
Joint Communication and Computation Resource Allocation for

Emerging mmWave Multi-User 3D Video Streaming Systems

Babak Badnava∗, Jacob Chakareski†, Morteza Hashemi∗
∗ Department of Electrical Engineering and Computer Science, University of Kansas

† College of Computing, New Jersey Institute of Technology

Abstract—We consider a multi-user joint rate adaptation and
computation distribution problem in a millimeter wave (mmWave)
virtual reality (VR) system. The VR system that we consider
comprises an edge computing unit (ECU) that serves 360◦ videos to
VR users. We formulate a multi-user quality of experience (QoE)
maximization problem, in which VR users are assisted with the
ECU to decode/render 360◦ videos. The ECU provides additional
computational resources that can be used for processing video
frames, at the expense of increased data volume and required
bandwidth. To balance this trade-off, we leverage deep reinforce-
ment learning (DRL) for joint rate adaptation and computational
resource allocation optimization. Our proposed method, dubbed
Deep VR, does not rely on any predefined assumption about
the environment and relies on video playback statistics (i.e.,
past throughput, decoding time, transmission time, etc.), video
information, and the resulting performance to adjust the video
bitrate and computation distribution. We train Deep VR with real-
world mmWave network traces and 360◦ video datasets to obtain
evaluation results in terms of the average QoE, peak signal-to-
noise ratio (PSNR), rebuffering time, and quality variation. Our
results indicate that the Deep VR improves the users’ QoE com-
pared to state-of-the-art rate adaptation algorithm. Specifically,
we show a 3.08 dB to 4.49 dB improvement in video quality in
terms of PSNR, a 12.5x to 14x reduction in rebuffering time, and
a 3.07 dB to 3.96 dB improvement in quality variation.

Index Terms—Quality of experience, mmWave network, 360◦
video streaming, edge computing, mobile VR systems.

I. INTRODUCTION

It is envisioned that next generation wireless networks
(6G-and-Beyond) will enable an unprecedented proliferation
of computationally-intensive and bandwidth hungry applica-
tions, such as Augmented, Virtual, and Extended Reality
(AR/VR/XR) [1? –3]. Emerging VR applications capture an en-
tire spherical scene and stream high-fidelity 360◦ video content
to create an immersive experience for VR users. This, in turn,
requires high computational and communication resources. In
particular, in contrast to traditional 2D video streaming, 360◦
video streaming requires computational resources for encoding,
decoding, spatial processing, stitching, and rendering [4]. For
instance, 360◦ video decoding entails spatio-temporal transfor-
mations for spherical projection. Viewport-adaptive streaming
further increases the computational complexity by dynamically
adjusting video segments based on the viewer’s field of view
(FoV). Moreover, 360◦ videos typically have higher resolution
and larger file sizes compared to 2D videos, leading to higher
bandwidth requirements. To satisfy these requirements, multi-
access edge computing (MEC) and high-bandwidth mmWave
networks have been used [4–7].

Although numerous studies have focused on maximization of
QoE for 2D video streaming [8–10], increased computational
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Fig. 1: Edge-assisted VR system model: multiple VR headset con-
nected to an edge computing unit through a mmWave network

and communication requirements call for joint resource alloca-
tion to provide a satisfactory QoE for VR users. Such a joint
optimization problem should incorporate several constraints
including: (i) network-imposed constraints that determine the
available communication data rates, (ii) computation-imposed
constraints that determine the available computational resources
for VR users, (iii) video-imposed constraints that determine the
spatio-temporal characteristics of 360◦ videos.

A multitude of prior studies have investigated various aspects
of VR systems. For example, the authors in [4] propose a dual
connectivity streaming system in which VR users leverage both
mmWave and Wi-Fi alongside with an edge server to enable
six degrees of freedom VR-based remote scene immersion.
Hou et al. in [11] propose a FoV prediction algorithm, where
the predicted view is encoded in relatively high quality and
transmitted in advance to reduce latency. Hsu in [5] proposes
a heuristic algorithm to optimize the caching and computing
decision at an edge server to alleviate the network-imposed
constraints and enhance users’ QoE. Gupta et al. in [6] lever-
age an edge server for decoding to maximize the smallest
immersion fidelity for the delivered 360◦ content across all
VR users to alleviate the computation-imposed constraints. The
authors in [7] present an MEC computing framework for AR
applications to optimize energy efficiency and processing delay
to alleviate the computation-imposed constraints. Moreover,
[12] investigates the rate-distortion characteristics of ultra-high
definition (UHD) 360◦ videos.

Despite extensive research on VR systems, to the best of our
knowledge, no prior work has considered joint communication
and computation resource allocation for mmWave-based multi-
user VR systems. In particular, this paper formulates a multi-
user edge-assisted QoE maximization framework for 360◦
video streaming on mmWave networks as depicted in Fig.
1. In this framework, the computational tasks (i.e., decoding
and rendering) necessary for processing 360◦ videos may be
executed either by an ECU positioned near the VR arena



or by the users’ headsets themselves. On one hand, ECU
has more computational resources, thus can process the 360◦
videos faster, which leads to a lower computation latency and
a higher QoE for users. On the other hand, decoding and
rendering at ECU introduces a higher bandwidth requirement
for each user, which leads to higher communication latency
since processed videos have much larger sizes, thus degrading
the QoE. Furthermore, ECU provides its best performance for a
certain number of users due to limited computational resources.

To jointly optimize communication and computation resource
allocation, we present a novel learning-based decision-making
algorithm, called Deep VR, that considers the interplay be-
tween the communication and computation requirements of
360◦ videos. Learning-based methods, particularly DRL, do not
depend on predefined models or system assumptions. Rather,
they learn to make resource allocation decisions exclusively
by analyzing the outcomes of previous decisions and adapting
accordingly. Deep VR leverages a state-of-the-art DRL method
to learn the optimal computation distribution (i.e., ECU or
headset) and the video bitrate in the VR arena by considering
the playback statistics and video information. In summary, the
main contributions of this paper are as follows:

• We consider an edge-assisted VR streaming system model
where an ECU provides VR users with 360◦ videos. We
formulate a multi-user QoE maximization problem to find
the best policy w.r.t network condition and spatio-temporal
characteristics of multi-layer 360◦ videos.

• We develop a learning-based algorithm, called Deep VR,
to find the optimal computation distribution and video
bitrate for VR users to maximize their QoE. Our Deep VR
agent observes the playback statistics (i.e., past throughput,
decoding/transmission time, etc.) and video information,
then decides the optimal bitrate and computation distribu-
tion to decode/render the 360◦ video.

• We develop a gym-like [13] 360◦ VR streaming simulator
using a real 360◦ video dataset, real-world VR user naviga-
tion information, and real-world mmWave network traces.
Then, we perform an extensive simulation to analyze
the behavior of our proposed method. We show that the
proposed Deep VR algorithm improves the PSNR by 3.08
dB to 4.49 dB, rebuffering time by 12.5X to 14X , and the
video quality variation by 3.07 dB to 3.96 dB.

II. EDGE-ASSISTED VR SYSTEM MODEL

We consider a multi-user 360◦ VR video streaming appli-
cation with N users, which are connected to an ECU through
a mmWave wireless access point. As depicted in Fig. 1, the
users are equipped with VR headsets and request 360◦ videos
that are stored on the ECU. The videos need to be prepared
(i.e., decoded/rendered) and transmitted to VR headset before
users can play them. Upon receiving a request for a video
segment, a decision-making agent (i.e., Deep VR agent) makes
a joint decision on the video bitrate allocated to each user and
computation distribution (i.e., decoding and rendering on the
ECU or on the headset). Then, the computational resources
will be allocated to prepare each video segment.

The ECU and all VR headsets are equipped with compu-
tational resources (i.e., CPU and GPU) to prepare the video
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Fig. 2: Viewport-specific enhancement layers and a baseline layer are
transmitted to a VR headset via a mmWave link to be recosntructed.

segments. If the decision-making agent decides to prepare the
video segment on the ECU, the ECU’s computational resources
are shared among users to prepare the video segments and
then transmit the video segments to the users. However, if the
decision-making agent decides to prepare the video segment on
users’ headset, ECU sends the video segments to users and the
preparation takes place at the headsets. Next, we present the
models on multi-layer 360◦ videos, user headsets, and ECU.

Multi-layer 360◦ Video Model: We consider the scalable
multi-layer 360◦ video viewpoint tiling design [4]. As depicted
in Fig. 2, each panoramic 360◦ video frame is partitioned into
L tiles arranged in a LH × LV grid. A block of consecutive
video frames, compressed together with no reference to others,
creates a group of pictures (GoP) or video segment. Each video
is divided into M GoP with fixed time duration of Δt, and L
layers of increased immersion fidelity for each tile in a GoP
exist. The first layer is called the base layer, and the remaining
layers are denoted as enhancement layers.

Each enhancement layer increases the video bitrate, hence the
video quality. We denote en

m ∈ {0,1}L as a one-hot vector that
determines the number of enhancement layers included in mth

GoP requested by nth user. Then, the size of the mth compressed
GoP tile, denoted by d(en

m), is determined by summing over
all tiles’ bitrates in the user’s viewport. We assume a positive
compression reduction factor of β < 1, which leads to d(en

m)/β
for the size of the mth decoded GoP tile. After decoding, GoPs
need to be rendered as well, which leads to an increase in size
by a factor of α ≥ 2. Hence, the size of the mth GoP after
decoding and rendering is determined by αd(en

m)/β .

A. User Headset Model
The VR headsets are equipped with a CPU and GPU to

process the videos, and each VR headset provides a maximum
decoding speed of Z̄n

dec., a maximum rendering speed of Z̄n
rend.,

where n is the index of the VR headset. The VR headsets buffer
the rendered videos in a buffer with fixed time duration length.

Buffer Dynamics: Fig. 3 illustrates the buffer dynamics of
the 360◦ video streaming application. The GoPs need to be
prepared in order to be buffered on headsets. At time tn

m, the nth

user requests the mth GoP. Then, the GoP will be prepared (i.e.,
either on the ECU or the headset) and buffered on headsets. The
preparation of mth GoP involves three key stages: the decoding
time Dn

m, rendering time Pn
m, and transmission time T n

m . Once
the GoP is prepared and buffered, the user waits for Δn

m seconds
until requesting the next GoP. Thus, the next request time is:
tn
m+1 = tn

m +Dn
m +Pn

m +T n
m +Δtn

m. The buffer occupancy evolves
as GoPs are being prepared, and the video is being played
by the user. The buffer occupancy of user n increases by Δt



Fig. 3: VR headset buffer dynamics

seconds after receiving GoP m. Let Bn
m = Bn(tn

m) denote the
buffer occupancy of the nth user at tn

m. Then, we have:

Bn
m+1 = Bn(tn

m+1) =
(
(Bn

m −Pn
m −Dn

m −T n
m)+ +Δt −Δn

m
)
+
.

Here, the notation (x)+ = max{0,x} ensures that the buffer
occupancy is non-negative. If the preparation and transmission
times take longer than the amount of GoP stored in the buffer
(i.e., Bn

m <Pn
m+Dn

m+T n
m), then rebuffering happens as shown in

Fig. 3. We also assume that the waiting time Δn
m is zero, except

when the buffer is full, which the headset waits until the buffer
has enough space to accommodate the next GoP, which leads
to: Δn

m =
(
(Bn

m −Pn
m −Dn

m −T n
m)+ +Δt −Bn

max
)
+
.

VR Headset Decoding and Rendering Model: We in-
corporate a decoding and rendering model developed by [2]
to compute the decoding and rendering time for each GoP.
In this model, the decoding time of the mth GoP for the
nth user is assessed as s̃i(en

m)/Z̄n
dec., where s̃i(.) returns the

decoding computational complexity of a GoP, in bits, which
is the induced data rate associated with the current viewport
and the quality of the streamed video, i.e., si(en

m) = d(en
m).

Similarly, the rendering time is modeled as si(en
m)/Z̄n

rend., where
si(.) returns the rendering computational complexity of a GoP,
in bits, which is induced data rate after decoding of the GoP
si(en

m) = d(en
m)/β . Note that we assume that the viewport

information is available on the headset.

B. Edge Computing Unit (ECU) Model

The ECU provides an additional computational power to as-
sist the VR users with decoding and rendering. This additional
computational power provides a maximum decoding speed of
ZECU

dec. and a maximum rendering speed of ZECU
rend., which is shared

among the users that decode/render their GoP on the ECU. We
assume that the decision-making time is negligible, since the
decoding and rendering tasks are dominant overheads. Then,
we incorporate a similar computation model on the ECU.

Video Decoding and Rendering Model: The decoding starts
immediately after receiving the request for next GoP if the
decision-maker decides to decode the GoP on the ECU. This
leads to s̃i(en

m)/Ψn
m seconds of decoding time. Here, Ψn

m denotes
the amount of decoding resources, out of ZECU

dec. , allocated to

the nth user for decoding the mth GoP. Similarly, the ECU
rendering time is modeled as si(en

m)/Θn
m, where Θn

m denotes
the amount of rendering resources, out of ZECU

rend., allocated to

the nth user for the mth GoP. Note that the total amount of
computational resources allocated to users can not exceed the

maximum available resources, which means ∑N
n=1 Ψn

m ≤ ZECU
dec.

and ∑N
n=1 Θn

m ≤ ZECU
rend. have to be satisfied for each GoP.

Communication Model: The ECU transmits GoPs through
a mmWave wireless network. The expected transmission rate
for a GoP is modeled as Cn

m = 1
te−ts

∫ te
ts Cn

s ds where, ts and te
are transmission start and end times, respectively, and Cn

s is the
throughput provided by the mmWave channel for the nth user.
Hence, the transmission time for a compressed GoP follows
d(en

m)/Cn
m. Similarly, we can model the transmission time for

decoded and rendered GoPs.

III. MULTI-USER QOE MAXIMIZATION

Our goal is to improve QoE for multi-user 360◦ video
streaming. To this end, we consider three major factors that
impact the QoE. The first factor is the Average Video Quality
(AVQ) defined as the average per-GoP video quality for tiles in
user’s FoV, expressed as follows: AVQ= 1

M ∑M
m=1 q(en

m). While,
there are various choices for q(.) [8], in this case, we use PSNR
for the viewer’s FoV [14], which can be calculated using the
video distortion [12] as q(en

m) = 10log10(2552/MSEn
m), where

MSEn
m is the distortion of the mth GoP. The distortion has an

inverse relation with the video bitrate, which is determined by
the number of enhancement layers streamed to the user [12].

The second factor that impacts perceived QoE is the Average
Quality Variation (AQV) that captures quality variation in user’s
FoV from one GoP to another. Therefore, we have AQV =

1
M−1 ∑M−1

m=1

∣∣q(en
m+1)−q(en

m)
∣∣. The third factor that affects QoE

is rebuffering. Rebuffering occurs if the preparation time of a
GoP is larger than buffer occupancy level when the GoP was
requested. Thus, the total rebuffering time (RT) is given by:
RT = ∑M

m=1 (D
n
m +Pn

m +T n
m −Bn

m)+. A weighted sum of these
factors defines user’s QoE of a video with M GoPs as:

QoEn
M = AVQ−μ ×RT−AQV . (1)

Here, μ is a non-negative weighting parameter corresponding to
the user sensitivity to rebuffering time. The QoE metric, defined
in Eq. 1, allows us to model varying user preferences [8, 15].

QoE Maximization Problem: To formulate the problem
of multi-user QoE maximization, we define two sets of com-
munication and computation decision variables. In particular,
φ n

m ∈ {0,1}3 is a binary vector of size three with one active
element (i.e., a one-hot vector), which determines where the
decoding and rendering take place for each GoP and user. There
are three distinct states for φ n

m:

φ n
m :

⎧⎪⎨
⎪⎩

φ n
m,0 = 1 ⇒ Decode & Render on ECU,

φ n
m,1 = 1 ⇒ Decode on ECU & Render on headset,

φ n
m,2 = 1 ⇒ Decode & Render on headset.

(2)

For the sake of notation, we use φ n
m,i instead of φ n

m [i]. In
addition to computation location, we consider the rate allocation
decision variable em ∈ {0,1}N×L that determines how many
enhancement layers should be streamed to each user in the VR
arena. In addition to these decision variables, ECU computation
resources should be allocated to the users who are determined to
decode and/or render on the ECU. Therefore, ψ (i.e., allocated
decoding resources) and θ (i.e., allocated rendering resources)
need to be determined, forming the basis of the optimization
problem outlined in Eq. 3.



max
ψ,φ ,θ ,e

QoE

s.t. Bn
m+1 =

(
(Bn

m −Pn
m −Dn

m −T n
m)+ +Δt −Δn

m
)
+

tn
m+1 = tn

m

+φ n
m,1

[
s̃i(en

m)

Ψn
m

+
si(en

m)

Θn
m.

+
αd(en

m)/β
Cn

m

]

+φ n
m,2

[
s̃i(en

m)

Ψn
m

+
si(en

m)

Zn
rend.

+
d(en

m)/β
Cn

m

]

+φ n
m,3

[
s̃i(en

m)

Zn
dec.

+
si(en

m)

Zn
rend.

+
d(en

m)

Cn
m

]
+Δn

m

N

∑
n=1

ψn
m ≤ ZECU

dec. ∀m ,
N

∑
n=1

θ n
m ≤ ZECU

rend. ∀m

(3)

There are several key challenges that need to be addressed
before solving the optimization problem outlined in Eq. 3.
This is a multi-objective optimization problem, in which we
maximize the QoE for all the users, denoted by QoE =[
QoE1

M,QoE2
M, ...,QoEn

M
]
. In general, multi-objective optimiza-

tion problems have a set of so-called Pareto-optimal solutions,
which implies that the QoE for one user can not be improved
without degrading other users’ QoE. Furthermore, the action
space contains inter-dependent sub-actions. This implies that
sub-actions put constraints on each other (e.g., the maximum
achievable rate is constrained by the rate adaptation decision).
Another challenge arises from varying 360◦ video characteris-
tics, which means the computational requirements may differ
from one video to another. Finally, VR users experience time-
varying and dynamic mmWave network condition (e.g., due
to blockage, etc.) that impact the streaming data rate. Thus,
a decision-making algorithm that incorporates various dynamic
and time-varying conditions in terms of video quality, mmWave
network, and available computational resources is desirable.

IV. DEEP VR FRAMEWORK

To tackle the challenges mentioned above, we present Deep
VR framework. This framework comprises two main compo-
nents: (i) A joint rate adaptation and computation distribution
agent, which is modeled by a deep neural network, and (ii) a
proportional resource allocation algorithm, which allocates de-
coding/rendering resources to users that have been distributed to
ECU. Next, we describe the details of the proposed framework.

Deep VR Agent: At each time step and after receiving the
request for each GoP from all users, the DRL agent observes
the state sm of all users. The state input sm includes playback
statistics, and video information. The video playback statistics
include six critical metrics for each user to fully describe the
360◦ video playback status. These metrics are past throughput,
past decoding time, past transmission time, past rendering time,
last allocated rate en

m−1, and current buffer level Bn
m. We take

the future GoPs size and number of remaining GoPs for each
user as video information. This will help our Deep VR model
to distinguish between videos with different spatio-temporal
characteristics. All these metrics are collected for all users and
stacked together to represent the state information.

Once the state sm is observed, the agent chooses an action am
to decode, render, and transmit GoPs. In this case, the Deep VR
agent takes a joint action am = (em,φm). The rate allocation ac-
tion em ∈ {0,1}N×L determines how many enhancement layers
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Fig. 4: Deep VR Architecture

will be streamed to each user. The computation distribution
action φm ∈ {0,1}N×3 determines where each user decodes
and/or renders the mth GoP according to Eq. 2.

After taking the action, the state of the environment changes,
and the agent receives a reward vector rm that gives the reward
for each user. The goal of our agent is to maximize the expected
cumulative discounted reward for all users. We employ the
change in users’ perceived QoE at each step as the reward
term. This is defined as rn

m+1 = QoEn
m+1 −QoEn

m. This reward
captures the changes in the perceived QoE as a result of the
last action performed by the Deep VR agent, which enables the
agent to learn the actions that lead to improvement in QoE.

Agent Architecture and Implementation: We develop a
sample-efficient DRL algorithm to tackle the complexity of
the defined multi-user QoE maximization problem. The Deep
VR agent is composed of an actor network ω and a critic
network ωv. The actor network outputs the probabilities of both
rate allocation action πe

ω and computation distribution action

πφ
ω for all users. The actor network also outputs an auxiliary

vector that estimates the state value for each user separately.
The critic network outputs the estimated state value for each
user separately. Inspired by [16, 17], we employ a two-phase
training procedure, composed of a policy training phase and an
auxiliary training phase [18]. In the policy training phase, the
actor and critic networks are trained by Dual-Clip PPO [19]:

L DClip = Ê

[
(Âm < 0)max(L PPO,cÂm)+ (Âm ≥ 0)L PPO

]
. (4)

Here, () denotes a binary indicator function, and L PPO

represents the surrogate vanilla PPO loss that is:

L PPO = L Clip(πω , Âm)+βSω (sm)+L Value, (5)

where S(sm) is the entropy of all policies, and β is the entropy
weight, which jointly balance the tradeoff between exploration
and exploitation during the learning process. L Value is the value
network loss [18], and L Clip is the Single-Clip policy loss:

L Clip = min
[
ρ(πω ,πωold )	 Âm,clip(ρ(πω ,πωold ),1± ε)	 Âm

]
.

(6)

Here Âm = rm+γVωv(sm+1)−Vωv(sm) is the advantage function
that is calculated based on the current state-value estimate
and the discount factor γ = 0.99, and 	 is the element-wise
multiplication. ρ(πω ,πωold ) =

[
ρ1,ρ2, · · · ,ρN

]
is a vector of

size N that measures the changes in the new policy w.r.t. the
old policy for all users (i.e., the joint probability ratio of the



Algorithm 1 Deep VR Training Process

1: for epoch = 1,2, ... do
2: Perform rollout under current policy π

3: for i = 1,2, ...,NPolicy do
4: Optimize Eq. 4 (i.e., L DClip) w.r.t. ω,ωv
5: end for
6: for i = 1,2, ...,Naux do
7: Optimize L Joint w.r.t. ω

8: Optimize L Value w.r.t. ωv
9: end for

10: end for

new policy to the old policy for the joint action):

ρ
i =

π
φ
ω (φ

i
m|sm)

π
φ
ωold (φ

i
m|sm)

πe
ω (e

i
m|sm)

πe
ωold (e

i
m|sm)

.

In Eq. 6, ρ(πω ,πωold )⊙ Âm measures the gained/lost reward
as the policy for each user changes, which determines how a
change in one user’s policy affects the reward of other users.
In the auxiliary phase, we further optimize the actor and critic
networks according to a joint objective function, L Joint , which
is composed of a behavioral cloning loss and an auxiliary value
loss. Due to space limitation, details on auxiliary training phase
are omitted. Interested readers can refer to [18].

Algorithm 1 presents the training process of Deep VR agent,
which continues for multiple iterations until convergence. Each
iteration is composed of three phases. In the first phase, we
perform the current policy πω on a randomized environment to
collect new experiences (i.e., rollout process). We encapsulated
our edge-assisted VR system into a gym-like environment,
which allows the Deep VR agent to interact with the system
effectively. The Deep VR agent learns the policy through
its interaction with the environment. Both users’ video and
network condition are randomized in this environment so that
the agent learns the optimal computation distribution and rate
adaptation policy for various videos and network conditions.
In the second phase, we update both actor and critic networks.
We compute the Dual-Clip PPO loss L DClip, and use newly
collected experiences (i.e., resulted from the rollout process)
to update the networks. Finally, in the third phase, we use all
collected experiences to update both actor and critic networks
by optimizing the behavioral cloning and value losses.

V. EVALUATION
Baselines: In this section, we evaluate our proposed frame-

work through an extensive simulation against Pensieve [8],
a state-of-the-art rate adaptation algorithm. Pensieve is de-
signed for 2D video streaming applications, and only adjust
the video rate based on user state, while our problem is a
joint computation distribution and rate adaptation algorithm.
Thus, we employ two variants of Pensieve, namely ECU-
Pensieve and Headset-Pensieve. ECU-Pensieve performs all the
computations (i.e., decoding and rendering) on the ECU, while
Headset-Pensieve performs all the computations on the users’
headset. Both use the original Pensieve with no modification
to adaptively adjust the users’ bitrates. Moreover, we modify
our Deep VR framework and present two rate adaptation
algorithms, ECU-R and Headset-R. ECU-R and Headset-R use

Baseline
Metric

PSNR [dB] RT [sec] QV [dB]

Deep VR 52.91±0.89 0.06±0.04 1.26±0.40
ECU-R 52.66±1.21 0.06±0.04 1.28±0.38
Headset-R 51.86±1.71 0.06±0.04 1.34±0.44
ECU-Pensieve 49.83±2.38 0.86±1.50 4.33±1.78
Headset-Pensieve 48.42±1.69 0.75±1.41 5.22±1.09

TABLE I: Deep VR Performance during Testing Stage

a neural network with the same architecture as shown in Fig.
4 for rate adaptation, except that the computation distribution
is not decided by the neural network and all the computations
are performed on the ECU or headsets, respectively.

Datasets: In our simulations, we employ a full UHD 360◦

video dataset [12]. This dataset includes 15 videos with various
spatio-temporal characteristics. Each video is represented using
the multi-layer 360◦ model presented in Section II, and video
frames are partitioned into an 8× 8 grid. Bitrate information
for seven layers, each offering progressively higher levels of
immersion fidelity for each tile, is provided. Additionally, head
movement data for multiple users is included, allowing us to
determine the viewport location for each user. Moreover, we use
a dataset of mmWave network throughput traces [20], which
were collected in two different cities in the U.S. and from
commercial operators (T-Mobile and Verizon).

Training Performance: We perform our experiments by set-
ting N = 6 VR users, ECU decoding speed to ZECU

dec. = 7.5 Gbps,
ECU rendering speed to ZECU

rend. = 20 Gbps, headsets’ decoding
and rendering speeds to Zn

dec. = 0.2 Gbps and Zn
rend. = 9.4 Gbps,

respectively. We set µ = 30 in Eq. 1, which is inspired from [8]
and fine-tuned to provide a rebuffering time of less than two
seconds. Fig. 5 shows the moving average performance of the
Deep VR agent and the baselines over 2,000 training episodes.
The Deep VR agent learns to maximize QoE, which leads to
maximizing the PSNR and minimizing the rebuffering time and
quality variation. The Deep VR agent outperforms the Pensieve,
which is due to its ability to distribute the computation between
headsets and ECU in an environment with time-varying network
condition. In fact, the Deep VR agent learns to distribute
the computations on headsets for those users who have lower
computational requirements. This, in turn, frees up resources on
the ECU to allocate to those users with higher computational
requirements, which exceed their headsets’ resources.

Deployment Performance: Fig. 6 demonstrates the trade-off
between rebuffering time and PSNR. Each point demonstrates
the average rebuffering time and PSNR experienced by users,
and the vertical and horizontal bars represent the standard
deviation of the rebuffering time and PSNR, respectively. A
small rebuffering time and high PSNR with small variation
is desirable, which is represented by a point in the lower
right corner of this graph. Fig. 6 shows that the Deep VR
agent achieves the smallest rebuffering time and the highest
PSNR. Furthermore, Table I reports the average and standard
deviations of PSNR, rebuffering time, and quality variation.
The Deep VR agent demonstrates an improvement of 3.08
dB to 4.49 dB in PSNR, a 12.5x to 14x improvement in
rebuffering time, and a 3.07 dB to 3.96 dB improvement in
quality variation.



(a) Average user QoE (b) Average PSNR perceived by users (c) Average rebuffering time

Fig. 5: The Deep VR agent learns to maximize the QoE (i.e., weighted average of PSNR, rebuffering time, and quality variation) in a VR arena
with N = 6 users over 2000 episodes. The Deep VR agent outperforms two Pensieve variations due to its computation distribution ability.

Fig. 6: Training performance of Deep VR compared to proportional
resource allocation at ECU and headset Computation.

VI. CONCLUSION

In this paper, we considered the problem of multi-user joint
rate adaptation and computation distribution in a VR arena
for a 360◦ video streaming platform, where a learning-based
agent decides on the video bitrate allocated to each user and
computation distribution (i.e., whether each video segment
should be decoded/rendered on the ECU or on the headset). The
overall objective is to maximize multi-user QoE under dynamic
and time-varying conditions in terms of video requests, avail-
able computational resources, and communication bandwidth.
Leveraging the state-of-the-art DRL algorithm, we developed
Deep VR that utilizes playback statistics and video information
to make a joint rate adaptation and computation distribution de-
cision. Through numerical simulation using real-world network
traces and 360◦ video information, we showed that the Deep
VR agent learns to balance the existing trade-offs in the system
and outperforms the state-of-the-art rate adaptation algorithm.
Specifically, the Deep VR agent demonstrates a 3.08 dB to
4.49 dB improvement in PSNR, a 12.5x to 14x reduction in
rebuffering time, and a 3.07 dB to 3.96 dB improvement in
quality variation. Our current solution relies on the number of
users in the system. In the future, we will investigate the effect
of increasing number of users on the provided solution.
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