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ABSTRACT

Diffusion models have become the go-to method for text-to-image generation, producing high-quality
images from noise through a process called reverse diffusion. Understanding the dynamics of the
reverse diffusion process is crucial in steering the generation and achieving high sample quality.
However, the inner workings of diffusion models is still largely a mystery due to their black-box
nature and complex, multi-step generation process. Mechanistic Interpretability (MI) techniques,
such as Sparse Autoencoders (SAEs), aim at uncovering the operating principles of models through
granular analysis of their internal representations. These MI techniques have been successful in
understanding and steering the behavior of large language models at scale. However, the great
potential of SAEs has not yet been applied toward gaining insight into the intricate generative process
of diffusion models. In this work, we leverage the SAE framework to probe the inner workings of a
popular text-to-image diffusion model, and uncover a variety of human-interpretable concepts in its
activations. Interestingly, we find that even before the first reverse diffusion step is completed, the
final composition of the scene can be predicted surprisingly well by looking at the spatial distribution
of activated concepts. Moreover, going beyond correlational analysis, we show that the discovered
concepts have a causal effect on the model output and can be leveraged to steer the generative
process. We design intervention techniques aimed at manipulating image composition and style, and
demonstrate that (1) in early stages of diffusion image composition can be effectively controlled, (2)
in the middle stages of diffusion image composition is finalized, however stylistic interventions are
effective, and (3) in the final stages of diffusion only minor textural details are subject to change.

1 Introduction

Diffusion models (DMs) [[15} 41]] have revolutionized the field of generative modeling. These models iteratively refine
images through a denoising process, progressively transforming Gaussian noise into coherent visual outputs. DMs
have established state-of-the-art in image [8} 128} 136} 34, |16]], audio [22], and video generation [17]. The introduction of
text-conditioning in diffusion models [34}135], i.e. guiding the generation process via text prompts, enables careful
customization of generated samples while simultaneously maintaining exceptional sample quality.

While DMs excel at producing images of exceptional quality, the internal mechanisms by which they ground textual
concepts in visual features that govern generation remain opaque. The time-evolution of internal representations through
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Figure 1: Coarse image composition emerges during the very first generation step in the diffusion process. We gener-
ate an image with the prompt "Several men walking on the dirt with palm trees in the background".
Our interpretability framework can predict segmentation masks for each object mentioned in the input prompt, solely

relying on model activations cached during the first diffusion step. At this early stage, the posterior mean predicted by
the diffusion model does not contain any visual clues about the final generated image.

the generative process, from pure noise to high-quality images, renders the understanding of DMs even more challenging
compared to other deep learning models. A particular blind spot is the early, *chaotic’ stage [46]] of diffusion, where
noise dominates the generative process. Recently, a flurry of research has emerged towards demystifying the inner
workings of DMs. In particular, a line of work attempts to interpret the internal representations by constructing saliency
maps from cross-attention layers [44]. Another direction is to find interpretable editing directions directly in the model’s
feature space that allows for guiding the generation process [5, 30, [T0}, O 4]. However, most existing
techniques are aimed at addressing particular editing tasks and are not wide enough in scope to provide a more holistic
interpretation on the internal representations of diffusion models.

Mechanistic interpretability (MI) is focused on addressing the above challenges via uncovering operating principles
from inputs to outputs that reveal how neural networks process information internally. A line of work within MI uses
linear or logistic regression on model activations, also known as probing 271, to uncover specific knowledge
stored in model internals. Extensions [T]] explore nonlinear variants for improved detection and model steering.
Recently, sparse autoencoders have emerged within MI as powerful tools to discover highly interpretable features (or
concepts) within large models at scale [[6]. These learned features enable direct interventions to steer model behavior in
a controlled manner. Despite their success in understanding language models, the application of SAEs to diffusion
models remains largely unexplored. Recent work leverages SAEs and discovers highly interpretable concepts in
the activations of a distilled DM [37]. While the results are promising, the paper focuses on a single-step diffusion
model, and thus the time-evolution of visual features, a key characteristic and major source of intrigue around the inner
workings of DMs, is not captured in this work.

In this paper, we aim to bridge this gap and address the following key questions:

* What level of image representation is present in the early, ’chaotic’ stage of the generative process?
» How do visual representations evolve through various stages of the generative process?
* Can we harness the uncovered concepts to steer the generative process in an interpretable way?

* How does the effectiveness of such interventions depend on diffusion time?

We perform extensive experiments on the features of a popular, large-scale text-to-image DM, Stable Diffusion v1.4 [34],
and extract thousands of concepts via SAEs. We propose a novel, scalable, vision-only pipeline to assign interpretations
to SAE concepts. Then, we leverage the discovered concepts to explore the evolution of visual representations
throughout the diffusion process. Strikingly, we find that the coarse composition of the image emerges even before
the first reverse diffusion update step, at which stage the model output carries no identifiable visual information (see
Figure[I). Moreover, we demonstrate that intervening on the discovered concepts has interpretable, causal effect on the
generated output image. We design intervention techniques that edit representations in the latent space of SAEs aimed
at manipulating image composition and style. We perform an in-depth study on the effectiveness of such interventions



as reverse diffusion progresses. We find that image composition can be effectively controlled in early stages of diffusion,
however such interventions are ineffective in later stages. Moreover, we can manipulate image style at middle time steps
without altering image composition. Our work deepens our understanding on the evolution of visual representations in
text-to-image DMs and opens the door to powerful, time-adaptive editing techniques.

2 Background

Diffusion models — In the diffusion framework, a forward noising process progressively transforms the clean data
distribution @ ~ go () into a simple distribution ¢ (typically isotropic Gaussian distribution) through intermediary
distributions ¢;. In general, ¢, is chosen such that x; is obtained by mixing x( with an appropriately scaled i.i.d.
Gaussian noise, g; (;|zg) ~ N (:co, crt2 I ) , Where the variance af is chosen according to a variance schedule. Diffusion
models [40, 15} 141} |42]] learn to reverse the forward process to generate new samples from gg by simply sampling
from the tractable distribution g7. Throughout this paper, we assume that the diffusion process is parameterized by
a continuous variable ¢ € [0, 1], where ¢ = 1 corresponds to pure noise distribution and ¢t = 0 corresponds to the
distribution of clean images.

Sparse autoencoders (SAEs) — Sparse autoencoders are one of the most popular mechanistic interpretability techniques,
and have been demonstrated to find interpretable features at scale [6l [11]. The core assumption underpinning SAEs
is the superposition hypothesis, the idea that models encode far more concepts than the available dimensions in their
activation space by using a combination of sparse and linear representations [39]. SAEs unpack these features in an
over-complete basis of sparsely activated concepts in their latent space, as opposed to the compressed latent space of
autoencoders commonly used in representation learning. Training autoencoders with both low reconstruction error
and sparsely activated latents is not an easy feat. An initial approach [2]] towards this goal uses ReL.U as the activation
function and ¢ loss as a regularizer to induce sparsity. However, additional tricks are necessary, such as the initialization
of encoder and decoder weights, to ensure that training is stable. Moreover, auxiliary loss terms may be necessary to
ensure there are no dead neurons/concepts. Recent work [26, |11} 3] proposes using TopK activation instead of the ReLU
function, which enables the precise control of the sparsity level without ¢; loss and results in improved downstream
task performance over ReLU baselines.

Interpreting diffusion models — There has been significant effort towards interpreting diffusion models. Authors in
Tang et al. [44] find that the cross-attention layers in diffusion models with a U-Net backbone — such as SDXL [32]
and Stable Diffusion [34] — can be used to generate saliency maps corresponding to textual concepts. Another line of
work focuses on finding interpretable editing directions in diffusion U-Nets to control the image generation process.
In particular, Kwon et al. [23]] and Haas et al. [13] focus on manipulating bottleneck features, Park et al. [31]] finds
edit directions based on the SVD of the Jacobian between the input and bottleneck layer of the U-Net, Chen et al.
[S]] considers the Jacobian between the input and the posterior mean estimate rather than the bottleneck, Orgad et al.
[30], Gandikota et al. [10] modify the key and value projection matrices, and Epstein et al. [9]], Chen et al. [4] seek to
control object position, size, shape directly by thresholding attention maps.

In recent work [43]], authors train SAEs on the activations of a distilled, single-step diffusion model [37] (SDXL Turbo).
In particular, they target certain cross-attention transformer blocks in the U-Net and train SAEs based on the residual
update made by the transformer block. The features in the latent space of SAEs are found to be highly interpretable.
Our work differs from theirs in two important ways. First, we analyze the time-evolution of interpretable concepts
during the generative process, a key component in understanding and controlling the diffusion process, which is not
captured by a single-step model. Second, they leverage vision-language foundation models to extract the semantics of
SAE features by reasoning about and summarizing the commonalities between groups of images that activate specific
features. This technique, however, is difficult to scale to large number of images due to the limited context of such
models and is afflicted by the reasoning limitations, biases and hallucinations of the foundation model. In contrast, we
propose a simple, scalable pipeline to extract interpretations for SAE features in the form of a flexible concept dictionary,
leveraging open-set object detectors and segmentation models. Concurrent work [7]] demonstrates the potential of SAEs
in machine unlearning for diffusion models. Even though, similar to our work, they study a non-distilled diffusion
model, their analysis focuses on identifying and removing particular concepts from generated images, and not on
understanding the time-evolution of internal representations. In fact, they train a single SAE jointly for all time steps,
whereas we perform a more granular analysis and train separate SAEs specialized to each time step. Recent work [20]]
leverages the SAE framework for controlled text-to-image generation. Different from our work, they train SAEs on
the activations of the separate text-encoder that guides the diffusion model, and thus they do not investigate the visual
representations of the diffusion model itself.



3 Method

3.1 SAE Architecture and Loss

In this section, we discuss the design choices behind our SAE model. We opt for k-sparse autoencoders (with TopK
activation) given their success with GPT-4 [11] and SDXL Turbo [43]]. In particular, let x € R¢ denote the input
activation to the autoencoder that we want to decompose into a sparse combination of features. Then, we obtain the
latent z € R™/ by encoding x as

z = & (z) = TopK (ReLU (W,, (z — b)),

where W, € R™f*? denotes the learnable weights of the encoder, b € R4 is a learnable bias term, and TopK function
keeps the top k highest activations and sets the remaining ones to 0. Note, that due to the superposition hypothesis, we
wish the encoding to be expansive and therefore ns >> d. Then, a decoder is trained to reconstruct the input from the
latent z in the form

& =D(z) =Wgez+b,

where Wy, € R%*"s represents the learnable weights of the decoder. Note, that the bias term is shared between
the encoder and decoder. We refer to f; = Wyec|[:, 7] columns of W, as concept vectors. We obtain the learnable
parameters by optimizing the reconstruction error

‘Crec (Wenw Wd€C7 b) = Erec (0) = ||$ - 53”3 .

In practice, training only on the reconstruction error is insufficient due to the emergence of dead features. Dead features
are defined as directions in the latent space that are not activated for some specified number of training iterations
resulting in wasted model capacity and compute. To resolve this issue, Gao et al. [[11]] proposes an auxiliary loss AuxK
that models the reconstruction error of the SAE using the top-k,,,, feature directions that have been inactive for the
longest. To be specific, define the reconstruction error as € = & — &, then the auxiliary loss takes the form

Loz (0) = ||e - é”% )

where € is the approximation of the reconstruction error using the top-%,,, dead latents. The combined loss for the
SAE training becomes

L(0) =Lrec (0) + algus (0),

where « is a hyperparameter.

3.2 Collecting Model Activations

In this work, we use Stable Diffusion v1.4 (SDv1.4) [34]] as our diffusion model due to its widespread use. Inspired by
Surkov et al. [43], we use 1.5M training prompts from the LAION-COCO dataset [38]] and store A, ; € RHXWexdy
the difference between the output and input of the /th cross-attention transformer block at diffusion time ¢ (i.e. the
update to the residual stream). We train our SAE to reconstruct features individually along the spatial dimension. That
is the input to the SAE is Ay, 7, :] for different spatial locations (¢, j) whereas ¢ and ¢ are fixed and to be specified
next.

To capture the time-evolution of concepts, we collect activations at timesteps corresponding to ¢ € [0.0,0.5,1.0] and
analyze final (t = 0.0, close to final generated image), middle, and early (t = 1.0, close to pure noise) diffusion
dynamics respectively. For each timestep ¢, we target 3 different cross-attention blocks in the denoising model
of SDv1.4: down_blocks.2.attentions.1, mid_block.attentions.0, up_blocks.l.attentions.0. We
refer to these as down_block, mid_block, up_block for brevity. We specifically include the mid_block or
the bottleneck layer of the U-Net since earlier work found interpretable editing directions here [23]. Other blocks
are chosen to be the closest to the bottleneck layer in the downsampling and upsampling paths of the U-Net. The
performance of text guidance is improved through Classifier-Free Guidance (CFG) [14]. The model output is modified as
Eg9(xt,t,c) = eg(ms,t,¢) + w (eg (s, t, €) — eg(x+,t, D)), where w denotes the guidance scale, ¢ is the conditioning
input and & is the null-text prompt. At each timestep we collect both the text-conditioned diffusion features (called
cond) and null-text-conditioned features (denoted by uncond).

To provide a granular and in-depth analysis, we train separate SAEs for different block, conditioning and timestep
combinations. Training results are in Appendix [A. In this work, we focus on cond features, as we hypothesize that
they may be more aligned with human-interpretable concepts due to the direct influence of language guidance through
cross-attention (more on this in Appendix |C).
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Figure 2: Curating the concept dictionary: 1) We cache
SAE activations for various time steps and blocks during
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tion to annotate the generated image with segmentation
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Figure 3: Predicting image composition: 1) We cache SAE
activations during the very first diffusion step (or other time
step of interest) and extract top activated concepts for each
spatial location. 2) For each spatial location, we fetch the
associated objects from the concept dictionary and produce
a conceptual embedding via Word2Vec. 3) We compare the
conceptual embedding at each location to the target word
embeddings from the input prompt and predict a segmenta-
tion map based on cosine similarity.

3.3 Extracting interpretations from SAE features

Multiple work on automatic labeling of SAE features resort to LLM pipelines where the captions corresponding to top
activating dataset examples are collected and the LLM is prompted to summarize them. However, these approaches
come with severe shortcomings. First, they may incorporate the biases and limitations of the language model into the
concept labels, including failures in spatial reasoning [19], object counting, identifying structural characteristics and
appearance [45]] and object hallucinations [24]. Second, they are sensitive to the prompt format and phrasing, and
the instructions may bias or limit the extracted concept labels. Last but not least, it is computationally infeasible to
scale LLM-based concept summarization to a large number of images, limiting the reliability of extracted concepts.
For instance, Surkov et al. [43]] only leverages a few dozens of images to define each concept. Therefore, we opt for
designing a scalable approach that obviates the need for LLM-based labeling and instead use a vision-based pipeline to
label our extracted SAE features.

In particular, we represent each concept by an associated list of objects, constituting a concept dictionary. The keys are
unique concept identifiers (CIDs) assigned to each of the concept vectors of the SAE. The values correspond to objects
that commonly occur in areas where the concept is activated. To build the concept dictionary (Figure[2), we first sample
a set of text prompts, generate the corresponding images using a diffusion model and extract the SAE activations for
each CID during generation. We obtain ground truth annotations for each generated image using a pre-trained vision
pipeline, that combines image tagging, object detection and semantic segmentation, resulting in a mask and label for
each object in generated images. Finally, we evaluate the alignment between our ground truth masks and the SAE
activations for each CID, and assign the corresponding label to the CID only if there is sufficient overlap.

The concept dictionary represents each concept with a list of objects. In order to provide a more concise summary that
incorporates semantic information, we assign an embedding vector to each concept. In general, we could use any model
that provides robust natural language embeddings, such as an LLM, however we opt for a simple approach by assigning
the mean Word2Vec embedding of object names activating the given concept.

3.4 Predicting image composition from SAE features

Leveraging the concept dictionary, we predict the final image composition based on SAE features at any time step
(Figure [3), allowing us to gain invaluable insight into the evolution of image representations in diffusion models.
Suppose that we would like to predict the location of a particular object in the final generated image, but before the
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Figure 4: An overview of our SAE intervention technique. The prompt "An apple in a basket" specifies the
necessary concepts but is vague in terms of spatial composition. We intercept activations of the denoising model and
edit the latents after encoding them with the SAE. For the features that are spatially located in the bottom-right quadrant,
we increase the coefficient corresponding to "apple" concept. For the remaining features, latents corresponding to
"apple" concept are set to 0. After the intervention, generated image satisfies the specified layout where all the apples
are located in the bottom-right quadrant.

reverse diffusion process is completed. First, given SAE features from a given intermediate time step, we extract the
top activating concepts for each spatial location. Next, we create a conceptual map of the image by assigning a word
embedding to each spatial location based on our curated concept dictionary. This conceptual map shows how image
semantics, described by localized word embeddings, vary spatially across the image. Given a concept we would like to
localize, such as an object from the input prompt, we produce a target word embedding and compare its similarity to
each spatial location in the conceptual map. To produce a predicted segmentation map, we assign the target concept to
spatial locations with high similarity, based on a pre-defined threshold value. This technique can be applied to each
object present in the input prompt (or to any concepts of interest) to predict the composition of the final generated
image.

3.5 Causal intervention techniques

Analyzing top activating dataset examples and semantic segmentation predictions only establish correlational rela-
tionship between concepts and the output image. In order to probe causal effects, we consider two categories of
interventions: spatially targeted interventions designed to guide scene layout and global interventions directed towards
manipulating image style.

Spatially targeted interventions — To assess layout controllability using the discovered concepts, we propose a simple
task: enforce a specific object to appear only in a designated quadrant (e.g., top-left) of the image. To achieve this, we
intercept activations and edit features in the SAE latent space by amplifying the desired concept in the target region and
setting it to 0 otherwise. Recall, that the contribution of the ¢th transformer block at time ¢ is given by Ay ;. Let Z,;
denote the latents after encoding the activations with the SAE encoder £. Let S denote the set of coordinates to which
we would like to restrict the object. Let C, be the set of CIDs that are relevant to object 0. We wish to modifty the
latents as follows:

B, if (i,j) €S
0, otherwise

Ve € 007 Z@,t[iaj7 C} = { (1)

where (3 is our intervention strength. However, decoding the modified latents directly is suboptimal as the SAE cannot
reconstruct the input perfectly. Instead, we modify the activations directly using the concept vectors. The modification
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Figure 5: Concept dictionary and visualization of the activation maps for the top 5 activating concepts extracted from
up_blocks.1.attentions.O0 for the (a) first and (b) last diffusion steps. Sample ID: 2000031

in Eq. (1) can be equivalently written as:
A, oo JBeldl+ B8 e, fo i (i,5) €S
Ay, jl = 0 o . .
Apieli, ) — > cec, fe,  otherwise

An overview of this intervention can be seen in Eq. (). In prior experiments, we observe that the same intervention
strength /3 does not work well across different objects o. To solve this, we introduce a normalization where the
intervention at a spatial coordinate (¢, j) is proportional to the norm of the latent at that coordinate ||Z, [, j]||.
Therefore, the effective intervention strength is 3;; = /|| Z,+[i, ] ||.

@

Global interventions — Beyond image composition, we investigate whether image style can be manipulated through
our discovered concepts. To this end, given a CID c related to the style of interest, as image style is a global property
we modify the activation at each spatial location as follows:

Agali, j] = Aeali, g+ Bfe. 3)
Similar to spatially targeted interventions, we find that normalization is necessary for 3 to work well across different
choices of style. We let /3 to be adaptive to spatial locations and modify them as 3;; = % B.

4 Experiments

We perform extensive experiments on SD v1.4 aimed at understanding how internal representations emerge and evolve
through the generative process.

4.1 Building the concept dictionary

We sample 40k prompts from the LAION-COCO dataset from a split that has not been used to train the SAEs. We build
the concept dictionary following our technique introduced in Section 3.3 For annotating generated images, we leverage
RAM for image tagging, Grounding DINO [23]] for open-set object detection and SAM for segmentation,
following the pipeline in Ren et al. [33]]. We assign a label to a specific CID if the IoU between the corresponding
annotated mask and activation is greater than 0.5. We binarize the activation map for the IoU calculation by first
normalizing to [0, 1] range, then thresholding at 0.1. We visualize the top 5 activating concepts and the corresponding
concept dictionary entries in Figure[5]for a generated sample. More samples can be found in Appendix[E.
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Figure 6: Visualization of top activating concepts in a generated sample. Concepts are sorted by mean activation across
spatial locations and top 10 activation maps are shown. Each row depicts a different snapshot along the reverse diffusion
trajectory starting from pure noise (¢! = 1.0) and terminating with the generated final image (¢ = 0.0). Note that each
row within the same column may belong to a different concept, as concepts are not directly comparable across different
diffusion time indices (separate SAE is trained for each individual timestep). Sample ID: 2000035.

4.2 Qualitative analysis of concept activations

We visualize the activation maps for top 10 (in terms of mean activation across the spatial dimensions) activating
concepts in Figure [6 across time steps. Based on our empirical observations, the activations can be grouped into the
following categories.

Local semantics — Most concepts fire in semantically homogeneous regions, producing a semantic segmentation mask
for a particular concept. Examples include the segmentation of the plate, food items and background in Figure[6. We
observe that these semantic concepts can be redundant in the sense that multiple concepts often fire in the same region
(e.g. see Fig. [6, second row with multiple concepts focused on the food in the bowl). We hypothesize that these
duplicates may add different conceptual layers to the same region (e.g. food and round in the previous example). In
terms of diffusion time, we observe that the segmentation masks are increasingly more accurate with respect to the
final generated image, which is expected as the final scene progressively stabilizes during the diffusion process. This
observation is more thoroughly verified in Section[d.3|and Figure[7a| In terms of different U-Net blocks, we observe
that up_block provides the most accurate segmentation of the final scene, especially at earlier time steps.

Global semantics (style) — We find concepts that activate more or less uniformly in the image. We hypothesize that
these concepts capture global information about the image, such as artistic style, setting or ambiance. We observe such
concepts across all studied diffusion steps and architectural blocks.

Context-free — We observe that some concepts fire exclusively in specific, structured regions of the image, such as
particular corners or bordering edges of the image, irrespective of semantics. We hypothesize that these concepts may be
a result of optimization artifacts, and are leveraged as semantic-independent knobs for the SAE to reduce reconstruction
error. Visual examples and further discussion can be found in Appendix [F|

More visualized concept activations for multiple blocks, time steps and samples can be found in Appendix [D.

4.3 Emergence of image composition

Next, we investigate how image composition emerges and evolves in the internal representations of the diffusion model.
We sample 55 LAION-COCO test prompts that have not been used for SAE training or to build the concept dictionary,
and generate corresponding images with SDv1.4. Then, we follow the methodology described in Section 3.4 to predict
a segmentation mask for every noun in the input prompt using SAE features at various stages of diffusion. We filter out
nouns that are not in Word2Vec and those not detected in the generated image by our zero-shot labeling pipeline. We
evaluate the mean /oU between the predicted masks and the ground truth annotations from our labeling pipeline for
the first generation step (t = 1.0), the middle step (¢ = 0.5) and final diffusion step (¢ = 0.0). Numerical results are
summarized in Figure [7a]

First, we surprisingly find that the image composition emerges during the very first reverse diffusion step (even before
the first complete forward pass!), as we are able to predict the rough layout of the final scene with JoU =~ 0.26 from
mid_block SAE activations. As Figure [T]demonstrates, the general location of objects from the input prompt is already
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Figure 7: Evolution of predicted image composition during the reverse diffusion process, shown through segmentation
accuracy (left) and visualizations (right). Features from later time steps become progressively more accurate at
predicting the final layout of the image. However, the general image composition emerges as early as the first time step.

determined at this stage, even though the model output (posterior mean prediction) does not contain any visual clues
about the final generated scene yet. More examples can be seen in the second column of Figure[7b]

Second, we observe that the image composition and layout is mostly finalized by the middle of the reverse diffusion
process (t = 0.5), which is supported by the saturation in the accuracy of predicted masks. Visually, predicted masks for
t = 0.5 and ¢ = 0.0 look similar, however we see indications of increasing semantic granularity in represented concepts.
For instance, the second row in Figure [7b|depicts predicted segmentation masks for the noun church. Even though the
masks for ¢ = 0.5 and ¢t = 0.0 are overall similar, the mask in the final time step excludes doors and windows on the
building, suggesting that those regions are assigned more specific concepts, such as door and window. Moreover, we
would like to emphasize that the segmentation IoU is evaluated with respect to our zero-shot annotations, which are
often less accurate than our predicted masks for £ = 0.0, and thus the reported IoU is bottlenecked by the quality of
our annotations.

Finally, we find that image composition can be extracted from any of the investigated blocks, and thus we do not observe
strong specialization between these layers for composition-related information. However, up_block provides generally
more accurate segmentations than down_block, and mid_block provides the lowest due to the lower spatial resolution.
We also find that cond features result in more accurate prediction of image composition than uncond features, likely
due to more semantic information as an indirect result of text conditioning. Results for all block and conditioning
combinations can be found in Appendix [C]

4.4 Effectiveness of interventions across diffusion time

Beyond establishing correlational effects, we analyze how our discovered concepts can be leveraged in causal inter-
ventions targeted at manipulating image composition and style. We specifically focus on the effectiveness of these
interventions as a function of diffusion time, split into 3 stages: early for ¢t € [0.6,1.0], middle for t € [0.2,0.6] and
final for t € [0, 0.2]. Motivated by the success of bottleneck intervention techniques [31]], we target mid_block
in our experiments.

Spatially targeted interventions— We consider bee, book, and dog as the objects of interest and attempt to restrict them
to four different quadrants: top-left, top-right, bottom-left, and bottom-right. In order to find the CIDs to
be intervened on, we sweep the concept dictionary of the given time step and collect all the CIDs where the word of
interest appears. Results are summarized in Figure [§]

Global interventions— Through our concept dictionary and visual inspection of top dataset examples at t = 0.5, we
select the following CIDs: #1722 that controls the cartoon look of the image, #524 appears mostly with beach images
where sea and sand are visible together, and #2137 activates the most on paintings (top activating images can be found
in Appendix [G). We find matching concepts for other time steps by picking the CIDs with the highest Word2Vec
embedding similarity to the above target CIDs. An overview of results is depicted in Figure[9]



No Intervention top-left top-right bottom-left bottom-right

(a) Early-stage intervention.
top-left top-right bottom-left bottom-right top-left top-right bottom-left bottom-right

(b) Middle-stage intervention (c) Final-stage intervention

Figure 8: Effect of spatially targeted interventions at different stages of diffusion, aimed at manipulating image layout.
We can efficiently restrict objects to the specified quadrant of the image when intervened in early stages of diffusion.
However, in middle and final stages our interventions are unsuccessful.

4.4.1 Early-stage interventions

First, we apply spatially targeted interventions according to Eq. [2 using an SAE trained on cond activations of
mid_block at ¢ = 1.0. We observe that a large intervention strength J is needed to successfully control the spatial
composition consistently. We hypothesize that the skip connections in the U-Net architecture and the features from the
null-text conditioning in classifier-free guidance reduce the effect of our interventions, as they provide paths that
bypass the intervention. Thus, a larger value of intervention strength is needed to mask the leakage effects. In Eq.
we observe that the objects of interest are successfully guided to their respective locations. Moreover, the concepts that
we do not intervene on, such as the flower in the first row are preserved.

Next, we perform global interventions according to Eq. (3) aimed at manipulating image style. Interestingly, as depicted
in Figure[Ja] we find that instead of controlling image style, these global interventions broadly modify the composition
of the image, without imbuing it with a particular style. As depicted in Figure[I0a] this phenomenon holds for a wide
range of 3. As we vary the intervention strength, we obtain images with various compositions, but without the target
style. This observation is consistent with our hypothesis that early stages of diffusion are responsible for shaping the
image composition, whereas more abstract and high-level concepts, such as those related to consistent artistic styles
emerge later.

4.4.2 Middle-stage interventions

We keep the setting from early-stage experiments, but use an SAE trained on the activations at ¢ = 0.5. In contrast with
early-stage results, as shown in Figure[8b, we find that our spatially localized intervention fails to manipulate image
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No Intervention cartoon sea & sand painting cartoon sea & sand painting cartoon sea & sand painting

(a) Early-stage intervention (b) Middle-stage intervention (c) Final-stage intervention

Figure 9: Effect of global interventions aimed at manipulating image style. Intervening in the early stages of diffusion
drastically modifies image composition without imbuing the image with a particular style. In stark contrast, middle-stage
global interventions successfully manipulate image style without interfering with image composition. However, in the
final stages of diffusion, such global interventions have no effect on style or composition, and only result in minor
textural changes.

composition at this stage. This result suggests that the locations of prominent objects in the scene have been finalized
by this stage. The interventions cause visual distortions, while maintaining image composition. Interestingly, in some
cases we see semantic changes in the targeted regions. For instance, intervening on the book concept in the second row
of Fig. [8b]in the top-left quadrant changes the tea cup into a book, instead of moving the large book making up most
of the scene.

In an effort to control image style, we perform global interventions in the middle stages. We show results in Figure
[Ob. We find that the these interventions do not alter image composition as in early stages of diffusion. Instead, we
observe local edits more aligned with stylistic changes (cartoon look, sandy texture, smooth straight lines, etc.), while
the location of objects in the scene are preserved. Contrasting this with early-stage interventions, we hypothesize that
the middle stage of diffusion is responsible for the emergence of more high-level and abstract concepts whereas the
image layout is already determined in the earlier time steps (also supported by our semantic segmentation experiments).
Moreover, varying the intervention strength impacts the intensity of style transfer in the output image (Figure[T0D).

4.4.3 Final-stage interventions

Performing spatially targeted interventions in the final stage of diffusion (Figure[8c) has no effect on image composition
and only causes some minor changes in local details. This outcome is expected, as we observe that even by the middle
stages of diffusion, image composition is finalized.

Similarly, we find that our global intervention technique is ineffective in manipulating image style in the final stage of
diffusion (Figure[9c), as we only observe minor textural changes across a wide range of intervention strengths (Figure
10c).

4.5 Summary of observations
Our experimental observations can be summarized as follows:

 Early stage of diffusion: coarse image composition emerges as early as during the very first diffusion step. At
this stage, we are able to approximately identify where prominent objects will be placed in the final generated
image (Section 4.3 and FigureT). Moreover, image composition is still subject to change: we can manipulate
the generated scene (Figure by spatially targeted interventions that amplify the desired concept in some
regions and dampens it in others. However, we are unable to steer image style (Figure Da) at this stage using
our global intervention technique. Instead of high-level stylistic edits, these interventions result in major
changes in image composition.
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(c) Final-stage intervention

Figure 10: Effect of intervention strength. We perform global intervention on a concept (#1722 for all time steps)
corresponding to cartoon look in top activating images. Early-stage interventions, at any strength, are unable to modify
image style consistently but broadly influence image composition. Interventions in the middle stages imbue the image
with the target style with increasing intensity. We only observe minor textural changes in final stages of diffusion, even
at high intervention strengths.
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» Middle stage of diffusion: image composition has been finalized at this stage and we are able to predict the
location of various objects in the final generated image with high accuracy (Figure[7). Moreover, our spatially
targeted intervention technique fails to meaningfully change image composition at this stage (Figure[8b). On
the other hand, through global interventions we can effectively control image style (Figure[Ob) while preserving
image composition, in stark contrast to the early stages.

* Final stage of diffusion: Image composition can be predicted from internal representations to very high
accuracy (empirically, often higher than our pre-trained segmentation pipeline), however manipulating image
composition through our spatially localized interventions fail (Figure[8c). Our global intervention technique
only results in minor textural changes without meaningfully changing image style (Figure Oc). These observa-
tions are consistent with prior work [46] highlighting the inefficiency of editing in the final, ‘refinement’ stage
of diffusion.

5 Conclusions and limitations

In this paper, we take a step towards demystifying the inner workings of text-to-image diffusion models under the lens
of mechanistic interpretability, with an emphasis on understanding how visual representations evolve over the generative
process. We show that the semantic layout of the image emerges as early as the first reverse diffusion step and can be
predicted surprisingly well from our learned features, even though no coherent visual cues are discernible in the model
outputs at this stage yet. As reverse diffusion progresses, the decoded semantic layout becomes progressively more
refined, and the image composition is largely finalized by the middle of the reverse trajectory. Furthermore, we conduct
in-depth intervention experiments and demonstrate that we can effectively leverage the learned SAE features to control
image composition in the early stages and image style in the middle stages of diffusion. Developing editing techniques
that adapt to the evolving nature of diffusion representations is a promising direction for future work. A limitation of our
method is the leakage effect rooted in the U-Net architecture of the denoiser, which enables information to bypass our
interventions through skip connections. We believe that extending our work to diffusion transformers would effectively
tackle this challenge.
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