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Abstract—Accurate channel prediction using deep learning (DL)
algorithms can address the challenges of terahertz (THz) propa-
gation, such as atmospheric absorption and object scattering, by
enabling proactive handover and beamforming. However, indoor
environments are inherently dynamic, with factors like occupancy
level variations causing the channel characteristics to change over
time. This phenomenon, known as concept drift, can severely de-
grade the DL model performance used in channel prediction. This
paper investigates the impact of indoor occupancy level variations
on the generalization ability of state-of-the-art DL models for THz
channel prediction. We identify three distinct occupancy levels
(low, medium, and high) within the THz indoor channel. Our
results demonstrate that the state-of-the-art DL models exhibit
limited generalization capabilities, with performance deterioration
in prediction accuracy ranging from 4 —62%. We propose a robust
two-stage framework to mitigate concept drift in THz channel
prediction. The first stage predicts the indoor occupancy level
from the THz wireless signal, which is a multi-class classification
problem. Due to the reoccurring concept of occupancy levels, the
second stage contains a pool of models in a sleeping mode based
on a hybrid convolutional neural network (CNN) long-short-term
memory (LSTM) architecture. One of these DL expert models
is activated for channel prediction based on the occupancy level
predicted from the previous stage. Our framework demonstrates
superior generalization by limiting the performance deterioration
from 62% due to concept drift to < 9%. This represents an 85%
reduction in performance deterioration compared to the existing
state-of-the-art DL models.

Index Terms—Channel prediction, Deep learning, Terahertz,
Concept drift, Indoor occupancy prediction, domain adaptation.

I. INTRODUCTION

As we transition towards the era of 6G networks, conven-
tional wireless communication technologies are reaching their
limits in terms of bandwidth and data rates [1]. Operating
in the vast and underutilized terahertz (THz) frequency band
ranging from 0.1 to 10 THz [2], THz communication promises
terabit-per-second (Tbps) data rates [3]. THz communication is
a foundational pillar of 6G networks [4], unlocking a new era of
connectivity with applications like immersive virtual reality [5]
and holographic communication [6]. However, exploiting this
band presents challenges due to its propagation characteristics.
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THz signals experience severe path loss due to atmospheric
absorption and object scattering [7]. The aforementioned factors
present significant challenges in achieving reliable and robust
communication over the THz band, especially in mobile scenar-
ios. By leveraging deep learning (DL) algorithms, it becomes
possible to accurately predict the THz channel gain, allowing
for proactive transmission [8], handover [9], and beamforming
[10]. By predicting the THz channel gain using DL algorithms,
the system can proactively determine the optimal beam direc-
tion to maintain signal strength and avoid blockage [10]. Also,
the DL algorithms can predict blockage to initiate a handover
before the signal quality with the current base station degrades
significantly [9]. By predicting THz channel gain, the system
can proactively adjust modulation schemes, coding rates, and
transmission modes to maintain reliable communication links
[8]. However, concept drift can be a significant issue in the
context of channel prediction [11].

In the context of wireless channel prediction, concept drift
can occur due to dynamic users’ behavior within environments.
As the number of users changes over time, the characteristics
of the channel, such as channel blockage and path loss, also
vary, leading to variations in the wireless channel. This variation
introduces concept drift into the wireless channel, making it
challenging to predict the wireless channel accurately [11].

A. Related Works

Authors in [9] developed a long-short-term memory (LSTM)
neural network for blockage prediction to enable proactive
handover in indoor THz communications. In [10], authors pro-
posed a gated recurrent unit (GRU) based on a recurrent neural
network to enable proactive beamforming for THz mobile drone
users. Deep reinforcement learning has been adopted in [12] to
determine the optimal beam direction for hybrid beamforming
in THz communication systems. Authors in [13] proposed a
bidirectional LSTM for THz channel gain prediction. Further-
more, computer vision-aided beam management based on a
convolutional neural network (CNN) has been proposed in [14]
to direct the signal toward the user equipment based on its 3D
location identified by the DL object detector. The proposed
channel prediction method in [15] introduces a transformer



encoder with channel index embedding (TE-CIE) DL model for
THz channel prediction. Authors in [6] have adopted generative
artificial intelligence for THz channel prediction to enable
holographic communications and digital radio twins.

The previous works consider the multi-user scenarios and
their mobility. However, they assume the number of users is
fixed during the experiment. In real scenarios, the number of
users changes over time [16], leading to a concept drift due
to the variations in the THz channel. Hence, the deployed DL
model cannot accurately predict the THz channel.

This paper focuses on indoor environments since they ac-
count for generating 80% of mobile data [17]. The contributions
of our paper can be summarized as follows:

o« We investigate the concept drift in the THz wireless
channel due to the occupancy level variations in real
scenarios. To the best of our knowledge, this is the first
time to study the concept drift effect on DL models utilized
in THz wireless channels. Our results demonstrate that the
DL models exhibit limited generalization capabilities due
to concept drift. The performance deterioration in THz
channel prediction accuracy ranges from 4 — 62%.

e We propose a robust DL-based channel prediction frame-
work for concept drift mitigation in THz communications
under occupancy level variations in real scenarios. Our
framework demonstrates superior generalization by lim-
iting the performance deterioration in channel prediction
accuracy from 62% due to concept drift to < 9%. This
represents an 85% reduction in performance deterioration
compared to the existing state-of-the-art DL models.

The rest of the paper is organized as follows. Section II in-
troduces the system model. Section III presents the statistics of
the dynamic THz channel and the performance of the DL THz
channel prediction models under occupancy level variations.
Section IV proposes the proposed framework for robust THz
channel prediction against occupancy level variations. Section
V concludes our findings.

II. SYSTEM MODEL

This section introduces the indoor layout, the user mobility
model, and the dynamic THz channel data generation.

A. Indoor Setup

We consider a standard office room with dimensions of
Smxbmx3m. This room is furnished with nine desks, with
an arrangement detailed in Fig. 1. Wireless communication
within the room is facilitated by four THz access points (APs)
distributed across the ceiling, as shown in Fig. 1. Mobile
users within the environment are modeled as cuboids with
dimensions of 1.8mx0.2mx0.45m. These users have a weight
of 70 kilograms and a speed of 2.1 m/s.

B. Mobility Model

This study leverages a well-established and validated mo-
bility model introduced in [18] to accurately represent human
mobility within the indoor environment. The model operates on
two distinct timescales, macro and micro, as follows:

Fig. 1. Illustration of the indoor layout.
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o Macro-scale mobility: This timescale governs the decision-
making process behind the user’s movement, including
the timing and destination of their next move. It achieves
this through a semi-Markov renewal process, which in-
corporates both regular return patterns (e.g., returning to
a desk) and bounded Levy-walk behavior (accounting for
unpredictable elements in human movement).

o Micro-scale mobility: This timescale focuses on the details
of user movement within the environment. Specifically, it
considers factors such as the user’s shortest path to the
destination point, the user’s steering behavior (e.g., avoid-
ing obstacles), and the user equipment’s (UE) orientation.

A detailed illustration of the adopted mobility model can

be found in Fig. 2. After generating the mobility traces, the
position of each user and the position of its serving THz AP are
used to decide channel blockage. Hence, the THz channel gain
is calculated based on the multi-ray THz channel propagation
model presented in the following subsection.

C. Multi-ray Channel Propagation Model in the THz Band

In this subsection, we summarize the multi-ray channel
model used to simulate the electromagnetic wave propagation
in the THz band, employing ray tracing techniques. The multi-
ray channel model is expressed as a superposition of individual
paths, where the THz channel model is represented according
to [19] as follows
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where I is number of paths, «; is the attenuation of i path, 7 is
the propagation delay, and 7; is the delay of i'" path. The multi-
ray channel model consists of line-of-sight (LoS), reflected,
scattered, and diffracted paths. However, diffracted paths can
be neglected in indoor THz environments as this propagation
phenomenon is only pivotal at lower microwave frequencies
[20]. Also, scattered paths can be neglected due to the very
high losses that occur after scattering [20], so we only consider
the LoS and the reflection paths. Hence, the multi-ray channel
model can be represented as follows
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where oy o5 represents the LoS attenuation, 71,5 represents the
LoS delay, 1,s is one if there is a LoS path or zero otherwise,
ks is the attenuation for p™ reflected path, and 7k is the p™
reflected path delay. The transfer function of the LoS, Hyos(f),
can be described in terms of spreading loss function, Hgy(f),
and molecular absorption loss function, Haps(f), as follows

Hios(f) = Hspe(f) Haps(f)e 2™ Mes, 3)

where the spreading loss function can be represented in terms
of the speed of light ¢ and the distance r between the transmitter
and the receiver as Hgy(f) = ﬁ, the molecular absorption
loss function can be represented in terms of medium absorp-
tion coefficient k that depends on the utilized frequency as
Haps(f) = e~ 2% 7 and the LoS arrival time, 7L, equals
%. The transfer function of the reflected path, Hge(f), can be
described as follows

c
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where 71 is the distance between the transmitter and the reflec-
tor, ro is the distance between the reflector and the receiver,
R is the reflection coefficient, and the reflected path time of
arrival equals Tref = TLos + W%*T By applying Kirchhoff
scattering theory, the reflection coefficient for a rough surface is
calculated by multiplying the Rayleigh roughness factor, p, with
the smooth surface reflection coefficient for transverse electric

(TE) derived from the Fresnel equations, yrg, as follows

Hyet(f)

R(f) = p(f) -yre(f) S

The Fresnel reflection coefficient for TE polarized waves on
a smooth surface can be approximated as follows

_ —2cos(8;)
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where 6; is the incident wave angle and n; is the refractive
index. The roughness effect can be calculated based on the
rough surface height standard deviation, o, as follows
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Hence, the THz channel gain can be calculated as follows
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III. DL THzZ CHANNEL PREDICTION MODELS
PERFORMANCE UNDER OCCUPANCY LEVEL VARIATIONS

In this section, we present the statistics of the dynamic THz
channel, formulate the THz channel gain prediction problem,
and introduce the baseline and benchmark prediction models.

A. Dynamic THz Channel Statistics

Using the framework presented in Fig. 2, we simulated the
THz channel gain over 1000 mobility traces for low, medium,
and high occupancy levels given the indoor layout in Fig. 1.
Fig. 3 demonstrates the probability density function (PDF) of
THz average channel gain for these occupancy levels. The low
occupancy level has only one user, whereas the medium and
high occupancy levels have up to 4 and 8 users, respectively.

As shown in Fig. 3, the statistics of the THz channel gain
vary according to the occupancy level. We observe that the
average channel gain distribution shifts as the occupancy level
increases. Since the occupancy level changes throughout the
time [21], the channel gain could belong to any of these
different distributions. Hence, we investigate the impact of this
non-stationarity on the performance of THz channel prediction.

B. Problem Formulation

We consider a wireless THz network in a dynamic environ-
ment with mobile users in an indoor room layout. Given a fixed
window of n historical wireless THz channel gain values calcu-
lated using equation eight, denoted as {h(t1), h(t2), ..., h(tn)}
collected at discrete time instances ¢y, to, ..., t,, the task is to
design a predictive model to predict the THz channel gain
h(tn+1) based on the past observations while minimizing the
prediction error.

C. Data Preprocessing

In this study, we employed data preprocessing to ensure the
robustness and reliability of our DL models. We utilized a
sliding window approach to segment the THz channel gain time
series data into overlapping windows. This technique enhances
the DL model’s ability to capture temporal dependencies and
patterns within the data. Each window is treated as an individual
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Fig. 3. The PDF vs. THz wireless channel gain under different
occupancy levels.

sample for subsequent processing. For the prediction task, each
sample was normalized to have a fixed range between zero
and one. This normalization processes ensure that all features
contribute equally to the model’s learning process and help
accelerate convergence during training. Each dataset is split
into training, validation, and testing. The splitting ratio is 60%,
20%, and 20% for training, validation, and testing, respectively.

D. DL Baseline Models for THz Channel Prediction

To investigate the impact of occupancy level variations on
indoor THz channel prediction, we developed all-occupancy-
levels and occupancy-specific DL models. These baseline mod-
els are based on the hybrid CNN-LSTM architecture.

The occupancy-specific DL models are trained using a
dataset corresponding to a specific indoor occupancy level,
allowing it to specialize in capturing the patterns within that
occupancy level. These occupancy-specific DL models are low,
medium, and high occupancy models. The low occupancy
model is trained on a low occupancy level scenario dataset,
where the features of the training dataset are the time series of
the THz channel gain, and the ground truth is the THz channel
gain value of the next time step. Similarly, for the medium and
high occupancy models, the features of the training dataset are
the time series of the THz channel gain for their respective
occupancy levels, with the ground truth being the next value of
the THz channel gain for that occupancy level scenario.

Adam optimizer is used during the training process of the
low, medium, and high DL occupancy models with a learning
rate of 0.001. Also, dropout is used to prevent overfitting
during the training phase. The hyperparameters of the low
occupancy DL model are optimized using random search.
The low occupancy DL model consists of a one-dimension
convolutional layer of 153 filters with a kernel size of three,
followed by a one-dimension max pooling layer, followed by
two LSTM layers where each LSTM layer has 153 neurons.
Finally, a dense layer with one neuron follows the LSTM layers
to provide the prediction of the THz channel gain in the low

occupancy scenario. Also, the hyperparameters of the medium
occupancy DL model are optimized using random search. The
medium occupancy DL model consists of a one-dimension
convolutional layer of 138 filters with a kernel size of three,
followed by a one-dimension max pooling layer, followed by
seven LSTM layers where each LSTM layer has 138 neurons.
Finally, a dense layer with one neuron follows the LSTM layers
to provide the prediction of the THz channel gain in the medium
occupancy scenario. Furthermore, the hyperparameters of the
high occupancy DL model are optimized using random search.
The high occupancy DL model consists of a one-dimension
convolutional layer of 53 filters with a kernel size of three,
followed by a one-dimension max pooling layer, followed by
eight LSTM layers where each LSTM layer has 53 neurons.
Finally, a dense layer with one neuron follows the LSTM layers
to provide the prediction of the THz channel gain in the high
occupancy scenario.

On the other hand, the all-occupancy-levels DL model is
trained using the entire range of occupancy scenarios. Hence,
the input is the THz channel gain time series data from low,
medium, and high occupancy scenarios, whereas the ground
truth is the next time step of the THz channel gain in each
occupancy scenario. Adam optimizer is used during the training
process of the all-occupancy-levels DL model with a learning
rate of 0.001. Also, dropout is used to prevent overfitting
during the training phase. The hyperparameters of the all-
occupancy-levels DL model are optimized using random search.
The all-occupancy-levels occupancy DL model consists of a
one-dimension convolutional layer of 201 filters with a kernel
size of three, followed by a one-dimension max pooling layer,
followed by two LSTM layers where each LSTM layer has
201 neurons. Finally, a dense layer with one neuron follows
the LSTM layers to provide the THz channel gain prediction.

E. Benchmark Prediction Model

To evaluate the performance of the proposed CNN-LSTM
models for THz channel gain prediction, we developed three
benchmark deep neural network (DNN) models corresponding
to low, medium, and high occupancy levels and trained on their
corresponding datasets. The first benchmark model, developed
for the low occupancy level, consists of five dense layers with
992, 384, 32, 224, and 992 neurons, respectively. These layers
are followed by one dense layer with one neuron to predict
the THz channel gain in the low occupancy level scenario.
The second benchmark, developed for the medium occupancy
level, consists of a single dense layer containing 672 neurons,
followed by a dense layer with one neuron for THz channel gain
prediction in the medium occupancy level scenario. Finally,
the third benchmark model for high occupancy level comprises
eight dense layers with 228, 192, 800, 608, 544, 160, 736, and
32 neurons, respectively, followed by a dense layer with one
neuron to output the predicted THz channel gain in the high
occupancy level scenario. Adam optimizer is used during the
training process of the DNN benchmark models with a learning
rate of 0.001.



F. Performance Metrics

To evaluate the effectiveness of the THz channel gain pre-
diction models, we employed the mean squared error (MSE) as
our evaluation metric. MSE is widely used in prediction tasks
and provides a robust measure of the average of the squares
of the errors. Since MSE squares the errors before averaging,
it places greater emphasis on larger errors. This sensitivity
is particularly beneficial in THz communications, where large
prediction errors can significantly impact the performance of
the communication system. The MSE is calculated as follows

N
1 £ )2
MSE = — Z(yi —9i)°, ©)
i=1
where N is the total number of THz channel gain samples, y;
represents the ground truth of the THz channel gain, and g;
denotes the predicted THz channel gain.

G. Performance Evaluations

We evaluate the prediction performance of the proposed
CNN-LSTM and the DNN benchmark models for THz chan-
nel prediction under varying indoor occupancy levels. Table
I demonstrates the MSE of the baseline CNN-LSTM and
benchmark DNN models when tested on their corresponding
occupancy level scenario. From Table I, we can see that the
DNN models have significantly higher MSE in predicting the
THz channel gain than the CNN-LSTM models. Hence, the
CNN-LSTM baseline models outperform the DNN models
in accurately predicting the THz channel gain as the CNN
component extracts spatial features from the input data, while
the LSTM captures the temporal dependencies within the data.

TABLE 1. The MSE of the baseline CNN-LSTM and benchmark DNN
models for THz channel prediction.

Model Scenario | MSE
Low 1x10~8

CNN-LSTM | Medium | 2 x 10~8
High 1x10~8
Low 2% 106

DNN Medium | 2 x 106
High 1x 10~

Fig. 4 shows the percentage of the performance deterioration
in THz channel prediction accuracy using the CNN-LSTM
baseline models when tested against different occupancy level
scenarios. In Fig. 4, the y-axis shows the percentage of deteri-
oration in terms of prediction accuracy when THz channel gain
data from an occupancy level scenario is used on a given model.
The x-axis shows the three distinct occupancy level scenarios.
In each scenario, its THz channel gain dataset is applied to four
models, namely, low, medium, high, and all-occupancy-levels
DL models. For instance, in each occupancy level scenario,
when its channel gain data is applied through its corresponding
occupancy level model, a zero deterioration is achieved since
the input data has the same distribution as the one used to
develop the model. However, when a different occupancy level

100

DLOW Occupancy Model
M edium Occupancy Model
| IE—JHigh Occupancy Model
D;\ll—occupancy—lcvels Model

®
=

62%
60 | 1

50%

Performance deterioration (%)
in THz channel prediction

Medium
Occupancy scenarios

Fig. 4. Percentage of performance deterioration in THz channel pre-
diction accuracy using CNN-LSTM under occupancy level variations.

data than the model was trained on is applied through it, a
deterioration between 4 — 62% is observed.

The prediction performance of the high occupancy DL model
deteriorates only by 4% when tested against the low occupancy
level scenario. This is because the high occupancy scenario
that the high occupancy level model is trained on has an
occupancy range of up to 8 users. Hence, the high occupancy
level scenario implicitly contains a mixture of low and medium
occupancy level scenarios. Therefore, this exposure to diverse
scenarios enables the model to capture a simple occupancy level
scenario, such as the low occupancy level scenario. However,
The high occupancy DL model cannot generalize across all
the occupancy level scenarios as its prediction performance
deteriorates by 29% when tested on the medium occupancy
level scenario.

The prediction performance of the all-occupancy-levels DL
model deteriorates between 41 — 62% when tested against
different occupancy level scenarios; however, it was trained
based on a dataset that contains all of these scenarios. This is
because developing a DL model using diverse occupancy level
scenarios confuses the DL model in capturing the underlying
data distributions, as each occupancy level scenario has its own
data distribution.

Overall, the CNN-LSTM DL models cannot generalize over
the different occupancy level scenarios. Hence, the results
emphasize that the dynamic indoor occupancy levels negatively
impact the generalization ability of the DL models for THz
channel prediction. The following section introduces a proposed
framework to obtain generalization against different occupancy
level scenarios.

IV. PROPOSED FRAMEWORK FOR ROBUST THZ CHANNEL
PREDICTION AGAINST DIFFERENT OCCUPANCY LEVELS

This section introduces the proposed framework for robust
THz channel prediction, the benchmark classifier, and the
performance evaluations of the proposed framework.

A. Proposed Framework

The proposed framework is a two-stage approach where the
first stage is a multi-class classifier that classifies the occupancy
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level into low, medium, or high. Based on the classified occu-
pancy level, the second stage predicts the THz channel gain by
activating the corresponding CNN-LSTM baseline prediction
model introduced in the previous section, as shown in Fig. 5.

Extracting real-time occupancy level information from the
THz wireless signal builds an awareness of the indoor en-
vironment to mitigate the concept drift. In the first stage
of our proposed framework, a CNN classifier is utilized to
predict the occupancy level from the THz wireless signal. This
classifier is trained on a balanced labeled dataset containing the
three distinct occupancy levels to learn the patterns/wireless-
signature for each occupancy level.

To elaborate more, the features of the classification dataset
are the time series THz channel gain data of the low, medium,
and high occupancy scenarios, while the label is the distinct
class for each occupancy level, which is low, medium, or
high. We utilized a sliding window approach to segment the
THz channel gain time series data into overlapping windows.
Each sample was standardized to have a mean of zero and a
standard deviation of one. Also, the dataset is split into training,
validation, and testing. The splitting ratio is 60%, 20%, and
20% for training, validation, and testing, respectively. Adam
optimizer is used during the training process of the DNN clas-
sifier with a learning rate of 0.001. Also, batch normalization
after each layer is used to prevent overfitting during the training
phase. The hyperparameters of the CNN classifier are optimized
using random search. The CNN classifier consists of three
convolutional layers with 512 filters and a kernel size of three
in each layer. Then, a dense layer with three neurons using a
softmax activation function is used to predict the occupancy
level class.

The second stage predicts the THz channel gain. There is a
pool of three distinct occupancy-specific DL models in a sleep-
ing mode. This stage activates the corresponding expert model,
i.e., the occupancy-specific DL model, based on the predicted
occupancy level provided from the first stage. These experts are
the CNN-LSTM baselines introduced in the previous section.
Hence, the proposed framework enables informed decisions
about activating the right occupancy-specific DL model. This
signifies that the framework adapts its model selection based
on the occupancy level.

B. Benchmark Classification Model

We developed a benchmark DL model based on a DNN to
compare the proposed CNN classifier performance in detecting
occupancy level scenarios. The DNN benchmark classifier was
trained on the same dataset that the proposed CNN classifier
was trained on. Adam optimizer is used during the training
process of the DNN classifier with a learning rate of 0.001.
Also, batch normalization after each layer is used to prevent
overfitting during the training phase. The hyperparameters
of the DNN classifier are optimized using random search.
The DNN classifier consists of three dense layers with 256,
512, and 1024 neurons in the first, second, and third layers,
respectively. Then, a dense layer with three neurons using a
softmax activation function is used to predict the occupancy
level class.

C. Performance Evaluations

Fig. 6 shows the relative accuracy between the CNN and
DNN classifiers in detecting the occupancy level scenarios.
From Fig. 6, we can see that there is a small gap in the
accuracy between the DNN and the CNN classifiers in the
high occupancy scenario. However, this gap increases when the
DNN is used to classify the low and medium occupancy level
scenarios. This indicates that the CNN classifier outperforms
the DNN classifier due to its capabilities of extracting the
hidden signatures in the data.

Fomparison of CNN and DNN Normalized Accuracy

Relative Accuracy

Medium
Occupancy Level Scenario

Low

High

Fig. 6. The relative accuracy between the CNN and DNN classifiers
in detecting different occupancy level scenarios.

In Figure 7, the x-axis represents different occupancy levels,
and the y-axis represents the accuracy deterioration in the
THz channel gain prediction using the proposed CNN and
the benchmark DNN classifiers. Both classifiers show minimal
deterioration in the high occupancy scenario. In the low oc-
cupancy scenario, the DNN benchmark classifier deteriorates
more than the proposed CNN classifier by 30%. However, in
the medium occupancy scenario, the DNN classifier shows
a significant deterioration of almost 70% compared to the
proposed CNN classifier. Hence, Figure 7 shows the robustness
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Fig. 7. Percentage of performance deterioration in THz channel
prediction accuracy using the proposed framework.

of the CNN classifier, which can maintain the deterioration
under 9% in different occupancy level scenarios due to its
robust accuracy compared to the DNN classifier as shown in
Fig. 6.

The results demonstrate that the proposed two-stage THz
channel prediction framework effectively mitigates the concept
drift due to occupancy level variations for robust THz channel
prediction. Performance deterioration remains < 9% compared
to the baselines’ MSE in Table I across all occupancy levels
(low, medium, high) rather than 62% when using the baseline
models. This robustness is attributed to the framework’s first
stage, which establishes indoor occupancy level awareness,
leading to an 85% reduction in performance deterioration
compared to the baseline models.

V. CONCLUSION

This paper investigates the concept drift within indoor THz
channels resulting from variations in indoor occupancy levels.
To mitigate the concept drift issue, we developed a two-stage
framework. The first stage employs THz signals to predict the
indoor occupancy level. Based on the predicted occupancy level
from the first stage, the second stage activates the corresponding
occupancy-specific model to predict the THz channel gain.
Our results demonstrate the superior generalization of the
proposed THz channel prediction framework, limiting perfor-
mance deterioration from 62% due to concept drift to < 9%.
This represents an 85% reduction in performance deterioration
compared to the existing state-of-the-art DL models.
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