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Abstract—Indoor mobile networks handle the majority of data
traffic, with their performance limited by building materials
and structures. However, building designs have historically not
prioritized wireless performance. Prior to the advent of reconfig-
urable intelligent surfaces (RIS), the industry passively adapted
to wireless propagation challenges within buildings. Inspired by
RIS’s successes in outdoor networks, we propose embedding RIS
into building structures to manipulate and enhance building wire-
less performance comprehensively. Nonetheless, the ubiquitous
mobility of users introduces complex dynamics to the channels
of RIS-covered buildings. A deep understanding of indoor human
behavior patterns is essential for achieving wireless-friendly
building design. This article is the first to systematically examine
the tidal evolution phenomena emerging in the channels of
RIS-covered buildings driven by complex human behaviors. We
demonstrate that a universal channel model is unattainable
and focus on analyzing the challenges faced by advanced deep
learning-based prediction and control strategies, including high-
order Markov dependencies, concept drift, and generalization
issues caused by human-induced disturbances. Possible solutions
for orchestrating the coexistence of RIS-covered buildings and
crowd mobility are also laid out.

Index Terms—Millimeter wave, visible light communications,
programmable wireless environments, reconfigurable intelligent
surfaces, mobility, building wireless performance.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) is considered a
pivotal innovation supporting the 6th generation and beyond
(6G+) mobile communications, marking a milestone in ac-
tively intervening in electromagnetic propagation to optimize
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Fig. 1. (a) An example of the distribution of normalized channel gains on
a RIS-covered wall, where the shadows represent areas with relatively low
channel gains induced by moving users and indoor furnishings. The brightest
region yields the highest channel gain, and the darkest one has the lowest
value. (b) The proposed efficient visibility identification method accounts for
infinite projections in ray-tracing, enabling the generation of a huge dataset
required by learning-based methodologies [6].

communication networks. For enhancing outdoor networks,
RIS has demonstrated its powerful flexibility and vast ap-
plication potential of meta-materials [1], [2]. By reshaping
reflection beams to suppress the randomness of channels [3],
RIS enables the transmitted signals to reach shadowed areas
beyond the field of view and to track fast-moving users,
thereby gaining coverage and mobility [4], [5].

However, nearly 96% of mobile traffic occurs indoors, a do-
main that even the most intelligent outdoor RIS cannot reach.
The growing demand for indoor coverage and capacity neces-
sitates denser and more efficient indoor network deployments.
Simply optimizing indoor wireless networks without changing
building structure cannot efficiently meet this demand. This
is because building materials and layouts inherently affect
signal propagation, determining the upper limits of building
wireless performance (BWP) [7]. The conventional network
optimizations alone cannot break through these limitations.
Therefore, refining the building itself becomes the key to
fundamentally improving BWP. Yet, could building materials
possess the ability to actively suppress channel uncertainty?
This article reveals the feasibility of this idea: embedding low-
cost passive RIS tiles into building materials to make RIS
ubiquitous, thereby fundamentally enhancing BWP in terms
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of coverage and mobility1. We are making the first attempt
to unfold the upper BWP limits of RIS-covered buildings
constrained by indoor human behaviors.

The walls with complete RIS coverage only function under
powerful control strategies. The effectiveness of these strate-
gies depends on a deep understanding on the channel of RIS-
covered buildings. User behavior patterns and the presence of
objects like furniture increase the complexity of indoor en-
vironments, which conventional methods struggle to address.
Meanwhile, learning-based approaches face challenges related
to statistical concept drift and generalization [9].

This article clarifies the impact of human behavior on
the channels of RIS-covered buildings to benefit artifi-
cial intelligence-based management. The effort includes re-
examining the statistical representation of mobile RIS chan-
nels, where a tidal evolution pattern is discovered for the
first time. Through extensive empirical statistics, we have
reproduced the cross-scale interactions among macro-micro
mobility and channels as snapshotted in Fig. 1 driven by a
novel ray-tracing engine-based efficient dataset augmentation.
The users contribute to the dynamic channel shadows on the
walls, which evolve following the mobility process. The macro
process is governed by a bounded Lévy process and a semi-
Markov renewal process constrained by return tendencies,
while the micro process is characterized by a Markov process
featuring routing, turning, and terminal orientation behaviors.
Although each scale—from macro-level spatio-temporal hu-
man behaviors down to micro-level RIS tile channels at each
time slot—can be meticulously modeled, the combined com-
plexity of these coupled layers disrupts statistical uniformity
and instead produces tidal-like statistical drift.

The tidal evolution leads to severe concept drift. Any
attempt to generalize channel statistics has exhibited a fatal
deviation of more than 20% from practical mobility. Therefore,
we assert that a generalized mobile channel model for RIS-
covered buildings does not exist. Two promising 6G+ air
interfaces are elaborated, namely mmWave and visible light
communications delivered by indium tin oxides (ITO) or
liquid-crystal reflectors [5]. We analyze the pattern evolution
of the channels of RIS-covered buildings from time, space,
wavelength, and user density perspectives. The challenges
imposed by the concept drift through outage prediction, RIS
tile exclusion, and coexistence of access points (AP) and RIS
are confirmed through numerical experiments, which conclude
that the planning and operation of RIS-covered buildings still
call for in-depth and dedicated research efforts.

II. INACCURACY OF CONVENTIONAL GENERALIZED
STATISTICAL CHANNEL MODEL

Existing research concludes general statistical channel mod-
els under statistical experimental setups [10]. Here, we step
further, showing that the involvement of multi-user behavior
distorts these statistical channel models, and thus hinders

1Compared to the surface-mounted mmWave RIS tiles on walls, our primary
focus lies in their embedded integration within wall structures [8]. For visible
light communications (VLC), transparent glass walls remain fully compatible
with surface-mounted RIS tile implementations [5].

the robustness of conventional optimizations based on these
models.

First, we introduce practical crowd behaviors into RIS-
covered buildings in advance of seeking a generalized channel
statistic. We take three typical layouts R1, R2, and R3 shown
in Fig. 2(a) as examples, meanwhile three high-frequency
bands are considered, namely, 28 GHz mmWave (5G Band
n261), 73 GHz mmWave (E-Band), and visible light (VL)
bands [11]. The mmWave and VL are at the far ends of
the high-frequency bands, respectively, offering quite differ-
ent diffraction capabilities. 1, 500 small RIS tiles are evenly
installed on and completely cover each wall in the buildings.
Each RIS tile functions independently and is designed in
the size of 100mm × 100mm with 100 meta-surfaces sized
in 10mm × 10mm, such that the RIS broadcast channel in
mmWave [10] or VL bands should be seen as far-field. To
reproduce indoor crowd behavior accurately, we set experi-
ments and measurements on real-world indoor mobility [12],
and accordingly in [6], a novel generator to decompose the
mobile RIS channel into several components was presented.
The generator includes power-law governing user destination
selection, behavioral patterns during walking, device random
orientation patterns, and fine-grained channel gain calculation
via ray-tracing accelerated by the shadow region method.
These components, from macro to micro, are separately vali-
dated and would jointly characterize the evolution pattern of
the mobile RIS channel2.

Then, we try to find the optimal statistical model (distribu-
tion and parameters) that fits the channel. As demonstrated in
Fig. 2(b), we enforce a model-driven approach with Nakagami
distribution to fit the RIS channel gain statistics at each
time step; and in each step, the fit parameters are optimized.
Nakagami is the optimal distribution for this model problem
though an exhaustive search among the mainstream continuous
distributions. In this article, we mainly investigate the AP-RIS
and RIS-UE links in the mobile RIS channel. Under far-field
conditions, the path reflected by the tile located at the midpoint
relative to the AP and UE is equivalent to mirror reflection,
similar to the LoS path in traditional channels. Other tiles
provide farther propagation distances and larger incidence and
reflection angles, forming a response similar to the NLoS path
in traditional channels.

Unfortunately, conventional modeling methods have failed
when dealing with RIS at scales sufficient to cover buildings.
To quantify the inaccuracy, the Kolmogorov-Smirnov distances
(KSD) are given along time as D∗ = maxx(|F̂ (x)−FN(x)|),
where F̂ (x) is the empirical cumulative distribution function
(CDF) and FN(x) is the CDF of the hypothesized Nakagami
distribution. Fig. 2(b) shows that even under the optimized
fitting, the maximum fitting error goes up to 20%. Moreover,

2Macro-scale mobility employs a semi-Markov renewal process integrating
return regularity and bounded Lévy-walk. Resident nodes are selected via
truncated Pareto distribution with displacement exponent as 0.5. Sojourn time
follows another truncated Pareto distribution with exponent as 1. Micro-scale
trajectories apply steering behavior with four virtual forces: seek, arrival, UE-
avoidance, and obstacle-avoidance. UE orientation uses Laplace-distributed
polar angles with a mean of 45.11 and standard deviation of 7.84 for sitting
and Gaussian with a mean of 31.79 and standard deviation of 7.61 for
walking.
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Fig. 2. (a) Illustration of the building layouts. Mobile users, holding UEs that access four to nine light or mmWave APs distributed evenly on the ceiling
plane, are assumed in these scenarios. We introduce 1, 500 RIS tiles on each wall. Four walls in each layout are labeled with S1 to S4, where S2 is the
wall with the door, S1 is located opposite to S2, S3 is located on the left side after entering the door, and S4 is on the right side. (b) Fitting performance
over time in terms of Kolmogorov-Smirnov distances (KSD) through distribution and parameter optimizations. The parameters at each time step are optimally
selected to minimize the fitting residues. The normalized Jensen-Shannon (JS) divergences between adjacent statistical windows are also illustrated, where
five statistical window update frequencies are considered as 5, 10, 20, 50, and 100.

different bands lead to different error trends, while different
building layouts yield different error evolution. This means
in order to use a generalized channel model, for instance,
the Nakagami model, we have to train and refine the fitting
parameters whenever the setup or time changes. To this end,
a data-driven methodology for RIS channel characterization
under multi-user mobility is inevitable, which outperforms
conventional model-driven approaches in convenience (com-
plexity), accuracy, and flexibility.

The statistical inaccuracy impedes data-driven and learning-
based optimization for RIS-covered buildings in terms of
concept drift, which unfolds a spatio-temporal perspective. The
most obvious one is spatial drift since the building layouts
determine the crowd trajectories and then their discrepancy re-
sults in the non-uniform distributions. The usually overlooked
one hides in temporal, caused by the mobility evolution, as
in significant variations of channel statistics over time. It is
confirmed in the sub-figure of Jensen-Shannon (JS) diver-
gence in Fig. 2(b), where the higher divergence means more
serious drift. This phenomenon not only undermines model-
driven methodologies but also poses significant challenges to
learning-based approaches, specifically the issue of temporal
domain generalization. It calls for a deeper understanding on
the spatio-temporal drift in RIS channels.

III. EMERGENCE OF TIDAL-LIKE CONCEPT DRIFTS IN RIS
CHANNEL STATISTICS

Driven by human mobility and constrained by buildings,
the statistics of the AP-RIS-UE channels reflect a projection
of human mobility in space and time. In this section, we show
how the RIS channel distribution on the RIS varies cyclically
over time. Like tides, the projection of crowd mobility onto the
RIS-covered walls drives the concept drift of surface channel
statistics, which is dominated by the macro scale mobility
under truncated Pareto distributions [12]. Moreover, this tide-
like characteristic is reflected in various statistical perspectives
of the surface channel, such as the distribution of the outage
probability and the probability distribution of the channel gain.

Remark: The spatio-temporal pattern presented in this
section can be found in the statistics for all the layouts and
wavebands. Due to space limitations, we randomly chose some
of the results as a demonstration to support our conclusions.
The analysis and discussion for the presented setup can be
generalized to the others unless otherwise stated.

A. Concept drifts due to human mobility behaviors

To clearly interpret how crowd mobility results in the three-
phase spatio-temporal distribution of RIS channel statistics,
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Fig. 3. Spatio-temporal distribution snapshots of RIS surface channel statis-
tics. The analysis and discussion for the presented setup can be generalized
to the others. The illustrated statistics in (a) and (b) are obtained based on the
S4 in layout R2 supporting eight UEs via four APs operating VL band. The
distribution has been normalized in each snapshot, where the brightest region
yields the highest channel gain or survival rate, and the darkest one has the
lowest value. The partial auto-correlation function (PACF) of the RIS channel
state is shown to demonstrate the increased Markovian order, where the PACF
at a lag of 1 corresponds to the fitness of the one-order Markov process. (c)
The probability density functions (PDF) of RIS channel gain and survival rate
of RIS tiles over time. The instance is selected from layout R1 with 4 APs
and 8 UEs under 73 GHz mmWave support. The PDF is obtained at each
time interval and the colors correspond to the probability density values.

we select the statistics shown in Fig. 3(a) and (b) as an
example. Four APs operating in the VL band are supporting
eight UEs, and the sensitivity of VL to obstacles will better
reflect the impact of mobility. In Fig. 3(a) and (b), time indices
of different traces are unified and then classified into eight
intervals. For the sake of clarity, the distribution has been
normalized in each snapshot, where the brightest region yields
the highest channel gain or survival rate, and the darkest one
has the lowest value. Survival probability (or rate) stands for
the probability that a link of AP-RIS-UE is not outage. The
channel gain thresholds indicating outages are 2 × 10−9 for
VL, 2×10−8 for 73 GHz mmWave, and 2×10−7 for 28 GHz
mmWave, which depend on the upper bound of NLoS power
level. Otherwise, the comparison becomes difficult because the
range of values varies greatly from one phase to another as
will be depicted in Fig. 4(b).

Let us now focus on the drift of distribution patterns shown
in Fig. 3. The spatio-temporal pattern and its dependence on
UE trajectories are exposed by the channel statistics evolution
throughout the motion of user’s entering, wandering, and
exiting the room. In each phase, the deformation of the bright
regions with high-channel gain in each snapshot has a unique
pattern. In the entering phase, the shape of the high-channel

Fig. 4. (a) Selected spatio-temporal distribution snapshots of RIS channel
gain captured at the ending boundary of each mobility phase. The distribution
has been normalized in each snapshot, where the brightest region yields the
highest channel gain or survival rate, and the darkest one has the lowest value.
(b) Progress over time of the RIS channel gain. The illustrated statistics are
obtained based on the S4 in the layouts R1 to R3 supporting 8 UEs via 4
APs.

gain region (top-left) gradually extends from circular to ellipti-
cal, and the second high-gain region (top-right) gradually dis-
perses. The transition phase snapshots unveil how the spatio-
temporal pattern of RIS channels evolves from the entering
to the wandering phase. The shape of such a region remains
in the wandering phase, and gradually shrinks with the end of
the wandering phase, evolving towards the shape of the region
in the existing phase. Meanwhile, on this surface (R2-S4), we
can clearly see the shadow of the interior furnishings. Finally
comes the exiting phase, where the shape of the wandering
phase region shrinks rapidly, and the high-gain region has
shrunk almost to a small point, however, quite unlike the
gradual transition from the entering phase to the wandering
phase. Such a rapid transition can be further detailed as shown
in the snapshots from the transition phase from 70% to 72% of
the complete mobility progress in Fig. 3(a). Irregular vertical
grid artifacts appear in the image from the shadow tracks of the
users’ bodies, which corresponds to the great dynamics of user
mobility shifts during the exiting phase, such as frequent UE
trajectory crossover and UE avoidance behaviors from each
other. The speed of transition between these two phases is so
short because the users suddenly turn around and head for the
exit. As all users have left, the sub-high gain dispersion area
in Fig. 3(a) gradually shrinks. This evolution is like a tidal
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wave, driven by the evolution of user density distribution.
The channel gain and survival distribution regions in RIS-

covered buildings undergo different deformation processes
in three phases and vary on different walls due to layout
influences, although they both follow the three-phase pattern.
As shown in Fig. 3(b), the three-phase evolution is more
obvious at the top area in each snapshot. At the entering
phase, the area of high survival is small and concentrated in
the upper middle. Next, the high survival area spreads out and
elongates in parallel directions, as the users’ primary area of
activity shifts to the indoor central area, and the wandering
phase begins. In the wandering phase, the high-survival rate
distribution does not seem to change significantly, which is
obviously different from the channel gain distribution. In the
final exiting phase, the high-survival rate area moves towards
the door as users move away towards the exit.

The probability density functions (PDF) variation in
Fig. 3(c) shows more clearly the huge dynamic in channel
statistics induced by crowd mobility. The channel gain PDF
over time has graded widths and erratic peaks. It is such a
huge dynamic that leads to the deviation of the traditional
fitting method, as aforementioned, which eventually generates
a series of non-optimal operational strategies. We also find
that even in the same building layout (R1), RIS statistics on
different walls have shown great differences, since the layouts
influence the user’s mobility and in turn influence the evolution
of RIS channels. We will elaborate on this mechanism in the
following subsection.

Implications: This tide-like concept drift will impact the
RIS management. For instance, the number of RIS allocations
in [13] can be further reduced to only 10% in the entering and
exiting phases as the available RIS areas in these two phases
are far less than in the wandering phase. This is done by a low-
complexity deep reinforcement learning-driven optimization.

We found that the impact of human behavior undermines the
Markov properties underlying the environment. The first-order
Markovian property is a critical dependency for advanced RIS
control strategies such as reinforcement learning. As shown in
Fig. 3(a), the high partial auto-correlation function (PACF) of
channel state with respect to lag reflects the deterioration of the
Markovian property. Recent evidence has shown that the tidal
evolution caused by human behavior increases the Markovian
order of the decision-reward process, which in turn leads to a
blow-up in the dimensionality of the state space [13]. Training
within a temporally embedded latent decision space, utilizing
a solution similar to MuZero [14] but more lightweight, could
potentially generate RIS control strategies that are immune or
robust to environmental uncertainties, thereby realizing a truly
wireless-friendly building environment.

B. Concept drifts due to various indoor layouts

Fig. 4(a) shows the spatio-temporal distributions at the end
of each mobility phase under various indoor environments. The
most obvious feature is the change in shape of the completely
shadowed areas due to the different interior furnishings, which
are shown in black. For example, in the R1 layout, the
conference table is placed in the middle of the room, and

there is a certain distance from the wall where the RIS is
located, so the edge of the shadow area will be a little fuzzy.
In addition, more shadows are distributed in the area far from
the door because users enter and leave in the area near the
door, resulting in more shadows that UEs induce to the RIS
far from the door and under the desks. However, in the layout
of R2 and R3, the interior furnishings are close to the walls,
which makes the outline of the completely shadowed area very
clear.

Due to the different layout constraints, the impacts of
user mobility will also be distinguishable, leading to various
evolution patterns of RIS channel statistical distribution. We
first focus on the similarities of the evolution patterns. In the
three layouts, the area with the highest RIS channel intensity
gradually moves down to a lower position over time, and
then progressively shrinks, or even disappears. This is mainly
because UEs have different orientations in each mobility stage.
Specifically, in the entering phase, UE is more likely to point
to RIS and the ceiling, and the UE-RIS link is less blocked by
the user’s body, which raises the high-channel gain area up to
a higher position. In the exiting phase, UE is more oriented
towards the exit direction, and UE-RIS and RIS-AP links are
more easily blocked by the body, which makes the distribution
of the high-gain region lower and smaller. In the wandering
phase, the two trends mentioned earlier are neutralized, as
users perform truncated Lévy-walk more in the central area.

We investigate the RIS channel gain over time as shown
in Fig. 4(b). Starting from the commonality, the average RIS
channel gain shares a similar pattern under the three indoor
furnishing constraints, i.e., the three-phase pattern that has
been emphasized in this work. In the entry and exit phases,
the channel gain varies widely and oscillates dramatically. In
the wandering phase, however, the RIS channel gain on the
different walls fluctuates in a similar interval, as shown in R1
and R2. Of course, these commonalities essentially stem from
the similarity of mobility patterns and interior furnishings. In
other words, if the indoor furnishings differ significantly, then
the tide-like patterns must also be very different as in R3 since
R3 does not have central gathering areas. In any case, our
conclusion remains that there does not exist a static general
mathematical model for the RIS channel.

Apart from the large-scale commonality constrained by lay-
out, we now focus on the details hidden in some correlations
of layout and mobility patterns in the following aspects.

• Crossover in S1 and S2: Note that as the user enters
through the door located at S2, the UE is facing and
close to S1, while its back is facing and away from S2,
so in the entry phase, the RIS channel gain rises first on
S1 and then becomes smooth, while the RIS channel gain
of S2 is lower than S1. Whereas in the exit phase, the
user moves closer to S2 and away from S1, thus making
the RIS channel gain of S2 relatively higher than S1.
Yet during this phase, the AP-RIS-UE link is blocked by
users more frequently, so the RIS channel gain eventually
decreases.

• Symmetric in S3 and S4: Since there is only one door,
the user’s trajectory is closed. From the perspective
perpendicular to S3 and S4, the user travels from the S2

This article has been accepted for publication in IEEE Wireless Communications. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/MWC.2025.3600792

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



IEEE WIRELESS COMMUNICATIONS, ACCEPTED, MAY 2025 6

Fig. 5. Probability density functions of RIS channel gain and survival rate
evolving over time under different wavelengths. The demonstrated results are
statistically obtained based on the S4 in the layouts R1 supporting 8 UEs via
4 APs. The analysis and discussion for the presented setup can be generalized
to the others.

side to the S1 side and finally returns to the S2 side, which
leads to a certain convexity of the curves of S3 and S4.
However, the convexity of curves of S3 and S4 is clearly
symmetric since the S4-UE link is blocked with higher
probability when the UE is facing S3, and vice versa. We
find a similarity in Fig. 3(c), since the variation trend of
PDF is consistent with Fig. 4(b).

Implications: These findings have considerable impacts on
the data-driven optimizations of deep learning-based opera-
tions. The training of a deep learning method needs to consider
each specific layout or even the different walls in the same
room. Some layouts or walls have correlated changes, such as
opposite or simultaneous trends, so that the neural networks
trained in similar environments may be able to generalize to
each other. For instance, we adopt the deep point process
regressor of channel events in [12] to predict AP-RIS-UE
channel outages. We train this neural predictor for a central
RIS tile on S1 at R1 in 28 GHz, the valid hit rates are 79.43%,
65.32%, and 57.90% for R1 to R3. Due to R2 being more
similar to R1 than R3, the prediction performance is better in
R2, however, an adaption of the predictor is needed for R3.

When seeking control decisions, deep reinforcement learn-
ing methods are more susceptible to concept drift. Fortunately,
recent studies have demonstrated the potential to enhance
generalization ability by empowering the agent to perceive
concept drift [15]. However, there is no free lunch as learning
algorithms that generalize to all scenarios simply do not exist.
Therefore, efforts to improve generalization should focus on
the patterns of human behavior, enabling RIS control strategies

Fig. 6. (a) The probability density functions of the RIS channel gain and
survival rate under different AP to UE ratios. (b) Selected spatial distribution
snapshots of RIS channel gain captured at the entering phase with various AP
to UE ratios. The illustrated statistics are obtained based on the S2 in layout
R1 operating in the 28 GHz band. The distribution has been normalized in
each snapshot, where the brightest region yields the highest channel gain or
survival rate, and the darkest one has the lowest value. The analysis and
discussion for the presented setup can be generalized to the others.

that can optimize an entire building wireless environment with
minimal training cost.

C. Impacts of wavelength and diffraction ability

Fig. 5 shows us how the RIS channel gain PDF and the sur-
vivability PDF evolve for different wavelengths, respectively.
We focus on the effects brought by wavelength and diffraction
capability. First, the RIS channel response gradually decreases
with increasing frequency, as in Fig. 4(b), which is consistent
with our expectation of path loss. In mmWave, the increase
in frequency causes a significant increase in the channel
gain variance. Benefiting from the bypassing capability of
mmWave, the effect of outages is more limited. However, in
the VL band, the LoS signal is easily blocked, so the majority
of the channel gain statistics are distributed in the interval of
outages. The remaining component in the PDF of VL bands
is very similar to the PDF of NLoS channels in conventional
UE-AP links. This is because the NLoS links in VL bands are
mostly generated from the wall, which exactly corresponds to
the RIS tiles.
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Implications: Again, we adopt the deep channel event
predictor in [12] to predict AP-RIS-UE channel outages for
a central RIS tile on S1. We train this neural predictor at R1
in 28 GHz and then test it using the same model in R1 but
for different frequency bands, i.e., 28 GHz, 73 GHz, and VL.
The valid hit rates are 79.43%, 77.14%, and 32.62% for 28
GHz, 73 GHz, and VL. Since there are more frequent outages
in VL, and the channel pattern in 73 GHz is more similar to
28 GHz, the test performance is better in 73 GHz.

The intrinsic generalization ability varies significantly
across different wavelengths. mmWaves have much better
diffraction capabilities compared to VL, resulting in stronger
randomness in their channel characteristics. This randomness
not only blurs the boundaries of shadowed areas but also
obscures the detailed transitions in human behavior patterns.
Consequently, algorithms trained for mmWave channels nat-
urally exhibit better generalizations. In contrast, VL channels
clearly depict the projection of human behavior in the building
environment, inevitably leading to multimodal channel feature
evolution and more severe generalization challenges.

D. Impacts of UE to AP ratio

Usually, we recognize that the increase in AP density will
improve signal coverage, but we find some contradictions in
the RIS-assisted networks. Fig. 6(b) shows that compared to 1
AP, the shadowed area increases by about 22% under 4 APs,
and about 27% under 9 APs. The shadow area increases as
the number of APs increases for the following reasons. First,
the primary purpose of AP layout is to ensure the coverage of
the AP-UE link, so it is common to have evenly distributed
APs in the room, such that the shadows cast by APs are
misaligned on the same wall. This is because different APs
create independent shadows at different areas on RIS, even
though some of the shadows may overlap. Therefore, if we
cannot jointly optimize the resource allocations for RIS and
AP, the overall shadow area on the RIS will increase as the
AP number increases.

Implications: Blindly increasing the number of AP and RIS
will reduce the RIS usage rate as the ineffective RIS shadow
area is enlarged, but the actual signal quality does not improve
significantly, as in Fig. 6(a). This also suggests a new require-
ment for joint AP-RIS optimization. The preliminary indoor
architectural optimization schemes can refer to [7], but the
joint optimization across building structure, RIS integration,
and AP placement remains a significant challenge.

IV. CONCLUSIONS AND OPEN CHALLENGES

Most of the data traffic takes place within buildings, yet
building materials and layouts inherently limit wireless perfor-
mance. Embedding RIS into building structures that cover the
building completely promises fundamental control over BWP.
However, this article shows that human behavior introduces
complex, evolving channel conditions that resist universal
channel models, and thus impede the management tools rang-
ing from conventional optimizations to even deep learning-
based methodologies. This study is the first to systematically

examine how crowd behavior drives tidal-like shifts in the
channels of RIS-covered buildings.

Our findings show that these dynamics produce high-order
Markov dependencies, concept drift, and poor generalization
for learning-based prediction and control methods. Therefore,
RIS-covered buildings cannot achieve an unlimited increase
in BWP, and the upper bound of the performance gains
will inevitably be constrained by the tidal evolution patterns
revealed herein. This indicates that only the behavioral intelli-
gence of RIS networks can counteract the channel complexity
introduced by human behavior and bring us one step closer to
the ideal of a wireless-friendly building environment.

For optimizing the RIS-covered buildings under crowd
mobility, the viable future solution lies in leveraging rein-
forcement learning and generative models to organically in-
tegrate human behavioral patterns and aesthetic requirements,
which are traditionally challenging to quantify, with wireless
performance optimization. This approach aims to achieve
end-to-end, one-click generation of architectural designs that
inherently satisfy predefined functional specifications and per-
formance constraints.
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