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We establish a formula for multiplicities of eigenvalues for the Laplace operator
subject to the Dirichlet boundary condition on a square. In particular, we show
that, for any given positive integer m, there is an eigenvalue whose multiplicity is
exactly m.

1. Introduction

Pythagoras of Samos was an ancient Greek philosopher and mathematician best
known for his contributions to geometry. He is also credited with the discovery that
strings whose lengths have a ratio of small integers produce harmonious sounds. This
discovery is the foundation of Pythagorean tuning in music. Although Pythagoras
could not have known this, his theory can be explained using the language of partial
differential equations. Suppose we have a homogeneous elastic string of length L
with ends tied along the horizontal x-axis at x = 0 and x = L. Let u(x,t) be
the displacement from equilibrium at position x and time ¢. Let T be the tension
constant and p the mass density. From Newton’s second law of motion applied to
the string over the interval [x, x + Ax], we obtain
2
T-g—z(x—l—Ax,t)—T-g—z(x,t)%,oAx-%TZ.

Dividing both sides by Ax and letting Ax — 0, we then arrive at the one-dimensional
wave equation with initial and boundary conditions

u _ 2%,
arz 7 ax?’ ;
u(e,0)= (@), 57(x.0)=g): (1-1)

u,t) =u(L,t)=0.
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Here f(x) is the initial position and g(x) is the initial velocity of the string. The
constant ¢ = /7 /p is called the wave speed of the vibration.
Solving this equation by the method of separation of variables, we set u(x, t) =
X (x)T(t). Then
T// X//
AT~ X
where A > 0 is a constant. Solving the boundary value problem

X"'=-2X, X0)=X(L)=0,

we obtain the eigenvalues and the associated eigenfunctions

km\? . kmx
xk_(f>, X =sin 75, k=12, (1-2)
From T” = —xc2T, we then have

Ty = Ay cos(cv/Axt) + By sin(cv/Axt).

It follows that the solution to the boundary value problem (1-1) is given by

o0
u(x,t) =Zsin(l%)(Akcos kclirt + By sin kcli”), (1-3)

where Ay and By, are determined by the Fourier sine series of f(x) and g(x) over
[0, L] as follows:

L L
2 . kmx 2 . kmx
Ak_z,/o f(x)sdex, Bk_ﬁ ; g(x)sdex.
From (1-3), we know that the fundamental frequency of vibration is
c 1 /T
Fil=—=—|—
'=2L " 2LV p

and the frequencies of the overtones are

kc k |T
Fk_ﬁ_i /;, k=2,3,....

Notice that the frequencies of the overtones are integral multiples of the fun-
damental frequency. Relationships among amplitudes of the frequencies of the
fundamental tone and the overtones determine the timbre of a music instrument,
the characteristics of how it sounds. We refer the reader to [Benson 2007] for an
excellent exposition on the subject.

We now consider an elastic and homogeneous drumhead stretched over a frame.
The frame is represented as a domain €2 in the xy-plane. Let u(x, y, t) be the
vertical displacement of the membrane from the equilibrium position and assume
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that the horizontal displacement is negligible. For any disk D € €2, it follows from
Newton’s second law of motion that

u
f;D Ta_n dsS = /1; puy dA,

with T the tension constant, p the density constant, and n the outward normal
direction of the boundary d D of the domain D. By the divergence theorem, we

then have
/ TAMdA:/ ,OuttdA,
D D
where
2 9?
Tl oy

is the Laplace operator. Dividing both sides by the area of the disk and letting its
radius tend to 0, we then arrive at the wave equation

Uy =c’Au on 2, u=0 on 9%, (1-4)
where ¢ = /T /p.

Solving this wave equation by separation of variables, we let

ux,y, ) =T@)V(x,y),

where T'(¢) is a function depending only on the time variable ¢, and V (x, y) is a
function depending only on the spatial variables x and y. It then follows from (1-4)

that

T AV

—_—— = — )\,’

AT VvV
where A is a constant. The boundary value problem (1-4) is now reduced to solving
the following Helmholtz equation subject to the Dirichlet boundary condition:

AV =—AV on 2, V =0 on 02. (1-5)

The A are the eigenvalues of the Dirichlet Laplacian, the (negative of the) Laplace
operator subject to the Dirichlet boundary condition.

It follows from Rellich’s compactness lemma that the spectrum of the Dirichlet
Laplacian consists of isolated eigenvalues of finite multiplicity; see, e.g., [Davies
1995, Theorem 6.2.3]. Let

O<A =A< ZM=--

be the eigenvalues, arranged in an increasing order and repeated according to
multiplicity. Let ¢¢(x, y) be the eigenfunction associated with the eigenvalue .
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Then the solution to the wave equation (1-4) has the form

u(x,y. 1) = Y (Accos(cy/Axt) + Besin(cy/at))gi (x. y).

k=1

The terms in the summation have frequencies

JA
Fo=Y™ k=12 ...
27

in the time variable. F) is the fundamental frequency while the F;, j > 2, are
the frequencies of the overtones of the drum. The above formula tells us that the
frequencies of the vibration are obtained by multiplying the square root of the
eigenvalues by a constant.

2. Multiplicities of eigenvalues

The multiplicity mult(A) of an eigenvalue A is the number of linearly independent
eigenfunctions associated to the eigenvalue A:

mult(A) =dim{V | —AV =AV on Q, V =0 on 92}

Physically, the multiplicity represents the number of modes associated to the same
frequency. In this paper, we study the structure of the set of all multiplicities and
how it is related to geometry of the domain. We are particularly interested in
characterizing domains that satisfy the following

Property (M): A domain is said to satisfy property (M) if, for any positive integer 7,
there exists an eigenvalue A such that mult(A) = n.

For the vibration of a string, it follows from (1-2) that all eigenvalues are simple
(i.e., they all have multiplicity one). The situation is not as simple in higher
dimensions. The classical Courant’s nodal domain theorem states that the number
of nodal domains of an eigenfunction associated to the k-th eigenvalue is at most k.
(Recall that the nodal domains are the connected components of the complement
in © of the zero set of the eigenfunction.) As a consequence, the first eigenvalue
on a (connected) domain is always simple. Determining multiplicities of higher
eigenvalues is a highly nontrivial problem. For smoothly bounded planar domains,
S.-Y. Cheng [1976] showed that mult(X,) < 3, and Nadirashvili [1987] showed that
mult(A;) < 2k — 1 for k > 3 (see the recent preprint [Bérard and Helffer 2022] for
an extensive discussion of relevant results).

In general, it is difficult to explicitly compute the eigenvalues and determine their
multiplicities on a planar domain. Explicit formulas for the eigenvalues are known
only for a few cases such as circles, rectangles, equilateral triangles, hemi-equilateral
triangles, and isosceles right triangles; see [McCartin 2011].
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The eigenvalues on the rectangle
Rip={(x,y)[0=x=<a,0<y=<b}, a,b>0,
can be computed by using separation of variables V (x, y) = X(x) - Y (y). These
eigenvalues and their associated eigenfunctions are
2 2

m n .
Amon = 72 <¥ + ﬁ) and V,, ,(x,y) =sin

mmgx . ATy
sin ——
b

a

for m,n € N, where N is the set of all positive integers. For any A > 0, the
multiplicity of X is given by

m2 I’l2
mult(k):#{(m,n)eNxN‘ + =1}.
(avr/m)?  (bA))?

Note that we have used the convention that mult(X) = O if A is not an eigenvalue.
Thus mult(1) is the number of integer lattice points on the ellipse with semiaxes
a~/A/m and b+/A /7 in the first quadrant.

For convenience, we say the rectangle R, j is rational if (a /b)2 is rational;
otherwise, we say it is irrational.

Proposition 2.1. On irrational rectangles,
mult(A,, ,) =1 forallm,n e N.

Proof. Suppose otherwise, then there are (m, n1) # (my, ny) such that

2 2 2 2
Y R WY R R
A=T (?-i-ﬁ)—n <¥+E)

Then
O =
al m% —m3
This contradicts the assumption that (a/b)? is irrational. (]

3. The case of squares

On a square with side length @, mult()) is the number of integer lattice points on
the circle with radius a~/A /7 in the first quadrant. The problem of counting integer
lattice points on a circle has a long history, dating back to Pythagoras, Fermat,
Euler, Legendre, Gauss, and others; see [Cox 1989].

Let (k) be the number of ways k can be expressed as a sum of squares of a pair
of (ordered) integers. Namely, ro(k) is the number of integer lattice points on the
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circle with radius v/k. For A > 0, set k = a?A/72. Taking into account symmetry

and the fact that lattice points on the coordinate axes are excluded, we then have

1 .
3r2(k), k is not a square,

mult(h) = {‘1‘ 2(k) _ q
1(rn(k)—4), kis asquare.

To compute r,(k), we use a formula due to Legendre; see [Davidoff et al. 2003,
Theorem 2.2.11]. Let d; (k) be the number of divisors of k which are congruent to 1
modulo 4 and ds (k) the number of divisors of k which are congruent to 3 modulo 4.
Legendre’s formula states that, for any positive integer &,

ra(k) = 4(dy (k) — d3(k)).
With Legendre’s formula, we then obtain the main result of this paper.

Theorem 3.1. On a square with side length a, for any A > 0, set k = a*1/n>. Then

di (k) —ds(k), k is not a square,
mult(A) = { di(k) —ds(k) — 1, kisasquare,
0, k is not an integer.

We now examine whether squares satisfy property (M). For any positive integer 7,
we need to find an eigenvalue A whose multiplicity is n. Let p be any prime that is
congruent to 1 modulo 4. Then p"~! is a square if 7 is odd, while for even 7 it is
not (because ,/p is irrational). Thus the above theorem gives

p”_lnz n, n is even,
mult 5 = .
a n—1, nisodd.
The above construction gives a sequence of eigenvalues A = p”"~'72/a®> whose
multiplicities include all even positive integers. To obtain a sequence of eigenvalues
with multiplicities that include ail positive integers, we set A =2 p"~!7?/a?. The

factor 2 is introduced so that 2 - p"~! is never a square regardless of whether 7 is
even or odd. From the above theorem, we then have

n—1.2
mult(Zp 271 ):n
a

for any positive integer n. We have thus shown that squares satisfy property (M).
We now turn to isosceles right triangles. Let

T,={(x,y)|0<x<a,0<y<ux}

be the isosceles right triangle with side length a. By reflecting the triangle about its
hypotenuse and using the above computations on the resulting square, we obtain
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the eigenvalues and the associated eigenfunctions

2
T
2 2
)Wnn = _2(m +n )’
a
form,neN, n>m.
. mmx | nmwy . MTX | mwy
Umn = SIN sin — sin sin ,
a a a a

Thus, for any A > 0, mult(}) is the number of integer lattice points (m, n) on the
circle with radius a+/A /7 in the first quadrant above the line y = x. Note that the
lattice point (1, n) on the line y = x corresponds to k = m? 4 n? being the double
of a square. From Theorem 3.1, we then have in this case

%(dl (k) — ds(k)), k is not a square nor a double of a square,
mult(A) = %(dl (k) —ds3(k) — 1), k is a square or a double of a square,

0, k is not an integer,

where k = a®) /2 as before. Thus for the right isosceles triangle with side length a,

_ _ 1 .
p" 171'2) ( p" 1712) {E”’ n is even,
mult = mult( 2 =
( a? a? Tn—1), nisodd.

It follows that isosceles right triangles also satisfy property (M).

4. Further remarks

(1) We have shown that squares and isosceles right triangles satisfy property (M)
while irrational rectangles do not. The calculation for multiplicities of eigenvalues
for a general rational rectangle is more complicated. It requires deeper results from
number theory and will be studied in a forthcoming paper.

(2) Eigenvalues of the Dirichlet Laplacian on a circle can be expressed in terms
of the zeros of the Bessel functions. It is well known that, except for the first
eigenvalue, all other eigenvalues on a circle have multiplicity 2; see, e.g., [Henrot
2006, pp. 45-55].

(3) Eigenvalues on an equilateral triangle were explicitly computed by Gabriel
Lamé in 1833. Multiplicities of these eigenvalues have been studied by McCartin,
Pinsky, and others. We refer the reader to [McCartin 2011] for an extensive treatment
on the subject. As will be shown in the forthcoming paper, equilateral triangles
also satisfy property (M).

(4) It would be interesting to characterize polygons that satisfy property (M).
The works on this problem for rectangles and equilateral triangles have already
demonstrated a fascinating connection among geometry, number theory, and partial
differential equations.
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