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ABSTRACT This paper studies the generation of cryptographic keys from wireless channels in light-
fidelity (LiFi) networks. Unlike existing studies, we account for several practical considerations (a) realistic
indoor multi-user mobility scenarios, (b) non-ideal channel reciprocity given the unique characteristics
of the downlink visible light (VL) and uplink infrared (IR) channels, (c) different room occupancy
levels, (d) different room layouts, and (e) different receivers’ field-of-view (FoV). Since general channel
models in dynamic LiFi networks are inaccurate, we propose a novel deep learning-based framework
to generate secret keys with minimal key disagreement rate (KDR) and maximal key generation rate
(KGR). However, we find that wireless channels in LiFi networks exhibit different statistical behaviors
under various conditions, leading to concept drift in the deep learning model. As a result, key generation
suffers from (a) a deterioration in KDR and KGR up to 29% and 38%, respectively, and (b) failing
the NIST randomness test. To enable a concept drift aware framework, we propose an adaptive learning
strategy using the similarity of channel probability density functions and the mix-of-experts ensemble
method. Results show our adaptive learning strategy can achieve stable performance that passes the NIST
randomness test and achieves 8% KDR and 89 bits/s KGR for a case of study with 60◦ FoV.

INDEX TERMS Concept drift, channel reciprocity, deep learning, infrared channel, key disagreement rate
(KDR), key generation rate (KGR), light-fidelity (LiFi), ensemble strategy, multi user mobility, NIST
randomness test, visible light communication (VLC), wireless secret key generation.

I. INTRODUCTION

WIRELESS data transmission over the open-air
interface makes networks susceptible to pas-

sive attacks, such as eavesdropping, where attackers
intercept ongoing communications to extract private
information [1]. Common defense mechanisms involve
encrypting data at the sender and decrypting at the
receiver using symmetric/asymmetric key encryption, offer-
ing secure communications crucial for next-generation 5G+

networks [2]. Recently, wireless secret key generation
(WSKG) has been explored, leveraging wireless channel
randomness to generate secret keys without third-party
intervention, thereby, enhancing security and efficiency
[3], [4], [5].
There are several key advantages of WSKG over

traditional cryptographic key generation methods, such
as public key infrastructure (PKI) or symmetric key
systems:
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• Firstly, WSKG allows for the generation of long
cryptographic keys with significantly less computational
complexity. This is different from traditional methods
that often require complex computations and substantial
processing power for key generation and exchange.
Also, WSKG leverages the randomness of the wireless
channel, this natural variability provides a rich source
of entropy that can be utilized efficiently to generate
keys with minimal computational requirements [6].

• Secondly, WSKG offers the advantage of dynamically
varying the key. This capability for frequent and
automatic key updates enhances the security of the
communication channel, making it more resilient to
attacks compared to static keys used in traditional
cryptographic methods.

• Finally, WSKG operates without the need for a
third-party authority for key distribution, which is a
fundamental requirement in traditional PKI systems.
By eliminating the third-party intermediary, WSKG
not only reduces potential points of vulnerability but
also simplifies the system architecture, which leads to
reductions in both operational costs and latency [7]. This
decentralized aspect of WSKG is particularly valuable
in scenarios where rapid deployment and independence
from established infrastructure are beneficial. The tra-
ditional key process happens in the application layer,
while in WSKG the extraction of the channel takes
place in the physical layer, making it faster. In addition,
traditional algorithms face significant limitations at the
user equipment (UE) due to their high communication
overhead and complexity. This complexity not only
escalates device costs but also makes it impractical
for low-cost terminals like the Internet-of-Things (IoT),
Internet-of-Vehicles (IoV), Autonomous Aerial Vehicles
(AAVs), and massive machine-type communication
systems [8], [9], [10]. These systems are inherently
sensitive to delays, constrained by power, or limited in
processing capabilities, making the use of traditional
cryptographic algorithms infeasible.

Given that 80% of data traffic originates indoors [11],
our study focuses on indoor WSKG. Unlike the majority of
existing research, this paper studies WSKG in a challenging
5G+ network, namely, the light-fidelity (LiFi) network.
LiFi networks employ visible light communication (VLC)
in the downlink (DL) and Infrared (IR) communication
in the uplink (UL), hence, exhibiting non-ideal channel
reciprocity given these correlated but distinct channels [12].
This challenge calls for optimization methods to minimize
the key disagreement rate (KDR) between the uplink and
downlink channels so that the key generation rate (KGR)
can be maximized after information reconciliation is applied.
Yet, a general LiFi channel model does not exist under
user mobility [13]. This is because the characteristics of
the blockage-sensitive LiFi channels are dominated by the
dynamic interactions of the UE with the environment and

other blockers (e.g., other users and furniture pieces in
an indoor setup). Consequently, data-driven deep learning-
based approaches should be adopted instead of model-based
methods to optimize the WSKG framework. However,
relevant works overlook the fact that deep learning methods
are challenged by their generalization ability under practical
considerations that include different room occupancy levels,
room layouts, and receivers’ field-of-view (FoV). To close
this gap, our paper addresses these challenges and proposes
an adaptive WSKG framework in practical LiFi networks.

A. RELATED WORK
The majority of existing research focuses on WSKG in radio
channels [14], [15], [16] or mmWave channels [8], [9], [17],
[18], [19], [20], [21], [22]. A few works have explored
WSKG in the optical band, e.g., [23] and [24]. Most of
the prior research assumes perfect channel reciprocity [17],
[25], [26], [27], [28]. However, some recent works inves-
tigated scenarios of non-ideal channel reciprocity in both
radio [29], [30] and mmWave [18] channels. Several existing
studies have employed deep machine learning (ML) tech-
niques in WSKG. For instance, the work in [31] introduced a
WSKG framework based on deep learning for time division
duplex systems and considered asynchronous channel state
information measurements and hardware discrepancies. Also,
the framework proposed in [31] utilized a feature extraction
network consisting of two jointly trained auto-encoders,
resulting in improved KDR compared to existing methods.
Additionally, the research in [32] introduced a WSKG
framework that relies on randomized pilots and long-short-
term-memory (LSTM) recurrent neural networks (RNNs).
This approach aims to enhance randomness distillation and
mitigate man-in-the-middle attacks. Furthermore, in [33],
an ML-based adaptive quantization level prediction scheme
was developed to optimize the KGR with an accuracy
of 98.2%. Moreover, the study in [34] employed neural
networks to extract implicit features of wireless channels
to generate secret keys adaptive to hardware inaccuracies.
In [35] and [36], WSKG schemes were introduced using deep
learning for feature mapping across different frequency bands
in frequency division duplexing systems, which are usually
non-reciprocal. Also, a WSKG scheme is designed in [37]
to secure deep learning-based semantic communications by
transmitting only the meaning of data instead of the raw
message. In [38], an adversarial autoencoder is introduced
for WSKG while preventing key leakage. In our previous
work [39], we explored foundational techniques related to
this study, which have been further developed and expanded
in the current paper.
Limitations: To the best of our knowledge, only [23] has

explored WSKG in dynamic LiFi networks that account
for indoor user mobility. Without optimizing the KDR to
address channel non-ideal reciprocity, the results in [23]
showed a KDR of 40% and a KGR of 5 bits/s, indicating
the need for significant improvement. In addition, while
some existing studies employ deep learning techniques, they
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focus on lower frequencies (2.4 and 2.5 GHz) in static
environments. Hence, existing works do not account for
the impact of user mobility on the performance of WSKG,
which is crucial in 5G+, especially at higher frequencies.
In such high-frequency bands, user mobility introduces
blockage events, leading to channel outages and affecting
the distribution of the channel impulse response (CIR). As
a result, the effects of user mobility under different user
densities/room occupancy levels, various FoV configurations,
and different room layouts on deep learning-based WSKG
in high-frequency bands are not studied in the literature.
Furthermore, no countermeasures are studied to address
possible negative effects.

B. CONTRIBUTION
The contributions of this paper involve (a) analysis of the
impact of dynamic environments on deep learning-based
WSKG models, highlighting performance deterioration,
which is attributed to concept drift as will be explained in
this paper, and (b) proposal of a robust deep learning-based
WSKG model motivated by the analysis, showcasing its
superior performance in dynamic environments. To elaborate,
we carried out the following contributions to address the
aforementioned research gaps in 5G+ WSKG:

• We propose a deep learning-based framework for
WSKG in indoor LiFi networks with multi-user mobil-
ity. The framework incorporates a realistic model that
emulates indoor human mobility, capturing macro and
micro-mobility patterns. Mobility traces are used while
generating CIR data, hence, considering link outages
due to mobility-related events, i.e., link blockage
and transmitter-receiver misorientation. A deep LSTM
model at the access point (AP) is then trained to
minimize the KDR of the preliminary keys by predicting
quantized CIR levels that align closely with those at the
UE side, thus, maximizing the KGR after information
reconciliation.

• We assess the impact of multi-user mobility, various
user density/room occupancy levels, different FoVs,
and different room layouts on WSKG in indoor LiFi
networks, using three performance metrics: KDR, KGR,
and the ability to pass the NIST randomness tests.
Experimental results show that our proposed LSTM
model trained using CIR data from a fixed user density,
FoV, and room layout achieves a KDR of 7% (33%
improvement over [23]), average KGR of 89 bits/s, and
the generated keys pass the NIST randomness tests.
However, we observe that as the density of the users,
the FoVs, and the layouts of the rooms change, the
KDR deteriorates up to 29%, the KGR drops by 60%
on average, and the generated keys fail the NIST tests.
This decline is attributed to the concept drift effect,
where a shift in the probability distribution of outage
events and CIR occurs under changes in user density,
FoV, and room layout.

• To enable a robust model, we investigated custom and
general models for WSKG. The custom models did
not generalize, and the general model did not achieve
the best performances. Therefore, we propose an online
strategy based on ensemble models. To reduce the
complexity of the ensemble model (the number of
custom models), we examine the probability density
function (PDF) of the CIR at different user densities,
FoVs, and room layouts. Then, we cluster the data
according to PDF similarity using the Kolmogorov–
Smirnov (KS) test, which reduces the complexity of the
ensemble model by 50%. After clustering, we studied
different ensemble strategies and found out that the mix-
of-experts (MoE) model maintains a stable performance
where the KDR is kept at 7%, the KGR at 89%, and
the generated keys pass the NIST tests with FoV 60◦.

The rest of this paper is structured as follows. Section II
introduces the system model. Section III outlines the
proposed deep learning-based WSKG framework and
presents the effect of dynamic environments on the deep
learning model, showcasing its performance under vary-
ing conditions. This sets the stage for understanding the
challenges faced by such models in dynamic environments.
Section IV analyzes the reasons behind the behavior of
deep learning models in dynamic settings and proposes an
effective mitigation solution. Specifically, it presents our
proposed online ensemble learning strategy based on PDF
similarity and MoE model, and shows performance results.
Finally, Section V concludes the paper and presents our
future work.

II. SYSTEM MODEL
In this section, we provide an overview of the indoor setup,
human mobility model, and channel model.

A. INDOOR SETUP
To study the generalization ability of the deep learning-based
WSKG framework, we consider two layouts of an office
room, denoted as R1 and R2. The room’s dimensions are
5m×5m×3m. In R1, there are nine desks, with dimensions
1m×0.75m×1.3m, arranged as depicted in Figure 1(a). In
R2, the same desks are distributed along the walls’ sides,
as shown in Figure 1(b). The room is covered by four
LiFi APs evenly distributed across the ceiling, as illustrated
in both layouts in Figure 1. We consider three distinct
scenarios, each with a unique FoV for the UE, namely, 30◦,
60◦, and 90◦. The coverage area of the APs is affected
by these different FoVs, as illustrated in Figure 1(b). The
human body is represented as a cuboid with dimensions of
1.8m×0.2m×0.45m. We consider a mass of 70 Kg for the
human body, with a peak walking speed of 2.1 m/sec and
a maximum acceleration of 1m/sec2. The indoor mobility
sample interval is set to 100 milli-sec. In our model, all
surfaces in the room, as well as the human body, are
considered reflectors and blockers of the line-of-sight (LoS)
channels in both the uplink and downlink directions.
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FIGURE 1. Office room setup showing the distribution of desks and LiFi APs. (a)
showcases R1 with nine desks evenly distributed across the room, while (b) displays
R2 with the desks placed along the three walls.

B. MOBILITY MODEL
We employ the indoor human mobility model detailed
in [13], which accurately captures realistic human
movements within indoor environments across two
timescales: macro-scale and micro-scale. This model was
validated against real indoor human mobility traces in [13],
ensuring its reliability in practical applications. Relevant
to this work, the adopted model is particularly valuable
because it separates user trace data from channel data in the
generation process, providing greater flexibility in simulating
diverse mobility patterns.

1) MACRO-SCALE MOBILITY

Macro scale mobility patterns are captured using a semi-
Markov process, which simulates movements among L
destination points such as furniture and entrances within a
space. These movements are driven by the return regularity
and truncated Lévy walks, which dictate the likelihood
of moving from one point to another based on historical
visits and duration spent at each point. The process is
mathematically represented as {(Xn,Tn) : n ≥ 0}, where Xn
denotes the location at the n-th transition and Tn signifies the

time at the n-th transition. The semi-Markov kernel, detailing
the transition probability from location i to j within time t,
is expressed as:

ζ
(Td)
i,j (t) = p(Td)

i,j R(Td)
i,j (t)

= Pr{Xn+1 = j,�Tn ≤ t|Xn = i,�Tn ∈ Td}, (1)

where R(Td)
i,j (t) models the time residence at location i before

transitioning to j and �Tn = Tn+1 − Tn. The transition
probabilities, p(Td)

i,j , vary depending on the time of day Td
(e.g., morning, afternoon).
Statistical results in the literature collectively indicate

that human mobility follows a scale-free pattern, where
human trajectories, regardless of the scale, display behaviors
similar to those observed in a Lévy walk [40], [41]. The
Lévy-walk component, defined by a truncated Pareto dis-
tribution, explains movements without returns, highlighting
the long-tail characteristic of human movement. The PDF
for transitioning from i to j, encompassing both step length
and duration, is given by:

�
(
ri→j, ti→j

) = φ
(
ti→j|ri→j

)
p
(
ri→j

)
, (2)

where φ(ti→j|ri→j) is a conditional probability that a step
takes ti→j time in movement, and the step length probability
follows a truncated Pareto distribution:

pi,j = p
(
ri→j

) = α(rmin)
αr−(α+1)
i→j

1 − (rmin/rmax)
α , (3)

with α as a positive parameter and rmin and rmax representing
the minimum and maximum step lengths, respectively. The
duration of stay at each location adheres to a similar
truncated Pareto distribution, capturing the essence of human
mobility on a macro scale.

2) MICRO-SCALE MOBILITY

The micro-scale mobility patterns are captured by the
function �(i, j, t), which details the trajectories from starting
points to destinations within a two-level framework. This
framework consists of large-scale pathways constructed
through sequences of next nodes and small-scale that detail
the three-dimensional positioning and orientations of users.
For scenarios involving mobile states with mobility-

impacted link quality, large-scale movements are found by
calculating the shortest path using Dijkstra’s algorithm. This
is employed by two graphs: Gr for obstacles like furniture
and Gp for navigable path nodes and avoiding no-go spots,
thereby ensuring realistic movement trajectories. The shortest
path between two locations i and j is determined using
Dijkstra’s algorithm D as follows:

Vi→j = D(i, j), (4)

To incorporate small-scale mobility, steering behaviors are
utilized to model user-environment interactions, simulating
authentic physical movements along the computed path
nodes in an environment �:

�(i, j, t) = S(Vi→j,�
)
. (5)
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Users are represented as point masses with defined mass
m, maximum acceleration amax, and maximum velocity vmax,
adhering to Newton’s Second Law of Motion. The steering
forces applied at time t result in acceleration a(t) = F(t)

m ,
with velocities and positions updated via Euler integration:

v(t) = v(t − δτ) + a(t)δτ, (6)

p(t) = p(t − δτ) + v(t)δτ. (7)

This framework incorporates seek and avoidance behav-
iors, guiding the user towards targets while avoiding
obstacles. The seek behavior produces a seek force, Fs(t),
which attracts the user to each target node. The seek
force orients towards the distance vector d(t) between the
intermediate target ξ(t) ∈ Vp and the actual position of the
user p(t) as d(t) = ξ(t) − p(t). The corresponding desired
velocity vector vd(t) is given by

vd(t) = d(t)

‖d(t)‖vmaxδτ. (8)

The user is driven by the seeking force Fs(t) as

Fs(t) = m

(
vd(t) − v(t)

δτ

)
. (9)

As the user approaches the destination, they slow down
to end the period of mobility. This behavior is modeled by
an arrival force Fa(t) that is opposite to Fs(t) but has a
threshold radius to ignore long-range effects. To repulse a
user from penetrating insurmountable areas such as obstacles,
an avoidance force Fo(t) is applied. The avoidance force is
calculated considering the perpendicular distance dw from
the present position to the surface of an obstacle. This is
given by

Fo(t) = m

(
nwdw‖v(t) − v(t − δτ)‖

δτ

)
, (10)

where nw denotes an orthogonal unit vector against the
obstacle surface w. The overall force applied to the user at
any time t combines these behaviors:

F(t) = Fs(t) + γo

W∑
w

Fo(t) + γaFa(t). (11)

Here, γo and γa are tuning parameters that adjust the
influence of the avoidance and arrival efforts, respectively.
This integrated approach ensures that the user moves
smoothly towards the target while avoiding obstacles and
decelerating appropriately upon arrival.
The model further integrates the stochastic orientation of

UEs, described by yaw, pitch, and roll, significantly affecting
the optical wireless channel. Given its slow variation,
which is attributed to minor delay spreads and extended
coherence times, the orientation angles impact channel
characteristics. Specifically, the polar angle ϑ adheres to
a Laplace distribution for seated scenarios and a Gaussian
distribution for ambulatory activities, influencing the azimuth
angle ω following user paths [42].

FIGURE 2. Framework for deep learning based WSKG in dynamic multi-user
indoor LiFi.

This mobility modeling approach is depicted in the upper
section of Figure 2. Further elaboration on the mobility
model’s parameters and the underlying algorithms is pro-
vided in [13].

C. CHANNEL MODEL
The LoS impulse response is expressed as follows [43], [44]:

h(0) (t, τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AR
d2

0(t)
(m+1)

2π
cosm ψ(t) cos θ(t)

×TS(θ(t) )δ
(
τ − d0(t)

c

)
,

if 0 ≤ θ(t) ≤ �

0, if θ(t) > � or ray is blocked,

(12)

where τ denotes delay, AR is the sensor area, ψ the angle
of irradiance, � the receiver’s FoV, c the speed of light,
and TS(θ) the overall transmission response of the optical
system (assumed to be 1 in this analysis). LoS transmission
distance d0(t) = ‖p(t) − pAP(v)‖, where pAP(v) denotes
the AP’s location, with v ranging over the set of all APs
V . Additionally, the mode number m relates to the half-
power angle �1/2 through m = − ln 2/ ln cos �1/2. The
receiver incidence angle θ is determined by ϑ and ω,
and the relative angle between transmitter and receiver,
considering the transceiver’s placement on the terminal.
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TABLE 1. Time and space complexities of WSKG tasks.

To mitigate potential eye irradiation hazards from the uplink
and blockages by the user’s body, leading to significant
outages, the UE’s transceiver is oriented forward along
the trace direction, not upward towards the ceiling. Thus,
the terminal transceiver’s direction vector is defined as
uULθ (t) = (sin ϑ(t) cos ω(t), sin ϑ(t) sin ω(t), cos ϑ(t)), and
for an AP transceiver as uDLθ = (0, 0,−1). The cosine of θ(t)
is calculated as cos θ(t) = uULθ (t) · uDLθ /(‖uULθ (t)‖‖uDLθ ‖).
A ray is considered blocked if it intersects any surface,
including furniture or the user’s body. The channel model
in (12) applies to both VL and IR and the reciprocity
between uplink and downlink channels is influenced by
environmental conditions and channel dynamics [13]. IR and
VL bands differ primarily in their wavelengths. IR light has
longer wavelengths than VL, which affects how each band
interacts with physical environments, including absorption
and reflection properties, as mentioned in [13, Table 1].
The reciprocity between uplink and downlink channels in
these bands is influenced by several factors, including
environmental conditions and channel dynamics.

III. PROPOSED DEEP LEARNING-BASED KEY
GENERATION STRATEGY
In LiFi networks, the uplink and downlink channels operate
in different frequency bands, namely the IR and VL
bands, respectively. Since these channels exhibit non-ideal
reciprocal characteristics, the quantization thresholds at both
the AP and UE must be optimized to generate closely
matching preliminary keys after quantization. Failure to do
so would result in a high KDR and a low KGR. However,
accurate channel models do not exist in LiFi networks as
the CIR is tied to the user’s mobility details and interactions
with the environment, making data-driven optimization of
quantization thresholds essential. Hence, we propose a deep
learning-based quantization strategy at the AP. Specifically,
we train a classification LSTM model at the AP using a
dataset of normalized uplink CIR h̄UL(t) as input features.
The model output corresponds to the relevant downlink
Gray code generated with Algorithm 1 (to be detailed next).
The model is trained to minimize categorical cross-entropy,
effectively, reducing the KDR. This means that the model
learns to relate HUL (used at the AP to generate the downlink
preliminary key K̃DL) with K̃UL (preliminary key generated
at the UE). In testing, the model is provided with the uplink

Algorithm 1 CDF-Based Quantization
1: Input: H %Estimate of CIR
2: Input: Q %Quantization level
3: Output: K̃ %Generated preliminary key sequence
4: procedure CDF_QUANTIZATION(H, Q)
5: F(h) ← Pr(H < h) %CDF calculation
6: η0 ← −∞ %Threshold
7: for j ← 1 to 2Q − 1 do
8: ηj ← F−1(j/2Q) %Threshold
9: end for

10: η2Q ← ∞
11: Construct Gray codes bj and assign them to different

intervals [ηj−1, ηj]
12: for n ← 1 to N do
13: if ηj−1 ≤ h(n) < ηj then
14: K̃(t,Q) ← bj
15: end if
16: end for
17: end procedure

FIGURE 3. Further detailed illustration of the key generation algorithm depicted in
the bottom part of Figure 2.

CIR from the UE, and it generates a preliminary key at the
AP that closely matches (i.e., minimizes KDR) the UE’s
preliminary key. Figure 3 illustrates the proposed WSKG
approach. The details are provided next.

A. WSKG PROCEDURE
The bottom part of Figure 2, detailed in Figure 3, illustrates
the proposed framework for WSKG in mobile LiFi networks.
The process begins by generating indoor human mobility
traces, as explained in Section II-B. Subsequently, we
generate the CIR data. This is done by first performing
blockage judgment to determine if the link between the user
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and the AP is blocked. A ray is considered blocked if it
intersects any of the six surfaces representing each cuboid
object in the room (e.g., human or furniture). Additionally,
we verify if the received signal falls within the receiver’s
FoV. If the ray is unblocked and the signal is within the FoV,
the CIR is computed according to (12). Then, we use the CIR
data to generate the secret key based on channel probing,
quantization, and information reconciliation processes. We
will discuss these concepts and then introduce our proposed
deep learning approach (Figure 3) to improve the KDR and
KGR in the uplink and downlink keys caused by channel
non-ideal reciprocity.

1) CHANNEL PROBING

Initially, the user and AP engage in bidirectional communi-
cation by exchanging request and response probing frames
over a specified duration. Upon receiving a request frame, the
receiver provides a reply frame. The time interval between
consecutive request or reply probing frames is assumed to
be constant and denoted as �, resulting in a channel probing
rate of 1/�. At the end of the channel probing process,
the user and AP have collected a set of N pairs of channel
measurements, in this work N = 100. The estimated channel
gains in the downlink and uplink are given by{

HDL = [hDL(1), hDL(2), . . . , hDL(N)]T,

HUL = [hUL(1), hUL(2), . . . , hUL(N)]T,
(13)

where h(n) represents the CIR estimate at discrete instances
1 ≤ n ≤ N. The notation T denotes the transpose. It should
be highlighted that a perfect estimation of CIR is assumed.

2) QUANTIZATION

We adopt a cumulative distribution function (CDF)-based
quantization approach. This method determines quantization
thresholds based on the CDF of the CIR data. The use of
CDF-based quantization ensures an equal balance of “1”s
and “0”s, which is crucial for passing the NIST randomness
tests. Our decision to use the CDF-based quantizer stems
from preliminary experiments that showed the distribution
of CIR shifts with different user densities. Algorithm 1
presents a description of the CDF-based quantizer. The
inputs to the algorithm include the CIR estimate H over the
probing interval and the desired quantization level Q, we set
Q = 2. The output is the preliminary key sequence K̃. The
quantization process starts by calculating the thresholds (ηj
for 0 ≤ j ≤ 2Q) based on the CDF of the CIR (lines 5−10 in
Algorithm 1). Subsequently, Gray codes bj are assigned to
each threshold interval [ηj−1, ηj] (line 11). Finally, each CIR
sample within a given quantization interval is replaced by
the corresponding Gray code. This approach can be extended
to multi-bit quantization by incorporating more quantization
levels. To maintain a Hamming distance of one between
similar data samples, a Gray code is employed, resulting in
similar binary strings with only a one-bit difference.
Typically, the UE uses Algorithm 1 to quantize HDL

(received from the AP) to create its preliminary key K̃DL.

Algorithm 2 Information Reconciliation

Input: K̃DL, K̃UL %Quantized keys of AP and UE
Input: C %ECCA set shared by AP and UE
Output: KDL, KUL %Reconciled key
1: UE randomly selects a code c from the ECCA set C
2: UE calculates the syndrome s = XOR(K̃DL, c) and

transmits s to the AP through a public channel
3: UE assigns KDL = K̃DL
4: AP receives s and calculates c̃AP = XOR(K̃UL, s)
5: AP decodes c̃AP to get cAP
6: AP calculates KUL = XOR(cAP, s)

Similarly, the AP employs Algorithm 1 to quantize HUL
(received from the UE) and generates its preliminary key
K̃UL. In this work, to generate the dataset needed to develop
the proposed LSTM model, Algorithm 1 is used in the
uplink and downlink. Once our proposed deep learning-based
approach is developed using the created dataset, Algorithm 1
is adopted at the UE level, while the deep learning model
is used at the AP level for key generation (see Figure 3).

3) INFORMATION RECONCILIATION

This step creates identical symmetric keys at the UE and AP
to be used in cryptography. This is done by identifying and
removing non-identical bits in the preliminary keys between
the AP and UE, denoted as K̃DL and K̃UL, to generate the
final symmetric keys KDL and KUL. Our focus is on the
KDR which describes the percentage of non-identical bits
between K̃DL and K̃UL as these need to be removed. Our
aim in this paper is to reduce the KDR due to channel non-
ideal reciprocity between the uplink and downlink to enhance
the efficiency of the key generation process and maintain
a high KGR. The secure sketch is a widely used error
correction code-based approach (ECCA) for information
reconciliation [45], as described in Algorithm 2. The process
starts with UE randomly selecting a codeword c from the
Bose–Chaudhuri–Hocquenghem (BCH) code set C. A BCH
(w, m, e) code consists of a w-bit codeword and an m-bit
message, with the capability to correct up to e-bit errors.
Then, the UE calculates the syndrome s using the exclusive-
OR (XOR) operation, given by s = XOR(K̃DL, c). UE
transmits the syndrome s to the AP. Then, the AP calculates a
codeword c̃AP = XOR(K̃UL, s). If the errors are correctable,
i.e., e-error bits or less, AP can decode c̃AP to obtain cAP,
such that cAP = c. Finally, it derives a new key through the
XOR operation, denoted as KUL = XOR(cAP, s).

4) PRIVACY AMPLIFICATION

During the process of probing, quantization, and information
reconciliation, the UE and AP communicate over public
channels, making them susceptible to potential eavesdrop-
ping by attackers. To address this security concern, a
privacy amplification step is commonly incorporated after
information reconciliation, where universal hash families are
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used. In this paper, we use SHA-256, which is part of the
SHA-2 family, designed by the National Security Agency
(NSA) and published in 2001 by the National Institute of
Standards and Technology (NIST) [46].
Finally, we provide the time and space complexity of

our WSKG procedure in Table 1. The time complexity
is dominated by O(2Q + N2Q) and the space complexity
is dominated by O(N + 2Q). The latency introduced by
WSKG is competitive compared to the latency inherent
in traditional cryptographic exchanges, which often involve
multiple rounds of communication between endpoints and a
central authority [47].

B. DATASET GENERATION
The framework presented in Figure 2 is utilized to generate
the necessary uplink and downlink CIR datasets. All data
generation processes were conducted on the Tennessee
Technological University’s High-Performance Computing
(HPC) cluster. The generation of indoor mobility traces
was based on the mobility model outlined in Section II-B.
The CIR data is collected under various scenarios of user
densities in rooms R1 and R2, namely, with 1, 3, 6, and
8 mobile users in each room. For each scenario, three
different FoVs of 30◦, 60◦, and 90◦ are considered. To
prevent overfitting, in each scenario, 1000 mobility traces
are generated per user, and then the CIR data is collected as
described above. As a result, time-series data of uplink and
downlink CIR are recorded for each user and AP, as in (13).
It is essential to emphasize that the CIR undergoes three

distinct stages: the Entering Stage when the user enters the
room and moves to the first residence spot, the Wandering
Stage when the user roams across the room, and the Exiting
Stage when the user moves toward the exit. In this study,
we specifically concentrate on the Wandering Stage since it
is the extended phase that triggers the WSKG process.
Before training the LSTM model, data pre-processing is

carried out to extract the necessary input features and labels.

C. DATASET PRE-PROCESSING
The following pre-processing steps are undertaken to define
the input features and the output class.

1) NORMALIZING INPUT FEATURES

To ensure convergence during the model training, the uplink
CIR data is normalized. This involves defining hmax

UL =
maxHUL and hmin

UL = minHUL and then calculating the input
features X = [x(1), x(2), . . . , x(N)] as

x(t) = hUL(n) − hmin
UL

hmax
UL − hmin

UL

. (14)

2) DEFINING OUTPUT LABELS/CLASSES

To minimize the KDR, we first determine the quanti-
zation (Gray code) outcome at the UE based on the
downlink CIR HDL. This is achieved by utilizing the
CDF_QUANTIZATION(HDL,Q) procedure in Algorithm 1.

Consequently, at each time instant n, we obtain the corre-
sponding Gray code outcome K̃DL(n). Since the Gray code
represents binary outcomes, we find its decimal equivalent
and use it as the output label/class y(n) for the model
at time n. Altogether, there are 2Q thresholds mapped to
2Q different Gray codes, resulting in 2Q classes/labels.
These classes/labels, corresponding to the input features, are
represented as Y.

D. STACKED-LSTM MODEL TRAINING AND
OPTIMIZATION
The proposed model is built upon the stacked-LSTM
architecture, which is particularly suited for handling time-
series data like ours. We opt for LSTM due to its ability
to address the challenges of exploding and vanishing
gradients. The model is trained in a supervised manner
using (X,Y) examples from the dataset. To minimize
the categorical cross-entropy, equivalent to reducing the
KDR between uplink and downlink channels, we uti-
lize the Backpropagation-through-time (BPTT) algorithm.
Additionally, we perform a grid search to optimize the
model’s hyper-parameters, including the number of hidden
layers, the number of LSTM cells per hidden layer, and the
activation functions. Through experimentation, we find that
a configuration of stacking two LSTM layers yields optimal
results. The first LSTM layer consists of 56 hidden units
and utilizes the tanh activation function, the input size is a
vector of the wandering stage (55, 1), and the output is a
return sequence, while the second LSTM layer comprises
72 hidden units with the Sigmoid activation function, it
takes the output of the previous LSTM and returns the
sequence. The output dense layer contains 2Q neurons,
corresponding to the number of classes, and applies the
Softmax activation function. Our model is trained by setting
the learning rate to 0.001, employing the Adam optimizer,
employing a batch size of 10, and conducting 1000 epochs
to achieve convergence.
Several mitigation techniques have been adopted to avoid

overfitting. First, we ensured that the generated user trace
datasets were highly diverse, producing distinct CIR scenar-
ios to prevent overly similar training instances. Specifically,
we generated 1000 diverse mobility traces under various
user densities and in various room configurations and FoV
settings. Additionally, we utilized an 60−20−20% data split,
dedicating 60% of the data to training, 20% for validation,
and 20% to testing, thereby enabling the model to be
evaluated on unseen data to confirm that the model is not
overfitting.
This model avoids the iterative steps typically needed in

traditional quantization methods described in Algorithm 1.
This reduces both time and space complexity from O(2Q +
N2Q) and O(N + 2Q), respectively, to O(N), allowing
the model to make real-time predictions efficiently. The
parameters tuned in our model include the number of
LSTM layers, hidden units per layer, learning rate, batch
size, and number of epochs. Each of these parameters is

VOLUME 6, 2025 749



MAHALAL et al.: CONCEPT DRIFT AWARE WIRELESS KEY GENERATION IN DYNAMIC LiFi NETWORKS

selected to balance convergence speed, model complexity,
and robustness in dynamic Li-Fi environments. For example,
increasing the number of LSTM layers and hidden units
enhances the model’s ability to capture complex temporal
patterns in channel data, which reduces the KDR. However,
this also raises computational costs and risks overfitting,
especially in low-density scenarios.

E. PERFORMANCE EVALUATION METRICS
During the testing phase, the model takes the normalized
uplink CIR as input features and generates the downlink
preliminary keys K̃DL as its output. Then, information recon-
ciliation is applied to derive the final keys. The performance
of the model is then assessed using the following metrics:

1) KDR

Due to the inherent non-ideal reciprocity of uplink and down-
link channels in LiFi networks, there is a possibility of having
mismatched bits following quantization (before information
reconciliation). The KDR is a metric that quantifies the
ratio of mismatched bits present in the preliminary keys
K̃DL (generated at the AP) and K̃UL (generated at the UE).
These keys are produced using Algorithm 1 for downlink
and the LSTM model for uplink. Assuming the length of
bits in the preliminary keys is denoted by L = Q×N, where
N represents the length of channel measurements and Q
is the quantization level. The KDR can be mathematically
expressed as

KDR =
∑L

l=1 |K̃UL(l) − K̃DL(l)|
L

. (15)

2) KGR

Following the process of information reconciliation, a uni-
form key K is established between the AP and the UE,
resulting in a KDR value of zero. This metric is quantified
in terms of bits/second and signifies the speed at which a
system can generate or update keys. Different cryptographic
algorithms necessitate specific KGR. For instance, the AES
algorithm demands a KGR of 0.1 bit/second [14], [48].

3) KEY RANDOMNESS

Evaluating the resilience of generated keys against unau-
thorized access is paramount. To assess the randomness of
the produced keys, we employ the NIST randomness tests,
detailed in [49]. The outcome of each test is represented
by a p-value. A key is considered to exhibit substantial
randomness and successfully passes the respective test if
the p-value is equal to or greater than 0.01. The suite
of tests includes the monobit, frequency within the block,
longest run of ones, binary matrix rank, discrete Fourier
transform, non-overlapping template matching, overlapping
template matching, approximate entropy, cumulative sums,
and random excursion tests. The monobit test scrutinizes
the distribution balance between 0s and 1s in a sequence.
Meanwhile, the frequency within a block test assesses the

FIGURE 4. Learning curve for the DNN-based strategy.

equilibrium of 0s and 1s within discrete M-bit blocks. The
longest run of one test evaluates the lengthiest streak of con-
secutive 1s within a block. The binary matrix rank focuses
on the rank of separate sub-matrices. The discrete Fourier
transform (DFT) investigates the peaks’ magnitudes in the
sequence’s DFT. The non-overlapping template matching test
searches for specific non-periodic patterns. The approximate
entropy test measures the regularity of fluctuations in a
sequence. The cumulative sums test detects any significant
deviations in the tally of 0s and 1s across the sequence.
Lastly, the random excursion test monitors the count of
cycles with exactly T-visits in a cumulative sum random
walk. A key is considered successful and passes our criteria
only if it passes all 15 tests; otherwise, it fails.

F. PERFORMANCE EVALUATION RESULTS
This subsection provides an overview of the findings
obtained through the performance evaluation. First, we
motivate the adoption of LSTM-based model rather than
the less complex deep feedforward neural network (DNN)
model by comparing the learning curves of both models.
Second, we test the generalization ability of the LSTM-based
WSKG model. Finally, we compare a learning-based WSKG
framework with a traditional benchmark.

1) LSTM VERSUS DNN MODEL

Herein, we compare two deep learning methods to motivate
the use of an LSTM-based strategy. Specifically, we compare
a DNN-based strategy for WSKG against an LSTM-based
strategy, with the training and validation losses of both
strategies summarized in Figure 4 and Figure 5, respectively.
Each strategy adopts Algorithm 1 at the UE level, while the
deep learning model (DNN or LSTM) is used at the AP level
for WSKG. We performed hyper-parameter optimization for
both LSTM and DNN models. The results demonstrate
a steady decrease in the training and validation losses,
showcasing no overfitting or underfitting. More importantly,
our results indicate that the LSTM-based strategy exhibits
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FIGURE 5. Learning curve for the LSTM-based strategy.

a loss performance that is 15% better than the DNN-based
strategy. This performance is attributed to the nature of the
LSTM model, which exploits the temporal correlation within
the time-series data representing the CIR, which improves
the loss performance compared with the DNN model.

2) GENERALIZATION ABILITY OF THE LSTM MODEL

To better understand the generalization ability of the
proposed LSTM model, we trained and tested eight different
models. The first six represent models that are trained using
a specific density of users in the room within a specific FoV.
Hence, models M1,30◦ , M3,30◦ , M6,30◦ , M1,60◦ , M3,60◦ , and
M6,60◦ , are trained using (X,Y) samples collected from R1
when there are 1, 3, and 6 mobile users in the room with 30◦
and 60◦ FoV, respectively. Furthermore, we trained two other
models MG,30◦ and MG,60◦ using (X,Y) samples from all
the aforementioned mobile user densities in each FoV. In the
performance evaluation, we test each model when there are
1, 3, and 6 mobile users in the room with two different FoVs
30◦ and 60◦. The same procedure was done with R2 and
for FoV 90◦ and the conclusions were consistent with what
we will discuss next. Hence, for clarity of the presentation
we summarize the KDR, KGR, and NIST randomness test
results for the eight models we mentioned for R1 and FoVs
30◦ and 60◦ in Table 2.

The following remarks can be made based on Table 2:
• The bold diagonal elements in the table show the KDR,
KGR, and NIST randomness tests when the model
(M1,30◦,M3,30◦ ,M6,30◦ ,M1,60◦ ,M3,60◦ , and M6,60◦) is
trained and tested with the same number of users in the
room (UE 1, 3, and 6). These diagonal elements gave
the minimum KDR results (14% − 15% and 7% − 8%
in FoVs 30◦ and 60◦, respectively) and maximum KGR
(78 − 80 bits/s and 89− 90 bits/s in FoVs 30◦ and 60◦,
respectively). Also, these models passed all the NIST
randomness tests.

• The off-diagonal elements indicate instances where
models (M1,30◦,M3,30◦ ,M6,30◦ ,M1,60◦ ,M3,60◦ , and

TABLE 2. Summary of KDR, KGR and NIST results.

M6,60◦) were trained and tested on different numbers
of users. For example, the second cell in the first row
shows the result when the model M1,30◦ was trained
on the case where there is 1 UE in the room but
tested on a case where there are 3 UE in the room.
These results show deteriorating performance in KDR
by 28% in FoV 30◦ and 24% in FoV 60◦. Here, KGR
drops are notable as well, by 38% for FoV 30◦ and
30% for FoV 60◦. Also, these models fail some of the
NIST randomness tests. For example, M1,30◦ fails the
“overlapping template matching” test when there are 3
to 6 UEs. It also fails the “random excursion” test when
there are 6 UEs.

• For the models termed MG, the KDR is between
39% − 44%, and 23% − 27% in FoVs 30◦ and 60◦,
respectively, while the KGR is around 44 bits/s and 66
bits/s in FoVs 30◦ and 60◦, respectively. This result is
worse by around 20% than the models trained and tested
on the same number of users. More importantly, the
models MG fail the following NIST randomness tests:
“overlapping template matching” with 1 user, “block
frequency” with 3 users, and both “random excursions”
and “frequency within a block” with 6 users. Hence,
the developed keys under them are not viable.

• When it comes to the dynamicity and mobility impact
on deep learning-based WSKG, we observe that such
dynamicity introduces dynamic channel blockages,
which further disrupt the reciprocity between uplink
and downlink channels. This dynamicity-induced non-
reciprocity results in an increase in the KDR and a
reduction in KGR.

3) LSTM-BASED MODEL VERSUS TRADITIONAL
BENCHMARK

Herein, we compare the performance of the proposed LSTM-
based framework against a traditional method presented
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TABLE 3. Comparison of KDR and KGR with and without deep learning.

in [23] that adopts channel probing, quantization, and
reconciliation without any deep learning-based performance
optimization. The comparative study considers room R1 with
FoV 30◦. We selected the best-performing strategy from [23]
and compared it under the same settings with our proposed
model M1,30◦ . Both methods pass the NIST randomness tests
under stationary conditions (i.e., no changes in user density,
FoV, or room layout). However, it is evident from the results
in Table 3 that the proposed deep learning model offers a
much-optimized performance compared with the traditional
method of [23]. Specifically, the KDR is improved from
41% in [23] to only 14% in the proposed deep learning
method, hence, improving the KGR from 5 bps to 79 bps.
This performance is attributed to the deep learning-based
optimized quantization levels. It should be highlighted that
both methods fail passing the NIST randomness tests when
subject to dynamic setups (i.e., with changes in user density,
FoV, or room layout). Hence, we propose next the ensemble
method. Nevertheless, this comparison motivates the need
for a deep learning-based approach for secret key generation.

IV. ROBUST DEEP LEARNING BASED KEY GENERATION
STRATEGY
This section first analyses the reasons behind the deterio-
rating performance and limited generalization ability of the
deep LSTM models in dynamic environments as shown in
Table 2. Then, we present an online learning strategy that
overcomes such a limitation.

A. CONCEPT DRIFT ANALYSIS
To provide a comprehensive analysis, we study three key
metrics: (a) Evolution of the average CIR with time, this
metric allows us to understand how the average CIR
fluctuates over the wandering stage, (b) CDF of average
CIR that is used to give a statistical overview of the CIR
values, and (c) CDF of average outage events that measures
how frequently communication outages occur and helps
to understand the CIR statistics. Here, the “average” is
computed over the mobility traces under a specific scenario.
The results are shown in Figure 6 and we summarize our
findings as follows:

• The average CIR varies based on the user density, FoVs,
and room layout. The CIR value is highest for cases
with a single UE and it decreases as more UEs are
wandering in the room for any FoV or room layout.
This is due to the higher chance of blockage with the
number of users in the room, which leads to link outages
and hence deterioration in CIR. Also, above 60◦ FoV,
the CIR remains consistent with a minor increment as
the AP covers most of the room. The average UL and

FIGURE 6. The average results are evaluated over 1, 000 distinct mobility traces for
scenarios with 1, 3, 6, and 8 users in R1 and R2 layouts. The FoVs considered are 30◦ ,
60◦ , and 90◦ . Sub-figures (a) and (b) depict the temporal evolution of CIR for the UL
and DL channels during the wandering stage, respectively. CDFs for the UL and DL
average CIRs are shown in sub-figures (c) and (d), while sub-figures (e) and
(f) illustrate the CDFs for the average outage rates for UL and DL.

DL CIRs differ, this is due to the distinct IR and VL
characteristics resulting in channel non-ideal reciprocity.
The CIR characteristics are also specific to the room
layout as it is attributed to the interactions among the
users and the environment.

• In scenarios with a low number of users (1 − 6 UE),
the CIR CDFs are distinct regardless of the FoV or the
layout of the room. However, when the user density is
high and close (6 − 8 UE), the CDFs tend to cluster.
This suggests that as the number of users increases,
the impact on the CIR becomes more uniform across
different settings.

• The variations in the CIR CDFs with user density
can be understood from the link outage behavior. The
distribution of the outage rates varies with the number of
users. Higher user density tends to cause high blockage
events, and thus higher outage rates, which impacts CIR.
It should be noted that increasing the FoV from 30◦
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to 60◦ significantly reduces the outage rate, suggesting
that a wider FoV experiences channel characteristics.

The shifts that occur in the CIR CDFs due to changes
in the user densities, room layouts, and FoVs are known as
concept drifts. These drifts are what causing the deterioration
in the LSTM model performance summarized in Table 2.
Formally, concept drift can be described using the Bayes
posterior probability of a class given a specific instance,
denoted as P(y|x), where y ∈ Y represents a class label
and x ∈ X denotes a normalized CIR instance. This
probability is determined by the likelihood P(x|y), prior
probability P(y), and evidence P(x). concept drift occurs
when the posterior probability changes over time, i.e.,
Pt+1(y|x) �= Pt(y|x) [50], [51], [52]. In practical scenarios
within dynamic indoor systems where the channel distribu-
tion changes due to fluctuations in the number of users,
FoV setting, and room layouts, concept drift becomes more
probable, as shown in Figure 6. This concept drift presents
a challenge from a data-driven perspective as traditional
statistical assumptions and models assume stationary data
distribution. However, when concept drift occurs, these
assumptions are violated, leading to performance degradation
and inaccurate predictions as summarized in Table 2. Hence,
more efforts are needed to address this phenomenon and
attain a stable performance for the LSTM model.

B. DATASET SIMILARITY ANALYSIS
This subsection explores the similarity in the probability
distributions of CIR under different settings. This analysis
will inform our proposed strategy to mitigate concept drift.
Dataset similarity refers to the comparison of probability
distributions to determine how closely they match or dif-
fer. Formally, it assesses the statistical similarity between
distributions, helping to quantify the extent of overlap
or divergence between datasets. The Kolmogorov-Smirnov
(K-S) test is commonly used to measure this similarity,
providing a quantitative assessment beyond visual inspec-
tion [53]. By comparing test p-values to a threshold α, we
can determine if the two datasets are significantly similar or
different. The null hypothesis for the K-S test states that two
samples are drawn from the same distribution. Rejection of
the null hypothesis suggests a significant difference between
the samples. A summary of the K-S test is provided in
Algorithm 3, where |H1| and |H2| represent the sizes or
number of data points in the two datasets being compared
and α = 0.05 [53].
The heat maps in Figure 7 show the results of the K-S

tests across 144 comparison of PDF similarity. The heatmap
displays p-values calculated using the K-S test. In this
context, the test is applied to compare the CDFs of different
scenarios with 1, 3, 6, and 8 UEs with different FoVs 30◦,
60◦, and 90◦ in room layouts R1 and R2. Specifically, Sub-
Figures 5(a)-(c) examine the similarity at FoVs 30◦, 60◦,
and 90◦, respectively, in R1 while Figures 5(d)-(f) test the
similarity across different FoVs in R1, for instance in 5(f),
0.13 represent the p-value of similarity between 1 UE of 60◦

Algorithm 3 Kolmogorov-Smirnov Test
1: procedure K-S-TEST(H1, H2, α)
2: Set significance level: α

3: Compute empirical CDF for H1: FH1(x)
4: Compute empirical CDF for H2: FH2(x)
5: Calculate KS-statistic: γ = max |FH1(x) − FH2(x)|
6: Calculate p-value:

p = 2

(
1 −

∞∑
l=1

(−1)l−1e−2l2γ 2

)

×
√

|H1| + |H2|
|H1| × |H2|

7: if p < α then
8: Reject the null hypothesis
9: else

10: Do not reject the null hypothesis
11: end if
12: end procedure

FIGURE 7. Heatmap representing p-values from K-S test of CIR similarities for
different users, FoVs, and room layouts.

and 1 UE of 90◦. Likewise, Figures 5(g) and 5(h) represent
the different number of users with 60◦ and 90◦ FoV in R2,
where sub-figure (i) shows the similarity between 60◦ and
90◦ FoVs in R2. Areas with high p-values (blue shaded)
suggest that the CDFs of those scenarios are more similar,
while areas with lower p-values (yellow) indicate more
dissimilarity. Hence, the diagonal of the heatmap displays
the highest p-value of 1 under the same FoV because it
represents the comparison of identical CDFs. This also holds
between 60◦ and 90◦ FoVs for any room layout. Notably,
we observe significant similarities between the scenarios
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involving 6 UEs and 8 UEs for any FoV in R1, which is not
the case in R2. We can conclude that scenarios involving
6 UEs and 8 UEs are statistically indistinguishable in R1.
Although in R2, there is some resemblance between the
CDFs of 6 UEs and 8 UEs, they do not pass the K-S
test and are, therefore, not considered similar. Hence, the
similarity among users within a specific FoV is affected by
the room layout. On the other hand, there is a significant
resemblance between the 60◦ and 90◦ FoV in both R1 and
R2. Consequently, we can infer that for FoV values above
60◦, all the statistics exhibit similarity.
In this study, distribution similarity has been used to assess

whether the channel evolution across different scenarios is
statistically similar. If a distributional similarity is established
between scenarios, we can combine the channel data result-
ing from such scenarios and develop a joint deep learning
model encompassing such scenarios, hence, enhancing the
generalizability and robustness of the model without needing
to address each scenario separately, as will be presented in
the next sub-section.

C. CONCEPT DRIFT AWARE ONLINE LEARNING
STRATEGY
To address the impact of concept drift and maintain stable
performance, an ensemble approach is proposed. Table 2
shows that models trained and tested on identical user
densities exhibit superior performance. Thus, combining
these custom models in an ensemble manner is expected to
enhance the generalization ability. However, using too many
custom models in the ensemble strategy is too complex.
Instead, we propose to benefit from the similarity of some
distributions based on the K-S test to combine some models
and reduce the complexity of the ensemble strategy. The
following remarks can be made based on the similarity
analysis of Section IV-B:

• In R1, it is possible to combine the custom models
representing cases with 6 and 8 UEs.

• Beyond a FoV of 60◦, there is no need for separate
models as the distribution remains consistent.

• R1 and R2 layouts have distinct distributions and as
such would need their separate models.

Accordingly, we can reduce the number of required custom
models in R1 from 9 to 6, which represents a 33%
reduction in complexity. These would make the base custom
models in the ensemble strategy. For any incoming CIR
data, we will first evaluate them against the existing (base)
models. The model performance, represented by KDR, is
monitored to identify any deterioration (drift detection). If
such deterioration is observed, the online strategy checks the
similarity of the incoming data distribution with those of
the base models. Depending on the similarity, the strategy
takes one of two actions: it either updates the existing model
that is most similar in distribution or trains a new model
if no similarity is found. This online process ensures that
the ensemble model remains robust and updated according
to any detected drifts, thereby enhancing its generalization

FIGURE 8. Illustration of the proposed online ensemble strategy.

capabilities across various scenarios, while reducing the
complexity. The illustration of the proposed online strategy
is presented in Figure 8.
For the ensemble models, we examine the following

techniques.

1) BAGGING ENSEMBLE

This technique is designed to enhance the consistency and
accuracy of ML models used in statistical classification. In
this technique, we initially create multiple subsets from the
original dataset (X,Y), then proceed to train modelsM1,M3,
and M6 on each subset, and finally aggregate their decisions.
The ultimate output is determined by a majority vote for
the minimum KDR. This technique serves to reduce model
variance and alleviate the risk of overfitting. The bagging
ensemble strategy investigated in our study is illustrated in
Figure 9(a).

2) STACKING ENSEMBLE

In this technique, models M1, M3, and M6 are trained
separately, as shown in Figure 9(b). When dealing with
testing data, the results produced by these main models
are used as inputs for another layer, called a meta-learner.
This meta-learner is taught to combine the decisions of the
individual models to make a final decision. The meta-learner
follows the same structure explained in Section III-D.

3) MIX-OF-EXPERTS ENSEMBLE

In this technique, we employ a mix-of-experts (MoEs)
strategy to reach the best decision based on individual
models. The models M1, M3, and M6 are each trained on
statistically distinct datasets and fine-tuned independently.
When new testing data is presented, the final decision is
made by selecting the class with the lowest KDR. Each
‘expert’ model thus has a special understanding of a subset
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FIGURE 9. Illustration of the investigated ensemble techniques.

of the data, and the model that provides the lowest KDR
is selected as the authoritative expert for that specific
test instance. Figure 9(c) illustrates the MoE technique.
To highlight the difference between bagging and MoE.
In bagging, the data is initially partitioned into subsets.
Individual models are tested on these subsets and then used
to vote on the output for each instance. The final prediction
is made by aggregating these votes, if there is a tie we
use a random selection method. The sequence of predictions
is collated to form the complete output. In contrast, MoEs
employ the entire dataset to test, with each model generating
a complete sequence of predictions. The decision on which
model’s sequence to choose is guided by the KDR, the

TABLE 4. Summary of ensemble KDR, KGR and NIST. The results for 6 and 8 UEs
are grouped in a single column due to the high similarity in their CIR characteristics.

model with the lowest KDR for a given sequence is the most
accurate for that instance, and its sequence is selected.
Table 4 compares the KDR, KGR, and NIST of the three

ensemble strategies. The results are summarized next:

• The MoEs ensemble model outperforms the bag-
ging and stacking ensemble techniques and offers the
minimum KDR and maximum KGR with a stable
performance, showing only 1% performance deteriora-
tion under any FoV and user density.

• The MoEs ensemble model is the only one that
generates keys passing all the NIST randomness tests.
This means the keys are random and safe to use, no
matter how many users are around and whatever FoV
is used.

• In comparing Table 2 and Table 4, the MoEs model
presented in Table 4 offers robust performance against
dynamic setups involving various user density levels,
achieving consistently lower KDR and higher KGR
values compared to the custom and general density
models presented in Table 2. For instance, model
MG,30◦ in Table 2 offers KDR and KGR that vary
between 38 − 44% and 48 − 43 bps, respectively,
depending on the user density level, and fails all NIST
tests. Similarly, other custom models in Table 2 offer
KDR and KGR that vary between 14−43% and 40 −
79 bps, respectively, and sometimes pass or fail the
NIST tests, depending on the user density level. On
the other hand, the MoEs model in Table 4 maintains
a more stable KDR and KGR of 14−15% and 77 − 79
bps, respectively, while always passing the NIST tests,
regardless of the user density level.

• When it comes to the proposed robust online strategy,
the models constituting the MoEs ensemble run in
parallel, hence, maintaining the time complexity the
same as the deep strategy of Section III. As for the
space complexity, while the space complexity grows
linearly with the number of models constituting the
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MoE ensemble, the proposed clustering method based
on PDF similarity reduces the number of models needed
by 50% in the investigated case studies. Also, additional
models are needed only if a deviation in the KDR is
observed.

V. CONCLUSION AND FUTURE WORK
In this paper, we studied WSKG in multi-user dynamic
LiFi networks. We introduced a novel approach utilizing
an LSTM model within a deep learning framework to
optimize the downlink quantization thresholds at the AP,
aiming to generate preliminary keys with minimal KDR
in both uplink and downlink. Our analysis showed that
dynamic scenarios with different numbers of users, FoVs,
and room layouts introduce concept drifts, resulting in
limited generalization ability for the LSTM model and
deteriorating the performance by 28−44%. Further analysis
of distribution similarity based on K-S tests suggested that
some scenarios exhibit similar distributions and thus their
corresponding models can be combined. This finding allowed
us to develop an online ensemble strategy that relies on fewer
custom (base) models to maintain a stable performance. The
custom models can be updated whenever a new scenario is
found to have a distinct distribution from the base models.
Our results showed that an ensemble strategy based on
the MoE technique results in a stable performance with
minimum KDR and maximum KGR deviating only by 1%
under any user density or FoV.
Given the impact of environmental factors and the

dynamicity of user density, transfer learning could be
beneficial within a single-room setup, though it may present
challenges across different room setups. Nonetheless, transfer
learning holds strong potential for addressing the challenges
outlined in this work. Hence, our future work will consider
the adoption of transfer learning to further enhance the
robustness of WSKG in dynamic environments.
In this work, we assumed there were no attacks. In future

work, we will assess the risk of passive attacks, exploring
how an eavesdropper can compromise the key between the
legitimate user and the AP. Furthermore, we will investigate
the implications of active attacks, where an attacker actively
interferes with the communication process to deceive the
system. Our future research will enhance the security frame-
work by incorporating advanced attack detection mechanisms
and developing robust countermeasures to protect against
passive and active threats. By addressing these challenges,
we aim to further strengthen the resilience and reliability of
WSKG in dynamic LiFi networks.
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