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Abstract—This paper explores the vulnerability of wireless
secret key generation (WSKG) to eavesdropping in a dynamic in-
door light-fidelity (LiFi) network. It analyzes the channel impulse
response (CIR) similarities of two moving user equipments (UEs)
across scenarios with two, four, and eight UEs. We observe that as
the number of UEs increases, the similarity in CIR also rises, due
to the proximal movement patterns among UEs. Specifically, the
similarity rate peaks at 70% when eight UEs enter the room; it
then drops to 24% during the wandering phase and rises again
to 80% as UEs exit the room. Consequently, an eavesdropper
among the eight UEs is able to generate 27% of a legitimate
UE’s secret key, it significantly reduces the key’s complexity,
decreasing the number of possible keys that need to be tested
to break the encryption and making it easier to predict the
remainder of the key. To mitigate this issue, we introduce a novel
approach that utilizes a generative adversarial network (GAN) to
artificially manipulate the CIR, thereby reducing the effectiveness
of eavesdropping by adding noise into the observed CIR. This
method effectively reduces the CIR similarity to a negligible
1%, thus ensuring the integrity of WSKG against eavesdropping
threats.

Index Terms—Wireless secret key generation, LiFi, indoor,
deep learning, generative adversarial networks.

I. INTRODUCTION

With the expansion of wireless networks, security threats
grow in both complexity and frequency, making the protection
of communications against unauthorized access increasingly
critical, such in radio networks [1] or light-fidelity (LiFi)
networks [2]. Encryption fundamentally safeguards commu-
nications, ensuring their confidentiality, integrity, and authen-
tication [3].

To ensure data security, encryption is vital, which in
turn requires secure key exchange mechanisms. However,
quantum computing poses a significant threat to traditional
factorization-based methods, such as Diffie-Hellman, which
can be easily compromised [4]. Given this vulnerability,
there’s a need for alternative approaches to key exchange.
One promising solution is to extract encryption keys directly
from the properties of the wireless channel. This method
does not rely on computational complexity, thus bypassing
the vulnerabilities exposed by quantum technologies. Instead,
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it exploits the randomness of the wireless channel to securely
generate and exchange keys [5].

In this, cryptographic key generation from wireless channels
emerges as an innovative alternative, suited for the evolving
needs of future wireless networks [6]. Nevertheless, assessing
the resilience of wireless secret key generation (WSKG) to
passive eavesdropping attacks is crucial for validating the
reliability of this security technique [7].

A. Related works

The authors in [8] explore the secret key capacity from
correlated wireless channels, focusing on factors like sampling
delay, eavesdropper’s location, and channel qualities demon-
strated as signal-to-noise ratio (SNR). Their research suggests
that optimal key capacity can be achieved by tuning parameters
such as sampling delay and pilot length, providing practical
guidelines for secure key generation in the presence of eaves-
droppers. Another study, [9], introduces a method for generat-
ing keys in static scenarios through randomness and advanced
processing, showing high key generation rates. They apply
semantic security measures approaches to set upper limits
on the successful eavesdropping based on mutual information
metrics. Additionally, [10] investigates cooperative key gener-
ation against correlated eavesdropping, proposing a jamming
scheme that significantly improves security, especially at high
SNRs. The authors in [11] propose a key generation scheme
that maximizes secret key capacity using IRS. It designs and
optimizes IRS elements to improve the SNR for legitimate
users while degrading the channel quality for eavesdroppers,
thereby enhancing security against eavesdropping.
Limitations Current research on WSKG in dynamic Li-Fi
networks, particularly in environments with user movement,
is lacking. The study in [12] achieved a key generation
rate (KGR) of only 5 bits/s with a high key disagreement
rate (KDR) of 40%, due to channel non-reciprocity issues,
indicating efficiency gaps. Further [13] improved these figures
to an 8% KDR and 89 bits/s KGR using deep learning, but
did not address eavesdropping risks. Most research on passive
attacks focuses on stationary settings in lower frequencies,
overlooking the impact of user mobility and room layouts on
WSKG in 5G and higher frequencies. There is also a notable



absence of studies exploring defensive measures against these
challenges.

B. Contribution

This paper addresses the challenge of WSKG in LiFi
networks in dynamic environments, where the downlink (DL)
operates in visible-light (VL) and the uplink (UL) operates
in infrared (IR). Through extensive analysis, we demonstrate
how variations in UE density can elevate channel correlation
between UEs, thereby facilitating key overlap and increasing
the vulnerability against passive eavesdropping attacks.

To address this problem, our contributions are the following:
• We conduct a detailed analysis that highlights the CIR

similarity between two UEs by examining their mobility
in time and space across varying density of UEs (2,
4, and 8) in a nine desks office layout. The spatial
and temporal analyses reveal a notable CIR similarity
spike—65-85%—as users walk next to the entry and exit
space. However, throughout the other regions of the room
space, this similarity doesn’t dip below an average of
25%. This finding indicates that an eavesdropper could
potentially exploit these CIR similarities to gain access
to the same statistical properties as a legitimate user. With
access to the same WSKG algorithm, it’s conceivable that
an eavesdropper could regenerate 27% of the user’s key,
introducing a significant vulnerability.

• We have identified areas within the room that exhibit high
CIR similarity. To mitigate potential eavesdropping in
these zones, we propose a generative adversarial network
(GAN) defense technique. This approach employs GAN
to inject artificial noise directly into the eavesdropper’s
CIR within these defense zones, effectively minimizing
CIR similarity to less than 1% and eliminating the risk
of key duplication.

The rest of this paper is organized as follows: Section
II introduces the system model. Section III describes the
deep learning-based WSKG framework. Section IV provides
an analysis of multi-UE CIR similarity. Section V discusses
the proposed GAN-based artificial noise generation method
to counter passive attacks and presents performance results.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL

This section presents an overview of the indoor setup, the
human mobility model, and the channel modeling approach.

A. Indoor Setup

The indoor configuration is a 5m × 5m × 3m office layout,
equipped with nine desks each measuring 1m in length and
0.75m in width, and 1.3m high. The LiFi network is ensured
by four access points (APs), which are placed on the ceiling
and distributed uniformly as illustrated in Fig. 1. The human
body is abstracted as a cuboidal figure with dimensions of
1.8m × 0.2m × 0.45m, simulating an average human body
mass of 70kg. This model allows for a maximum walking
speed of 2.1m/s and acceleration up to 1m/s2. Movements

are sampled every 100 milliseconds to accurately capture the
dynamics of human mobility. In this simulation, all room
surfaces, including the human figure, are assumed to act as
blockers to direct line of sight (LOS) communication.
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Fig. 1: Office room setup showing the distribution of desks
and LiFi APs.

B. Mobility Model
Previously in [14], we introduced an indoor human mobility

model that effectively simulates human movements on two
distinct scales. Firstly, the macro scale, which determines the
instants time and destinations target of human movement.
Secondly, the micro scale, which details the fine-grained
patterns of the movement between start and destination points.
At the macro scale, we employed a semi-Markov renewal
process to emulate the return regularity and truncated Lévy
walk. At the micro scale, we incorporated algorithms for the
shortest path navigation, dynamic steering behavior, and the
orientation of UEs. The mobility model has been validated in
[14] against empirical data gathered using the Phyphox mobile
application.

C. Channel model
The LOS impulse response is expressed as

h(0)(t, τ) =


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if 0 ≤ θ(t) ≤ Ψ

0, if θ(t) > Ψ or ray is blocked,

(2)

AR represents the sensor area, ψ and Ψ the angle of irradiance
and the receiver’s field-of-view (FoV), respectively, c is the
speed of light, TS(θ) transmission response of the optical
system (assumed to be 1), and d0(t) is the LOS transmission
distance. In addition, the mode number m relates to the half-
power angle Φ1/2 through m = − ln 2/ ln cosΦ1/2. cos θ(t) =
uUL
θ (t) ·uDL

θ /(∥uUL
θ (t)∥∥uDL

θ ∥). A ray is considered blocked
if it intersects any surface, including furniture or the user’s
body. The channel model in equation (2) applies to both VL
and IR.



III. DEEP LEARNING-ENHANCED KEY GENERATION
STRATEGY

The non-reciprocity caused by the difference in bands of IR
and VL poses a challenge to generate similar keys between the
UE and the AP, thus it causes an increased KDR and decreased
KGR [12]. In addition, the user mobility, the environmental
interactions, and the absence of precise channel models make
It crucial to employ a data-driven approach for mitigating the
non-reciprocity and optimizing the KDR and KGR [13].

a) WSKG Procedure: The process starts with simulating
indoor human mobility as detailed in section II-B. This simu-
lation considers the presence of obstacles such as furniture and
human bodies to determine if they obstruct the communication
link between the UE and the AP. It then verifies if the incoming
signal falls within the receiver’s FoV. For the unblocked
signals and within the FoV, the CIR is computed according
to (2) and then used to extract a secret key through steps
that include; channel probing, cumulative-distribution-function
(CDF)-based quantization, secure sketch method for informa-
tion reconciliation and privacy amplification through SHA-256
from the SHA-2 family [15]. These steps are illustrated and
detailed in [13], except for the privacy amplification, it is
incorporated in this work because of the presence of potential
eavesdroppers.

b) Dataset Generation and Stacked-LSTM Model: Uti-
lizing the high-performance computing (HPC) cluster at Ten-
nessee Technological University, we generated UL and DL
CIR datasets. This data collection, based on 1000 mobility
traces per user for 2, 4, and 8 users density, and 120 CIR
per scenario.To learn the channel characteristics between the
UE and AP and to minimize the keys mismatch between them,
we have developed a stacked long short-term memory (LSTM)
model. By employing Backpropagation-through-time (BPTT)
and a grid search for hyperparameter tuning, we achieved
optimal configuration of two hidden LSTM layers; the first
with 56 hidden units and tanh activation function, while the
second uses 72 hidden units and Sigmoid. The input layer
takes the shape of the UL CIR , where the output layer
uses Softmax across 2V neurons (V is the quantization level),
trained using a 0.001 learning rate and the Adam optimizer.
This model learns how to select quantization thresholds at the
AP using the UL CIR that are the same selected at the UE by
minimizing categorical cross-entropy. Detailed methodologies
for data preprocessing and model optimization are provided in
[13].

IV. MULTI-UE CIR SIMILARITY

In the following sub-sections, we will explore the temporal
and spatial CIR similarities, as well as the potential for
key leakage, between two UEs-legitimate and eavesdropper-
when they are the only ones present, as well as in scenarios
with 4 UEs and 8 UEs. This analysis aims to understand
how user density affects communication security and channel
characteristics.
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Fig. 2: Average CIR similarity between the legitimate and the
eavesdropper over time for 2, 4, and 8 UEs density during entering,
wandering, and existing stages, in nine desks room layout.

a) Temporal analysis: First we study the CIR similarity
between the legitimate and the eavesdropper by performing a
point-by-point comparison between their CIRs, then we take
the average over all the 1000 scenarios. Fig. 2 illustrates the
average similarity of CIR under different user densities: 2, 4,
and 8 UEs. This analysis captures three key spaces of user
mobility: entering, wandering, and existing the room.

Key observations from the figure include:

• Increasing UE density from 2 to 8 leads to a significant
rise in CIR similarity, particularly evident whenever the
UEs wander in the entering and existing areas with up
to a 30% increase. This trend ensures closer proximity
among UEs increase CIR similarities.

• User mobility areas impact CIR similarity:
– The entering phase sees a notable peak in similarity,

especially at higher 8 UEs density, indicating similar
channel experiences as users initially move into the
room.

– During the wandering phase, similarity fluctuate but
remains distinct, reflecting the diverse paths and
positions UEs step within the room.

– The exiting phase marks a consistent increase in
similarity, more so with greater UE numbers, as users
converge towards the exit, aligning their channel
conditions more closely.

We have conducted a statistical analysis over a four-
month period, assessing user traffic patterns within a room
layout same to that depicted in Fig. 1. Our findings indi-
cate an average occupancy of 5 UEs at any day. However,
it is important to note that the room has the potential to
accommodate a larger, more crowded environment, which
significantly elevates security concerns. The observed high
CIR similarity in both the entry and exit areas results in
extensive key overlap between legitimate users and potential
eavesdroppers. Moreover, during periods of user movement in
the room, there is a 20% similarity which is not negligible.
This overlap substantially compromises the security of the



key. Advanced AI models employed by eavesdroppers could
potentially predict the remaining segments of the key, which
further the security risks. Given these findings, we strongly
need a thorough mitigation against such eavesdropping risks.

b) Spatial analysis: Our analysis is visualized through
three heatmaps, each depicting the average CIR similarity
between the legitimate UE and the eavesdropper located at
various positions within the room, shown in Fig. 3. These
heatmaps are generated for varying numbers of UEs 2 in Fig.
3 (a), 4 in Fig. 3 (b), and 8 in Fig. 3 (c) to explore the spatial
dynamics of CIR similarity.

Fig. 3: The areas depicted represent the average CIR similarity
between the legitimate UE and the eavesdropper under different
conditions: (a) with only the two UEs present, (b) in the presence of
4 UEs, and (c) in the presence of 8 UEs.

Key observations from our study include:
• Specific locations, such as the area near the (1.5 m,1.5

m) coordinate, consistently exhibit high CIR similarity.
This indicates that UEs near the first AP, such as those
near the door, share similar channel characteristics. To
explain why the area under the first AP shows the highest
similarity, we consider that the UE initially connects to
this AP, then a handover only occurs if the signal is totally
lost, (threshold 1 as noted in [12]), which accounts for the
observed similarity in this area. Additionally, some areas
show 100% CIR similarity, contrasting with temporal
analysis results. This is because, in spatial similarity,
values are clustered to represent specific areas.

• CIR similarities do not simply cluster but spread across
the area under the second AP with coordinate (4 m,1
m) as number of UEs increase from 4 to 8 shown in
Fig. 4(b) and Fig. 4(c), respectively. This distribution
might initially show a weak increase in CIR similarity;
however, a closer analysis reveals a significant overall
increase—15% in CIR similarity. This spread in CIR
similarity concludes that an increase in UE density leads
to a spread of CIR similarity around the room.

This analysis demonstrates the relationship between user
density and spatial positioning in shaping CIR similarity
within indoor environments. Specific locations consistently
exhibit high CIR similarity, this insight highlights areas where
eavesdropping mitigation should be intensified, rather than
uniformly deploying it across the entire room.

c) Key leakage: As detailed in Sections II and III, we
generate secret keys for all users within the room environment.
We then examine the similarity across 240 consecutive bits
between two UEs for varying user densities: 2, 4, and 8 UEs

over the 1000 scenarios, this number of bits is enough for
encryption as described in [16]. The findings are presented in
TABLE I.

TABLE I: Key leakage for different UEs.

Number of UEs 2 UEs 4 UEs 8 UEs

Key Leakage (%) 10.32 11 27

This analysis reveals a clear trend: as the number of UEs
in the room increases, so the key leakage rate increase.
Specifically, within this room, the introduction of 8 UEs leads
to a key leakage rate of 27%, highlighting the risk of key
compromise with increased number of users. These results
demonstrate the key generation process’s sensitivity to both
the number of users and their spatial distribution, underscoring
the need for robust security measures to defense the WSKG
in dense user environments.

V. GAN-BASED ARTIFICIAL NOISE GENERATION AGAINST
PASSIVE ATTACKS

GANs can model the complex statistical properties of the
legitimate UE’s CIR. After training, the GAN can generate
synthetic noise that mimics our environmental and system CIR
characteristics but does not replicate any real UE’s CIR. This
ensures that the eavesdropper cannot derive useful information
from intercepted signals. Using actual CIR data can lead to
privacy issues, as it involves handling and manipulation of
real UE data. The traditional reversed CIR method might
not be as effective in dynamic environments where CIR
characteristics can change rapidly due to user movement or
other environmental factors and easy to reverse-engineer [17].
GANs can continuously learn and adapt to new environmental
conditions in real-time, making the noise generation more
robust against changes, once trained, GANs can generate
noise for different scenarios without needing to re-collect
and process new user data which is the case in tradition
reverse methods. Furthermore, artificial noise generated by
GANs can be designed to be less predictable and harder for
eavesdroppers to filter out or reverse-engineer compared to
simple inverse CIR broadcasting. In this work, we deploy a
GAN to generate synthetic noise in the zone of high CIR
similarity. The GAN first extensively learns and models the
inverse of the legitimate UE CIR, then it generates the artificial
noise. The GAN architecture comprises two components: a
generator (G) that creates synthetic data from random source
of noise, and a discriminator (D) tasked with distinguish-
ing real data from the generator’s synthetic output. Their
interaction forms a minimax game, described by a specific
objective function: the generator aims to fool the discriminator
into mistaking synthetic data for real, while the discriminator
learns to identify the generator’s fake data more accurately.
Finally the GAN generates an artificial reversed legitimate UE
CIR. This synthetic CIR is broadcast within the defense zone,
effectively disrupting the eavesdropper’s ability to match or
mimic the legitimate UE’s signal, thereby mitigating the risk of
eavesdropping and enhancing overall communication security.



After extensive hyperparameter optimization, we finalized
the architectures for both components of our GAN, designed
specifically for optimal synthetic CIR scenario generation.

The generator model consists of a feedforward neural net-
work with three layers: the first and second layers have 128
and 256 neurons, respectively, both using ReLU activation,
and the final layer has 127 neurons with tanh activation,
mapping outputs to the −1 to 1 range for synthetic CIR
scenario generation. Conversely, the discriminator uses a 1D
convolutional neural network (CNN) with 128 filters and
ReLU activation, followed by a flattening step and a dense
output layer with sigmoid activation for binary classification
of the CIR scenarios as real or fake.

A. Results

In our approach, we consider the second UE as an eaves-
dropper and utilizing the results from Section IV.B we deploy
a GAN model within the first AP. By introducing this artificial
noise into the eavesdropper’s intercepted signals, we achieve
a significant decrease in signal similarity, dropping to below
1% in scenarios involving 8 UEs.

This outcome demonstrates the artificial noise technique’s
efficacy, especially in dense UE environments. It leads to
a notable decrease in eavesdropping success, showcasing
negligible CIR similarity and effectively null key leakage,
maintaining a 0% leakage rate as illustrated in Fig.4. This
evidence points to the GAN-generated noise as a powerful
tool for safeguarding communications against eavesdropping
attempts in complex wireless environments.
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VI. CONCLUSION

In this study, we investigated the CIR similarity in an
indoor LiFi environment and assessed the vulnerabilities of
secret key generation in the presence of user mobility. Our
simulations captured significant similarities in CIR between
two UEs, especially as users entered or exited the room, with
peak similarities ranging from 70% to 80%.

Our findings revealed a potential for substantial key leakage,
with up to 27% under high user density scenarios. To address

this vulnerability, we introduced a GAN-based method for
generating artificial noise, which successfully reduced CIR
similarity to about 1%, effectively nullifying the key leakage.

The implementation of GAN for noise generation marks a
significant advancement in securing dynamic LiFi networks.
By manipulating CIRs to impede eavesdroppers, we ensure
robust key generation even in scenarios of high user density
and mobility. Future work could explore the scalability of
this method across different network configurations and fur-
ther refine the AI models to adapt to varying environmental
complexities.
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