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We establish a formula for multiplicities of eigenvalues for the Laplace operator

subject to the Dirichlet boundary condition on a square. In particular, we show

that, for any given positive integer m, there is an eigenvalue whose multiplicity is

exactly m.

1. Introduction

Pythagoras of Samos was an ancient Greek philosopher and mathematician best

known for his contributions to geometry. He is also credited with the discovery that

strings whose lengths have a ratio of small integers produce harmonious sounds. This

discovery is the foundation of Pythagorean tuning in music. Although Pythagoras

could not have known this, his theory can be explained using the language of partial

differential equations. Suppose we have a homogeneous elastic string of length L

with ends tied along the horizontal x-axis at x = 0 and x = L . Let u(x, t) be

the displacement from equilibrium at position x and time t . Let T be the tension

constant and ρ the mass density. From Newton’s second law of motion applied to

the string over the interval [x, x + 1x], we obtain

T · ∂u

∂x
(x + 1x, t) − T · ∂u

∂x
(x, t) ≈ ρ1x · ∂2u

∂t2
.

Dividing both sides by 1x and letting 1x →0, we then arrive at the one-dimensional

wave equation with initial and boundary conditions


















∂2u

∂t2
= c2 ∂2u

∂x2
;

u(x, 0) = f (x),
∂u

∂t
(x, 0) = g(x);

u(0, t) = u(L , t) = 0.

(1-1)
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Here f (x) is the initial position and g(x) is the initial velocity of the string. The

constant c =
√

T/ρ is called the wave speed of the vibration.

Solving this equation by the method of separation of variables, we set u(x, t) =
X (x)T (t). Then

T ′′

c2T
=

X ′′

X
= −λ,

where λ ≥ 0 is a constant. Solving the boundary value problem

X ′′ = −λX, X (0) = X (L) = 0,

we obtain the eigenvalues and the associated eigenfunctions

λk =
(

kπ

L

)2

, Xk(x) = sin
kπx

L
, k = 1, 2, . . . . (1-2)

From T ′′ = −λkc2T , we then have

Tk = Ak cos(c
√

λk t) + Bk sin(c
√

λk t).

It follows that the solution to the boundary value problem (1-1) is given by

u(x, t) =
∞

∑

k=1

sin
(

kπx

L

)(

Ak cos
kcπ t

L
+ Bk sin

kcπ t

L

)

, (1-3)

where Ak and Bk are determined by the Fourier sine series of f (x) and g(x) over

[0, L] as follows:

Ak = 2

L

∫ L

0

f (x) sin
kπx

L
dx, Bk = 2

kcπ

∫ L

0

g(x) sin
kπx

L
dx .

From (1-3), we know that the fundamental frequency of vibration is

F1 = c

2L
= 1

2L

√

T

ρ

and the frequencies of the overtones are

Fk = kc

2L
= k

2L

√

T

ρ
, k = 2, 3, . . . .

Notice that the frequencies of the overtones are integral multiples of the fun-

damental frequency. Relationships among amplitudes of the frequencies of the

fundamental tone and the overtones determine the timbre of a music instrument,

the characteristics of how it sounds. We refer the reader to [Benson 2007] for an

excellent exposition on the subject.

We now consider an elastic and homogeneous drumhead stretched over a frame.

The frame is represented as a domain � in the xy-plane. Let u(x, y, t) be the

vertical displacement of the membrane from the equilibrium position and assume
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that the horizontal displacement is negligible. For any disk D ⋐ �, it follows from

Newton’s second law of motion that
∫

∂ D

T
∂u

∂n

d S =
∫

D

ρut t d A,

with T the tension constant, ρ the density constant, and n the outward normal

direction of the boundary ∂ D of the domain D. By the divergence theorem, we

then have
∫

D

T 1u d A =
∫

D

ρut t d A,

where

1 =
∂2

∂x2
+

∂2

∂y2

is the Laplace operator. Dividing both sides by the area of the disk and letting its

radius tend to 0, we then arrive at the wave equation

ut t = c21u on �, u = 0 on ∂�, (1-4)

where c =
√

T/ρ.

Solving this wave equation by separation of variables, we let

u(x, y, t) = T (t)V (x, y),

where T (t) is a function depending only on the time variable t , and V (x, y) is a

function depending only on the spatial variables x and y. It then follows from (1-4)

that
T ′′

c2T
=

1V

V
= −λ,

where λ is a constant. The boundary value problem (1-4) is now reduced to solving

the following Helmholtz equation subject to the Dirichlet boundary condition:

1V = −λV on �, V = 0 on ∂�. (1-5)

The λ are the eigenvalues of the Dirichlet Laplacian, the (negative of the) Laplace

operator subject to the Dirichlet boundary condition.

It follows from Rellich’s compactness lemma that the spectrum of the Dirichlet

Laplacian consists of isolated eigenvalues of finite multiplicity; see, e.g., [Davies

1995, Theorem 6.2.3]. Let

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · ·

be the eigenvalues, arranged in an increasing order and repeated according to

multiplicity. Let ϕk(x, y) be the eigenfunction associated with the eigenvalue λk .
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Then the solution to the wave equation (1-4) has the form

u(x, y, t) =
∞

∑

k=1

(Ak cos(c
√

λk t) + Bk sin(c
√

λk t))ϕk(x, y).

The terms in the summation have frequencies

Fk =
c
√

λk

2π
, k = 1, 2, . . . ,

in the time variable. F1 is the fundamental frequency while the Fj , j ≥ 2, are

the frequencies of the overtones of the drum. The above formula tells us that the

frequencies of the vibration are obtained by multiplying the square root of the

eigenvalues by a constant.

2. Multiplicities of eigenvalues

The multiplicity mult(λ) of an eigenvalue λ is the number of linearly independent

eigenfunctions associated to the eigenvalue λ:

mult(λ) = dim{V | −1V = λV on �, V = 0 on ∂�}.

Physically, the multiplicity represents the number of modes associated to the same

frequency. In this paper, we study the structure of the set of all multiplicities and

how it is related to geometry of the domain. We are particularly interested in

characterizing domains that satisfy the following

Property (M): A domain is said to satisfy property (M) if, for any positive integer n,

there exists an eigenvalue λ such that mult(λ) = n.

For the vibration of a string, it follows from (1-2) that all eigenvalues are simple

(i.e., they all have multiplicity one). The situation is not as simple in higher

dimensions. The classical Courant’s nodal domain theorem states that the number

of nodal domains of an eigenfunction associated to the k-th eigenvalue is at most k.

(Recall that the nodal domains are the connected components of the complement

in � of the zero set of the eigenfunction.) As a consequence, the first eigenvalue

on a (connected) domain is always simple. Determining multiplicities of higher

eigenvalues is a highly nontrivial problem. For smoothly bounded planar domains,

S.-Y. Cheng [1976] showed that mult(λ2) ≤ 3, and Nadirashvili [1987] showed that

mult(λk) ≤ 2k − 1 for k ≥ 3 (see the recent preprint [Bérard and Helffer 2022] for

an extensive discussion of relevant results).

In general, it is difficult to explicitly compute the eigenvalues and determine their

multiplicities on a planar domain. Explicit formulas for the eigenvalues are known

only for a few cases such as circles, rectangles, equilateral triangles, hemi-equilateral

triangles, and isosceles right triangles; see [McCartin 2011].
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The eigenvalues on the rectangle

Ra,b = {(x, y) | 0 ≤ x ≤ a, 0 ≤ y ≤ b}, a, b > 0,

can be computed by using separation of variables V (x, y) = X (x) · Y (y). These

eigenvalues and their associated eigenfunctions are

λm,n = π2

(

m2

a2
+

n2

b2

)

and Vm,n(x, y) = sin
mπx

a
sin

nπy

b

for m, n ∈ N, where N is the set of all positive integers. For any λ > 0, the

multiplicity of λ is given by

mult(λ) = #

{

(m, n) ∈ N × N

∣

∣

∣

m2

(a
√

λ/π)2
+

n2

(b
√

λ/π)2
= 1

}

.

Note that we have used the convention that mult(λ) = 0 if λ is not an eigenvalue.

Thus mult(λ) is the number of integer lattice points on the ellipse with semiaxes

a
√

λ/π and b
√

λ/π in the first quadrant.

For convenience, we say the rectangle Ra,b is rational if (a/b)2 is rational;

otherwise, we say it is irrational.

Proposition 2.1. On irrational rectangles,

mult(λm,n) = 1 for all m, n ∈ N.

Proof. Suppose otherwise, then there are (m1, n1) ̸= (m2, n2) such that

λ = π2

(

m2
1

a2
+

n2
1

b2

)

= π2

(

m2
2

a2
+

n2
2

b2

)

.

Then
(

b

a

)2

=
n2

2 − n2
1

m2
1 − m2

2

.

This contradicts the assumption that (a/b)2 is irrational. □

3. The case of squares

On a square with side length a, mult(λ) is the number of integer lattice points on

the circle with radius a
√

λ/π in the first quadrant. The problem of counting integer

lattice points on a circle has a long history, dating back to Pythagoras, Fermat,

Euler, Legendre, Gauss, and others; see [Cox 1989].

Let r2(k) be the number of ways k can be expressed as a sum of squares of a pair

of (ordered) integers. Namely, r2(k) is the number of integer lattice points on the
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circle with radius
√

k. For λ > 0, set k = a2λ/π2. Taking into account symmetry

and the fact that lattice points on the coordinate axes are excluded, we then have

mult(λ) =
{1

4
r2(k), k is not a square,

1
4
(r2(k) − 4), k is a square.

To compute r2(k), we use a formula due to Legendre; see [Davidoff et al. 2003,

Theorem 2.2.11]. Let d1(k) be the number of divisors of k which are congruent to 1

modulo 4 and d3(k) the number of divisors of k which are congruent to 3 modulo 4.

Legendre’s formula states that, for any positive integer k,

r2(k) = 4(d1(k) − d3(k)).

With Legendre’s formula, we then obtain the main result of this paper.

Theorem 3.1. On a square with side length a, for any λ > 0, set k = a2λ/π2. Then

mult(λ) =







d1(k) − d3(k), k is not a square,

d1(k) − d3(k) − 1, k is a square,

0, k is not an integer.

We now examine whether squares satisfy property (M). For any positive integer n,

we need to find an eigenvalue λ whose multiplicity is n. Let p be any prime that is

congruent to 1 modulo 4. Then pn−1 is a square if n is odd, while for even n it is

not (because
√

p is irrational). Thus the above theorem gives

mult

(

pn−1π2

a2

)

=
{

n, n is even,

n − 1, n is odd.

The above construction gives a sequence of eigenvalues λ = pn−1π2/a2 whose

multiplicities include all even positive integers. To obtain a sequence of eigenvalues

with multiplicities that include all positive integers, we set λ = 2 · pn−1π2/a2. The

factor 2 is introduced so that 2 · pn−1 is never a square regardless of whether n is

even or odd. From the above theorem, we then have

mult

(

2
pn−1π2

a2

)

= n

for any positive integer n. We have thus shown that squares satisfy property (M).

We now turn to isosceles right triangles. Let

Ta = {(x, y) | 0 < x < a, 0 < y < x}

be the isosceles right triangle with side length a. By reflecting the triangle about its

hypotenuse and using the above computations on the resulting square, we obtain
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the eigenvalues and the associated eigenfunctions

λmn =
π2

a2
(m2 + n2),

umn = sin
mπx

a
sin

nπy

a
− sin

nπx

a
sin

mπy

a
,

for m, n ∈ N, n > m.

Thus, for any λ > 0, mult(λ) is the number of integer lattice points (m, n) on the

circle with radius a
√

λ/π in the first quadrant above the line y = x . Note that the

lattice point (m, n) on the line y = x corresponds to k = m2 + n2 being the double

of a square. From Theorem 3.1, we then have in this case

mult(λ) =











1
2
(d1(k) − d3(k)), k is not a square nor a double of a square,

1
2
(d1(k) − d3(k) − 1), k is a square or a double of a square,

0, k is not an integer,

where k = a2λ/π2 as before. Thus for the right isosceles triangle with side length a,

mult

(

pn−1π2

a2

)

= mult

(

2
pn−1π2

a2

)

=
{1

2
n, n is even,

1
2
(n − 1), n is odd.

It follows that isosceles right triangles also satisfy property (M).

4. Further remarks

(1) We have shown that squares and isosceles right triangles satisfy property (M)

while irrational rectangles do not. The calculation for multiplicities of eigenvalues

for a general rational rectangle is more complicated. It requires deeper results from

number theory and will be studied in a forthcoming paper.

(2) Eigenvalues of the Dirichlet Laplacian on a circle can be expressed in terms

of the zeros of the Bessel functions. It is well known that, except for the first

eigenvalue, all other eigenvalues on a circle have multiplicity 2; see, e.g., [Henrot

2006, pp. 45–55].

(3) Eigenvalues on an equilateral triangle were explicitly computed by Gabriel

Lamé in 1833. Multiplicities of these eigenvalues have been studied by McCartin,

Pinsky, and others. We refer the reader to [McCartin 2011] for an extensive treatment

on the subject. As will be shown in the forthcoming paper, equilateral triangles

also satisfy property (M).

(4) It would be interesting to characterize polygons that satisfy property (M).

The works on this problem for rectangles and equilateral triangles have already

demonstrated a fascinating connection among geometry, number theory, and partial

differential equations.



494 SIQI FU, JACK HEIMRATH AND SAMUEL HSIAO

References

[Benson 2007] D. Benson, Music: a mathematical offering, Cambridge Univ. Press, 2007. MR Zbl

[Bérard and Helffer 2022] P. Bérard and B. Helffer, “Upper bounds on eigenvalue multiplicities for

surfaces of genus 0 revisited”, preprint, 2022. arXiv 2202.06587

[Cheng 1976] S. Y. Cheng, “Eigenfunctions and nodal sets”, Comment. Math. Helv. 51:1 (1976),

43–55. MR Zbl

[Cox 1989] D. A. Cox, Primes of the form x2 + ny2: Fermat, class field theory and complex

multiplication, Wiley, New York, 1989. MR Zbl

[Davidoff et al. 2003] G. Davidoff, P. Sarnak, and A. Valette, Elementary number theory, group

theory, and Ramanujan graphs, Lond. Math. Soc. Stud. Texts 55, Cambridge Univ. Press, 2003. MR

Zbl

[Davies 1995] E. B. Davies, Spectral theory and differential operators, Cambridge Stud. Adv. Math.

42, Cambridge Univ. Press, 1995. MR Zbl

[Henrot 2006] A. Henrot, Extremum problems for eigenvalues of elliptic operators, Birkhäuser, Basel,

2006. MR Zbl

[McCartin 2011] B. J. McCartin, Laplacian eigenstructure of the equilateral triangle, Hikari, Ruse,

Bulgaria, 2011. MR Zbl

[Nadirashvili 1987] N. S. Nadirashvili, “Multiple eigenvalues of the Laplace operator”, Mat. Sb.

(N.S.) 133(175):2 (1987), 223–237. In Russian; translated in Math. USSR-Sb. 61:1 (1988), 225–238.

MR Zbl

Received: 2023-08-18 Revised: 2023-09-18 Accepted: 2023-09-18

sfu@camden.rutgers.edu Department of Mathematical Sciences,

Rutgers University-Camden, Camden, NJ, United States

jh1873@scarletmail.rutgers.edu Department of Mathematics and Statistics,

Queen’s University, Kingston, ON, Canada

syh36@scarletmail.rutgers.edu Department of Chemistry, Rutgers University-Camden,

Camden, NJ, United States

mathematical sciences publishers msp



involve
msp.org/ involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all
academic levels. The editorial board consists of mathematical scientists committed to nurturing
student participation in research. Bridging the gap between the extremes of purely undergraduate
research journals and mainstream research journals, Involve provides a venue to mathematicians
wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams Williams College, USA

Arthur T. Benjamin Harvey Mudd College, USA

Martin Bohner Missouri Univ. of Science and Tech., USA

Amarjit S. Budhiraja Univ. of North Carolina, Chapel Hill, USA

Scott Chapman Sam Houston State Univ., USA

Joshua N. Cooper Univ. of South Carolina, USA

Michael Dorff Brigham Young Univ., USA

Joel Foisy SUNY Potsdam, USA

Amanda Folsom Amherst College, USA

Stephan R. Garcia Pomona College, USA

Anant Godbole East Tennessee State Univ., USA

Ron Gould Emory Univ., USA

Sat Gupta Univ. of North Carolina, Greensboro, USA

Jim Haglund Univ. of Pennsylvania, USA

Glenn H. Hurlbert Virginia Commonwealth Univ., USA

Michael Jablonski Univ. of Oklahoma, USA

Nathan Kaplan Univ. of California, Irvine, USA

David Larson Texas A&M Univ., USA

Suzanne Lenhart Univ. of Tennessee, USA

Chi-Kwong Li College of William and Mary, USA

Robert B. Lund Clemson Univ., USA

Gaven J. Martin Massey Univ., New Zealand

Steven J. Miller Williams College, USA

Frank Morgan Williams College, USA

Mohammad Sal Moslehian Ferdowsi Univ. of Mashhad, Iran

Ken Ono Univ. of Virginia, Charlottesville

Jonathon Peterson Purdue Univ., USA

Vadim Ponomarenko San Diego State Univ., USA

Bjorn Poonen Massachusetts Institute of Tech., USA

Józeph H. Przytycki George Washington Univ., USA

Javier Rojo Oregon State Univ., USA

Filip Saidak Univ. of North Carolina, Greensboro, USA

Ann Trenk Wellesley College, USA

Ravi Vakil Stanford Univ., USA

John C. Wierman Johns Hopkins Univ., USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2025 is US $270/year for the electronic
version, and $360/year (+$50, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of
subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of
California, Berkeley, CA 94720-3840, is published continuously online.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/

© 2025 Mathematical Sciences Publishers



involve
2025 vol. 18 no. 3

387Groups, conjugation and powers
MARKUS SZYMIK AND TORSTEIN VIK

401On computing the Newton polygons of plus and minus p-adic L-functions
SAI SANJEEV BALAKRISHNAN, ANTONIO LEI AND BHARATHWAJ

PALVANNAN

417Complementation of subquandles
KIERAN AMSBERRY, AUGUST BERGQUIST, THOMAS HORSTKAMP,
MEGHAN LEE AND DAVID YETTER

437Down-left graphs and a connection to toric ideals of graphs
JENNIFER BIERMANN, BETH ANNE CASTELLANO, MARCELLA MANIVEL,
EDEN PETRUCCELLI AND ADAM VAN TUYL

459Arc length tests for comparing the dynamics between GARCH processes
FEREBEE TUNNO AND JAVIER MUÑOZ RUIZ

473The converse of the Cowling–Obrechkoff–Thron theorem
DEVON N. MUNGER AND PIETRO PAPARELLA

479On an optimal problem of bilinear forms
NAIHUAN JING, YIBO LIU, JIACHENG SUN, CHENGRUI ZHAO AND

HAORAN ZHU

487Multiplicities of eigenvalues for the Laplace operator on a square
SIQI FU, JACK HEIMRATH AND SAMUEL HSIAO

495Representation of indifference prices on a finite probability space
JASON FREITAS, JOSHUA HUANG AND OLEKSII MOSTOVYI

517Coordinate knots
ALLISON HENRICH, SRIRAM KUTTY AND GRACE TAN

539Geodesic nets on flat spheres
IAN ADELSTEIN, ELIJAH FROMM, RAJIV NELAKANTI, FAREN ROTH AND

SUPRIYA WEISS

547Transitive and intransitive subgroups of permutation groups
ARDA DEMIRHAN, JACOB MILLER, YIXU QIU, THOMAS J. TUCKER AND

ZHENG ZHU

555Connected domination in plane triangulations
FELICITY BRYANT AND ELENA PAVELESCU


	1. Introduction
	2. Multiplicities of eigenvalues
	3. The case of squares
	4. Further remarks
	References
	
	

