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Abstract—This paper explores secret key generation in 5G and
beyond LiFi networks using visible light in the downlink and
infrared in the uplink. Unlike the existing works, we focus on
a realistic indoor environment with multi-user mobility. Given
inaccuracies in high-frequency channel models, we introduce the
first deep learning model that combines the channel probing and
quantization phases to generate initial secret keys with a minimal
key disagreement rate (KDR) of 16% between the uplink and
downlink, leading to a key generation rate (KGR) of 79 bits/s after
information reconciliation. We show that LiFi channel statistics
suffer from concept drifts with user density changes in the room.
This increases the KDR by 28% − 44% and the generated keys
fail to pass the NIST randomness tests. As a countermeasure, we
introduce a voting ensemble model that mitigates concept drifts,
maintaining a stable 16% KDR, 79 bits/s KGR, and passing NIST
tests, despite the varying user densities.

Index Terms—Wireless secret key, LiFi, VLC, concept drift,
indoor mobility, 5G+ networks, ensemble, deep learning.

I. INTRODUCTION

With the growth of wireless devices and networks, data
encryption in wireless communications has become crucial.
Cryptographic methods typically rely on pre-shared keys, which
may not always be available [1]. Instead, wireless secret key
generation derives the secret shared key from the wireless chan-
nel. This key should conform to the NIST randomness standards
[2] and is used for encrypting and decrypting communications
between the user and the access point (AP).

To create a wireless secret key, both parties (user and AP)
probe and quantize channels in the uplink (UL) and downlink
(DL), producing preliminary keys. Information reconciliation
then ensures identical keys by removing differing bits. While
the literature often assumes channel reciprocity, implying pre-
liminary key similarity without reconciliation, this is not always
true, especially in 5G and beyond (5G+) networks. For instance,
LiFi uses visible light downlinks and infrared uplinks, with
different characteristics, making the reciprocity assumption
invalid. Thus, to maximize the key generation rate (KGR), an
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efficient process is required to attain a low key disagreement
rate (KDR) between the UL and DL before reconciliation.

Given that 80% of data traffic originates indoors [3], our
study focuses on indoor secret key generation. The current
research has not explored thoroughly this topic in LiFi net-
works, known for their sensitive, non-ideally reciprocal, high-
frequency channels. Recent findings suggest no general channel
models for LiFi indoor networks [4], as they are influenced
by room layout and interactions among users and objects.
Consequently, using a model-based approach to optimize the
KDR in preliminary keys is not possible. Instead, data-driven
methods should be adopted by employing machine learning on
channel gain data to achieve low KDR in the preliminary keys.

Recent efforts have explored data-driven approaches and
deep learning techniques for wireless secret key generation,
but none combined channel probing and quantization [5]–[7],
two main steps to reduce the mismatch between the UL and
DL. Moreover, the effects of multi-user mobility and varying
user densities have not been examined. As the number of
mobile users in a room changes, so do channel blockage and
outage rates, especially in LiFi channels, which are sensitive to
blockages. This raises the following open questions: (a) How
do user mobility and different densities influence a data-driven
secret key generation method? (b) How can we create a robust
data-driven secret key generation with minimal KDR that meets
NIST randomness tests, regardless of user mobility and varying
densities?

A. Related Work

Most existing studies focus on wireless secret key generation
in radio channels, such as [8], or in mmWave channels, such as
[9] and [10]. The prevalent assumption in these works is ideal
channel reciprocity. However, recent research has considered
non-ideal channel reciprocity, using deep learning to establish
secret key generation frameworks. For example, [5] introduced
a deep learning framework for time division duplex systems,
accounting for asynchronous channel information and hardware



differences, with two auto-encoders that improved the KDR.
The study in [7] proposed a framework utilizing randomized
pilots and deep learning to boost randomness and combat
potential attacks. Additionally, [11] used a machine learning
strategy for predicting quantization levels achieving a 98%
accuracy rate. Also, [12] employed neural networks to deduce
wireless channel features for key generation, achieving high
agreement rates and hardware adaptability. Finally, [6] proposed
a deep learning-based key generation method, focusing on
mapping features across diverse frequency bands, typical in
non-reciprocal frequency-division duplexing systems.
Limitations: To the best of our knowledge, no existing study
presents a deep learning model that integrates channel probing
and quantization to tackle channel non-ideal reciprocity and
minimize the KDR. While [11] uses deep learning solely for the
quantization phase, works like [5]–[7] separate channel feature
extraction from the quantization process. Further, all the exist-
ing studies focus on radio and mmWave channels. Only [13]
explores secret key generation in LiFi networks within mobile
setups, but without minimizing the KDR, resulting in a 40%
KDR. LiFi networks, essential in 5G+, differ from radio and
mmWave channels. They display non-ideal reciprocal channels
and are sensitive to user movement, leading to blockages that
can cause outages and affect the channel impulse response.
The literature has not fully addressed the implications of user
mobility and varying densities on deep learning-based secret
key generation in 5G+ networks.

B. Contribution

To fill in the research gap, we carried out the following:
• We present the first deep learning framework that com-

bines channel probing and quantization to minimize the
KDR of the preliminary keys in indoor LiFi networks with
multi-user mobility. Our practical framework accounts for
indoor human mobility on two timescales, reflecting macro
and micro-mobility patterns. Mobility traces are used to
generate the channel impulse response (CIR), accounting
for blockages and transmitter-receiver misalignments due
to movement. The CIR data is used to train a deep
long-short-term-memory (LSTM) recurrent neural network
(RNN) at the AP to predict quantized preliminary keys
closely matching those generated at the user equipment
(UE), thereby minimizing the KDR in preliminary keys.

• For the first time, we assess the effects of multi-user mo-
bility and various user densities on secret key generation in
indoor LiFi networks using three metrics, KDR, KGR, and
the NIST randomness tests [2]. Our LSTM-RNN model,
trained with CIR from a fixed user density, achieves a
16% KDR, which represents a 24% improvement over [13]
and passes the NIST tests. However, changing user density
increases the KDR to 44% and keys fail the NIST tests,
even when training with CIR gathered from all density
scenarios. This stems from the concept drift effect, caused
by shifts in outage events and CIR probability distributions
when user density changes.

• To counter concept drifts, we propose an ensemble-based
LSTM-RNN model that provides the optimal quantized
keys at the AP based on the input CIR data. This ensures
consistent key generation performance irrespective of user
mobility or user density. Our results show this model keeps
KDR at 16% and the keys pass the NIST randomness tests.

The rest of this paper is structured as follows. Section II
describes the system model. Section III introduces the deep
learning-based key generation framework and assesses its per-
formance with varying user densities. Section IV details and
evaluates the ensemble model. Conclusions are in Section V.

II. SYSTEM MODEL

This section presents the indoor setup, the human mobility
model, and the channel model.

A. Indoor Setup

We consider an office room with dimensions 5 m × 5 m
× 5 m. The room has nine desks measuring 1 m × 0.75 m
× 1.3 m. Four LiFi APs cover the room, which are uniformly
distributed across the ceiling, as shown in Fig. 1. The human
body is approximated as a cuboid with dimensions 1.8 m × 0.2
m × 0.45 m. The mass of the human body is assumed to be 70
Kg with a peak walking speed of 2.1 m/sec. and a maximum
acceleration of 1 m/sec2. The indoor mobility sample interval
is 100 milli-sec. All the surfaces in the room and the human
body are treated as reflectors and blockers of the line-of-sight
(LoS) channels in the UL and DL channels.
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Fig. 1: Office room setup.

B. Indoor Human Mobility Model

We adopt the indoor human mobility model described in
[4]. This model realistically reflects indoor human movements
on two timescales (a) the macro scale, which specifies the
time instant that human moves to the next destination point
and specifies that destination point, while (b) the micro-scale
captures the details of mobility as human moves from one
point to another. The macro scale is represented by a semi-
Markov renewal process that reflects return regularity and
bounded Lévy-walk. The micro-scale implements the shortest



path, steering behavior, and orientation of mobile devices. The
mobility model is summarized in the upper section of Fig. 2.
The synthetic mobility traces generated by this model were
validated in [4] using real measurements collected with the
Phyphox application. Further details about the mobility model
parameters can be found in [4].

C. Channel Model

The UL channel is in the visible light band and the DL
channel is in the infrared band. The LoS CIR at a specific
time, t, is provided by [4]

h(t) =


A

d20(t)

(m+ 1)

2π
cosm ψ(t) cos θ(t)×R (θ(t)) ,

if 0 ≤ θ(t) ≤ Ψ,

0, if θ(t) > Ψ or ray is blocked,
(1)

where A denotes the detector’s area (100 mm2), m is the mode
number (Lambert sources are assumed), ψ stands for the angle
of irradiance, Ψ is the receiver’s field-of-view (FoV = 30o),
R(θ) signifies the general transmission response of the optical
system (assumed 1 for simplicity), d0(t) = ||p(t) − pAP(v)||,
pAP(v) denotes the location of AP v = {1, . . . , 4}, and p(t)
represents the user position.

III. DEEP LEARNING-BASED FRAMEWORK FOR SECRET
KEY GENERATION IN LIFI NETWORKS

Fig. 2 outlines our approach to generating wireless secret
keys in mobile LiFi networks. The process begins with creating
indoor human mobility traces as described in Section II. B.
Then, the blockage is determined using ray tracing by checking
for signal intersections with room objects. We also verify if
the received signal is within the receiver’s FoV. Then, the
CIR is computed as per (1). The secret key is formed through
channel probing, quantization, and information reconciliation.
After introducing these steps, we will detail our deep-learning
method to minimize the KDR in preliminary keys caused by
channel non-ideal reciprocity.

A. Channel Probing, Quantization, and Reconciliation

We discuss herein the basic steps to generate a wireless secret
key between the user and the AP.

1) Channel Probing: Initially, the user and AP engage in
a two-way exchange of request and response probing frames
over some duration. After a request frame is received, the
receiver responds with a reply frame. A constant interval, τ ,
is assumed between any two consecutive requests (or reply)
probing frames, resulting in a channel probing rate of 1/τ . By
the end of the channel probing process, the user and AP have
accumulated a set of N pairs of channel measurements. The
estimated channel gains in the DL and UL are{

HDL = [hDL(1), hDL(2), . . . , hDL(N)]T,
HUL = [hUL(1), hUL(2), . . . , hUL(N)]T,

(2)
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Fig. 2: Framework for deep learning-based wireless secret key
generation (WSKG) in dynamic multi-user indoor LiFi.

where T denotes the transpose and h(n) at discrete instances
1 ≤ n ≤ N is the channel gain (CIR) estimate. In this paper,
perfect estimation is assumed as a first step of research.

2) Quantization: This paper employs a cumulative distri-
bution function (CDF)-based quantization, where quantization
thresholds are set according to the CIR data’s CDF. This ensures
a balanced output of 1s and 0s, essential for the NIST ran-
domness tests. The approach allows for multi-bit quantization
using more levels. Using a Gray code ensures similar data
samples yield closely related binary strings with a single bit
difference. We chose the CDF-based method since the CIR
distribution changes with varying user densities. Algorithm 1
details the CDF-based quantizer, taking in the CIR estimate and
desired quantization level to output a preliminary key sequence.
It calculates thresholds from the CIR’s CDF and assigns Gray
codes accordingly. Traditionally, both the UE and AP employ
Algorithm 1 to generate preliminary keys using received data.

3) Information Reconciliation: This step produces symmet-
ric keys at the UE and AP by aligning nonidentical bits in
the preliminary keys, K̃UL and K̃DL, to form the final key K.
Our goal is to minimize the KDR due to channel non-ideal
reciprocity before information reconciliation, ensuring a high
KGR. For reconciliation, the algorithm in [14] is adopted.

During the probing, quantization, and reconciliation, UE and
AP communicate over public channels, risking eavesdropper
interception. In this process, the eavesdropper should have the
same correlated channel as the legitimate users to obtain similar
quantization results. While privacy amplification is typically
applied after reconciliation, for effective eavesdropping, the at-
tacker must maintain a distance of λ/2 (with λ representing the
wavelength). Given the challenge of maintaining this distance
in LiFi due to the nanometer-scale λ, this paper omits privacy



Algorithm 1 CDF-Based Quantization

1: procedure CDF QUANTIZATION(H, V ) ▷ CIR Estimate,
Quantization level

2: F (h)← Pr(H < h) ▷ CDF
3: η0, η2V ← −∞,∞
4: for j ← 1 to 2V − 1 do
5: ηj ← F−1(j/2V )
6: end for
7: Construct Gray codes bj for intervals [ηj−1, ηj ]
8: for n← 1 to N do
9: if ηj−1 ≤ h(n) < ηj then

10: K̃(n, V )← bj
11: end if
12: end for
13: end procedure

amplification considerations.

B. Proposed Deep Learning-based Key Generation Strategy

In LiFi networks, UL (infrared) and DL (visible light)
channels are non-ideally reciprocal. Optimizing quantization
thresholds at the AP and UE is essential for closely matched
initial keys, preventing high KDR and reduced KGR after
reconciliation. Due to the lack of general LiFi channel models
[4], our proposed solution is data-driven, employing a deep
learning-based strategy at the AP to minimize the KDR. An
LSTM-RNN model is trained with normalized UL CIR (H̄UL)
as input, generating a Gray code output similar to that adopted
at the UE. The model minimizes the categorical cross-entropy
to minimize the KDR by learning the relation between HUL
(used at AP to generate K̃DL) and K̃UL (generated at the UE).
During tests, the model generates an AP preliminary key closely
matching the UE’s preliminary key given the UL CIR.

1) Dataset Generation: The framework in Fig. 2 is used to
create the UL and DL CIR dataset, processed using the Ten-
nessee Technological University’s HPC cluster. Indoor mobility
traces were crafted as per Section II.C. User and AP locations
then determine potential blockages and coverage, with blockage
judgment details in [4]. UL and DL CIRs are derived using
parameters from [4] for infrared (UL) and visible light (DL).
CIR data is then aggregated for different user densities, namely,
1, 3, 6,, and 8 users. For each density, 1000 traces per user are
generated and processed. This results in time-series data for
each user and AP as in (2). Before LSTM-RNN training, data
undergoes pre-processing to extract features and labels. The
subsequent sections will discuss these details.

2) Dataset Pre-processing: As aforementioned, the LSTM-
RNN model is trained and deployed at the AP such that it
optimally quantizes HUL to produce a K̃DL of minimum KDR
with K̃UL. Toward this goal, the following pre-processing steps
are taken to define the input features and the output class.
Normalizing Input Features: To allow fast convergence of
the LSTM-RNN model training, the UL CIR data is nor-
malized. This is achieved by defining hmax

UL = max(HUL)

and hmin
UL = min(HUL), then, calculating the input features

X = [x(1), x(2), ..., x(N )]

x(n) =
hUL(n)− hmin

UL

hmax
UL − hmin

UL
. (3)

Defining Output Labels/Classes: To minimize the KDR, we
first find the quantization (Gray code) outcome at the UE
given the downlink CIR HDL. This is done by calling the
procedure CDF QUANTIZATION(HDL, V ) in Algorithm 1.
Hence, at each time instance n, we have the corresponding Gray
code outcome K̃UL(n). As the Gray code represents binary
outcomes, we find its decimal equivalent and use it as the
model’s output label/class y(n) at time n. In total, we have
2V thresholds mapped to 2V different Gray codes. Hence, we
have 2V classes/labels. The labels/classes corresponding to the
input features are denoted by Y.

3) LSTM-RNN Model Training and Optimization: The
model utilizes LSTM-RNN for time series data in our dataset
while addressing gradient vanishing and exploding issues. The
model is trained on examples of (X,Y) with a 3 : 1 split
using backpropagation-through-time (BPTT) that minimizes
categorical cross-entropy, which is equivalent to minimizing
the KDR. Hyper-parameters are refined via grid search and
the optimal configuration is found as two hidden layers; first
with 56 LSTM cells (tanh activation) and second with 72
(Sigmoid activation). The output layer has 2V neurons with
a Softmax activation. Additional parameters include a learning
rate of 0.001, Adam optimizer, batch size 10, and 1000 epochs.

For testing, the normalized UL CIR is fed to the model as
input features, and the UL preliminary keys K̃UL are predicted
as the model’s output, which is then used as K̃DL. Then, we
evaluate the performance of the model based on the following:

• KDR: This is defined as the ratio of the number of
mismatched bits in the DL and UL preliminary keys K̃DL
(generated using the LSTM-RNN model deployed at the
AP) and K̃UL (generated using Algorithm 1 at the UE),
respectively. Let the length of the bits in the preliminary
keys be S. Then, the KDR is described as

KDR =

∑S
s=1 |K̃UL(s)− K̃DL(s)|

S
. (4)

• KGR: After information reconciliation, the AP and UE
establish a uniform key K with a KDR that tends to be
zero. The KGR, measured in bits per second, indicates
the key generation/update speed. For example, the AES
algorithm needs a KGR of 0.1 bit per second [8].

• NIST Randomness Tests: These are described in [2] and
assess key randomness. A key with a p-value ≥ 0.01
in these tests exhibits high randomness. The tests in-
clude: monobit, frequency within the block, longest run
of ones, binary matrix rank, discrete Fourier transform,
non-overlapping template matching, approximate entropy,
cumulative sums, and random excursion.



4) Performance Evaluation Results: We evaluated the gen-
eralization of the LSTM-RNN through five models. Models
M1, M3, M6, and M8 were trained for scenarios with 1, 3,
6, and 8 mobile users, respectively. A fifth model, MG, was
trained using data from all user densities. When tested with
the same user density they were trained on, models M1 −M8

achieved the lowest KDRs of 15 − 16%, as indicated by the
bold diagonal in Table I. However, testing on different user
densities resulted in a KDR increase to 37 − 44%. The MG
model had a consistent KDR of 28%, still 12 − 13% higher
than the M1 −M8 models tested in matching conditions. This
highlights the models’ sensitivity to user density.

TABLE I: KDR for different models and test conditions.

Model/Test 1 UE 3 UEs 6 UEs 8 UEs
M1 0.1495 0.4155 0.4226 0.4301

M3 0.4222 0.1562 0.3976 0.4013

M6 0.4220 0.3872 0.1577 0.3923

M8 0.4401 0.3940 0.3731 0.1601

MG 0.2897 0.2899 0.2875 0.2889

To assess key randomness using the mentioned models, NIST
randomness tests were conducted (Table II). Models M1 to M8

passed these tests when trained and tested with the same user
density. However, discrepancies emerged in tests with varying
user densities. For instance, M1 struggled in the “overlapping
template matching” test for 3 to 8 users, as well as in the
“random excursion” test for 8 users. Similarly, MG faced
challenges, failing the “overlapping template matching” (with
1 user), “block frequency” (3 users), “random excursions” (6
users), and “frequency within a block” (8 users) tests.

TABLE II: NIST tests for different models and test conditions.

Model/Test 1 UE 3 UEs 6 UEs 8 UEs
M1 Passed Failed Failed Failed
M3 Failed Passed Failed Failed
M6 Failed Failed Passed Failed
M8 Failed Failed Failed Passed
MG Failed Failed Failed Failed

In conclusion, models exhibit limited generalization ability.
While models M1−M8 perform well under fixed user density,
they falter with differing user densities, yielding high KDR
and failing some NIST randomness tests. Similarly for the
MG model. This is attributed to changing CIR and outage
distributions with user density, as shown in Figs. 3 − 5.

Fig. 3 illustrates varying CIR with user density. From Fig. 4,
two key points arise: (a) different user densities lead to varied
outage rate distributions, with increased users causing more
blockages; (b) UL and DL channels possess distinct outage
rates. These factors affect the CIR distribution as seen in Fig.
5. Notably, with more users, the likelihood of high CIR values
decreases due to more outages, a phenomenon termed “concept
drift”. Hence, models trained for a specific user density struggle
to generalize for other densities. This is further complicated by

the distinct CIR distributions for UL and DL, underscoring the
channel non-ideal reciprocity in LiFi networks.
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Fig. 3: Time evolution of average CIR for 1, 000 mobility traces
during wandering: (a) UL and (b) DL channels.
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Fig. 4: Cumulative density function for (a) UL and (b) DL
outage rate.
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Fig. 5: CDF for (a) UL and (b) DL CIR.

In summary, LiFi networks show (a) non-ideal reciprocity
between UL and DL channels, and (b) concept drift in CIR and
outage rates with varying user density. These shifts account for
the models’ weak generalization. The next section introduces
an ensemble learning approach to enhance generalization.

IV. ROBUST STRATEGY AGAINST CONCEPT DRIFT

To address concept drift and enhance the model’s generaliza-
tion, we explore an ensemble strategy. Tables I and II show that
models M1−M8 excel when trained and tested on identical user
density. Thus, combining these models in an ensemble manner,
depicted in Fig. 6, should boost generalization. We examined
the subsequent ensemble methods:

• Bagging ensemble (bootstrap aggregation): It enhances the
stability and accuracy of classification models. It divides



the original data set (X,Y) into multiple subsets, trains
the models M1−M8 on each, and combines their decisions
using majority voting for minimal KDR. This approach
decreases variance and overfitting, shown in Fig. 6(a).

• Stacking ensemble: It trains models M1 −M8 separately,
as in Fig. 6(b). For testing, their decisions feed a meta-
learner, which integrates individual outputs for a final
decision. The meta-learner uses the same LSTM-RNN
architecture detailed in Section III-B3.

• Voting ensemble: It uses voting classifiers for decisions
from individually trained models M1 − M8. The final
decision picks the class with the lowest KDR, as illustrated
in Fig. 6(c).

It should be highlighted that all three ensemble methods were
examined using the same testing data adopted in Section III.B.
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Fig. 6: Illustration of the investigated ensemble strategies.

Upon training the ensemble models, test cases were consid-
ered with 1, 3, 6, and 8 users in the room. Table III compares the
KDR of the three ensemble strategies, which demonstrates that
the voting ensemble strategy outperforms the other strategies
and offers a stable KDR of 15−16% for different user densities.
The KGR and NIST test results for the voting ensemble strategy
are summarized in Table IV, which demonstrates that the
generated keys passed all the NIST tests, and hence, are random
and secure over all user densities with high KGR.

TABLE III: KDR of ensemble strategies for different test
conditions.

Ensemble/Test 1 UE 3 UEs 6 UEs 8 UEs
Bagging 0.4323 0.4401 0.4478 0.4555

Stacking 0.3325 0.3502 0.3422 0.3428

Voting 0.1495 0.1562 0.1577 0.1601

TABLE IV: KGR and NIST test results of voting ensemble
model for different test conditions.

Metric 1 UE 3 UEs 6 UEs 8 UEs
KGR 79.05 77.48 77.38 76

NIST Tests Passed Passed Passed Passed

V. CONCLUSION

This paper explores wireless secret key generation in multi-
user mobile LiFi networks. Channel non-ideal reciprocity mo-
tivated an LSTM-RNN-based framework that optimizes the
quantization thresholds to minimize the key disagreement rate.
However, due to concept drifts in LiFi channels affected by
varying user densities, the model’s generalization is compro-
mised, leading to insecure keys. A voting ensemble strategy was
introduced to address this issue, ensuring robust key generation
regardless of user density.
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