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Abstract We observe high-frequency scatterers consistent with the interpretation of a tabular high-velocity
structure under the Indian Ocean as an ancient subducted slab. We use a previously rarely used raypath, P waves
scattered in the slab into PKP waves (P*PKP), from 12 earthquakes and explosions in five locations recorded on
the antique LASA (Large Aperture Seismic Array) located in Montana, United States. The scatterers
concentrate in the mantle transition zone and ~1,500 km depths, in the locations where the fast anomalies in the
tomography broaden and strengthen. Our inference that the slab lingers in the upper- and mid-mantle despite
subducting and detaching more than 130 million years ago suggests that models of slabs sinking into the mantle
may have to accommodate such long-term stagnation.

Plain Language Summary Through study of a novel raypath of seismic waves identified on a large,
high-quality seismographic array, we find evidence of an ancient subducted slab residing beneath the Indian
Ocean. Our investigation reveals the presence of high-frequency scatterers nestled approximately 500 and
1,500 km deep. Notably, these scatterers locate within fast anomalies observed in tomographic imaging. Despite
having undergone subduction and detachment over 130 million years ago, this slab remains suspended mid-
mantle. Such longevity challenges prevailing models of subduction dynamics by indicating protracted
stagnation of subducted lithospheric material within the Earth's mantle.

1. Introduction

Lithospheric plates, subducting into the mantle, may either stagnate in the mantle transition zone or penetrate
through to the lower mantle, where they may also stall (Goes et al., 2017). Understanding these varying behaviors
of subducted slabs helps evaluate past tectonic history through valuable insights into mantle properties such as
viscosity and thermal phase transitions. The observation of subducted plates relies on seismic constraints, which
have broadened from simply Wadati-Benioff seismicity (Isacks & Molnar, 1971) to modern models derived from
global/regional tomography (Lay, 1994; Wei et al., 2020) and seismic scattering locations (Kaneshima, 2016).
Favorable coverage by seismic ray paths is crucial for these seismological analyses. In particular, ancient sub-
duction slabs within the interiors of modern plates remain under-constrained, leaving the comprehensive history
and mechanics of mantle circulation open to debate.

One such ancient subduction slab, the Southeast Indian Slab (SEIS), was recently identified in a global to-
mography model beneath the Indian Ocean (Simmons et al., 2012, 2015). The SEIS reveals a regionally slab-like
structure between the Kerguelen Plateau and Java, Indonesia. This slab dips northward, extending from the upper
mantle down to the core-mantle boundary (CMB). The SEIS is positioned above the African large low-shear-
velocity province (LLSVP) and aligns with the location of the Indian geoid low. Based on a regional tectonic
reconstruction, the SEIS is inferred to have subducted prior to the breakup of East Gondwana (130-140 Ma)
(Gibbons et al., 2013). The dip polarity of present-day SEIS suggests either a stagnation period of over 100 Ma,
longer than any other known slab, or else a flip in slab polarity flip driven by upwelling mantle flow from the
African large low-shear-velocity province (LLSVP) (H. Wang et al., 2018). While both mechanisms are plausible
in geodynamic simulations, additional direct observational evidence is necessary to corroborate the possibility of
such a persistently stagnant slab. Unfortunately, the SEIS is located beneath a vast gap in seismic observation in
the Southern Hemisphere (Kaneshima, 2016). Although hints of the feature are observed in multiple global to-
mography models developed through decades (Becker & Boschi, 2002; Grand, 2002; Zhao et al., 2013), their
resolution has not yet been sufficient to confidently resolve a detailed slab structure (Simmons et al., 2012).
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Figure 1. (a) An illustration of the P*PKP path of observed scattered waves. The scattered waves propagate as P waves (red
lines) to their scattering points in the mantle (black dots), where they scatter off-plane, converting to the PKP raypath (blue
lines) until reaching the array (black triangle). Two scatterers at distinct depths are presented as examples. Note that the
scattering point is not in general aligned with Earth's rotation pole as depicted here. (b) Map of the events (red markers) and
the LASA array (black triangle) used in this paper. The black cross marks the antipode of LASA, while the yellow circle is
the geographical limit of possible scatterers at 500 km depth of PKP from LASA. The green star with raypaths shows an
example of scatterers.

Long-term mechanical mixing of the subducted oceanic lithosphere and mantle, combined with phase transitions
accompanying slab descent, can induce short-wavelength heterogeneities and small-scale scatterers (Mao
et al., 2022). Mantle heterogeneity beneath subduction zones has been observed pervasively in the Marianas
(Kaneshima, 2003; Korenaga, 2015), [zu-Bonin (Castle & Creager, 1999; Niu et al., 2003), Japan Sea (Niu, 2014;
J. Li & Yuen, 2014), Tonga (Kaneshima, 2013; Yang & He, 2015), and other regions around the Pacific. In this
study, we utilize scattered P*PKP waves (where * indicates the scatterer) to chart the distribution of scattering
points beneath the Indian Ocean. P*PKP has been rarely studied in previous studies (Earle, 2002), thus providing
a novel opportunity to locate scatterers within the mantle. Our results reveal scattering points that align with the
location of the SEIS, both in the transition zone and the lower mantle, offering direct observational evidence for
the presence of a stagnating ancient subduction slab in two distinct depth ranges.

2. Results

The location of the scattering region can be achieved through the analysis of the slowness and arrival times of
scattered waves. In this study, we observe P*PKP waves to locate scattering points beneath the Indian Ocean. The
P*PKP waves travel as P in the mantle from the source to the heterogeneity, where they scatter off-plane and
penetrate through the outer core as PKP to the array (Figure 1). Given the weakness of heterogeneity in the mantle
(Tackley, 2002), array processing methods are necessary to detect the faint scattered energy (Rost et al., 2015),
and the observation of P*PKP relies on adequate station density and aperture of the array, as well as the
appropriate source-receiver geometry. The seismic array that we employ, the Large Aperture Seismic Array
(LASA), was operated from 1968 to 1978 and consisted of up to 525 short-period stations installed in 60 m
boreholes in firm ground, spanning a 200-km aperture (Frosch & Green, 1966). Additional information regarding
LASA can be found in Supplementary Figure 1 in Supporting Information S1 and our previous publications
(Vidale, 2019; Wang & Vidale, 2022a, 2022b).

We adopt an approach similar to that employed by W. Wang and Vidale (2022a) applied to eight earthquakes near
Taiwan (TW), Chile (CL), the Philippines (PL), and New Guinea (NG), along with 4 Novaya Zemlya, Russia
(NZ) blasts. Only source regions with multiple events are considered to ensure the robustness of the results
(except for CL). We apply a 1-3 Hz bandpass filter to the seismograms to isolate the coherent scattered energy
across the expansive aperture of LASA. This short-period scattering wavefield is sensitive to structure on the
order of a few to tens of kilometers, which is comparable to the size and thickness of crustal fragments in the
mantle (Niu, 2014). Then we perform beamforming on the seismograms using all available LASA stations,
following the method described by W. Wang and Vidale (2022b). Static shifts, on the order of tenths of seconds
and determined by aligning the PKIKP waves of an earthquake near the antipode (Vidale, 2019), are applied to
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Figure 2. Beams of P*PKP energy emanating from scatterers in the (a) lower mantle and (b) mantle transition zone for representative events, accompanied by the stack
envelope at the resolved slowness of P*PKP (black dots). Back azimuth of events are marked using white dashed lines. The delay after event origin time is listed on the
left of the stacks. Dashed circles in the slowness beams represent the slowness corresponding to the inner core boundary (ICB) and core-mantle boundary (CMB). Red
dashed lines denote the time windows utilized for the slowness beams, with corresponding scatterer depths provided adjacent to them (in kilometers).

account for the arrival perturbation induced by crust and mantle structure beneath LASA. Figure 2 presents beams
and corresponding envelopes of stacked waveforms for six events. These beams are plotted in two groups, each
exhibiting energy from a similar slowness and azimuth (0.22 s/km from north and 0.21 s/km from west), sug-
gesting a common origin from two strongly scattering regions. All events show scatterers from similar regions;
the rest are shown in Supplementary Figures 2—4 in Supporting Information S1.

To evaluate the extent of the strongly scattering region, we utilize a similar back-projection approach as W. Wang
and Vidale (2022a) to identify energy peaks in both slowness and time domain based on the single scattering
assumption (Cao & Romanowicz, 2007; Frost et al., 2013; Wen, 2000). This method retraces the slowness vector
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Figure 3. (a) The distribution of scattering points resolved through back-projection analysis with uncertainty, color-coded by depth. The two groups of scatterers in the
mantle transition zone and at ~1,500 km depth are encircled by blue and red dashed lines, respectively. Scatterer markers, indicating the events from which they are
resolved, correspond to event markers in Figure 1b. The black cross denotes the antipode of LASA. The red and blue rings mark the limit of locations in which scattered
arrivals could be observed at 1,500 and 600 km depths, respectively. (b) The location of an ancient subduction slab beneath the present-day Indian Ocean determined by
contouring fast shear wave perturbations of >0.25%, as modeled by Simmons et al. (2012). Location of Southeast Indian Ridge (SEIR) is marked using red lines. The
Kerguelen Plateau is shown in yellow for reference. Figure after Simmons et al. (2015).

and identifies scatterer locations by matching the IASP91 (Kennet, 1991) prediction of arrival times with ob-
servations of prominent bursts, allowing the determination of longitude, latitude, and depth. Comparable to W.
Wang and Vidale (2022a), we select the searching regime of slowness large enough to ensure the possible
scatterers cover the entire mantle. The uncertainty of the scatterer location is estimated from the 90% peak beam
energy contour in the slowness domain (see Supplementary Text 1 in Supporting Information S1 for details),
which accounts for both the volume distribution of the scatterer and the array response function (Rost &
Thomas, 2002). We examine the seismicity near the LASA array and the scattering region based on the PDE
(Preliminary Determination of Epicenters) catalog to eliminate the possibility that these signals are from other
earthquakes along the raypath. Our back-projection analysis reveals that the observed P*PKP waves predomi-
nantly emanate from two robustly located scattering regions within the mantle beneath the southern Indian Ocean
(Figure 3a). The northern region resides at a depth of approximately 1,500 km, while the southern is around 500—
600 km deep, in the transition zone. Notably, these regions align closely with the location of the SEIS (Figure 3b),
offering direct observational support for the presence of the ancient subducted slab beneath the Indian Ocean. In
addition to scattering points associated with the SEIS, we also identified four outlier scatterers. Two of these
outliers, situated beneath Madagascar and near the Kerguelen Plateau respectively, were independently identified
using longer-period scattered body waves in Rochira et al. (2022), thereby further validating our results.

3. Discussion

Our results provide independent evidence for the existence of the SEIS by the detection of coherent energy from
scattered P*PKP waves, a phase rarely documented in the previous literature. Supplementary Figure 5 in Sup-
porting Information S1 shows the traveltime and distance range for P*PKP and other phases that arrive close in
space and time. Unlike some previously well-studied scattering probes (e.g., inner core scattering and scattered
P'P’ waves), the path of P*PKP has a wider distance range available for observation, which samples a fairly large
volume of Earth for a given array location. In addition, the wide range of possible distances in the P branch from
source to scatterer allows a large set of candidate events to be used. Moreover, P*PKP waves do not necessarily
precede or follow other phases, as their path diverges from typical seismic phases, reducing the likelihood of
masking effects. Although P*PKP traverses a great distance through the lower mantle and outer core, the
attenuation in the lower mantle is weaker compared to the upper mantle (Dziewonski & Anderson, 1981;
Romanowicz & Mitchell, 2015), and negligible in the outer core, thereby preserving the scattered energy. Due to
the relatively weak heterogeneity in the middle-lower mantle compared to the lithosphere, the observation of
P*PKP still relies on array processing methods, for example, the beamforming approach used in this study.
Despite this limitation, P*PKP can fill sampling gaps between other phases, which are limited differently by
earthquake-station geometry, thereby providing additional information about locations of notable mantle
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heterogeneity. In this study, we do ray tracing with a one-dimensional layered

velocity model to confirm the existence of P*PKP. Given the substantial
- uncertainty in selecting the optimal slowness for locating the scattering points

(see Figure 3), the potential improvement from relocation using high-
- resolution 3D models, such as LLNL-G3D-JPS (Simmons et al., 2015),
Transition Zone may be limited. We plan to implement this in future work.

The observed scattering points in the mantle transition zone and at about
1,500 km depth align with the location of SEIS, though it is hard to determine
if these scatterers are located in the middle of the slab or on the slab surface
due to the low resolution of the velocity model and large uncertainty of the
location. As noted above, small-scale scatterers in close proximity to sub-
duction slabs have been widely documented. These scatterers are attributed to
the presence of former basaltic oceanic crust, which generates short-
wavelength physicochemical heterogeneities in both middle and lower

Figure 4. Schematic model showing the ancient subducted slab (SEIS) with mantle when mixed with the mantle material during subduction (Ishii
accumulations of slab in the area of scattering points. The stagnant slab piles et al., 2022; Ringwood & Irifune, 1988; Xu et al., 2008). The absence of

appear as a megalith embedded with pieces of crust. The ancient subduction
(transparent part above the transition zone) happened before the breakup of

East Gondwana (~140 Ma).

detectable scattering from 700 to 1,300 km is intriguing, potentially related to
the long-term stagnation history at the mantle transition zone and/or the rapid
sinking below the mantle transition zone (Shi et al., 2019). The energy
associated with scattered phases is typically weak and its observability is a combined effect of factors such as the
amplitude of the heterogeneity (e.g., velocity and density anomaly), the angle of incidence and exit at the scatterer
as well as the shape of scatterers. We conceptualize the scatterer as a slab pile resembling a megalith composed of
oceanic crust relics (Niu, 2014; Ringwood & Irifune, 1988), where each remnant piece serves as a seismic wave
reflector. The stagnation of the slab can lead to the accumulation of crustal pieces and disrupt their down-dip en
echelon arrangement (Agrusta et al., 2018; Gerya et al., 2021), thereby enhancing the likelihood of observing
scattered waves in diverse directions (Figure 4). In accordance with this model, our results suggest that the
stagnation of SEIS is happening in both the mantle transition zone and the lower mantle at a depth of 1,500 km. In
the downgoing section of the slab between the MTZ and 1,500 km depth, the fragments are aligned parallel to the
direction of stretching, reducing the likelihood of observing scatterers. The stagnation of slabs within the tran-
sition zone is a common phenomenon in both simulation and observation. An increase in viscosity at the base of
the mantle transition zone can effectively impede the sinking of the slab (Goes et al., 2017; Z.-H. Li et al., 2019),
resulting in its stagnation. Additionally, the endothermic phase change from ringwoodite to post-spinel provides
additional buoyancy, further delaying the slab descent through the transition zone by several tens of millions of
years (Yanagisawa et al., 2010). Over time, variations in slab buoyancy, such as the arrival of continental lith-
osphere at the trench, can trigger the penetration of the slab into the lower mantle (Agrusta et al., 2017). Once
slabs sink into the lower mantle, they gradually lose their original linear shape, potentially folding and/or buckling
in the 1,500-2,000 km depth range (Domeier et al., 2016). We interpret our observations as indicative of a
combination of these two processes, with the slab initially stagnating in the mantle transition zone before
penetrating into the lower mantle and stagnating once again. Overall, our observation contributes further evidence
to the stagnation, in addition to topographical irregularities.

The scatterers observed in the northeast are deeper than those in the southwest, suggesting the subduction of SEIS
retreated southwestward beneath the southeast modern Indian Ocean, which used to be the Mesozoic Tethys
Ocean. This trench retreat does not follow the well-understood tectonic history of the Indian Ocean following the
breakup of East Gondwana (Pal & Ghosh, 2023). Beginning 130-140 Ma, Insular India separated from East
Gondwana and traveled northeastward across the ancient Tethys Ocean to collide with Eurasia (Miiller
etal., 2022), opening the Indian Ocean. Thus, the subduction of SEIS is unlikely to have occurred during the long-
term northeastern motion of India but likely ended before the early stages of the breakup of East Gondwana. The
sinking of stagnant slabs in the mantle transition zone has been considered to last only about 50 Ma, even with a
lower bound estimation for the subducted slab sinking rate through the entire mantle (1.3 = 0.3 cm/yr) (But-
terworth et al., 2014). Assuming the subduction of SEIS ended at 150 Ma, the stagnation of the slab in the mantle
transition zone would have persisted for at least 100 Ma, which is longer than any other known slab on record
(Agrusta et al., 2017). That prolonged stagnation observed aligns with some numerical simulations, specifically
those considering the influences of the upward pull from a mid-ocean ridge or trench retreat (Gurnis et al., 1998;
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Yanagisawa et al., 2010). However, determining the timing of the subduction for the 1,500 km deep stagnant slab
remains challenging due to the potential contributions of both mantle convection (Ballmer et al., 2015; Tack-
ley, 2012) and trench retreat to the horizontal displacement between the two parts of stagnation. It has been
suggested that the upwelling mantle flow from African LLSVP could also influence the shape of the subducted
slab (H. Wang et al., 2018). Consequently, whether the long-lasting trench retreat or the emergence of the mid-
ocean ridge drives the long-term stagnation is still open to debate. Nonetheless, the coincident location of the
present-day Southeast Indian Ridge (SEIR), which is right above the intersection between SEIS and the mantle
transition zone (Figure 3b), could be interpreted that the upward pull from the mid-ocean ridge is most likely the
principal mechanism driving the long-term stagnation of SEIS in the mantle transition zone. Despite uncertainty
regarding the precise timing and mechanisms of the stagnation of SEIS, and whether other processes are involved
in the generation of scatterers (e.g., delamination), our results provide additional constraints and insights for
simulating and understanding the tectonic evolution of the Indian Ocean prior to 130—140 Ma and subduction in
general.

Data Availability Statement

The LASA data used in this study is available on Zenodo (Zhang, 2024). The events used in this study are listed in
Supplementary Table 1 in Supporting Information S1. Location of scattering points are provided in Supple-
mentary Table 2 in Supporting Information S1.
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