in that work. Coefficients of restitution were not reported in

[Courbin et al., 2006].

6.4.2 Further findings

One benefit of the present model is that it allows us to obtain detailed predictions

for the evolution of variables such as the pressure distribution, which is more difficult

to measure experimentally. Moreover, our model enables us to explore regimes that

are challenging to experiment on, such as the low U limit; in which, incidentally, our

modelling assumptions are more readily satisfied.

An important quality of the method here considered lies in the fact that it cap-

tures the mechanism by which waves are generated over the contact. There are several

useful implications of this virtue of the KM. In particular, we are able to estimate the
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Figure 6-4: Evolution of the touch-down and take-off times as a function of initial
velocity for F = 1.81⇥ 10�4, L = 16.54, M = 7.11⇥ 10�3.

1st contact Maximum 
Deflection 1st Lift-off 2nd contact 2nd Lift-off

t = -8.7 ms t = 0 ms t = 4.8 ms t = 6.7 ms t = 8.6 ms t = 11.5 ms t = 13.4 ms t = 20 ms

10 mm

Figure 6-5: Double bounce as seen in experiments (L = 13.08, F = 2.29 ⇥ 10�4,
M = 5.62⇥ 10�3 and U = 8.23⇥ 10�2).

transfer of energy to the impacted surfaces. This is reflected, for example, in the possi-

bility to successfully predict the coefficient of restitution that results from the impact

of a rigid solid onto a complex substrate, as was shown in [Galeano-Rios et al., 2021b].

Multiplicity of contacts

While carrying out the investigations described above, we were also able to identify

that, for certain parameter regimes, multiple contacts occur before the centre of the

membrane moves downward a second time. Such double contacts were observed in

simulations as well as in experiments.

For F = 1.81⇥ 10�4, L = 16.54, M = 7.11⇥ 10�3, we track the contact between
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the sphere and membrane in our simulations and we summarise the results in figure

6-4. The low U limit does not show signs of multiple contacts. These appear at

intermediate values of U = V0/C, and the duration of the intermediate flight slowly

increases with U.

We highlight that flights in between to contacts reported are extremely short

periods of mid-rebound flight, which are very difficult to measure in the experiments,

and consequently it was not possible to verify these experimentally. Nevertheless,

double contacts can be observed in some experiments for relatively higher U. Figure

6-5 shows one of these double contacts, observed in the experiments. A video of

this double bounce is also made available as supplementary material, for a case in

which this can be clearly seen. Unfortunately, these experimental rebounds with

double contacts correspond to relatively strong impacts, which somewhat escape the

linearity assumptions of our model, so a direct comparison was not realistic, and

indeed our model did not predict a double rebound in the case for which it is was

observed in the experiments.

We note that, when the sphere lifts off for the first time, the membrane enters

a free oscillation regime; in which, the configuration of the membrane is described

by a (potentially infinite) sum of standing modes, each with a different oscillation

frequency. At the same time, the sphere is slowing down following lift-off, as fast

oscillating modes in the membrane are to catch up with the south pole of the sphere

once again.

Non-monotonic decay of bouncing

Experimenting with somewhat stronger impacts, we are able to identify regimes in

which a second rebound results in a coefficient of restitution that is greater than

one (↵ > 1). In particular, this was observed in a case when the second impact

happens as the centre of the membrane is moving downward (as if in phase with the

impactor). Figure 6-6, which is constructed by placing three-pixel-wide central slices

of the images on the bounce, illustrates this phenomenon. The figure clearly shows

that during its second impact, the sphere is able to recover some of the energy it had
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Figure 6-6: Spatiotemporal diagram composed of three-pixel-wide central slices for
rebound experiment with L = 13.08, F = 2.29 ⇥ 10�4, M = 5.62 ⇥ 10�3 and U =
8.39⇥10�2. Each slice is separated by 0.19 ms. The sequence illustrates that a second
impact can produce a coefficient of restitution greater than one, recovering previously
transferred energy back from the vibrating membrane.

Figure 6-7: Another sample of second bounce with ↵ > 1 found in the experiments.
The experiment corresponds to L = 22.1987, F = 6.50⇥ 10�5, M = 3.82⇥ 10�3 and
U = 3.62⇥ 10�2.
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Figure 6-8: Example of second bounce with ↵ > 1 found in the simulations. The
simulation corresponds to L = 22.1987, F = 6.50 ⇥ 10�5, M = 3.82 ⇥ 10�3 and
U = 3.62⇥ 10�2.

bestowed to the membrane during the first bounce. A careful inspection of the first

bounce in figure 6-6 reveals that the phenomenon reported in figures 6-4 and 6-5 is

also present in this rebound. In figure 6-7, another case of this phenomenon occurs

for a smaller sphere.

A second bounce with ↵ > 1 can also be seen in the simulations (see figure 6-8),

proving that the model is able to capture this type of inertial effect. Moreover, we

note that in all cases where we found ↵ > 1, whether in experiments or in simulations,

the sphere impacts the membrane as the centre of the membrane is moving downward,

indicating that such an impact phase contributes to this effect.

Figure 6-8 presents a sample case for which a second bounce with ↵ > 1 is pre-

dicted in the simulations. A larger second bounce is also found in the experiments

for these parameters. However, the second bounce is particularly sensitive to the first

coefficient of restitution, as a differing flight time leads to a different impact phase.

In particular, a direct quantitative comparison between model predictions and ex-

perimental results for this effect is currently impractical; as even a slight mismatch

in the coefficient of restitution of the first impact (compounded by experimental un-
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certainty on the impact velocity) leads to different flight times (and impact phases)

between consecutive bounces in the simulations. Regardless, this inertial effect is

qualitatively observed in both experiment and simulation throughout wide parame-

ter ranges. Even further experimental and modelling refinements would be necessary

to achieve quantitative agreement, and will be the subject of future work.

6.5 Discussion

The application of the kinematic match method to the model problem here considered

reveals the richness of what at first glance might appear as an exceedingly simple

mechanical system. In particular, the possibility to model non-Hertzian effects allows

us to capture behaviour that results from the wave-mediated exchanges of energy

between the colliding solids.

The exploration of a parameter regime that lies away from the quasi-static limit

(characterised by equations 6.1 and 6.2) reveals new phenomena in both experiments

and simulations. In particular, we have shown that the energy exchange with wave

field in the membrane can lead to complex behaviour that includes multiple contacts

over a single rebound, and non-monotonic decay of the rebound amplitude. These

effects attest to the need for models of the present kind to have reasonable predictions

for the coefficient of restitution, such as the ones given here.

For the range of impacts most readily accessible in experiment, the coefficient of

restitution depends only weakly on impact velocity, it increases with the radius of the

sphere, and it also increases for increased sphere density, when all other parameters

are kept constant.
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Chapter 7

Conclusion

In all of the related impact scenarios, we see that inertia and capillarity act to

dominate the dynamics of the deformations of both impactor and substrate, lead-

ing to the diverse range of phenomena described throughout this work. Impact

inherently generates surface waves, transferring initial kinetic energy into surface

energy. Additionally, the experimental methods utilized in this work are highly ac-

cessible, allowing for the generation of large data sets that drive the verification

and validation of many different types of numerical models of impact. Ultimately,

the particular combination of reduced-order modeling, experiments, and DNS uti-

lized in this work sets a high standard for studying the diverse range of inertio-

capillary impacts. The modeling methods presented here are highly versatile, with

only a single embodiment thereof considered here in terms of target canonical phys-

ical scenario. There are a number of possible additions to the existing model used

in chapter 3 that could expand its reach to other related problems. For instance,

the model for the droplet deformation can be extended into a regime where the dy-

namics of the gas layer does matter, and the gas layer dynamics coupled to the

droplet deformation through the use of lubrication equations. Moreover, numerous

authors have studied the variety of phenomena that occur when a droplet impacts

another droplet [Qian and Law, 1997, Tang et al., 2012]. Droplet-droplet collisions

are of extreme importance in combustion science [Jiang et al., 1992] and cloud for-

mation [Grabowski and Wang, 2013]. Future work will consider the effect of relative
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surface tension and viscosity, where the droplets are composed of a different fluid than

the bath. Furthermore, the effects of incident droplet or bath deformations could be

readily studied, and has been shown to influence bouncing behavior in similar systems

[Biance et al., 2006, Yun, 2018]. These effects can be included in our existing model

with the application of the appropriate initial conditions on the droplet. Furthermore,

the simplified version of the kinematic match introduced in this work requires further

study from a numerical perspective. The time-step threshold below which unstable

oscillations in the impact force needs further attention, in particular. It is possible

that it is the result of the weakly damped assumption utilized throughout the work.

As we saw at the end of chapter 4, the solutions for the decay of each mode in free

flight include an e�↵lt, which when discretized would read e�↵l�t. If �t and ↵l are

small enough, it is possible that limits on numerical precision could lead to the code

interpreting this as an undamped problem, potentially causing these oscillations. It

is important to note that the oscillations are not a true instability, as each mode

amplitude and velocity remains bounded and well-behaved. The forcing term simply

oscillates until the minimum force threshold is crossed, after which the simulation is

terminated. We attempted to utilize various other pressure distribution shape func-

tions, including a bell function [Boyd, 2006], and found almost identical behaviour to

that of the polynomials utilized in this work.

The model can also be adapted to non-axisymmetric domains, or to droplet im-

pacts at varying angles of incidence. It is also possible to model the experiments

completed in chapter 5 utilizing a more general form of the weakly damped free sur-

face models. However, in these cases the full kinematic match should be utilized, as

the shape of the pressure distribution would likely change at each time step. Cur-

rently, the only modeling work done on these moving liquid layer problems are DNS,

and the application of a reduced order model would elucidate the dynamics of impact

in those scenarios. Further experiments can be completed with the rotating table to

better understand the role of substrate deformability. An updated experiment uti-

lizing a method to measure surface deformation, like a synthetic Schlieren method

[Moisy et al., 2009], would shed additional light on the dynamics of the impact and

142



transition in behavior. If possible, the completion of an experiment with interferomet-

ric measurements on the gas layer in this impact scenario would be of fundamental

importance.

Additionally, it is possible as well to re-create the study in chapter 6 utilizing the

"1PKM" formulation to provide a direct comparison to the full kinematic match. The

decomposition methods utilized in chapter 3 can be re-used, as a similar orthogonal

function decomposition can be completed for a cylindrical elastic membrane. We can

additionally study the impact of droplets on these membranes, possibly extending the

membrane model to study the impact of droplets on flexible cantilevers, which have

been demonstrated in prior literature to mimic droplet impact on leaves. The simpli-

fied matching condition can be used as well in studying impacts of two rigid spheres,

providing a very simple framework for modeling contacts between elastic objects.
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Appendix A

A.1 Quasi-Static Methods for Determining Radius

of Contact rc(t) During Drop Bath Rebound

In this Appendix, we will detail a few other models for the instantaneous contact

area between a droplet and a non-deformable substrate. These models are more

computationally efficient than the intersections based model utilized throughout the

work, yet are too restrictive in that they require either low We and low Bo or low We

and intermediate Bo to be valid. This creates additional restrictions on the model,

but due to their efficiency and simplicity, these models may be useful in other related

work.

A.1.1 Linearized Young-Laplace Equation

If we revisit our dynamic boundary condition (A.1), we can see that if the impact

velocity is reduced, the first and third terms on the right hand side become dominant.

Assuming the droplet remains spherical during contact, we can choose a length scale

as R, a time scale as
q

⇢R3

�
, and scaling for the potential as V0R.

@t� = �g⌘ � 2⌫@2
z
�+

�

⇢
H �

Ps

⇢
(A.1)

We can non-dimensionalize the above equation as e⌘ = ⌘

R
, er = r

R
, e� = �

V0R
, and

et =
q

�

⇢R3 t. We restrict our analysis to be outside of the region of contact, such that
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Ps = 0. Substituting these into the equation, and re-arranging gives us

p

We @ete� = �Bo e⌘ � 2Oh @2ez e�+ eH, (A.2)

where Bo and Oh are the Bond and Ohnersorge numbers, respectively. In the limit

that We ⌧ 1, Oh ⌧ 1, Bo ⇠ O(1) this boundary condition will reduce to the Young-

Laplace equation, which balances surface tension and gravity in a static equilibrium.

Consistent with our previous linear assumption, we can linearize the equation, and

write it as

Bo e⌘ =
1

er@er(er@ere⌘). (A.3)

Rearranging this expression and dropping the tildes gives us

@2
r
⌘ +

1

r
@r⌘ � Bo ⌘ = 0 (A.4)

This is a modified Bessel equation of order zero, which has a known solution

⌘(r) = EI0(
p

Bo r) +DK0(
p

Bo r) (A.5)

where I0 , K0 are the modified Bessel functions of the first and second kind, respec-

tively. The boundary conditions are given as

r ! 1 , ⌘ ! 0 (A.6)

@r (⌘|R sin ) = � tan� (A.7)

Figure A-1: Schematic of Variables for the Young-Laplace equation
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These conditions give the value of the two unknown constants,

D =
� tan�

p
Bo K1

⇣p
Bo R sin 

⌘ (A.8)

E = 0 (A.9)

Now, we can relate the growth of the radius of contact to the center of mass height

of the object as

zcm = ⌘|R sin +R cos (A.10)

rc = R sin (A.11)

Thus, rc = rc(t) = rc(zcm(t)). Typical profiles for rc(zcm(t)) are shown in Figure A-2.

Figure A-2: The center of mass height, zcm as a function of the radius of contact, rc,
non-dimensionalized by R, for different values of R

lc
=

p
Bo.

A.1.2 Including Ellipsoidal Solutions

In our original quasi-static approximation for the radius of contact, we always

assumed the droplet to be spherical. However, since we have modeled the droplet as
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deformable, we can approximate it to take on an ellipsoidal shape during and after

contact with the free interface. The droplet takes on the shape of an oblate spheroid

rapidly after contact is first initiated, and then the eccentricity decays as the droplet

oscillates in free flight. This may lead to an increased radius of contact at early times

relative to the spherical case, which would improve our prediction for the bouncing

droplet contact area.

To extend this model to include ellipsoids, there is really only one geometric

quantity that changes. In Figure A-4, we have a rigid sphere resting on an interface.

From inspection, we have

K = ✓ � �. (A.12)

Additionally,

L+ �+K = ⇡ (A.13)
⇡

2
�  + L+ � =

⇡

2
. (A.14)

Thus,

� = ✓ +  � ⇡. (A.15)

Figure A-3: Geometric Schematic of Angles for the Young-Laplace equation for a
sphere resting on an interface.
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This has been utilized in numerous papers, most notably by [Vella et al., 2006, Galeano-Rios et al., 2021a,

Lee and Kim, 2008].

For an ellipse, the only geometric quantity that changes is now, R = R( ). Thus,

the angle that the radial vector R makes with the tangent can no longer be assumed

to be ⇡/2. This value, depicted as ↵, can be computed through the use of a dot

product. If we take the radial vector,

�!
R =

�!
R ( ) = [a cos , b sin ]T , (A.16)

and take a derivative, we will have the tangent vector,
�!
T . Dotting

�!
T ·

�!
R gives us

↵ = cos�1

 �!
T ·

�!
R

||
�!
T ||||

�!
R ||

!
(A.17)

Then, we can perform the same calculation as before from inspection, we have

K = ✓ � �. (A.18)

Figure A-4: Geometric Schematic of Angles for the Linearized Young-Laplace equa-
tion for an oblate spheroid resting on an interface.
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Additionally,

L+ �+K = ⇡ (A.19)
⇡

2
�  + L+ � = ↵. (A.20)

Thus,

� = ✓ +  + ↵�
3⇡

2
. (A.21)

This expression for the interface angle � can be used to solve for the interface shape

as

⌘(r) = DK0(
p

Bo r) (A.22)

with

D =
� tan�

p
Bo K1

⇣p
Bo R sin 

⌘ (A.23)

(A.24)

and finally solving for the contact radius as a function of the height as

zcm = ⌘|R sin +R cos (A.25)

rc = R sin (A.26)

A.1.3 The Quasi-static Approximation for a Droplet Resting

on a Rigid Surface

In the work of [Mahadevan and Pomeau, 1999], the rolling of a sessile droplet was

studied theoretically. In particular, they write a scaling law that relates the size of

the contact area of the non-wetting droplet to the deformation, as measured by the

lowering of the center of mass due to the droplets weight. This law is

A2
c
⇠ R�, (A.27)
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where Ac is the contact area, R is the undeformed radius, and � is the "sag" of the

droplet. Typically, this measure is used at the top of the droplet, where � = D �Dd

where D is the undeformed droplet diameter and Dd is the deformed droplet diameter,

as measured vertically from the substrate to the top of the droplet. This sag measure

can also be defined using the center of mass heights with �cm = R � zcm. They then

utilize energy scaling analysis to determine that

� ⇠ BoR, (A.28)

and,
Ac

R2
⇠ Bo . (A.29)

Then, equating the two yields
Ac

R
⇠ �. (A.30)

Measurements taken in [Aussillous and Quéré, 2001] confirm these scalings. In [Chevy et al., 2012],

they extend this analysis by considering the shape of the sessile drop, and utilized

the Young-Laplace equation to write an analytical solution for the shape of a non-

wetting droplet. Then, they computed the sag of both the center of mass and top of

the droplet, finding a weakly-logarithmic expression for the sag

�

R
=

Bo

3

����ln
Bo

6

���� , (A.31)

�cm
R

=
Bo

3

����ln
e5/6Bo

6

���� . (A.32)

This analysis holds for sessile droplets or droplets that are weakly oscillating on a

non-deformable surface.

We performed experiments using sessile liquid marbles and water droplets on

a superhydrophobic plate, measured the sag of the top and center of mass of the

droplets, and confirmed the results of [Chevy et al., 2012]. Then, we can check the

scaling A.30 experimentally, and fit the data. If we assume the droplet to be in

a quasi-static state, a force balance requires that capillarity balances the droplet’s
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weight force [Chevy et al., 2012]. We then can write an expression for Bo as

Bo =
3Ac

2⇡R2
. (A.33)

We then write
�

R
=

Ac

2⇡R2

����ln
Ac

4⇡R2

���� , (A.34)

�cm
R

=
Ac

2⇡R2

����ln
e5/6Ac

4⇡R2

���� . (A.35)

Thus, given a value of either the sag of the top of the droplet or the sag of the center

of mass, we can numerically solve these equations for Ac = ⇡rc(t)2.
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