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Abstract

We present a C° interior penalty finite element method for the sixth-order modified
phase field crystal equation. We demonstrate that the numerical scheme is uniquely
solvable, unconditionally energy stable, and convergent. Additionally, the error analy-
sis presented develops a detailed methodology for analyzing time dependent problems
utilizing the C¥ interior penalty method. We furthermore support the theory with sev-
eral numerical experiments.

Keywords Phase field crystal - C¥ interior penalty method - Finite element method -
Sixth-order parabolic - Higher-order methods - Nonlinear partial differential
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1 Introduction

Let @ C R? be an open polygonal domain. In this paper, we present a C* interior
penalty finite element method for the sixth-order modified phase field crystal (MPFC)
equation [1, 32]
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where ¢ is the “atom” density field and 8 > 0 and @ > 0 are constants. The MPFC
equation was introduced as a novel extension of the phase field crystal (PFC) equation
which models the diffusive dynamics in the evolution of ¢ [32]. While the PFC equation
has proved to be an efficient tool for addressing crystalline self-organization and pattern
formation on the atomic scale [17], it fails to capture the more rapid and instantaneous
elastic relaxation: a property crucial in the understanding of the deformation properties
of nanocrystalline solids [32].

The MPFC equation can be viewed as a damped wave equation. Another way to
describe the MPFC equation is as a pseudo-gradient flow of the dimensionless spacial
energy [34]:

1 o 1
E(¢>=/ —¢* + 9> — |VoI* + - (Ad)* | dx. ()
ol4 2 2
Defining the chemical potential as

Wi=084E = ¢+ ag +2A¢ + A9, A3)

with 84 E denoting the variational derivative of E with respect to ¢, and where either
the natural boundary conditions 9,¢ = 9,A¢ = d,u = 0 or periodic boundary
conditions are assumed, the MPFC equation can be rewritten as

Ot + B drp = Ap. “)

The fast dynamics are captured by the first term on the left-hand side of (4), involving
the second-order temporal derivatives, while the slow dynamics are captured in the
absence of this term and when 8 = 1. The well-posedness of the MPFC equation was
presented in [23] along with an analysis of the long-time behavior of solutions and
the existence and uniqueness of weak and strong solutions to the MPFC equation was
also studied in [33].

Due to the potential impact of the MPFC equation, interest in developing accurate
and efficient numerical methods approximating solutions to this equation has grown
in recent years. Specifically, Wise et al. developed first order and second order in time
finite difference schemes along with multigrid solvers for these schemes in [1, 2] and
[34]. Additionally, in [29], Li et al. present several different time marching schemes
using the common feature of invariant energy quadratization along with a Fourier
spectral spacial discretization. In [27], Guo and Xu present an adaptive time-stepping
strategy along with a local discontinuous Galerkin method for the MPFC equation.
Furthermore, in [28], Lee et al. present splitting time discretization schemes which
also utilize a Fourier spectral spacial discretization. Most recently, Qi and Hou present
a Scalar Auxiliary Variable time-stepping strategy along with a finite difference spacial
discretization in [31] and Pei, Qi, and Hou present an invariant energy quadratization
using a Lagrange multiplier approach in [30]. Finally, in [22], Grasselli and Peirre
present a C° finite element method where they use splitting techniques in both time
and space by introducing two auxiliary variables to obtain a system of four equations.
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In contrast, we present and analyze a C? interior penalty finite element method for
the MPFC equation as was done in a previous paper for the PFC equation [15] that
allows us to keep the two equation structure of the MPFC and adopt the time-stepping
strategy presented in [1, 2]. The novelty of this paper is twofold. First, this is only the
second paper to combine the medius analysis for C°-IP methods with time dependent
problems along with a rigorous error analysis without first showing that solutions to the
weak formulation of the PDE satisfies the numerical scheme. It is interesting to note
that combining the medius analysis with time-dependent six-order in space PDEs
seems to require the invocation of discrete product rules; a strategy not generally
utilized in the error analyses of FEMs for parabolic PDEs. It is also interesting to note
that the general strategy for the error analysis for a CO-IP method for the parabolic
PFC equation could be extended to achieve an error analysis for the damped wave
MPFC equation with only a few adjustments required. This is somewhat surprising
and is thanks to the time-stepping strategy that was adopted herein. Second, while the
stability and error analyses in this paper and in that of the previously mentioned paper
for the PFC equation [15] appear very similar and, indeed, follow a similar structure,
one critical difference is that, due to the damped wave equation structure of the MPFC
equation, the optimal test function for the fully discrete FEM presented in Sect. 2 is no
longer the discrete analog of the chemical potential. Rather, the optimal test function
becomes the discrete analog of the inverse Laplacian of the first-order time derivative
of the phase field variable.

The CO-IP method is characterized by the use of C? Lagrange finite elements where
the C! continuity requirement inherent to standard conforming finite element methods
has been replaced with interior penalty techniques and was first introduced by Engel
et al. [18] and revisited and analyzed by Brenner and colleagues [3—13] also see [19]
and [24-26].

The development of the CO-IP method relies on a weak formulation of (1). To
this end, we limit our focus to the case in which natural boundary conditions are
assumed and introduce the function space Z := {z € H*(Q)n - Vz = 0on 9Q}.
Additionally, we use the standard Sobolev space and norm notation throughout the
paper. In particular, we let ||-||;» denote the standard L” norm over the region €2 but
specify the notation [|-|| (s, as the L” norm over a general region S C R? which is
not 2. Additionally, we rely on the mixed formulation (3)—(4) and, therefore, a weak
formulation of (1) may then be written as follows: find (¢, 1) such that

€ L>®0,T; Z)NL*0, T; H(Q)), (52)
dud, yp € L2(0, T; Hy' (), (5b)
ne L*0,T; H (), (5¢)

and there hold for almost all ¢ € (0, T')

(B, v) + B (01, V) + (Vi V) =0, Vv € H' (@), (62)
(@7 +ap.2) —2(V9. VD) +a(@.2) = (n.2) =0, VzeZ,  (6b)
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with the compatible initial data
3$0) =0, and ¢(0)=¢yc H*(Q) suchthatn -Veyp=0 and n-VAgy =0, (7)

and where (u, v) is the L2(2) inner product of # and v and a(u, v) := (Vzu : Vzv) is
the inner product of the Hessian matrices of u and v. Additionally, we use the notations
Hy ! (2) to indicate the dual space of H 1(©) and (-, -) to indicate a duality pairing.
Throughout the paper, we use the notation ®(z) := ®(-,#) € X, which views a
spatiotemporal function as a map from the time interval [0, 7] into an appropriate
Banach space, X.

The paper proceeds as follows. Section 2 develops the fully discrete C interior
penalty finite element method for the phase field crystal model. Section 3 establishes
unconditional unique solvability and unconditional stability. Section 4 presents the
error analysis. Section 5 demonstrates the effectiveness of our method through two
numerical experiments.

2 A C° Interior Penalty Finite Element Method

In this section, we develop a fully discrete C°-IP method for the modified phase field
crystal equation (1). Let .75, be a geometrically conforming, locally quasi-uniform
simplicial triangulation of 2. We introduce the following notation:

hg = diameter of triangle K (h = maxgcg, hk),

vk = restriction of the function v to the triangle K,

|K| = area of the triangle K,

&y = the set of the edges of the triangles in .7},

e = the edge of a triangle,

le| = the length of the edge,

Zp = {v € C(Q)|vg € P,(K)VK € Z,)} the standard Lagrange finite element
spaces associated with .7, of degree 2.

Let M be a positive integer such that 7, = ,,_1 + v for 1 < m < M where
to = 0, ty = tp with T = tr/m. With this notation, a fully discrete CY interior penalty
method for (6) is: given ¢,’l”71 € Zn X Zy, find (¢}", ') € Zj x Zj, such that for all
Vh,Zn € Zp

(3345;;’, vh) + B (5:9), vn) + (V' Voy) =0, (8a)
af” @ ) + ((0F) +adiz) =2 (Vep=" Van) = (uil 20) =0, (8b)
where

Segp —dety ™ g =205 4+
T - 72

-1
¢ — 9
T

S:¢y = and 82 =

with initial data taken to be 8.¢) = 0 (¢, ' = ¢)), #" := Pydo = Py (0) where
P, : Z — Zj is a Ritz projection operator (reminiscent of the projection defined
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Fig.1 Orientation of the unit
normal n, outward to the interior
triangle K_. This normal is
defined on the interface e shared
by the triangles K_ and K

in [16, p. 887]) such that
P(Pip—0.6) +a(Pip—¢,6)=0 VEcZ,, (Php—¢.1)=0. (9

The bilinear form a/” (-, -) is defined by

fwo= X[ (Peie) e ([ [ o
+Z/{{ H ]]d““ %/HamHaneﬂd&

ecéy
(10)

with o > 1 known as a penalty parameter. The jumps and averages that appear in (10)
are defined as follows. For an interior edge e shared by two triangles K+ where 7,
points from K_ to K (see Fig. 1), we define on the edge e

v 8%v 1 /(9% d%v,
=n, (Vo —Vo_) and -0 _ , 11
|[8ne]] e (Vo = V) an {{ang}} 2<ang + ang> (i

92u
where oz =N, - (Vzu) n. and where vy = v|g_ . For a boundary edge e which is
n

an edge of the triangle K € .9}, we take n, to be the unit normal pointing towards the
outside of €2 and define on the edge e

2

0 0
Ha—nveﬂ = —n,-Vvg and {{a—ng}} =1, - (Vzv) Ne. (12)

Remark 1 Note that the definitions (11) and (12) are independent of the choice of K4,
or equivalently, independent of the choice of n, [3].
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3 Unique Solvability and Stability

In this section, we show that the CO-IP method for the MPFC equation outlined in the
previous section admits a unique solution and that the system follows an energy law
similar to (2). In order to show the existence of a unique solution and unconditional
energy stability, we will need the following definitions and lemma. First, we define
the following mesh dependent norm
avh
Haneﬂ

2. 2 o
lonll3 s =Y lonlaey + D e
eeé?,
where the seminorm |wj,| ;2 g is defined by |wh|H2(1<) Jx (V2w : V2wy) dx.

2

: (13)
L2(e)

KeJ,

The next lemma guarantees the boundedness of ahP (-, ).

Lemma 1 (Boundedness of a}’lP (-, ) There exists positive constants Cconr and Ceper
such that for choices of the penalty parameter o large enough we have

P
(Wi, i) < Ceont lwillop lvallan ¥ wi, v € Zy, (14)

Ceoer lwal3, < af” (wp, wn) Ywy € Zy, (15)

where the constants Ceonr and Ceoer depend only on the shape regularity of 7.
Proof The proof of the Lemma may be found in [3].

Additionally, we define the spaces L () ={ve L2(Q)| (v, 1) = 0}, I-OII(Q) =
HY(Q)NL3(Q), H—l(sz) = {v e Hy'(l(v, 1) = 0}, and Z, := Z, N L3(). The
operator T : Hy N 1(Q) — HY(Q) is often referred to as the * 1nverse Laplacian’ and is
defined via the following variational problem: given ¢ € Hy N 1), find Tc e H(Q)
such that

(VTZ, Vi) =&, x) Vx e H(Q). (16)

The well posedness of the operator T is well known, see for example [14], and
an induced negative norm may be defined such that |[v]|,-1 = (VTu, VTv)I/2 =
N

(v, Tv)"* = (Tv, v)"2. We furthermore define a discrete analog of the inverse Lapla-
cian, Ty, : Zh — Zh, via the variational problem: given ¢ € Zh, find T,¢ € Zh such
that .

(VTu&n, Vxn) = Cns xn) ¥ xn € Zn. (17)

Again, the well posedness of the operator T; is well known and a discrete negative
inner product and induced norm on Zj, is defined as
W wi) 1 = (VTpop, VTwy) = (Thop, wi) = (g, Town) . Yo, wy € Zy,
(18)
with
lonll 10 = (VThon, Vo) . (19)
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3.1 Unconditional Unique Solvability and Energy Stability

In this section, we demonstrate that the scheme (8a)—(8b) is unconditionally uniquely
solvable and unconditionally energy stable with respect to a modification to the energy
(2) for any mesh parameters t and 4 and for any of the model parameters such that
a > 0. To do so, we require the following two lemmas.

Lemma 2 Assuming solutions to (8) exist and requiring that 8,452 = 0, the scheme (8)
satisfies the discrete conservation property (¢j", 1) = (¢3, 1) = (Pagpo. 1) = (¢, 1)
foranyl <m < M.

Proof The proof follows similarly to that found in [1].

Remark2 The quantity I_Sl2\ (¢o, 1) is referred to as the average of ¢o over Q2 and is
denoted by ¢. Due to the discrete conservation property, it follows that (¢;", 1) =
(5. 1) = |2 ¢o.

Lemma 3 Suppose Q is a bounded polygonal domain. For all wy, € Zj,v € H'(Q),
y > 0 and o large enough,

| (Vwp, Vo) | = VA + ) lwrlian lvliz2 - (20)

Proof See [15].

With these two lemmas in hand, the proof for existence and uniqueness is a two-step
process outlined by the following lemma and theorem.

Lemma4 Let <pZ1_l, <p;l”_2, € 2;, X 2;, be given. For all ¢;, € 2;,, define the nonlinear
functional

1

Gp(pn) == 3

1 1 2
1+ Br\? . 1 T
(57) ()~ () -

—1,h

1 1 _ _
+ EaﬂP (on, on) + 7 |l en —I—¢0Hi4 + % llen +¢0”iz -2 <V<P;’,”_17 th)-
21

The functional Gy, is strictly convex and coercive on the linear subspace Zp. Con-
sequently, Gy, has a unique minimizer, call it ¢)' € Zj. Moreover, ;' € Zy is the
unique minimizer of Gy, if and only if it is the unique solution to

aI:P ((p}rln’ Zh) + ((w;ln +$0)3 , Zh) +a ((le +$0’ Zh) — (//LZ”*’ Zh) =2 <V(p;1"*1’ VZh) (22)

forall zj, € Zh, where ,u;l”* € Zh is the unique solution to

1+ Bt _ 1 _ ~ .
(Vi e Von) = = ( . ) (901'1" - Vh) + (%’f’ b Vh) Vun € Zn,
(23)
with (p;] = <p2.
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Proof The proof follows those found in [1, 34] with appropriate adjustments relative
to the CO-IP finite element method; similar to those established for the PFC equation
found in [15].

Theorem 1 The scheme (22)—(23) is uniquely solvable for any mesh parameters T and
h and for any a > 0. Furthermore, the scheme (22)—(23) is equivalent to (8). Thus, the
scheme (8) is uniquely solvable for any mesh parameters T and h and for any a > 0.

Proof The proof follows the approach found in [15].

Energy stability follows as a direct result of the convex decomposition represented
in the scheme. First, we define a discrete energy closely related to (2),

F. ¥) =+ ||¢||L4+ lpl72 —I|V¢|IL2+ ah ", ¢)+—|IW|I21h (24)

Lemma5 Let (¢, ') € Zp X Zy, be the solution of (8a)—(8b). Then the following
energy law holds for any h,t > QO and forall 1 < £ < M:

e — S9!

(¢hv81¢’h) +B7 Z H‘S ¢ ”71 h +5 Z

..

2 ¢t 2
+ 2( 17 (e bea) + T A ]
m:
+2[Vé.ei ||iz) = 7 (9. 6r¢2) : (25)

Proof Setting v, =T, ¢;" in (8a) and z;, =38, ¢;" in (8b), we have

(82¢p". Tdc ') + B (80 Tuded)') + (Vieyt. VTideg)') =0
P (0frseo) + ((0F)" +oafl 0c0f!) =2 (Vo Vool ) — (. seof) =

Note that (9)° = 1/2[ (@)% - @] = 9 ™") + @)% - @] + 9}~ |- Adding the
two equations together and using the polarization identity and the definition of the
discrete negative norm (19), we obtain

1 1 — m— m m
—ap” (¢, o) — ;{P (¢Zl ', ) ‘)+3a£” (8¢, 8:9)")

2t 2
+—Z;f(u¢zuL4—-H¢z*I

o 2 2 ot 2 1 ) _
T (A il W R T A (LA A %
o[ oeoft |2+ 8 [seaf 7,

1
+ 3 (1ot 2. -

4 T 2 T 2
)+ Lo+ X lorscor |

¢Z‘L—l

12
L2

m—1 2
dcfy Hflh

m_ s ¢m71H2 =0
T @ i .
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Applying t an:l yields the desired result.

The discrete energy law immediately implies the following uniform a priori esti-
mates for ¢;' and 8;¢}".
Lemma6 Let (¢)', u}') € Zp X Z, be the unique solution of (8a)—~(8b). Suppose that

f((])h, 8T¢>2) <C, where C is independent of h, and that @ > M 1 > 0. Then
the following estimates hold for any t,h > Q0 and any 1 < £ < M

+[ail, +

2
*[oi],. + lok .

2,h

+ s:04 Hz_”,] =c. o

¢ 4
max H¢h
0<t<M L4

r Z lscoi|”,, <C. @D

4

@ Y| Iscolt G+ lotrsco 5 + Lonoff I, < 9

m=1

for some constant C that is independent of h, v, and T.

Proof The proof follows as a result of Lemmas 3 and 5. More specifically, Lemma 5
yields, forany 1 <m < M,

H¢h 2+ oz = | ve HL2+ o (OF i) + H8r¢z’l’H2_1,hSCo’

4 2 2 2
where Co := [ s + 5 [l — [VOR] > + 30,7 (61 8) + 1 |80, .
Multiplying by 2, invoking Lemma 3, Young’s inequahty, and (15), we have

1
5 190 s + @ 10712 + Ceoer |97 + 86872, < Co+ 2 [ VoY |12

< Co+ 270+ |85, [0 ]2
1 +

< Co + Ceoer ||¢Zl ”;,h ( y) ||¢h ”L2

Now using the fact that 0 < (u? — 1)> = u* — 2u® + 1 implies that 1 | ¢}’ ”j} >

2 .
leil;. — 11821, where || indicates the volume of £, we have

@+ 1) @72 + Ceoer |85 |5, + |58} ||21h < Co+2| vy 3.
1+
< Cot Coonr 1013+ Sl N7 2 + 5192

Combining like terms and dropping several of the resulting positive terms on the
left-hand side of the equation, we have

1+
(a IR V)) % < Co+ 5121 =

coer
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This gives the estimate for ||¢}'l" ||EQ by requiring that o > %LDZ) — 1 > 0. The remain-
ing estimates are obtained as follows: o

1

5 190 L + @ 10712 + Ceoer 97! + 156872, < Co+ 2] Vo |

< Co+ 2V +7) [¢5 [ 03] 12

2(1
o |2, + 24+

Ccoer

Ccoer

<Co+ >

5]z -

Combining like terms and invoking the bound above, we have

CC()EV
2

1 4 2 2 2
5 el +ellgn . + Il + 8812, 5 = C-

Remark 3 Following [3], we note that C,., can be chosen to be close to 1 as long as
the penalty parameter o is large enough. In this case, y could also be chosen close to
0 and Lemma 6 will hold as long as o > 0.

4 Error Estimates

In this section, we provide a rigorous convergence analysis for the fully-discrete
method in the appropriate energy norms. We shall assume that the weak solutions
have the additional regularities

¢ e L® (o, T; H3(sz)) N L2 (o, T; H3(sz)) ,
¢ € L2 (0, T H3(Q)) N L0, T; Hy' (),
bugp € 12(0.7: 12(@),
e L2 (0, T HZ(Q)),
e L? (0, T LZ(Q)> . (29)

Such solutions have been shown to exist by Wang and Wise [33].

The interior penalty method (8a)—(8b) is not well-defined for solutions to (6) since
Zn ¢ Z. Therefore, we define W), C Z to be the Hsieh—Clough—Tocher micro finite
element space associated with .7, as in [4]. We furthermore define the linear map
Ep : Zp — Wy N Z asin [4] which allows us to consider the following problem: find
(¢, n) € Z x H'(RQ) such that

(@, vi) + B (01, v1) + (Vi V) = 0. Y € 2, (302)
a(@. Enzn) + (@) + g, Enzi) =2(V, VEwzp) — (. Ez) =0 V2 € Zp.
(30b)
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Now, adding and subtracting appropriate terms and using the fact thata é P, Exy) =
a(¢, Eqxy) for all € Z;, we obtain a system with solutions that are consistent with
those of solutions of (31): find (¢, u) € Z x H () such that

B o) + B (. vp) + (Ve Vo) =0, Vv, € Z, (3la)
af” @,z + (@ + a0, 21) = 2(V9, Van) = (. 20)

=al” (¢, zn — Enza) + ((615)3 +ag,z — EhZh)
—2(Vo,Vzp — VEnzp) — (0, 20 — Enzn), Yzn € Zp. (31b)

Remark 4 One of the primary challenges in the error analysis to follow arises due to
insufficient global regularity possessed by solutions to (6) in the space Zj,. To remedy
this, we rely on considering the Hsieh—Clough—Tocher micro finite element space
associated with .7, with the help of the enriching operator Ej, : Z;, — W, NZ as stated
above. The analysis to follow employs a combination of essentially standard techniques
for conforming time dependent finite element methods and a medius analysis for CO-IP
methods. If one wanted to avoid the medius analysis, then one would need to show
that solutions to (6) satisfy the numerical scheme as is done in [24] for the extended
Fisher—Kolmogorov equation. It is unclear whether or not this could be achieved for
the MPFC equation and is reserved for future work.

Additionally, we introduce the following notation:

e =" Lo, el =" — Phg”, )" = Pug™ — o)

Jmo__ w,m wm o wom
et = e, ey =u" = Ry, e = Ry —

where ¢™ := ¢ (t,,) and R, : H' () — Z,, is a Ritz projection operator such that

Using this notation and subtracting (8) from (31), we have forall v, € Z, and z;, € Zj,

(8%@45"”, vh) + B (8,e¢‘m, vh) + (Ve“‘m, Vvh)

- (5$¢m — 3™, vh) + B (8:¢™ — 0™, vp)

a}llP (®¢,m’ Zh) +o (®¢,m’ Zh) ) (Ve¢,m71, VZh) _ (elt,m, Zh)
== (") = (@5) 2n) =2 (V4" = Vo™ V2 ) +al (6", 21— Enzi)

+ ((¢m)3 +oap™, 7p — EhZh) —2(Ve". Vzp — VEpzn) — (0" zn — Enza) -
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Invoking the properties of the projection operators, we have for all v, € Zj and all
zh € Zp,

% (e = ocef™ ") + B (8ce)™ i) + (Ve ™, Vun)
= (82¢™ — 0™, vi) + B (5:0™ — 9™, i)
- % (e —seel™ " wn) — B (825 w). (33)
) o) (o) -
= 2(Vep" vz ) + (€ zn) = (87) = (@) zn) =2 (V9" = V4" V)

+ap? (9™, zn — Enzp) + (((15"’)3 +ap™, 7 — Ehzh>
— 2(V¢> , Vzy — VEhzh) ( "z — EhZh) (34)

Setting v, = Théref’m andz; =6; e(ﬁ’m and adding and subtracting 4 (e(g’m ,8r€), ’m),
we arrive at the key error equation

B

Sref’m H: , + % ((Sfe‘lj’m — S,Gﬁ’m_l, Th(Steh’m) +a}? (ef’m, (Steh’m)
+a (ef’m, STeh’m) +4 (ez’m, 3f®h’m) -2 (Vef’m_l, Véfef’m>

= (5$¢'" — o™, Tha,ef’”’) +B (3,¢’" — 0", ThSTef’m>

- % (s,e,;’” — 5! Théreh’m> —B (5Te‘fg’”’, Th(S,eh’m)

+4 (e seep ™) +2 (Veh" T Vo™ ) + (e e )

— ((qu) — (o)’ ,afeh*’”) +2 (v¢m — v, vafeh*’")

+al? (¢m, seel ™ — Ehb‘,ef"”) + ((qb ) + g™, srel " — Ehafef””)

) (v¢m, Vel — VEh(S,ef’m) - (um 5ol — Ehare,f”") (39

The following lemma will bound many of the terms on the right hand side of (35)
by oscillations in the chemical potential © which is considered data. The procedure is
known as a medius analysis and has been utilized in much of the literature found on
the C°-IP method and details can be found in [3].

Lemma 7 Suppose (¢, ') is a weak solution to (6), with the additional regularities
(29). Then for any h,t > Qandany 1 <m < M,

ép (qﬁm,ef’m — Eheh’m> + (((]5 ) + agp™ ,eh — Eheh’m>

—2(Ve",  (ef" — Enef™)) = (" e — Enef™)
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e
< close;n P +c|epm| + =2

pm 2 36
on e 1% (36)

2.0

and
al? <8T¢m, ef‘mi] - Ehef’m7]> + <<ST <(¢m)3 + a¢m) ,ef’mil — Ehef’m*])

) (5,v¢’", v (eﬁ”"l - Ehef’m_l» - (am’", S Ehei"”‘l)

2

< C[0se;@ua )] +C e th +C e (37)

2.0

fort™ € (ty, tyy1), where the arbitrary constant k > 0 and where Osc (v) is referred
to as the oscillation of v (of order j) defined by

Oscj(v) = Z n* ||v—f)||2L2(K) . (38)
KeJ,

Here, ¥ is the L* orthogonal projection of v on P;(Q2, Ty), the space of piecewise
polynomial functions of degree less than or equal to j, i.e.,

/(v —D)Ydx =0 Yy € Pj(Q, T).
Q

Proof See [15].
We are now in position to prove the main theorem in this section.

Theorem 2 Suppose (¢, 1) is aweak solution to (6), with the additional regularities
(29). Then forany h > 0,0 < 7 < 19, ¢ > max{% -1, 4&%):) —4} > 0 with

7o sufficiently small and any 1 <€ < M,

st + e[+ or 32 [
O PN L P SV

¢
+C1? Z |:
m=1

2

Bre(g’[ H \ +a

,m
drey, ‘

R R e e e
N L2+ o I (h*+17),

(39)

where C* may depend on the oscillations of u and 9, and the final stopping time T
but does not depend upon the spacial step size h or the time step size T.

Proof First, we note that for all x € Z, and all ¢ € Zj, [14],

10l = 18l VX2 (40)

@ Springer



La Matematica

and similarly forall g € Z and all ¢ € Zn,

1Dl = ICl-1n Vel (41)

Starting with the first five terms on the right hand side of (35) and using Young’s and
Holder’s inequalities, Poincaré’s inequality, Taylor’s theorem, and properties (40) and
(41), we have

m _ o m—1 + m—2
(s$¢"’—am"’,mre‘;’*’")=(—‘7’ e —an¢"’,Thsreﬁ*’")

T

¢m _ 2¢m—l + ¢m—2 ” "
=< ”f—z — an¢ L ”Thareh 12
Im s B e
<Ct | Ndsd @7 ds + - |5ce) H , (42)
tn2 16 ~Lh
B (5:0" — 0" Tuoee)™ ) < B |5y — 20" 2 |Taseel™ |
" 2 /3 G,m 2 43
=Crt 1055 ()12 ds + % Scey, , (43)
tn_1 6 —1,h
1 _ 5.l _ 5 gbm—l
—= <(Sfe¢1’;m - 8,@‘1@’"’ ! ThSTe‘z’”’) < Or®p T OCp HThlSzef'm i
T . . .
¢.m $.m—1 |2
(SI(BP —(ST(BP ‘3 dm 2
e i A T
B T BT i T
LZ
C [im 8 )
= /M | Pudss () = Busd ()72 ds + 1 | 8re)”™ H_l‘h
C [im 8
< — Hass(b(s) - Phass(ﬁ(s)”%ﬁ ds + R (Sreh’m e
Im—2 R
(44)
-B (Szeﬁ’m, TM,@‘}?””) <pB 5r®‘f{m p )Th&eﬁ'm B
2 ﬂ 2
¢.m ¢.m
<C ‘Sr@p 12 + E € i
c [ 2 B |2
<= Prosd(s) — s ()II2, ds + = |s H
=7, | Prosp(s) S¢(Y)”L2 s + 16 €, i
C [ , P ol
=7 /tm 195¢ () = Phds@ ()13, ds + ¢ | e " i
(45)
and
2 :3 2
4(e¢*’”,5 o ,m) <C Heas,mH P ‘5 e¢,mH _ 16
h %y = h 2 16 11°7%n L (46)

We note that inequalities (42) and (44) above holds for all m > 2. For m = 1, the
inequalities becomes
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! — ¢° | ol o' — 0 1 o
( 2 e, Thdrey, = 2 — 0@ L HTh(Szeh o
5 2 2 B o112
= Cf/ 135s@ ()72 + 18555p () |72 ds + — | 5c€)” H ’
fo 16 1k
and
6.1
1 8r€
_Z (STe‘g’l,Théref’l)f TP' HThSTef,l
T T L2
LZ
6.1 2
S-ep B #1112
i aa Redd
= . + 6 €, .
L2
c (n p ,
= & [ 10000 - Prag o) s + L fonet |
o * 16 _y

with the assumption that d;¢ (0) = 0. Additionally, the seventh and ninth terms on the
right-hand side of (35) can be bounded as follows:

(k™ scef™) = Vel 3 + £

2
¢,m
5 H , 47
€, Lk 47
and

2(Ve" — Vgl Voieh ") = 2 (A8 e )

<2 [evaseg”|; [sesf ]
tm 2
) p ¢,
<cCr / 1959 )y ds + & || 4xe, mH_l,h ’
(48)

where we have used (41) to obtain (48). For the nonlinear term, we use properties (40)
and (41) along with Lemma 6 and Young’s, Holder’s, and Poincaré inequalities and
the higher-regularities (29) to obtain,

- <(¢m)3 — (&)’ 5f@h’m) = HV ((¢m)3 - (¢iT)3> 12 dref " my
ooyt k|
=3[+ oy vorern oy vern | setn]
<3 (10 0 L 1907 169 o+ L e 1960 ) et
< (fves ]+ [wet L fesl, + et ) bt
sclenl,, +elenl,, + flaet"l,, “)
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For the remaining terms, we note that the following discrete product rules hold for
any bilinear form and remark that these discrete product rules are key to recovering
the predicted error estimates:

<am—l’ b™ _Tbm_l) — l [( bm) _ ( m— 1’ bm—l)] _ <am _Tam_l , bm)
T
= 50 (" B) — (e ),

and

(o ) =2l )] ()
: _

Thus, we have the following bound

2 (Ve vace™) =26, (Ve Ve ") =2 (Ve Vel ™)

2 2
m m m ¢.m
<26, (VeP , Ve, ) 12 +C Heh Hz.h

C tm
<25 (Ve Vel ™) + S [ 100) - P )13, ds

tm—1

2
e, 50
Additionally invoking Lemma 7 yields,

ahIP (qb’",éref’m—EhSTef’m) (( ) + agp™ 6Ief’m—Eh(Szef’m)
—2(Ve", Véee]" — VEbee]") - ( ", e — Endeel" )
= beaf” (¢". )" — Enel™) + 8 ((#")
=26, (Vo v (ef" — Enef™)) = bc (" " — Enef™)
—ai” (se0™ e = Enel ™) = (5 ((6™) + 00" ) e — Ene )
+2 (599", v (" = Eaef ")) + (sem el - Eaef ™)
< seaf (¢". &) — Ene) ™) + 5. ((#7) + 0™, " — Ere" )
28 (V" v (e — Enel™)) = 8 (1" e — Enel™)

C[Oscj(atu(t*))]z-i—CHeﬁ‘mHZ, +CH 0.m— ‘HM. (51)

P pag”, & — Epel "')
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Now applying the polarization property to the appropriate terms on the left-hand
side of (35) and combining the resulting inequality with Egs. (43)—(51), we have

2 1
¢.m
b€ H—l h + 27

B

2
Seep ™ — 80! H

2

¢.m
;€ H
T —Lh

—1.h

1
+ 551

¢.m 2

€,

1 T 14+«
+ E(ST a,ﬁp (eﬁ’m,ef’m> + Ealﬁp (zSte,‘f’m,STe?:’m) + 2 8¢

4 2 2
to 8,@2"” H +1 H VS,ef’m
LZ

L2

L2

+

B
2

2 2
8re;™ H Lh +C Hef.m_l Hz h

<o (Ve vep™) + 25 (Ve vel™) +

+C Hef’m

2 2
L CveR" G+ c|eb|, + c[ose;@uan]

Im

lm
+Cr/ [lasp ()7 + ||ass¢(s>||iz]ds+0rf [ldsssp ()17, ] ds
tm—1 tm—2

tl?l tﬂ

C C :
+ = 855 (s) — Pudss ()13, ds + — s (s) — Pudsd ()13, ds

tm—2 Im—1

+8cay” (¢’”, " — Ehe,,"") +38; ((qb"')3 +ag" e — Eheh'm)
=26, (Vo v (ef" — Enel™)) = bc (" ef" — Enel™).
with 1| = 1.
¢

Combining like terms, applying 2t ), _,, using the fact that efi’o = 0, invoking
Lemma 3, and applying Holder’s inequality, we obtain

2
NG N4 s N
o (o )+ el o el

2 ¢ 2
¢.m ¢.m—1
+ E Sr€ —§c€ H
12 ‘ th Tk Lk
e

2
L2
2
L2

L2

2
Scel" H_l T @t

BIeﬁ’m‘

¢
+7T Z (ﬂ
m=1

¢
+ 172 Z [a,ﬁp ((Sreﬁ’m, (Sreh’m> +2 HV(STqa,”m
m=1

€,

<2y/1+y Hef"‘

v

@0
+4/T+7 |eh

¢ 2
£ .
2,h 2,h
m=1

L? ‘Z,h

,+[0se; (azﬂ(f*))]2]

4
2
vee 3 (vl + o
m=1 ’

te 1
+ C/ 1055 (s) — Phass(i)(s)H%,h ds + C/ 105 (s) — Phas(i)(s)”%,h ds
1 1

0 0
1
+cCr? / (1350 (51172 + 1855 (172 + 555 ()72 ] ds
fo
3
+2[ai” (¢4 e — Enel ) + ((¢>‘) +ag’ e - Eheﬁ")

2 <v¢‘, v (ef*" - Ehef’é)) - (p/, el - Ehef‘£> ]
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Applying Young’s and Holder’s inequalities and Lemma 7 yields,

l
1P (¢t .t ¢.m |2 o.t|? p.m $.m—1]?
al (e ) e, @ [ X et ol
m=1
4 p 2
,m
Z_:( B |s-e? Hfl‘h—’_(4+a) 5 HLZ)
¢ 2
Z [ P (ocef™ seef ™) +2 |Vaceh™ HLZ}
Ccoer qseH2 41+y) H ¢e”2 #.0)2
ont el e eles ly, +¢ H "[;
=77 |° Ceoer N PP 2,h+ ’ 2.h
2
+CIZ|:}V<B ”L2+H H +[Oscj(3,u(t*))]:|

+C/; 1956 (s) — Prds ()13, ds
0

1y
+C22 [ 100 @I + 1assb6)12: + 100ssd )12 ] s
0]

Ceoer ‘2 ]
2.1 L

H2h+ 4k

+2[ [OSCJ(,M )] +CH

ef’ﬂ‘

for t* € (t;,—1, ty). Invoking Lemma 1 and combining like terms, we have

Ceoer ef,éuz H d)mH |:a+47 4(1+)’)i|
2 2,h Lh Ceoer L2
14
2
b, ¢.m—1 ¢,
+CZ Sl — 5l H,l, +C‘EZ( Seel “—l,h+(4+a) P L2>

6.0 2
e[, [7oeet”

+ sz Z |: coer

.|

2 2 2
<cox s sel e fosu
m=1 !

2,h
: wom |2 @.m 2 2
voe S [1ve™ 2 [ |2, + [oses e
m=1 ’
1y
+Cﬂ/'Ummwﬁermsm;+u%m@w;}h
o

e
+ c/ 165 (5) — Padsdp ()12, ds.
fo
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Requiring o > max {%Jr—y) —1, 4 4} > 0, we have

)
coer CCOCF

2 2 2
s, vele T, vl

) ¢
- +Cy°
m=1

6Tef’m - (Sr@ﬁ’m*l H

2
L2

2
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2
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14
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2
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2
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14
2 2 2
e S e o]
m=1 ’ ’

l
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m=1
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0]

Iy
+Cf|@ﬂﬂ—&&ﬂﬂﬁms
0]

14
2 2 2
s NG
< o L e[, + cfeb],, + e [oses)]
m=1 ’ ’

¢
2 2
+Cr Z [Chzmﬁiz(ﬂ) + He‘f,’m Hz,h + [Ost~ (at'u(t*))] ]

m=1

17
4 CIZ/ [I|3s¢(s)||i2 + ||ass¢(s)||%2 + ||8sss¢(s)”iz:| ds
0]

Iy
+cf|@mm—mmm9ﬁma
1o

where we have used well-known properties of the Ritz projection operator (32) in the
last step. Combining like terms and considering the higher regularities (29) and the
fact that Osc; (f) < Ch? for some function fe L%(Q), we have

2 2
.l b.m m d.m—1
e[, +c et seef " —scef "

2
L2

? cle)? +c (
o

71,h+ Hh HL2+ X:l

m=

2,h

2
Seel" Hil T+

Bfef’m‘

14
+C‘L’Z(ﬂ
m=1
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Table 1 Errors and convergence h

rates H errorg || 20 Rate
32/8 0.19323 N/A
32/16 0.04071 2.37325
32/32 0.02017 1.00917
32/64 0.00741 1.36099
32/128 0.00269 1.37732

Parameters and initial conditions are given in the text

+ ”Vzireh

]

¢
2
N
#0232 | Coe et [,
m=1
-1 ¢
Crt ¢mH2 o] ¢.m||?
< e e, rele ], e H "
_Cl—CzrmX:lHe" 2,h+ cp 2,h+ Tﬂ; R P

ty
+ c/ 85 (s) — Puds @ ()13, ds + C(T + h? + Ct>.
10

Allowing for 0 < t < 10 such that 7¢ := c , noting the higher regularities (29),
and using the Ritz projection properties [15] we have

2
JeL,, el el "= s
1,h —1,h
l
2 2
m m
reed (slset \Lz)
m=1 '
l
+C122[Cwe, 5celt H2 ’"H +”v3feh L2:|
m=1

—1
2
<cey) He,‘f”” H2 +CT + D 472,
m=1 ’

where none of the constants above depend on the mesh size 4 or the time step size .
Applying a discrete Gronwall’s concludes the proof.

Remark 5 Again following [3], we note that C,,., can be chosen to be close to 1 as
long as the penalty parameter o is large enough. In this case, y could also be chosen
close to 0 and (39) will hold as long as & > 0.
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Fig.2 The time evolution of the
scaled total energy F/322. The
mesh size is i = 32/256 and the
time step size is T = 0.054. All
other parameters are defined in
the text

Fig.3 The time evolution of the
scaled total energy F/2012 with
B =0.1and g = 10. All other
parameters are defined in the
text

2.625 1

2.620 |

Total Energy
N
o
i
w

2.610 1

2.605 A

—— total energy

102

Time

1071

3.22 A

3.20 A

Total Energy
w
Y
e+

3.16 4

3.14

100

5 Numerical Experiments

Time

10?

10%

In this section, we present two numerical experiments demonstrating the effectiveness
of our method. Both numerical experiments are completed using the Firedrake project
[20]. Furthermore, in order to avoid a two-step time-stepping scheme, we introduce an
auxiliary variable v/} := 8:¢;" as in [1, 34] and solve the following problem: given

¢Z1_1, w;”‘l € Zp x Zy, find ¢}, uj € Zy x Zj, such that for all vy, zj, € Zj,

1+ 87
72

(¢,’;1 —gr, v,,) _ % (w,g"—l, vh) + (Vi Vi) =0, (52a)

ap” (o7 zn) + ((¢;,")3 +agy, Zh) -2 (v(]);ln—l’ Vz;,) — (uy',z1) =0, (52b)

¢

and then update ¥;" =

m m—1
h ¢h

T
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l

|

B

Fig. 4 Snapshots of grain growth at times 7 = 0, 250, 500, 1000, 1500, 2000 with g = 0.1. All other
parameters are defined in the text

In our first experiment, we show that our method converges with first order accuracy
with regard to both time and space in Table 1. We furthermore show that the discrete
energy (24) dissipates over time in Fig. 2. Following [1], we set the initial conditions
to be

32 32

w(x + 10)) cos? (n(y + 3))
32 32

4 Ay —
_001sin? () gin2 (O =0
2 32

and solve on the domain 2 = (0, 32) x (0, 32) to a final stopping time of 7 = 2. We
solve using the mesh sizes shown in the table below and scale the time step size with
the mesh size via 7 = 0.054. We set 8 = 0.9, o = 0.975 and the penalty parameter
o = 20. We point out that Neumann boundary conditions are implemented. To show
first order convergence in the energy norm, we assign the solution from a mesh size
of h = 32/256 with t = 0.05h and T = 2 as the ‘exact’ solution, ¢,xqc;. We then
define errory := ¢ — Pexacr, where ¢y, indicates the solution on the mesh size & with
T = 0.05h and T = 2. Table 1 shows the errors and rates of convergence given the
parameters noted in the text above.

In the second experiment, we demonstrate the effectiveness of our method in
capturing the process of grain growth. For the initial conditions, we define three
crystallites with different orientations as in [21]. We then solve on the domain
Q = (0,201) x (0,201) to a final stopping time of 7 = 2000 and enforce peri-

B (x, y) = 0.07 — 0.02 cos (M) o <2n<y - 1))

+0.02 cos? (
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Fig. 5 Snapshots of grain growth at times 7 = 0, 250, 500, 1000, 1500, 2000 with 8 = 10. All other
parameters are defined in the text

odic boundary conditions. The mesh size is taken to be 7 = 201/512, the time step
size is taken to be T = 1, the parameter « is set to 0.75, and the penalty parameter o
is set to 10. We run the experiment twice under two different values of g; first with
B = 0.1 and then with 8 = 10. As demonstrated in Baskaran et al. [1], we expect
the grain growth to develop more quickly with 8 = 0.1 than with 8 = 10 due to the
dominance of the term involving the second derivative in time in the MPFC model (1).
Figures 4 and 5 demonstrate that the C°-IP method realizes this expectation. We also
observe well-defined crystal-liquid interfaces as expected. Similarly, a difference in
the energy dissipation is also observed in Fig. 3.

The authors would like to mention that the second author was an undergraduate
student during the time in which research on this project was completed and contributed
by helping to code and implement the numerical experiments. He has since moved to
a different university as a graduate student.
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