
Journal Name

Data Efficiency of Classification Strategies for Chemical
and Materials Design†

Quinn M. Gallaghera and Michael A. Webb∗a

Active learning and design-build-test-learn strategies are increasingly employed to accelerate materials
discovery and characterization. Many data-driven materials design campaigns require that materials
are synthesizable, stable, soluble, recyclable, or non-toxic. Resources are wasted when materials
are recommended that do not satisfy these constraints. Acquiring this knowledge during the design
campaign is inefficient, and many materials constraints transcend specific design objectives. However,
there is no consensus on the most data-efficient algorithm for classifying whether a material satisfies
a constraint. To address this gap, we comprehensively compare the performance of 100 strategies for
classifying chemical and materials behavior. Performance is assessed across 31 classification tasks
sourced from the literature in chemical and materials science. From these results, we recommend best
practices for building data-efficient classifiers, showing the neural network- and random forest-based
active learning algorithms are most efficient across tasks. We also show that classification task
complexity can be quantified by task metafeatures, most notably the noise-to-signal ratio. These
metafeatures are then used to rationalize the data efficiency of different molecular representations and
the impact of domain size on task complexity. Overall, this work provides a comprehensive survey of
data-efficient classification strategies, identifies attributes of top-performing strategies, and suggests
avenues for further study.

1 Introduction

Computational workflows are increasingly used to design ma-
terials more efficiently than the trial-and-error nature of tradi-
tional laboratory discovery1–3. These workflows often utilize high-
throughput screening or design-of-experiments strategies applied
to automated laboratory equipment and computational models.
Examples include the design of π-conjugated peptides for organic
electronics4, metal-organic frameworks for gas separation5, small
molecules for organic light-emitting diodes6, phase-separating
intrinsically disordered proteins7, and many others8–15. Using ac-
tive learning and Bayesian optimization (AL/BO), these campaigns
have produced materials with desired figures of merit despite char-
acterizing a small fraction of the possible design space. Such
workflows promise to drastically accelerate materials discovery in
increasingly complex spaces.

Materials optimization often targets a constrained domain. Con-
sequently, resources can be wasted on candidates unsuitable for
further characterization. Common constraints on materials do-
mains include synthesizability, unwanted phase behavior, instabil-
ity, and toxicity. For example, when surveying a polymer library for

a Princeton University, Chemical and Biological Engineering, Princeton, NJ 08544, USA.
E-mail: mawebb@princeton.edu
† Electronic supplementary information (ESI) available. See DOI: 00.0000/00000000.

enzyme-stabilizing candidates, Tamasi et al. encountered phase-
separating or aggregating polymers unsuitable for physical assays
with the target enzyme9. Likewise, Körbel et al. surveyed 1,276
hybrid organic-inorganic halide perovskites of the form A+B2+X−

3 ,
from which only 203 compounds were considered stable for fur-
ther density functional theory calculations16. An et al. sought to
find peptide sequences that would form condensed phases and
disparate dynamical properties7, yet no phase-separating systems
were identified in an initial survey of 1,266 peptides listed in the
DisProt database17. Ideally, such behavior would be known or
predicted from the outset and incorporated into the data-selection
process for any given design campaign. Additionally, knowledge
of materials classification can be applied across varied design ob-
jectives. Therefore, a viable strategy is to allocate a portion of the
resource budget to accurately classify viability within a materials
domain, avoiding wasted resources on unsuitable candidates. To
maximize resource use, it is desirable to use a data-selection strat-
egy and classification algorithm that achieves the highest accuracy
with the fewest measurements.

Numerous and varied classification schemes can be found across
the literature. Terayama et al. used uncertainty-based active
learning to build phase diagrams of H2O, glass-ceramic glazes,
block copolymers, and more18–20 using label propagation, a semi-
supervised machine learning model21. Citing the computational
expense of the label propagation algorithm, Telleria-Allika et al.

Journal Name, [year], [vol.] , 1–15 | 1

used a random forest-based active learning scheme to build mag-
netic and covalency phase diagrams for few electron Hooke atoms
and helium dimers22. Dai and Glotzer used active learning based
on a Gaussian process least-squares classifier and a novel acqui-
sition function to learn the phase diagram of active Brownian
particles and quasi-crystals23. Hickman et al. used Gaussian
processes to simultaneously classify viability and optimize perfor-
mance for several materials design tasks, including small molecule
drugs and perovskites24. Focusing on the low-data regime, Bhat
and Kitchin used heuristics, rather than active learning, to identify
classification boundaries in several engineering problems, assert-
ing that active learning would be ineffective in their low-data
limit25. Other works have continued the trend of applying novel
active learning schemes to custom design tasks26–30. The diversity
of considered tasks and proposed algorithms indicates no con-
sensus on what constitutes an optimal approach or how to select
reasonable strategies.

Here, we investigate the performance of various algorithms
across a set of 31 classification tasks primarily sourced from chem-
ical and materials science. From these results, we identify al-
gorithms that perform optimally and the attributes that lead to
maximum data efficiency. We also explore approaches to building
classification algorithms that are robust to task variation. To ex-
plain algorithm performance across tasks, we demonstrate that
metafeatures (i.e., properties of classification tasks) predict an
algorithm’s performance, with a few metafeatures strongly corre-
lating with classification accuracy regardless of algorithm choice.
Additional metafeature analysis demonstrates why a limited set
of physico-chemical descriptors can outperform common high-
dimensional representations and also highlights the influence of
domain size on task complexity. Through this study, we identify
best practices for selecting data-efficient classification algorithms
and explain why these practices improve performance.

2 Overview of strategies
We consider space-filling and active learning algorithms, both of
which rely on a sampler and a model. Space-filling algorithms
(Figure 1A) use the sampler to select a batch of points. The model
is then trained on this batch and used to make predictions on the
rest of the task domain. The accuracy of the algorithm is measured
by comparing the predicted labels of the model to the ground
truth labels. In this way, space-filling algorithms rely on a one-shot
data selection scheme. Active learning algorithms (Figure 1B)
use the sampler to select an initial batch of points. The model is
trained on these points and used to compute the predicted labels
and uncertainties of all points in the task domain. A new batch
of points is chosen based on the most uncertain points. Model
training, uncertainty calculations, and batch selection are repeated
until the total allowable number of points is reached. The accuracy
of the algorithm is measured by comparing the predicted labels
of the final model to the ground truth labels. In this way, active
learning algorithms rely on an iterative, rather than one-shot,
data selection scheme. Considering multiple samplers and models
produces a combinatorial space of 100 space-filling and active
learning algorithms that are applied to a diverse set of 31 binary
classification tasks (mostly) relevant to chemical and materials

science. The tasks are visualized in Figure 1C. Further details on
the tasks, samplers, models, batch selection schemes, and accuracy
metrics are provided in Methods.

3 Methods
Tasks. Task domains vary in size (285-10,000) and dimensional-
ity (2-14). For active learning algorithms, batch sizes are chosen
for each classification task so that less than 10% of the task domain
and a maximum of 100 points is sampled. A description of the in-
cluded tasks and their sources is included in Table 1. Briefly, tasks
include the classification of phase behavior in active Brownian
particles, polymer systems, and water; figures of merit in metal
alloys, catalysts, and perovskites; performance of experimental
equipment for high-performance liquid chromatography and addi-
tive manufacturing; and small-molecule properties like aqueous
solubility, band gap, heat capacity, and others.

Some tasks require a molecular representation. For these tasks,
molecules are represented as the ten most informative physico-
chemical features calculated by the Mordred descriptor calcula-
tor31 for the given property. The chosen descriptors are selected
by training a logistic regression model with an L1 loss on the
full dataset, with molecules represented by all available Mordred
descriptors, and keeping the ten descriptors with the largest ab-
solute coefficients. This scheme emulates molecular design cam-
paigns that use a set of expert-informed features as a molecular
representation32. Viable alternatives to this choice of molecular
representation, like graphs33 and physics-informed structural rep-
resentations34, are not considered in this study. The impact of
alternative molecular representations is examined in Section 4.7.

Some tasks are prepared from datasets with continuous prop-
erties. For these datasets, the task is to classify elements of the
domain with property values below the 20th percentile of the prop-
erty distribution. Some tasks, like those derived from QM935, are
taken from large datasets that would be too computationally inten-
sive for exhaustive consideration in our high-throughput survey. If
such datasets have continuous properties as labels, we subsample
the dataset with stratification to preserve the property distribution.
If such datasets have discrete properties as labels, we subsample
the dataset, such that the minority class is approximately 20% of
the observations. While the high-throughput survey is restricted
to datasets with domain sizes of 10,000 or fewer, the impact of
domain size is further examined in Section 4.8 .

Samplers. Five samplers are considered for generating complete
datasets for space filling or initial datasets for active learning.
These are referred to as (i.) random, (ii.) maximin, (iii.) medoids,
(iv.) max entropy, and (v.) Vendi samplers. For demonstrative pur-
poses, Figure 2 shows the points selected by these five samplers on
the princeton dataset. These samplers represent different data-
selection paradigms from the field of “Design of Experiments”36,
including geometry, information theory, and diversity. Common al-
ternatives like Latin hypercube sampling37 and Sobol sequences38

are not considered due to their applicability only on (hyper)cubic
domains, which differ from the non-cubic domains present in
many of the materials spaces considered here. Extension of such
approaches may be feasible, in certain scenarios, but not facile.

2 | 1–15Journal Name, [year], [vol.] ,

Fig. 1 Overview of data-selection strategies and datasets. (A) Schematic of a space-filling algorithm applied to the princeton task. In space filling, a
one-shot selection of points chosen by the sampler is used to train the model. (B) Schematic of an active learning algorithm applied to the princeton
task. In active learning, the sampler chooses a set of points to initiate active learning. The model is then trained and used to compute uncertainties on
the entire domain, which guide selection of the next batch of points. This process is continued for ten iterations. (C) A visual depiction of all other
tasks considered in this study. Tasks with more than two features are visualized in two dimensions using principal component analysis. In all panels, red
and blue distinguish the two class labels.

Thus, we restrict our testing to approaches that can be readily
applied, irrespective of the input space.

While the random sampler chooses points at random, non-
random samplers choose points that optimize a specific metric.
Maximin sampling, also called furthest-point sampling, sequen-
tially selects points that maximize the minimum Euclidean distance
between the current point and all previously chosen points. A
medoids sampler chooses the centroids produced by the k-medoids
algorithm, which selects a set of points that minimizes the average
squared Euclidean distance between any point in the domain to
a point in the sample. A max entropy sampler, a method cre-
ated by Paiva39, chooses a maximally informative set of points by
sequentially selecting the point in the domain x∗ to solve

argmin
x∗

[
1

m+1

m

∑
j=1

κ(z j −x∗)− 1
N

N

∑
i=1

κ(xi −x∗)

]
(1)

where the set {z j} are previously chosen points, {xi} are all points
in the domain, and κ is the squared-exponential kernel

κ(xi,x j) =
1

(2πσ2)d/2
exp

(
− 1

2σ2 ||xi −x j||2
)

(2)

where d is the dimensionality of the task domain and σ is a band-
width parameter computed using Silverman’s rule of thumb40. The
Vendi sampler sequentially chooses points that maximize the Vendi
score41, which is a diversity metric computed from the entropy
of the eigenvalues of a Gram matrix computed on the domain.

For computing the Gram matrix, we use the squared exponential
kernel shown in Eq. (2). All methods described here depend on a
random seed for the selection of all points (i.e., random), initial
guess (i.e., medoids), or initial point (i.e., maximin, max entropy,
Vendi), depending on the sampler.

Models. Models include random forests (RFs), gradient boosted
decision trees (XGBs), support vector machines (SV), label prop-
agation (LP), neural networks (NNs), Gaussian processes (GPs),
and Bayesian kernel density estimation (BKDE). Models predict
labels and uncertainties on the task domain. For models without
inherent uncertainty estimates (XGBs and NNs), ensembles of mod-
els are built using bootstrap aggregation to calculate uncertainties.
Gaussian processes are implemented as both least-squares classi-
fiers (GPRs) and as classifiers with a Bernoulli likelihood (GPCs)
using both isotropic and anisotropic (ARD) squared exponential
kernels42. The uncertainties of GPRs use the scheme developed
by Dai and Glotzer in Ref.23. All models are subject to hyperpa-
rameter tuning after each new batch of data is selected. A full
description of the chosen models and hyperparameter tuning is
available in the Supporting Information (SI) (see Section S1).

The BKDE model is inspired by the Gryffin43 and Phoenics44

algorithms. The kernel density of each point is measured using
the outputs of a Bayesian autoencoder fit to the training data.
Specifically, the kernel density at point x due to a measured point

Journal Name, [year], [vol.] , 1–15 | 3

Fig. 2 Overview of different sampler algorithms for generating (initial) datasets. Batches of 30 points selected from 6,390 points in the princeton
dataset using (A) random, (B) maximin, (C) medoids, (D) max entropy and (E) Vendi samplers. In all panels, red and blue distinguish the two class
labels.

xk can be written as:

ρk(x) =
〈√

τn

2π
exp

[
− τn

2
(x−xpred(θ ;xk))

2
]〉

BNN
(3)

where τn is a learnable bandwidth parameter with a prior depen-
dent on the number of measured points, n, and xpred(θ ;xk) is the
prediction of a Bayesian autoencoder with sample parameters θ

and input xk. The average ⟨⟩BNN refers to the average computed by
sampling this value from the Bayesian neural network. The reader
is directed to Ref.44 for additional explanation. Using these kernel
density estimates, probabilities for each class can be calculated
using the following equation:

pi(x) =
∑xk∈Xi

ρk(x)
∑xk∈X ρk(x)

(4)

where pi(x) is the probability that point x is label i, X is the
task domain, and Xi are all points in the domain with label i. For
a given point, the predicted label is the class with the highest
probability, and its uncertainty is the entropy of the probability dis-
tribution across all classes. Due to the expense of hyperparameter
tuning, implementations with BKDE maintain a fixed architecture
consistent with its prior usage43.

Batch Selection. All active learning algorithms use the “Kriging
believer” scheme to select batches of points45. The Kriging believer
scheme operates as follows. First, uncertainties are computed
across the domain, and the point with the highest uncertainty is
added to the training set. The model then assumes its prediction
for that point is correct and retrains accordingly. Updated uncer-
tainties are then recomputed on the domain to identify the next
point with the greatest uncertainty. This process is repeated until
the desired batch size is reached. Hyperparameter tuning is not
repeated during retraining with assumed labels.

For BKDE-based active learning algorithms, a custom batch-
selection scheme is used due to the computational expense of
refitting BKDE to new data. We define ρ̂k(x) = ρk(x)/ρk,max as the
normalized kernel density, so that ρ̂k(x) ∈ [0,1]. ρ̂k(x) represents
the influence of point xk on every point x in the domain with a
value between 0 and 1. Before batch selection, the uncertainties
of every point in the domain are computed, denoted u0(x). Batch
selection begins by selecting the point with the highest uncertainty,

denoted x1. When this point is selected, ρ̂1(x) is computed. The
uncertainties are then recomputed by reducing their magnitude by
a factor proportional to the influence of x1 at that point, producing
a new uncertainty function u1(x) = u0(x) ∗ (1− ρ̂1(x)). By conse-
quence, uncertain points uninfluenced by x1 remain uncertain,
while those near x1 are less likely to be chosen. The point x2 that
maximizes u1(x) is then chosen, and the process is repeated until
the desired batch size is reached. This method allows for a di-
verse batch of points to be selected by BKDE-based active learning
algorithms without retraining the model for each acquired point.

Metrics. Classification accuracy is assessed using the Macro F1

score for its robustness to class imbalance, equal weighting of
precision and recall, and use in prior studies19. For a given class,
the F1 score is defined as:

F1 =
2(TP)

2(TP)+FP+FN
(5)

where ‘TP’, ‘FP’, and ‘FN’ respectively denote the number of true
positives, false positives, and false negatives. The Macro F1 score
is calculated by taking the average of F1 scores computed for each
class.

For any given task, what differentiates “good” from “bad” Macro
F1 scores can be ambiguous. Inspired by the use of random selec-
tion as a baseline in optimization literature55, we define a new
metric, ξ , as the number of randomly selected points a nearest
neighbor classifier requires to achieve the same Macro F1 score as
the specified algorithm. We further define ξmax as the maximum
ξ achieved by any algorithm on the task. Then, ξ/ξmax describes
how close an algorithm is to the best performance on a given
task. Metrics like ξ and ξ/ξmax quantify efficiency in terms of
resources saved by employing a given algorithm compared to a
naive approach.

Metafeatures analysis. Algorithm performance on tasks is pre-
dicted based on metafeatures of the task. Metafeatures include
basic characteristics of a classification task (e.g., dimensionality,
dataset size, class proportion), information theory-based proper-
ties (e.g., feature entropies, mutual information, noise-to-signal
ratio), and properties quantifying task complexity (e.g., Fisher’s
discriminant ratio, feature efficiency, hub score)56. A total of 213
metafeatures, computable by the PyMFE Python package57, are

4 | 1–15Journal Name, [year], [vol.] ,

Table 1 Overview of classification tasks.

Name Size Dim. Domain Label Ref.
bace 1,513 10 Small molecules Inhibition of human β -secretase 1 46

bear 1,800 4 3D-printed structures High mechanical toughness 47

clintox 1,480 10 Small molecules FDA approval 46

diblock 5,376 3 Diblock copolymers Lamellar phase 48

electro 285 4 Electrocatalysts High stability 49

esol 1,128 10 Small molecules Low aqueous solubility 46

free 642 10 Small molecules Low hydration free energy 46

glotzer_pf 10,000 2 ABP phase diagram (constant PF) Phase separating 23

glotzer_xa 10,000 2 ABP phase diagram (constant xA) Phase separating 23

hiv 7,215 10 Small molecules Active HIV inhibitors 46

hplc 1,385 5 HPLC process parameters Low photodegradation 50

lipo 4,200 10 Small molecules Low lipophilicity 46

muv 5,000 10 Small molecules Toxicity 46

oer 2,121 6 OER catalysts Low overpotential 51

oxidation 1,275 2 Ternary alloys Oxidation susceptibility 25

perovskite 1,276 14 Perovskites Stability 24

polygel 9,856 9 Polymethacrylates Predicted solubility
polysol 6,524 11 Common polymers and solvents Solubility 52

princeton 6,390 2 Princeton “P" Inside the “P”
qm9_cv 6,695 10 Small molecules Low CV

35

qm9_gap 6,695 10 Small molecules Low band gap 35

qm9_r2 6,695 10 Small molecules Low spatial extent 35

qm9_u0 6,695 10 Small molecules Low internal energy at 0K 35

qm9_zpve 6,695 10 Small molecules Low ZPVE 35

robeson 353 10 Linear homopolymer membranes Above the 1999 Robeson bound 53

shower 625 2 Flow rates Satisfactory temperature 25

toporg 1,342 8 Polymer topologies Low radius of gyration 54

tox21 7,831 10 Small molecules Toxicity 46

vdw 625 2 Thermodynamic conditions Phase separation 25

water_hp 625 2 Thermodynamic conditions (high P) Ice 19

water_lp 625 2 Thermodynamic conditions (low P) Liquid water 19

Journal Name, [year], [vol.] , 1–15 | 5

considered.
Predictive metafeatures for each algorithm are identified by fit-

ting a linear regression model of metafeatures to the algorithm’s
31 Macro F1 scores across all tasks. A minimal set of predictive
metafeatures common to all algorithms is determined using se-
quential feature addition. Sequential feature addition starts by
constructing linear models of individual metafeatures for all al-
gorithms. The metafeature ψ1 that results in the lowest mean
absolute error (MAE) is added to the set of selected metafeatures,
with MAE computed via leave-one-out cross-validation. The pro-
cess is repeated with combinations of ψ1 and additional metafea-
tures, adding the metafeature ψ2 that results in the lowest MAE.
This iterative process continues until MAE decreases by less than
1%. The final set of metafeatures {ψi} is used to build maximally
predictive linear models of algorithm performance across tasks.
BKDE-based algorithms are excluded from this analysis due to the
inability of metafeatures to predict their performance.

4 Results and Discussion

4.1 Active learning with neural networks and random forests
generally outperforms other strategies.

All combinations of samplers and models (totaling 100 algorithms)
were applied as space-filling and active learning algorithms to all
tasks in Figure 1C. This process was repeated with 30 different
random seeds to assess performance variability due to stochastic
factors such as sampler initialization, model random states, and
hyperparameter tuning. Performance was assessed in terms of
overall accuracy and in terms of data efficiency.

Figure 3A shows the 20 highest-performing algorithms, by ac-
curacy, as measured by average relative Macro F1 score across all
tasks for ten rounds of active learning. NN- and RF-based active
learning algorithms are the most accurate classifiers regardless
of sampler choice, representing 10 out of the top 11 algorithms.
Most variants of XGB-based active learning algorithms are also
present in the top 20, along with a few GP- and SV-based active
learning algorithms. Space-filling algorithms are notably missing
from the top performers, suggesting the value of iterative data
acquisition, which is further analyzed in Section 4.3. The choice of
sampler does not clearly affects performance of these algorithms,
with roughly equal representation of all samplers. The presence
of all NN- and RF-based active learning algorithms in the top 20
suggests that choice of model is more important than choice of
sampler. While the results are statistically robust, we note that the
top 20 most accurate algorithms differ in relative Macro F1 scores
by at most ca. 0.04; the practical implication of such a difference
would require additional external evaluation.

To better characterize the data efficiency of algorithms, we
consider ⟨ξ/ξmax⟩, the performance relative to a naive algorithm
that achieves equivalent accuracy. For example, on a given task,
an algorithm may achieve a Macro F1 score of 0.7, while the best
algorithm achieves a Macro F1 score of 0.8. The naive method
may require 1000 measurements to reach the score of the first
algorithm and 2000 measurements to match the best algorithm.
In this case, the value of ξ/ξmax is given by 1000/2000 = 0.5. This
process can be repeated for each random seed of every algorithm

applied to each task, enabling estimation of ⟨ξ/ξmax⟩ across all
tasks.

Figure 3B ranks the top 20 algorithms by ⟨ξ/ξmax⟩ for all tasks
after ten rounds of active learning. Figure 3B shows that NN-based
active learning algorithms are the clear top performers, regardless
of sampler, when using this metric. RF-based active learning
algorithms follow closely behind, followed by a variety of Gaussian
process-based active learning methods. Compared to Figure 3A,
the metric in Figure 3B provides greater stratification in algorithm
performance for high values of Macro F1. As F1 scores tend to
1.0, more and more points are required by a naive algorithm to
improve its accuracy, which is reflected only by small increases in
Macro F1 score. When appropriately weighting the relative “effort”
required for getting a high-resolution understanding of the task,
NN-based active learning algorithms emerge as a consistent top
performer. However, the maximum value of ⟨ξ/ξmax⟩ achieved
by any algorithm is less than 0.8, indicating that even the top-
performing algorithms are not necessarily optimal for many tasks.

The ordering in Figure 3 reflects an average across all tasks and
specifically follows after ten rounds of active learning. Variants of
Figure 3 for different subsets of tasks and fewer points selected
are available in the SI (see Section S2). We find that performance
varies depending on the dimensionality of the tasks. Figure S1
shows that when only low-dimensional tasks (d ≤ 8) are consid-
ered, NN-based active learning algorithms greatly outperform all
alternatives. Figure S2 shows that when higher dimensional tasks
are considered (d > 8), tree-based algorithms perform better, and
there is not a clear advantage to using either NN- or RF-based
active learning algorithms.

Figures S3-S5 show how the results in Figure 3 change when
fewer points are selected. At only three rounds of active learning,
space-filling algorithms with a variety of models are present in the
top 20 algorithms (Figure S3). The top space-filling algorithm,
which uses the medoids sampler and neural network model, re-
mains in the top 20 until five rounds of active learning (Figure S4),
closely followed by GP-based space-filling algorithms. NN-based
active learning algorithms are the top-performing algorithms for
three rounds of active learning onwards, while RF-based active
learning algorithms do not emerge as the clear second best choice
until five rounds of active learning. Results are mostly consistent
with Figure 3 for seven rounds of active learning (Figure S5).
Therefore, the results of Figure 3 are consistent for many rounds
of active learning, but when few batches have been selected, NN-
based active learning algorithms are optimal.

From these results, we suggest using NN- or RF-based active
learning algorithms for building accurate classification models
on domains with a limited experimental budget. RFs seem pre-
ferred for higher-dimensional tasks. This guidance seemingly runs
counter to conventional wisdom regarding the relative ineffec-
tiveness of neural networks in low-data regimes and the common
utilization of Gaussian processes for AL/BO. It may be interesting
to consider whether prior studies (such as Refs.18,20,23–25) might
be more data-efficient by opting for a different strategy.

6 | 1–15Journal Name, [year], [vol.] ,

Fig. 3 Performances of the top 20 algorithms on all tasks for ten rounds of active learning. Algorithm performance is measured by averaging the (A)
relative Macro F1 score and (B) relative ξ of each algorithm on all tasks, where “relative” denotes normalizing the metric by the performance of the
top-performing algorithm on that task. Results are colored according to the model used by the specified algorithm. Error bars show the standard error.

Fig. 4 Summary of suboptimal algorithms. Algorithms are considered suboptimal if ξ/ξmax < 0.9 on every task. Data is stratified by algorithm type and
model choice.

Journal Name, [year], [vol.] , 1–15 | 7

4.2 Many algorithms fail to perform well across all tasks.
While the preceding analysis shows that selecting an optimal strat-
egy a priori can be challenging, we find certain algorithms are
consistently “suboptimal.” We define performance as suboptimal
if ξ/ξmax < 0.9 for every task. Figure 4 displays the fraction of
suboptimal algorithms based on algorithm type and model choice.
Of the 100 algorithms studied, 61 are suboptimal. Space-filling
algorithms are more often suboptimal compared to active learning
algorithms. Among active learning algorithms, model choice sig-
nificantly affects performance. NN- and RF-based active learning
algorithms are never suboptimal, while BKDE- and LP-based ac-
tive learning algorithms are always suboptimal. SV- and isotropic
GPC-based active learning schemes are also commonly suboptimal.

The poor performance of BKDE-based algorithms may be at-
tributed to several factors. First, unlike GPs and SVs, BKDE does
not use training labels when estimating kernel densities, reducing
predictive accuracy. Second, BKDE relies on a Bayesian autoen-
coder to estimate kernel densities, which can be inaccurate with
limited training data. Third, BKDE’s kernel density estimates
rapidly decay to zero with distance, leading to high uncertainties
across much of the task domain. This causes BKDE-based active
learning algorithms to fail in prioritizing points near classification
boundaries, reducing accuracy. Consequently, BKDE-based ac-
tive learning and space-filling algorithms perform similarly across
tasks.

The poor performance of LP-based algorithms is likely due to
two reasons. First, LP models assign classes to unlabeled points
based on neighboring labeled points defined by Euclidean distance.
Unlike anisotropic GPs, XGBs, RFs, and NNs, LP models do not
have a mechanism to ignore irrelevant features. Second, LP models
assign high uncertainties to points near an identified classification
boundary but not to points far from those already chosen. As a
result, LP models can miss classification boundaries not initially
discovered by the sampler. This likely explains why space-filling
LP algorithms outperform active learning LP algorithms. Other
methods address this issue by explicitly increasing the uncertainty
of distant points (e.g., GPs) or using model ensembles to encourage
uncertainties in less sampled regions (e.g., RFs, NNs, XGBs).

4.3 Space filling occasionally outperforms active learning.
Figures 3 and 4 together suggest that active learning, or iterative
data selection, is more data-efficient than one-shot space filling. To
quantify this, we compare the performance of every seed of every
active learning algorithm to that of the space-filling algorithm with
the same seed, sampler, and model. For each number of points
selected on each task, we compute how often the active learning
variant outperforms the space-filling variant.

Figure 5 shows that active learning does not always outper-
form space filling, especially with few rounds of active learning.
In the first round, active learning outperforms space filling in
less than 50% of cases, suggesting little initial benefit. This frac-
tion increases to about 65% by round 10. To avoid misleading
results from poorly performing models, we also analyze the top-
performing models from Figure 3B. In this case, active learning
outperforms space filling about 50% of the time in the first round,

Fig. 5 Controlled comparison of active learning (AL) and space filling
(SF). Data corresponds to the fraction of instances that AL outperforms
SF when using the same sampler, model, and seed. Data is also stratified
for different rounds of AL. For a given round of AL, the AL algorithm is
compared to a SF algorithm that has selected the same number of points.
The fractions considering all sampler, model, and seed choices are shown
in blue. The fractions considering only the top 20 sampler, model, and
seed choices in Figure 3B include the blue and orange bars. Statistics are
aggregated over all tasks.

increasing to nearly 80% by round 10. While active learning
generally outperforms space filling, these results indicate that
an arbitrary active learning scheme may not always surpass its
space-filling variant on a given task.

The results in Figure 5 depend on the tasks considered. Some
tasks (e.g., princeton, tox21, electro) deviate from aforemen-
tioned trends (Figures S6-8). In these cases, space-filling algo-
rithms consistently outperform active learning algorithms. We
note that these are also among the most difficult classification
tasks, as indicated by the mean performance of all algorithms.
When all algorithms struggle, the performance gap between active
learning and space filling is less meaningful. Additionally, datasets
like princeton have complex classification boundaries that benefit
from allocating more experimental budget to exploring the task
domain rather than refining an already discovered boundary.

Based on these results, we recommend using active learning
algorithms for data-efficient classifiers but acknowledge that fac-
tors such as (i.) the number of active learning rounds and (ii.)
the expected complexity of the classification task can influence
the relative performance of active learning and space filling. De-
termining the optimal choice of active learning, space filling, or
combinations thereof is left for future work.

4.4 Sampler choice has disparate impact on active learning
versus space filling.

The role of initial data selection is an often overlooked aspect of ac-
tive learning algorithms and their outcomes. To assess this impact,
we compare the performance of each active learning algorithm

8 | 1–15Journal Name, [year], [vol.] ,

Fig. 6 Summary of performance improvements based on different samplers. Average fold improvement in data efficiency ξ based on the specified
sampler relative to a random sampler for (A) active learning and (B) space-filling algorithms for increasing rounds of active learning. For space-filling
algorithms, “Rounds of Active Learning” indicates training set sizes equal to those acquired by active learning algorithms at that round. The dotted line
is a guide to the eye for y = 1.00 (the performance of algorithms with random samplers). Error bars denote the standard error.

with non-random samplers to the same algorithm with a random
sampler across all tasks after 10 rounds of active learning. Here,
the performance metric is ξ , as defined in Methods.

Figure 6 shows the impact of sampler choice on performance
for both active learning and space-filling algorithms. For active
learning algorithms (Figure 6A), sampler choice has a minor effect,
with maximin and medoids samplers providing a slight improve-
ment over random sampling, though the difference diminishes
with increasing rounds of active learning. Vendi and max entropy
samplers perform similarly to or worse than random sampling,
with max entropy showing lower performance overall. In con-
trast, for space-filling algorithms (Figure 6B), the medoids sampler
consistently outperforms other options at all training set sizes,
while maximin and Vendi samplers are only modestly better than
random sampling. Here, the max entropy sampler also performs
worse than random selection. Notably, sampler choice has a more
sustained influence in space-filling algorithms than in active learn-
ing, where additional rounds of selection reduce the initial impact
of the sampler. These results suggest that while active learning
reduces the dependency on the initial sampling strategy over time,
for space-filling algorithms, the medoids sampler provides the most
robust performance across training set sizes. Thus, the medoids
sampler is recommended for both active learning algorithms with
limited rounds and for space-filling algorithms generally.

4.5 Model ensembles provide robust performance.
Given that the maximum ⟨ξ/ξmax⟩ in Figure 3B is only about 0.77,
we hypothesized that more data-efficient classification algorithms
could be developed using ensembling. Based on observed per-
formance, we consider ensemble-based algorithms featuring NNs,
RFs, and anisotropic GPCs. Several ensembling strategies were

considered, including treating model choice as a hyperparameter,
“stacking” models to combine predictions and uncertainties, and
“arbitrating” by using the model with the lowest uncertainty for
each prediction, and others58 (see SI, Section S4). From this
survey, treating model choice as a hyperparameter was found to
be the best-performing scheme, and all “Ensemble” results in the
main text refer to this method.

Figure 7A shows the relative performance based on ⟨ξ/ξmax⟩ of
NN-, RF-, and ensemble-based active learning algorithms across all
tasks. While ensembles rank among the top-performing algorithms,
they do not consistently outperform NN-based active learning
algorithms. However, the results in Figure 7 are task-dependent,
suggesting that ensemble-based active learning may be beneficial
for certain types of tasks.

To determine if ensemble-based active learning algorithms out-
perform NN- and RF-based algorithms on specific tasks, we analyze
two task sets. Figure 7B shows tasks where NN-based algorithms
are the top performers (n = 9). Figure 7C shows tasks where
RF-based algorithms excel (n = 10). Ensemble schemes generally
outperform individual models on tasks for which they are not
optimal. This effect is strongest for tasks where NN-based algo-
rithms excel and less pronounced for RF-based tasks. Thus, using
ensemble-based active learning may mitigate the risk of selecting
a suboptimal model for any given task.

4.6 Metafeatures are predictive of task difficulty.
To understand the factors behind algorithm performance variabil-
ity across tasks, we identify metafeatures that predict learning
algorithm accuracy. This approach allows us to quantify what
makes one classification task more challenging than another.

Figure 8 shows that a limited set of task metafeatures identified

Journal Name, [year], [vol.] , 1–15 | 9

Fig. 7 Performance decomposition of NN-, RF-, and ensemble-based active learning algorithms. Performances are measured on (A) all tasks, (B)
tasks where NN-based algorithms are optimal, and (C) tasks where RF-based algorithms are optimal. Performance is measured by ⟨ξ/ξmax⟩ across the
specified set of tasks, and error bars show the standard error.

Fig. 8 Correlation of algorithm performance with task metafeatures. (A) Predictions of linear models constructed for all algorithms using (i.)
noise-to-signal ratio, (ii.) maximum weighted distance between points, (iii.) maximum mutual information between features and labels, and (iv.)
the relative mean performance of the linear discriminant classifier. (B) Predictions of linear models constructed for the top 20 algorithms using (i.)
noise-to-signal ratio, (ii.) average mutual information between features and labels, and (iii.) maximum performance of the naive Bayes classifier. In
both panels, the parity line is shown in black.

10 | 1–15Journal Name, [year], [vol.] ,

by sequential feature addition can reasonably predict task com-
plexity. Figure 8A shows results of using just four metafeatures
(noise-to-signal ratio56, maximum weighted distance between
two points in the task domain59, maximum mutual information
between features and labels, and the performance of the linear
discriminant classifier) to predict the accuracy of all algorithms
across all tasks. To reduce the influence of poorly performing
algorithms, the same analysis is performed using just the top 20
algorithms. This yields Figure 8B, which uses noise-to-signal ratio,
the average mutual information between features and labels, and
the performance of the naive Bayes classifier. In both cases, simple
linear models based on these few features capture the data well.

The particular metafeatures selected resonate with intuition.
Noise-to-signal ratio is the most predictive metafeature of algo-
rithm performance across all tasks. Linear models using only this
ratio achieve an MAE of 11.260% and R2 = 0.619 for all algo-
rithms, and an MAE of 8.370% and R2 = 0.696 for top-performing
algorithms. Tasks with low noise-to-signal ratios require fewer
measurements because each measurement provides valuable infor-
mation about labels. Related to the noise-to-signal ratio, mutual
information and the performance of the naive Bayes classifier indi-
cate how useful individual features are for predicting labels. When
features are individually predictive of labels, less data is required
for accurate predictions than for tasks where features are uninfor-
mative. The maximum weighted distance between point pairs59

likely identifies outliers in the task domain, which require more
measurements to account for their influence. The performance
of the linear discriminant classifier indicates the linear separabil-
ity of a task. Linearly separable tasks have simple classification
boundaries, requiring less data for accurate prediction. In simple
and expected terms, less data is needed to train accurate mod-
els for tasks with informative features, few outliers, and linearly
separable classes.

4.7 Low-dimensional representations with molecular descrip-
tors improve data efficiency.

The preceding analysis represents molecules using a feature vector
of the ten Mordred descriptors most correlated with the target
property. However, many machine learning applications in chem-
ical sciences use higher-dimensional representations (d ≈ 1000),
such as extended vectors of physico-chemical properties31 or
molecular fingerprints60. To evaluate how featurization strate-
gies impact algorithm performance on molecular tasks, we apply
the same set of active learning and space-filling algorithms to 13
molecular classification tasks using these different representations.
Specifically, we compare representations using the 10, 20, or 100
Mordred descriptors most correlated with the property of interest,
all available Mordred descriptors, and 1024-dimensional Morgan
fingerprints61 . BKDE- or LP-based algorithms are excluded due
to poor prior performance. For Morgan fingerprints, all Euclidean
distance metrics are replaced with Tanimoto distances as necessary.
Vendi-based space-filling algorithms are also excluded for Morgan
fingerprints due to high computational cost.

Figure 9A shows the performance of active learning algorithms,
grouped by model type, for different molecular feature sets after

ten rounds of active learning. Increasing the number of Mordred
descriptors from 10 to 20 or 100 generally improves performance.
However, using all available Mordred descriptors often leads to
only slight gains or even notable performance drops compared
to using just 10 descriptors. Replacing 10 Mordred descriptors
with 1024-bit Morgan fingerprints significantly reduces perfor-
mance for all algorithms. Tree-based models (i.e., RF and XGB)
exhibit smaller declines in performance with larger feature sets
than neural networks or kernel-based methods, consistent with
the observed superiority of tree-based models over deep learning
models on high-dimensional, tabular datasets62.

To elucidate the results of Figure 9A, we examine distributions
of noise-to-signal ratio and average mutual information values
obtained across tasks for each representation (Figure 9B). As the
number of Mordred descriptors increases, the noise-to-signal ratio
distribution shifts upward, indicating more uncorrelated varia-
tion in the feature vectors relative to the property of interest. In
contrast, Morgan fingerprints exhibit a consistently higher noise-
to-signal ratio than Mordred descriptors. Conversely, the average
mutual information decreases as more Mordred descriptors are
added, with Morgan fingerprints displaying markedly low mutual
information across all tasks, as expected for binary fingerprints.
These trends suggest that larger feature sets introduce more noise,
complicating model training by requiring more complex func-
tions to predict outputs accurately. Consequently, data efficiency
declines as models must process additional, often irrelevant, in-
formation. These findings support the use of minimal feature
sets highly correlated with the property of interest to maximize
data efficiency in classification tasks, aligning with recent work
highlighting the effectiveness of using fewer features for molecular
property prediction63.

4.8 Relative performance remains consistent across larger
domain sizes.

For computational expediency, the number of prospective samples
in the task domain was limited to 10,000 candidates or fewer for
analysis up to this point. However, active learning is often consid-
ered for much larger domains. To evaluate the impact of domain
size, we assessed the performance of selected algorithms (again
excluding LP- and BKDE-based algorithms due to expense and
prior performance) when applied to an expanded domains of five
tasks (glotzer_pf , water_lp, qm9_gap, qm9_r2, and qm9_cv).
For glotzer_pf and water_lp, we increased the resolution of
phase diagrams to expand the domain to 100,489 samples. For the
QM9 datasets, we used the full set of 133,885 molecules rather
than a subset, as described in Methods.

Figure 10 shows the distribution of performance changes when
domain size increases. For all tasks, the performance of each al-
gorithm (measured by Macro F1) on the smaller domain is within
the standard error of its performance on the larger domain. The
symmetric shape and small bandwidth of the distribution indicate
that domain size does not systematically affect algorithm perfor-
mance. These results suggest that in a low-data regime, where
training sets are much smaller than the domain size, domain size
has little impact on the data efficiency of algorithms. We speculate

Journal Name, [year], [vol.] ,1–15 | 11

Fig. 9 Impact of molecular representation on algorithm performance and task complexity. (A) Performance of active learning algorithms measured by
⟨ξ/ξmax⟩ on molecular tasks for different choices of representation. Performances are stratified by model. Error bars denote standard error, but are not
visible in the plot. (B) Box-and-whisker plots of distributions of noise-to-signal ratio (green, left) and average mutual information (red, right) for tasks
with different molecular representations. In both panels, M-10, M-20, and M-100 refer to representations using 10, 20, and 100 Mordred descriptors,
respectively. M-All refers to representations consisting of all available Mordred descriptors. FP refers to Morgan fingerprints.

this is because task complexity influences algorithm performance
more than domain size. To show this, we compute metafeatures
predictive of algorithm performance (as determined in Section
4.6) for both small and large versions of the tasks (Table 2). The
datasets exhibit minimal changes in noise-to-signal ratio, average
mutual information, and maximum mutual information with in-
creased domain size. These findings support the idea that domain
size does not inherently beget task complexity, which ultimately
dictates algorithm performance.

Fig. 10 Distribution of changes in algorithm performance on large versus
small domains. Performance is given by the Macro F1 score achieved on
the large and small version of the task. The y-axis shows the frequency
at which these changes in performance are observed. The distribution is
visualized using kernel density estimation.

5 Conclusion
We characterized the relative efficiency and performance of strate-
gies for building effective machine learning classifiers with rele-
vance across chemical and materials science. In total, 100 space-
filling and active learning algorithms were evaluated across 31 clas-
sification tasks. Our findings indicated that NN- and RF-based ac-
tive learning algorithms were the most data-efficient, while BKDE

and LP algorithms performed poorly in comparison. Space-filling
methods were competitive with active learning, particularly when
few rounds of active learning were used. We also demonstrated
that using the k-medoids algorithm for point selection improved
accuracy over other sampling strategies in both active learning and
space filling. Ensemble-based algorithms were found to perform
generally well, irrespective of task. Additionally, task metafeatures
were predictive of algorithm performance, with a few key metafea-
tures, particularly the noise-to-signal ratio, effectively quantifying
classification task complexity and its relationships to task domain
size as well as explaining the efficiency of low-dimensional molecu-
lar representations. These results have implications for data-driven
materials design in constrained domains.

This study opens several avenues for future research. Key ar-
eas for further investigation include exploring algorithm design
choices not covered here, such as feature and label transforma-
tions, batch-selection schemes, and batch sizes. Additionally, ap-
plying the current findings to materials design campaigns that
involve simultaneous optimization and classification, as discussed
by Hickman et al.24, could be valuable. Beyond algorithm design,
incorporating domain knowledge could enhance data efficiency.
Utilizing pre-trained models, incorporating priors from foundation
models, and applying physical constraints on model predictions
may offer significant improvements in data efficiency compared to
changes in sampler or model. Specifically, constructing pre-trained
material representations optimized for metafeatures predictive of
algorithm performance, like the noise-to-signal ratio, could boost
data efficiency across materials domains. This approach could be
beneficial for both classification and regression tasks64. Finally,
establishing a unified set of classification tasks for testing would
strengthen the generalizability of the findings here and for future
studies.

12 | 1–15Journal Name, [year], [vol.] ,

Table 2 Metafeatures computed for small and large versions of tasks. The shown metafeatures are the noise-to-signal ratio, average mutual information
between features and labels, and maximum mutual information between features and labels. Classification task complexity increases for higher values of
noise-to-signal ratio, but lower values of average and maximum mutual information.

Task
Noise-to-Signal Ratio Mutual Information (Mean) Mutual Information (Max)
Small Large Small Large Small Large

glotzer_pf 14.4 18.3 0.285 0.286 0.285 0.286
water_lp 15.7 27.8 0.179 0.192 0.210 0.203
qm9_gap 65.5 65.1 0.044 0.056 0.112 0.110
qm9_r2 20.5 23.1 0.150 0.198 0.410 0.424
qm9_cv 16.4 21.2 0.198 0.174 0.402 0.408

Author contributions
Conceptualization: Q.M.G., M.A.W. Data curation: Q.M.G. Formal
analysis: Q.M.G. Funding acquisition: Q.M.G., M.A.W. Investiga-
tion: Q.M.G. Methodology: Q.M.G., M.A.W. Project administration:
M.A.W. Resources: M.A.W. Software: Q.M.G. Supervision: M.A.W.
Validation: Q.M.G. Visualization: Q.M.G. Writing: Q.M.G., M.A.W.

Conflicts of interest
There are no conflicts to declare.

Data availability
All code required to reproduce measurements of classification
algorithm performance on all tasks is available in the fol-
lowing GitHub repository: https://github.com/webbtheosim/
classification-suite.git. The produced data, along with
scripts for reproducing the analysis presented in this work are
available in the following GitHub repository: https://github.
com/webbtheosim/classification-analysis.git.

Acknowledgements
Q.M.G. acknowledges support from the National Science Foun-
dation Graduate Research Fellowship Program under Grant No.
DGE-2039656 and from the National Science Foundation under
Grant No. 2118861. M.A.W. also acknowledges support from
the National Science Foundation under Grant No. 2118861. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. Simulations
and analyses were performed using resources from Princeton Re-
search Computing at Princeton University, which is a consortium
led by the Princeton Institute for Computational Science and Engi-
neering (PICSciE) and Office of Information Technology’s Research
Computing.

Notes and references
1 D. Reker and G. Schneider, Drug Discovery Today, 2015, 20,

458–465.
2 C. Kim, A. Chandrasekaran, A. Jha and R. Ramprasad, MRS

Communications, 2019, 9, 860–866.
3 R. A. Patel and M. A. Webb, ACS Applied Bio Materials, 2023.
4 K. Shmilovich, R. A. Mansbach, H. Sidky, O. E. Dunne, S. S.

Panda, J. D. Tovar and A. L. Ferguson, The Journal of Physical
Chemistry B, 2020, 124, 3873–3891.

5 Z. Yao, B. Sanchez-Lengeling, N. S. Bobbitt, B. J. Bu-
cior, S. G. H. Kumar, S. P. Collins, T. Burns, T. K. Woo,
O. Farha, R. Q. Snurr and A. Aspuru-Guzik, Inverse De-
sign of Nanoporous Crystalline Reticular Materials with Deep
Generative Models, 2020, https://chemrxiv.org/engage/
chemrxiv/article-details/60c74f70337d6c9a51e28124.

6 R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T. D. Hirzel,
D. Duvenaud, D. Maclaurin, M. A. Blood-Forsythe, H. S. Chae,
M. Einzinger, D.-G. Ha, T. Wu, G. Markopoulos, S. Jeon,
H. Kang, H. Miyazaki, M. Numata, S. Kim, W. Huang, S. I.
Hong, M. Baldo, R. P. Adams and A. Aspuru-Guzik, Nature
Materials, 2016, 15, 1120–1127.

7 Y. An, M. A. Webb and W. M. Jacobs, Science Advances, 2024,
10, year.

8 M. Reis, F. Gusev, N. G. Taylor, S. H. Chung, M. D. Verber, Y. Z.
Lee, O. Isayev and F. A. Leibfarth, Journal of the American
Chemical Society, 2021, 143, 17677–17689.

9 M. J. Tamasi, R. A. Patel, C. H. Borca, S. Kosuri, H. Mugnier,
R. Upadhya, N. S. Murthy, M. A. Webb and A. J. Gormley,
Advanced Materials, 2022, 34, 2201809.

10 E. A. Pogue, A. New, K. McElroy, N. Q. Le, M. J. Pekala, I. Mc-
Cue, E. Gienger, J. Domenico, E. Hedrick, T. M. McQueen,
B. Wilfong, C. D. Piatko, C. R. Ratto, A. Lennon, C. Chung,
T. Montalbano, G. Bassen and C. D. Stiles, npj Computational
Materials, 2023, 9, 1–8.

11 G. Wu, H. Zhou, J. Zhang, Z.-Y. Tian, X. Liu, S. Wang, C. W.
Coley and H. Lu, Nature Synthesis, 2023, 2, 515–526.

12 I. J. Gomez, J. Wu, J. Roper, H. Beckham and J. C. Meredith,
ACS Applied Polymer Materials, 2019, 1, 3064–3073.

13 R. Kumar, N. Le, Z. Tan, M. E. Brown, S. Jiang and T. M.
Reineke, ACS Nano, 2020, 14, 17626–17639.

14 S. Kosuri, C. H. Borca, H. Mugnier, M. Tamasi, R. A. Patel,
I. Perez, S. Kumar, Z. Finkel, R. Schloss, L. Cai, M. L. Yarmush,
M. A. Webb and A. J. Gormley, Advanced Healthcare Materials,
2022, 11, 2102101.

15 K. M. Jablonka, G. M. Jothiappan, S. Wang, B. Smit and B. Yoo,
Nature Communications, 2021, 12, 2312.

16 S. Körbel, M. A. L. Marques and S. Botti, Journal of Materials
Chemistry A, 2018, 6, 6463–6475.

Journal Name, [year], [vol.] ,1–15 | 13

https://github.com/webbtheosim/classification-suite.git
https://github.com/webbtheosim/classification-suite.git
https://github.com/webbtheosim/classification-analysis.git
https://github.com/webbtheosim/classification-analysis.git
https://chemrxiv.org/engage/chemrxiv/article-details/60c74f70337d6c9a51e28124
https://chemrxiv.org/engage/chemrxiv/article-details/60c74f70337d6c9a51e28124

17 A. Hatos, B. Hajdu-Soltész, A. M. Monzon, N. Palopoli, L. Ál-
varez, B. Aykac-Fas, C. Bassot, G. I. Benítez, M. Bevilacqua,
A. Chasapi, L. Chemes, N. E. Davey, R. Davidović, A. K.
Dunker, A. Elofsson, J. Gobeill, N. S. G. Foutel, G. Sudha,
M. Guharoy, T. Horvath, V. Iglesias, A. V. Kajava, O. P. Kovacs,
J. Lamb, M. Lambrughi, T. Lazar, J. Y. Leclercq, E. Leonardi,
S. Macedo-Ribeiro, M. Macossay-Castillo, E. Maiani, J. A.
Manso, C. Marino-Buslje, E. Martínez-Pérez, B. Mészáros,
I. Mičetić, G. Minervini, N. Murvai, M. Necci, C. A. Ouzounis,
M. Pajkos, L. Paladin, R. Pancsa, E. Papaleo, G. Parisi, E. Pasche,
P. J. B. Pereira, V. J. Promponas, J. Pujols, F. Quaglia, P. Ruch,
M. Salvatore, E. Schad, B. Szabo, T. Szaniszló, S. Tamana,
A. Tantos, N. Veljkovic, S. Ventura, W. Vranken, Z. Dosztányi,
P. Tompa, S. C. E. Tosatto and D. Piovesan, Nucleic Acids Re-
search, 2019.

18 K. Terayama, K. Tsuda and R. Tamura, Japanese Journal of
Applied Physics, 2019, 58, 098001.

19 K. Terayama, R. Tamura, Y. Nose, H. Hiramatsu, H. Hosono,
Y. Okuno and K. Tsuda, Physical Review Materials, 2019, 3,
033802.

20 K. Terayama, K. Han, R. Katsube, I. Ohnuma, T. Abe, Y. Nose
and R. Tamura, Scripta Materialia, 2022, 208, 114335.

21 X. Zhu and Z. Ghahramani.
22 X. Telleria-Allika, J. M. Mercero, X. Lopez and J. M. Matxain,

AIP Advances, 2022, 12, 075206.
23 C. Dai and S. C. Glotzer, The Journal of Physical Chemistry B,

2020, 124, 1275–1284.
24 R. Hickman, M. Aldeghi and A. Aspuru-Guzik, Anubis: Bayesian

optimization with unknown feasibility constraints for scien-
tific experimentation, 2023, https://chemrxiv.org/engage/
chemrxiv/article-details/651bd338a69febde9e23dd1c.

25 M. Bhat and J. R. Kitchin, Industrial & Engineering Chemistry
Research, 2023, 62, 15326–15339.

26 T. Lookman, P. V. Balachandran, D. Xue and R. Yuan, npj
Computational Materials, 2019, 5, 21.

27 J. He, X. Su, C. Wang, J. Li, Y. Hou, Z. Li, C. Liu, D. Xue, J. Cao,
Y. Su, L. Qiao, T. Lookman and Y. Bai, Acta Materialia, 2022,
240, 118341.

28 R. Katsube, K. Terayama, R. Tamura and Y. Nose, ACS Materials
Letters, 2020, 2, 571–575.

29 S. Dasetty, I. Coropceanu, J. Portner, J. Li, J. J. d. Pablo, D. Ta-
lapin and A. L. Ferguson, Molecular Systems Design & Engineer-
ing, 2022, 7, 350–363.

30 Y. Tian, R. Yuan, D. Xue, Y. Zhou, Y. Wang, X. Ding, J. Sun and
T. Lookman, Advanced Science, 2021, 8, 2003165.

31 H. Moriwaki, Y.-S. Tian, N. Kawashita and T. Takagi, Journal
of Cheminformatics, 2018, 10, 4.

32 N. Angello, D. Friday, C. Hwang, S. Yi, A. Cheng,
T. Torres-Flores, E. Jira, W. Wang, A. Aspuru-Guzik,
M. Burke, C. Schroeder, Y. Diao and N. Jackson,
Closed-Loop Transfer Enables AI to Yield Chemical Knowl-
edge, 2023, https://chemrxiv.org/engage/chemrxiv/
article-details/64ef56463fdae147fa2346d4.

33 S. Kearnes, K. McCloskey, M. Berndl, V. Pande and P. Riley,

Journal of Computer-Aided Molecular Design, 2016, 30, 595–
608.

34 F. Musil, A. Grisafi, A. P. Bartók, C. Ortner, G. Csányi and
M. Ceriotti, Chemical Reviews, 2021, 121, 9759–9815.

35 R. Ramakrishnan, P. O. Dral, M. Rupp and O. A. Von Lilienfeld,
Scientific Data, 2014, 1, 140022.

36 R. Fisher, The design of experiments, Oliver and Boyd Ltd.,
Edinburg: Tweeddale Court, 2nd edn, 1937.

37 M. D. McKay, R. J. Beckman and W. J. Conover, Technometrics,
1979, 21, 239–245.

38 I. M. Sobol’, USSR Computational Mathematics and Mathemati-
cal Physics, 1967, 7, 86–112.

39 A. R. C. Paiva, 2017 International Joint Conference on Neural
Networks (IJCNN), Anchorage, AK, USA, 2017, pp. 2088–
2095.

40 B. W. Silverman, Density estimation for statistics and data anal-
ysis, Chapman & Hall/CRC, Boca Raton, Fla., 1st edn, 1998.

41 D. Friedman and A. B. Dieng, The Vendi Score: A Diversity
Evaluation Metric for Machine Learning, 2023, http://arxiv.
org/abs/2210.02410, arXiv:2210.02410 [cond-mat, stat].

42 C. E. Rasmussen and C. K. I. Williams, Gaussian processes for
machine learning, MIT Press, Cambridge, Mass, 2006.

43 F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch and A. Aspuru-
Guzik, Applied Physics Reviews, 2021, 8, 031406.

44 F. Häse, L. M. Roch, C. Kreisbeck and A. Aspuru-Guzik, ACS
Central Science, 2018, 4, 1134–1145.

45 D. Ginsbourger, R. Le Riche and L. Carraro, A Multi-points
Criterion for Deterministic Parallel Global Optimization based
on Gaussian Processes, 2008.

46 Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse,
A. S. Pappu, K. Leswing and V. Pande, Chemical Science, 2018,
9, 513–530.

47 A. E. Gongora, B. Xu, W. Perry, C. Okoye, P. Riley, K. G. Reyes,
E. F. Morgan and K. A. Brown, Science Advances, 2020, 6,
eaaz1708.

48 A. Arora, T.-S. Lin, N. J. Rebello, S. H. M. Av-Ron, H. Mochigase
and B. D. Olsen, ACS Macro Letters, 2021, 10, 1339–1345.

49 M. Kodera and K. Sayama, Digital Discovery, 2023, 2, 1683–
1687.

50 L. M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza,
L. P. E. Yunker, J. E. Hein and A. Aspuru-Guzik, ChemOS:
An Orchestration Software to Democratize Autonomous Dis-
covery, 2018, https://chemrxiv.org/engage/chemrxiv/
article-details/60c73d939abda2181df8b72d.

51 F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, M. Christensen,
E. Liles, J. E. Hein and A. Aspuru-Guzik, Machine Learning:
Science and Technology, 2021, 2, 035021.

52 J. G. Ethier, R. K. Casukhela, J. J. Latimer, M. D. Jacobsen,
B. Rasin, M. K. Gupta, L. A. Baldwin and R. A. Vaia, Macro-
molecules, 2022, 55, 2691–2702.

53 Q. Yuan, M. Longo, A. W. Thornton, N. B. McKeown,
B. Comesaña-Gándara, J. C. Jansen and K. E. Jelfs, Journal of
Membrane Science, 2021, 627, 119207.

14 | 1–15Journal Name, [year], [vol.] ,

https://chemrxiv.org/engage/chemrxiv/article-details/651bd338a69febde9e23dd1c
https://chemrxiv.org/engage/chemrxiv/article-details/651bd338a69febde9e23dd1c
https://chemrxiv.org/engage/chemrxiv/article-details/64ef56463fdae147fa2346d4
https://chemrxiv.org/engage/chemrxiv/article-details/64ef56463fdae147fa2346d4
http://arxiv.org/abs/2210.02410
http://arxiv.org/abs/2210.02410
https://chemrxiv.org/engage/chemrxiv/article-details/60c73d939abda2181df8b72d
https://chemrxiv.org/engage/chemrxiv/article-details/60c73d939abda2181df8b72d

54 S. Jiang, A. B. Dieng and M. Webb, Property-Guided Genera-
tion of Complex Polymer Topologies Using Variational Autoen-
coders, 2024, https://chemrxiv.org/engage/chemrxiv/
article-details/65cfd9589138d231614a2c7e.

55 R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu
and I. Guyon, 2020.

56 Machine learning, neural and statistical classification, ed.
D. Michie, Ellis Horwood, New York, 1st edn, 1995.

57 E. Alcobaça, F. Siqueira, A. Rivolli, L. P. F. Garcia, J. T. Oliva
and A. C. P. L. F. d. Carvalho, Journal of Machine Learning
Research, 2020, 21, 1–5.

58 P. Brazdil, J. N. Van Rijn, C. Soares and J. Vanschoren, Met-
alearning: Applications to Automated Machine Learning and
Data Mining, Springer International Publishing, Cham, 2022.

59 R. Vilalta, 1999, 3–9.
60 D. Rogers and M. Hahn, Journal of Chemical Information and

Modeling, 2010, 50, 742–754.
61 H. L. Morgan, Journal of Chemical Documentation, 1965, 5,

107–113.
62 L. Grinsztajn, E. Oyallon and G. Varoquaux, Why do tree-based

models still outperform deep learning on tabular data?, 2022,
http://arxiv.org/abs/2207.08815, arXiv:2207.08815 [cs,
stat].

63 T. Jin, V. Singla, H.-H. Hsu and B. M. Savoie, Faraday Discus-
sions, 2024.

64 M. Aldeghi, D. E. Graff, N. Frey, J. A. Morrone, E. O. Pyzer-
Knapp, K. E. Jordan and C. W. Coley, Journal of Chemical
Information and Modeling, 2022, 62, 4660–4671.

Journal Name, [year], [vol.] ,1–15 | 15

https://chemrxiv.org/engage/chemrxiv/article-details/65cfd9589138d231614a2c7e
https://chemrxiv.org/engage/chemrxiv/article-details/65cfd9589138d231614a2c7e
http://arxiv.org/abs/2207.08815

	Introduction
	Overview of strategies
	Methods
	Results and Discussion
	Active learning with neural networks and random forests generally outperforms other strategies.
	Many algorithms fail to perform well across all tasks.
	Space filling occasionally outperforms active learning.
	Sampler choice has disparate impact on active learning versus space filling.
	Model ensembles provide robust performance.
	Metafeatures are predictive of task difficulty.
	Low-dimensional representations with molecular descriptors improve data efficiency.
	Relative performance remains consistent across larger domain sizes.

	Conclusion

