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Action of the Mazur pattern up to topological concordance

ALEX MANCHESTER

In the 1980s, Freedman showed that the Whitehead doubling operator acts trivially up to topological
concordance. On the other hand, Akbulut showed that the Whitehead doubling operator acts nontrivially
up to smooth concordance. The Mazur pattern is a natural candidate for a satellite operator which acts
by the identity up to topological concordance but not up to smooth concordance. Recently there has
been a resurgence of study of the action of the Mazur pattern up to concordance in the smooth and
topological categories. Examples showing that the Mazur pattern does not act by the identity up to smooth
concordance have been given by Cochran, Franklin, Hedden and Horn and by Collins. We give evidence
that the Mazur pattern acts by the identity up to topological concordance.

In particular, we show that two satellite operators Pk ;, and Pk, », with no and 7 freely homotopic
have the same action on the topological concordance group modulo the subgroup of (1)-solvable knots,
which gives evidence that they act in the same way up to topological concordance. In particular, the
Mazur pattern and the identity operator are related in this way, and so this is evidence for the topological
side of the analogy to the Whitehead doubling operator. We give additional evidence that they have the
same action on the full topological concordance group by showing that, up to topological concordance,
they cannot be distinguished by Casson—Gordon invariants or metabelian p-invariants.

57K10; 57N70

1 Introduction

The Whitehead doubling operator, shown in Figure 1, is a fundamental example of a satellite operator.
The strands going through the box should be tied into the knot J. A general satellite operator acts on a
knot J by grabbing a collection of strands and tying them into J. We will give a precise definition in

Figure 1: The Whitehead doubling operator.

Section 2.

Another important satellite operator is the Mazur pattern, which is shown in Figure 2, left, along with
the identity operator on the right, which takes every knot to itself. These two operators are closely
related in a way which we will make precise in Definition 1.2; for now we will simply note that
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Figure 2: The Mazur pattern and the identity operator are homotopically related.

Ik(Ko,no) =1k(K1, n1) and that both operators take the unknot to itself. The main theorem of this paper,
Theorem 1.4, essentially says that satellite operators which are related in a certain way induce the same
function on knots up to some equivalence relation.

All knots are assumed to be oriented, and, given a knot K, the knot — K is the mirror image of K with the
reverse orientation. Unless otherwise specified, manifolds and submanifolds (in particular, slice disks and
concordances) are smooth, though we will often use the words “smooth” and “smoothly” for emphasis.

Satellite operators give well-defined maps on the concordance groups 6., and ‘6, which are of significant
interest. For example, their kernels and images have been studied, and of particular note is the result
of Cochran, Davis and Ray that satellite operators with strong winding number +1 are injective up to
topological concordance (see [3], especially Theorem 5.1, as well as Hedden and Pinzén-Caicedo [23]
and Levine [24]). Also, satellite operators have been used to give evidence for a “fractal nature” of the
concordance groups (see Cochran and Harvey [6], Cochran, Harvey and Leidy [10], Cochran, Harvey and
Powell [11] and Ray [33]). Furthermore, they are typically not homomorphisms, and it is conjectured
that only three quite trivial satellite operators are homomorphisms (see Lidman, Miller and Pinzén-
Caicedo [25] and Miller [30]). Instead, satellite operators can be interpreted as group actions (see Davis
and Ray [16]). Satellite operators have also been used to give evidence for and against the slice-ribbon
conjecture (see Gompf and Miyazaki [21], Miller and Piccirillo [31] and Yasui [35]).

The following theorem is a special case of [5, Theorem 1.5] of Cochran, Friedl and Teichner, and is the

motivation for this paper, particularly the main result, Theorem 1.4:

Theorem 1.1 (see [5, Theorem 1.5]) If K is topologically (or smoothly) slice and 7 is nullhomotopic
in some topological slice disk complement for K, then P(J) is topologically slice for any J (in other
words, P: 6y, — bop 18 the zero map).
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Note that the Whitehead doubling operator shown in Figure 1 satisfies the condition of Theorem 1.1
(since K is the unknot and so has the trivial slice disk, whose complement has fundamental group Z, and
n has linking number 0 with K and so must be nullhomotopic). So, this theorem gives a proof that all
Whitehead doubles are topologically slice. The fact that all Whitehead doubles are topologically slice
was first proved by Freedman [17], and Theorem 1.1 is a large generalization of Freedman’s result. It is
also worth noting that all Whitehead doubles have Alexander polynomial 1, and Freedman and Quinn
[18, Theorem 11.7B] showed that all knots with Alexander polynomial 1 are topologically slice.

We think of the following definition as being a relative version of the condition in Theorem 1.1:

Definition 1.2 Two satellite operators Py and P; defined by the links Ky U ng and K; Uny, respectively,
are homotopically related if Ky and K are concordant and 7o and n; cobound an immersed annulus
in the complement of the concordance (that is, if ng x {0} and n; x {1} are freely homotopic in the
concordance complement). Note that this definition makes sense in both the smooth and topological
settings; however, we will primarily make use of it in the smooth setting.

Satellite operators which satisfy the condition of Theorem 1.1 are exactly those which are topologically
homotopically related to the satellite operator given by the unlink K LI n.

Two (smoothly) homotopically related satellite operators which do not satisfy the condition of Theorem 1.1
are the aforementioned Mazur pattern and identity operator, shown in Figure 2. These two can be seen to
be homotopically related since K is the unknot, and so its complement has fundamental group Z, as
does the complement of the concordance from the unknot to itself. And so, 71 is freely homotopic to a
meridian since it has linking number 1 with K¢, which gives the immersed annulus.

Theorem 1.1 motivates the following question, asked by Ray at the 2019 AIM workshop Smooth concor-
dance classes of topologically slice knots:

Question 1.3 For homotopically related satellite operators Py and Py, is Py(J) topologically concordant
to Py (J) for each J? In other words, is Py(J)#— P (J) topologically slice?

Note that if the answer to Question 1.3 is “yes”, this would imply that the actions of satellite operators P
which take the unknot to itself (for example the Whitehead doubling operator, the Mazur pattern and the
identity operator) are completely determined up to topological concordance by their winding number via
an argument similar to the one above.

Here we give some evidence that the answer to this question is “yes”, in particular the following theorem.

The condition of (1)-solvability lies between algebraic sliceness and sliceness, and will be defined later.

Theorem 1.4 Given (smoothly) homotopically related satellite operators P for € € {0, 1}, for any J the
knot Py(J)#—Py(J) is (1)-solvable. In other words, Py = P; on 6/% ), where %) is the subgroup
of (1)-solvable knots.
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In fact, at the end of Section 3, we will show that Py(J)#— Py (J) is homotopy ribbon (1)-solvable when
Ko #— K is homotopy ribbon, which is slightly stronger than being (1)-solvable.

In the particular case of the Mazur pattern, denoted by Q, the 0-surgeries My and Mg () are (smoothly)
homology cobordant rel meridian. In fact this is true for any satellite operator with winding number 1
which takes the unknot to itself, as shown by Cochran, Franklin, Hedden and Horn [4, Corollary 2.2]. It
is an open question whether any two knots whose 0-surgeries are smoothly or topologically homology
cobordant rel meridian are topologically concordant.

In the smooth setting, Theorem 1.1 is false, and the answer to Question 1.3 is “no”. In unpublished work
in 1983, Akbulut used gauge theory to show that the Whitehead double of the right-handed trefoil is
not smoothly slice. Gauge-theoretic techniques are very sensitive to matters of handedness, and it is
still unknown whether the Whitehead double of the left-handed trefoil is smoothly slice. The question
of smooth sliceness of the Whitehead double of the left-handed trefoil is one of the most important
questions in low-dimensional topology. Furthermore, one can use Heegaard Floer theory to show that, for
many knots J (in particular the figure-eight knot), the knots J and Q(J) are not necessarily smoothly
concordant (see Cochran, Franklin, Hedden and Horn [4, Theorem 3.1] and Collins [14, Proposition 1.2]).

In Section 2, we will give some basic definitions and background. In Section 3, we will construct a
(1)-solution for Py(J)#— P;(J) (which is moreover a homotopy ribbon (1)-solution when Ko # K is
homotopy ribbon). In Section 4, we will discuss some additional conditions which would guarantee that
these knots are topologically slice. In Sections 5 and 6, we will show that Py(J) and P;(J) cannot be
distinguished up to topological concordance using certain obstructions coming from Casson—Gordon
invariants and metabelian p invariants, respectively, which gives further evidence that these two knots are
topologically concordant.
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2 Background

We begin with a precise definition of satellite operators:

Definition 2.1 A satellite operator P = Pk j is given by a two-component link K U n, where 7 is an
unknot, and acts on the set of knots in S? as follows: Notice that the exterior of 7 is a solid torus Ej
which contains the knot K and which has as a preferred longitude a meridian p, of 1. The result of
applying P to J is the knot given by deleting a tubular neighborhood of J C S3 and gluing in Ej in
such a way as to identify the meridian of 1 with the preferred longitude of J and vice versa (which
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guarantees that the ambient manifold is still S3). Then P(J) is the image of K in the resulting S3.
In other words, a satellite operator acts by gluing together the exterior E; of n and the exterior of J
along their torus boundary via the homeomorphism 7' — T'? which identifies the meridian of 7 with the
preferred longitude of J and vice versa, and, while doing this, keeps track of the knot K C Ej,.

Notice that P(U) = K since, when J = U, the exterior of J is just a solid torus, which, when glued
to £y simply replaces the solid torus neighborhood of 7 in the trivial way.

A knot in S3 is called smoothly/topologically slice if it is the boundary of a smooth/locally flat, prop-
erly embedded disk in B*. Two knots K and J are smoothlyltopologically concordant if there is a
smooth/locally flat, properly embedded annulus in S3 x 7 with boundary (K x {0}) LI (—J x {1}). The
set of equivalence classes of knots up to smooth/topological concordance is denoted by 6y or €p,
respectively.

The sets 6sm and 6,op both form groups under the connect sum operation #, with [K]~! = [-K]. We will
abuse notation and write K for its concordance class. The fact that —K = K~ can be seen by taking the
pair (S3 x I, K x I') and removing a tubular neighborhood of an arc running from a point on K x {0} to
a point on —K x {1} (note that taking S* with the standard orientation means that the boundary on the
“1” side is (S*, —K)), after which the remainder of S3 x I is a 3-ball and the remainder of the annulus
K x I is a slice disk for K#—K C S*#S3 = S3. (This construction works in either the smooth or the
topological setting.)

Note that K and J are (smoothly or topologically) concordant if and only if the connect sum K #—J is
(smoothly or topologically) slice, by an argument similar to that in the previous paragraph showing that
[K]™' =[-K].

Satellite operators descend to maps 65y, — 6sm and €, — 6o (but, as noted before, are typically not
homomorphisms, and can instead be thought of as group actions).

We will need the following well-known characterization of topological sliceness:

Proposition 2.2 (see eg [5, Proposition 2.1]) A knot K is topologically slice if and only if its 0-surgery
Mg bounds a topological 4-manifold W such that
(1) my (W) is normally generated by the meridian p of K;
(2) Hy{(W) = Z (in other words, the inclusion map Hy(Mg) — H{(W) is an isomorphism); and
3) H,(W)=0.

It is often difficult to check whether Mg bounds such a topological 4-manifold, but sometimes it is easier
to show that Mg bounds a smooth 4-manifold satisfying the following weaker condition, due to Cochran,
Orr and Teichner [12]. Recall that the derived series of a group G is defined inductively as G(® := G
and G .= [G™ : G™]; that is, each term is the commutator subgroup of the previous term.
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Definition 2.3 A knot K is called (n)-solvable if Mg bounds a smooth 4-manifold W such that
(1) the inclusion map Hy(Mg) — H;(W) is an isomorphism;

(2) H, (W) is freely generated by embedded surfaces {.S;, 77} with trivial normal bundle such that S;
and 7; intersect once transversely, and otherwise the surfaces are disjoint; and

(3) the inclusion maps 71(S;), 7 (T;) — w(W) land in 7, (W),

If, additionally, the inclusion maps 71 (S;) — 71 (W) land in 71 (W) then K is said to be (1.5)-
solvable. If K is (h)-solvable for some / € %N, the manifold W is called an (h)-solution for K.

Remark 2.4 Smooth concordance preserves (/)-solvability since, if K and J are concordant and J
is (h)-solvable, we can construct an (/)-solution for K in the following way: Do O-surgery x I along
a concordance from K to J, and glue an (/4)-solution for J to the My boundary component. By a
Seifert—Van Kampen and Mayer—Vietoris argument, this gives an (/)-solution for K with the surfaces
representing generators for the second homology simply the images of the surfaces representing the
second homology in the (/)-solution for J.

Also, if K and J are both (4)-solvable, with (/)-solutions Wg and Wy, respectively, one can construct
an (/)-solution W for K#J by gluing together Wx and W along the solid tori in their boundaries given
by tubular neighborhoods of meridians of K and J, respectively, identifying the meridians and preferred
longitudes in the torus boundaries. The boundary of W is then M4y, which can by seen by viewing
K #- as a satellite operator given by K U g : the tubular neighborhoods of meridians of K and J are
now buried in the interior of W, and the boundary is given by gluing together the exteriors of g and sy
(note that u y can be freely homotoped to be the core of the surgery solid torus in My, and so the exterior
of wy is just the exterior of J). Of course, we could just as well have interchanged the roles of K and J.
Again by Seifert—Van Kampen and Mayer—Vietoris, this W is an (/)-solution for K # —J.

Lastly, if K is (/)-solvable, then so is — K, by taking the mirror image of an (/)-solution for K. So, the
(h)-solvable filtration is a filtration by subgroups.

In the above remark, we used the fact that the O-surgery on a connect sum K # J is homeomorphic to
the union of the exteriors of K and J, glued along their torus boundary in such a way as to identify the
meridians and longitudes. We will use this fact at a few points throughout this paper.

Definition 2.5 The set of (/2)-solvable knots up to smooth concordance is denoted by Fy).

This defines a filtration of the concordance group €y,
S F1.5) EF) € F 0.5 S F(0) S Csm-

This filtration was first defined by Cochran, Orr and Teichner [12]. Note that, if the surfaces S; and T;
were spheres, condition (3) of Definition 2.3 would be trivially satisfied for all /. In this case, we could
do surgery on one sphere from each pair, replacing a tubular neighborhood S? x D? with B3 x S! (which
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have the same boundary), in order to get a manifold which satisfies the conditions of Proposition 2.2. All
topologically slice knots are (/)-solvable for every 4 € %N, as noted in [8, Section 1], and it is conjectured
that (,,¢ IN ) contains precisely the topologically slice knots. It is known that, for all n € N, the
quotient F )/ % ,.5) has infinite rank (see [8]). However, it is unknown whether %, s5)/% 4 1) is even
nontrivial for any n.

3 Construction of a (1)-solution

In this section we will prove Theorem 1.4 by constructing a (1)-solution for Py(J)#—P;(J).

Fix the following notation: Let P, be homotopically related satellite operators coming from the links
KcUn, fore € {0, 1}. Let C be the (smooth) concordance between K and K, andlet W = (S3x1)\v(C).
Note that W is a manifold satisfying the conditions of Proposition 2.2 for Ko #—K. Let J be a knot,
and let Pc(J) be the image of J under the satellite operator P.. Let 4 be a fixed meridian of J.

Let N be the manifold obtained by gluing two copies of My x I to W in the following way (see Figure 3
for a schematic picture): Recall that My = (S*\ J) Uy (S! x D?), where f: 9(S' x D?) — 8(S*\ J)
identifies the meridian of S! x D? with the preferred longitude of J and the longitude of S x D?
with the meridian of J. Then N is obtained by gluing two copies of My x I, which we will denote by
(M x I)¢ for € € {0, 1}, to W, by identifying the surgery solid torus S! x D? C (M x {0})¢ with
v(ne) in such a way as to identify the longitude of the surgery solid torus (that is, a meridian of J) with
the O-framed longitude of 7. This gluing “buries” the two solid tori that get glued together inside the
interior of the new 4-manifold. The effect of these identifications on the boundary amounts to gluing
the exteriors of J and 7 together via the homeomorphism 7’2 — 7% which interchanges meridians and
longitudes, so that IN = Mp,(yys—p, () U —My U—M . Denote the two copies of p x {1} by pe, and
let A be the immersed annulus in W joining the 7., extended through (M ; x I')¢ by crossing with 1, so
that its boundary components are the two . Finally, let f]e denote Seifert surfaces for J capped off by
longitudinal disks in the copies of (M x {1})c.

Figure 3: Construction of N: Two copies of M x I are glued to W = (S3 x I) \ v(C) along
solid torus portions of their respective boundaries. This “buries” the solid tori in the interior of N,
and the new boundary is Mp(sys—p,(nHU—MyLU—M;.
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We will now construct a (1)-solution for Py(J)#—P1(J). This will involve cutting out a neighborhood
of A, giving a manifold with two boundary components, one of which is Mp,(jys—p, (7). We will then
find an appropriate manifold with which to “cap off” the other boundary component, which will give us
our (1)-solution.

This will involve a series of lemmas keeping track of the fundamental group and homology of the
intermediate steps in the construction. Throughout, we will only care about normal generating sets for
fundamental groups and subgroups, and so we will only care about elements of the normal generating
sets up to conjugacy, and in turn will only care about their representatives up to free homotopy. Given
group elements g, ..., gy € G, we denote the subgroup they normally generate by ((gq,..., gn).

Lemma 3.1 (1) m1(N) is normally generated by the meridian of Py(J) (or equivalently of Py(J),
Ky or K since these meridians are all freely homotopic inside N').
2) H; (S3 \ v(Pe(J))) — H{(N) is an isomorphism. That is, H{(N) =~ Z and is generated by the
meridian of Py(J), or equivalently of P;(J), K¢ or K.
(3) Hy(Mj)@® Hy(My) — H,(N) is an isomorphism. That is, Hy(N) = Z? and is generated by
the Xc.

Proof (1) (W) is normally generated by the meridian of K (or equivalently of K; since these
are freely homotopic and so conjugate in 71 (W)). In N, a meridian of K is freely homotopic to a
meridian of P¢(J). Moreover, 71 ((My x I')¢) is normally generated by pe, which is freely homotopic
to the curve u x {0} C (My x I')¢ identified with 1 under the gluing used to construct N, and so is in
the subgroup normally generated by a meridian of K. Therefore, by Seifert—Van Kampen, 7{(N) =
T (W) * (nop="1) mi(My x 1) () w1 (My x I) is normally generated by a meridian of Ky, or

nokq
equivalently of Ky, Py(J) or P;(J) since these are freely homotopic in .

(2)-(3) If we attach one copy of My x I, say the one glued to ng, we have the Mayer—Vietoris sequence

0 ——————— 0D Hy(My x 1) ——— H,(WU My x1)) j

£—> H](U(T]())) —_— H](W)@HI(MJXI) —— HWUMjyxI)) —— 0.

Since 1y is identified with u x {0} C (M y x{0})¢, which is freely homotopic to 1o, the map H;(v(no)) —
H{(Mj x I) is an isomorphism. This implies that H; (W) — H{(W U (M x I)) and Hy(Mjy x ) —
H>(W U (M x I)) are isomorphisms.! Noting that Hy (S \ v(Pe(J))) = H; (S \v(K¢)) — Hi (W)
is an isomorphism, we see that H; (S3 \ v(PG(J))) — H{(W) is an isomorphism.

ITo see that the map Hy (W) — Hy(W U (M x I)) is an isomorphism, choose a basis for Hy (W) @ Hy (M x I) con-
sisting of the image of a generator of H;(v(ng)) (which is {some element of H{ (W)} & {a generator of H{ (M x I)}) and
{a generator of Hy (W)} & {0}. This is a basis since Hy(v(n9)) = H;(My x I) is an isomorphism. Then one can see that

H{(W U (Mj x 1)) is generated by the image of a generator of H;(W). We apply a similar argument later in this proof, and
also in the proof of Lemma 3.5.
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Similarly, attaching another copy of My x I to the other side yields

0 —— Hy(WUMy x1))® Hy(Myx1) — Hy(N) j

[—> Hi(v(n) — HI(WU(MJXI))GBH](M]XI) — HI(N) — 0.

As before, since Hy(v(1)) - H{(Mj x I) is an isomorphism, so are H; (W U(Mjy x 1)) — H{(N)
and Hy(W U (My x 1)) ® Hy(My x I) - H,(N). We can compose these with the isomorphisms
from the first Mayer—Vietoris sequence to obtain isomorphisms Hj (S 3\ v(Pe(J ))) — H{(N) and
Hy(Mjy)® Hy(My) — Hy(N). o

From now on, let A denote the normal generator of 7r; (N ) from the previous lemma. Recall that 1,
are the meridians of J in My x {1} C (Mj x I)¢, and A is the immersed annulus cobounded by the 7,
extended through the (M x I'), to the boundary —M j’s via the product structure so that it is cobounded

by fe.
Lemma 3.2 (1) m1(N \v(A)) is normally generated by A and a meridian of A.
(2) H;(N\v(A)) — H{(N) is an isomorphism.
(3) Hy(N\v(A)) =Z & G (where So—3 generates the Z. summand, and the G summand has one
generator for each self-intersection of A, with possibly some relations)
Proof (1) follows from Seifert—Van Kampen.

Define d'v(A) by the decomposition dv(A4) = v(dA4) L d'v(A) = v(ne) Uv(ny) L dv(A). Then

Hy(N, N\ v(A)) = Hy,(vA4, 9 v(A)) (by excision)
= H* " (vA4,v(3A)) (by Poincaré-Lefschetz duality)
= H*"(4,04) (by a deformation retract)
Z ifn=2,
=7t ifn=3, (where c is the number of self-intersections of A),
0 otherwise,

where the final step comes from finding a CW structure on an annulus with ¢ pairs of points identified
and computing the cohomology directly from the cochain complex. The group H'!(A4,d(A)) has one
generator corresponding to each self-intersection of A, plus one generator which is represented by an
arc going from one boundary component to the other. Following through the isomorphisms, we see
that the corresponding element of H3(N, N \ v(A)) is represented by a tubular neighborhood of a loop
going around A (this is a Poincaré—Lefschetz dual of the element in H (A, dA) since it intersects the arc
representing it exactly once), with boundary a torus in d'v(A4) C N \ v(4), which can be taken without
loss of generality to be isotopic to the boundary of a tubular neighborhood of either of the (¢ by choosing
the loop to be a push off of one of the boundary components. Also, the generator of Hy(N, N \ v(A4)) is
given by a Poincaré—Lefschetz dual of A, since the generator of H?(A, dA) is represented by A.
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J Q —J
u) (0)\/

Figure 4: 0~ (N \ v(arc)) = My # M_j with the gray curve bounding an immersed disk obtained
by cutting A open along the arc.

These homology groups then fit in to the long exact sequence for the pair (N, N \ v(A4)),
H3(N,N\v(4)) —— H2(N\v(4)) —— Hz(N) j

/4

[—> Hy(N,N\v(A)) — H{(N\v(4) —— H;(N) —— 0.

Note that the map 7 : Hy(N) — Hy(N, N \ v(A)) is given by the algebraic intersection number with 4
since the generator of H,(N, N \ v(A)) is the Poincaré—Lefschetz dual of 4. Since the boundary
components of A are the meridians pe of J in (M x I), and the capped-off Seifert surfaces fle intersect
these meridians once, the images of the classes SceH, (N)under 7w are £1 € Z = Hy(N, N\v(A)). This
shows that 7 is surjective and has kernel (f]o -5 ). This gives (2), and the fact that H,(N \v(4)) = Z &G,
where G is the image of the map H3 (N, N \v(A4)) — Hy(N \ v(4)).

A priori, G is some quotient of Z¢*!. However, recall that the submanifold representing the extra
generator described above (the Poincaré—Lefschetz dual of an arc running from one boundary component
of A to the other) has boundary a torus which can be taken to be isotopic to the boundary of a tubular
neighborhood of either je. This is then nullhomologous in N \ v(A4) since it bounds a copy of My \v(uy).
Therefore, G in fact just has one generator for each self-intersection of A, with possibly some relations. O

Notice that N \ v(A4) has two boundary components, with 3T (N \ v(4)) = M Po(J)#— P, (J) unchanged
from 01 N. We wish to “plug the hole” by gluing in some 4-manifold with boundary equal to 3~ (N \v(A4)).
To that end, we will find a surgery description of this 3-manifold.

To start, take an arc in N running from (¢ to ;1 along A (recall that the we are the copies of the meridian
of J living in My x {1} C (Mj x I')¢), missing all self-intersections of A. If we cut out a neighborhood
of this arc from N, the new boundary is My # M_y, and the remainder of A4 is an immersed disk bounded
by the gray curve in Figure 4. When we remove the remainder of 4, if there were no self-intersections,
this would amount to doing O-surgery on this gray curve. We can account for the self-intersections as
in [19], to get the surgery description shown in Figure 5. Each self-intersection corresponds to one of
the Whitehead links which is banded on to the diagram. The sign of the clasp should match the sign of
the self-intersection, but won’t affect our discussion so we draw the clasps with indeterminate crossings,
following the convention in [19]. A priori, the immersed disk bounded by the gray curve in Figure 4
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(0) (0)
{0)

?

Figure 5: 07 (N \ v(4)) accounting for self-intersections of A; the sign of each clasp matches
the sign of the corresponding self-intersection.

might induce a nontrivial framing. However, as A is an immersed annulus in B*, the framing difference
between the two ends must be twice the algebraic self-intersection number of A4, similar to how adding a
local kink changes the framing of an immersed disk by +2. We can thus add local kinks to undo this
framing difference, which makes the immersed disk bounded by the gray curve in Figure 4 O-framed.

Notice that doing 0-surgery on the gray curve in Figure 4 produces M ju_y (as in Figure 10). Notice that
the 3-manifold doesn’t change if we “blow up” the clasps as in Figure 6 (for now ignore the different
labels on the components and instead treat everything as O-framed). Again, the signs of the clasps match

U slice disk complement for J #—J

& \§

Figure 6: Construction of Z. See [22] for an introduction to the Kirby diagram notation.
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/\ /\ /\ 2-handles
undoing clasps ~‘(\>< \ ( >< \ Myy_gx1I
— = __J

slice disk complement for J #—J

cores of 2-handles

parallel Seifert surfaces for J

Figure 7: Schematic picture of Z with embedded surfaces generating H,(Z) (1-handles are not pictured).

the signs of the corresponding self-intersections of A. Now, paying attention to the labels in Figure 6, we
see that 0~ (NN \ v(A)) bounds a manifold Z (framings written inside angle brackets denote a surgery
description of a 3-manifold, which in this case is M jx_s), with schematic picture shown in Figure 7.

It is straightforward to compute the homology of Z and dZ = 07 (N \ v(4)), with results as in the
following two lemmas.

Lemma 3.3 (1) H,(Z) = Z°T!, where c is the number of self-intersections of A, and the extra
generator is the meridian of the slice disk for J #—J.

(2) H,(Z) = 7Z*¢, and is represented by surfaces which are the unions of the cores of the 2-handles
in Z, the homotopies through M ju_j x I which consist of undoing the clasps in the attaching
circles of the 2-handles in the construction of Z, and parallel Seifert surfaces for J. See Figure 7.

Lemma34 (1) H;(0Z)=7Z¢T! (and H,(0Z) — H;(Z) is an isomorphism).

(2) H,(3Z) =7t (and H,(0Z) — H»(Z) is the zero map). Moreover, H,(30Z) — H,(N \ v(4))
takes generators to corresponding generators.

Now let N/ = (N \v(4))U Z.

Lemma 3.5 (1) H{(N’) = Z and is generated by A.
(2) H(Z) — H,(N’) is an isomorphism.

Proof Consider the Mayer—Vietoris sequence

Hy(0Z) —— Hy(Z) ® Hy(N \v(4)) —— H,(N') j

[» H\(0Z) —— H\(Z)® H{(N \v(4)) — H;(N') — 0.
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Since H1(0Z) — H{(Z) is an isomorphism, H;(N \ v(A4)) — H;(N') is an isomorphism. Composing
with isomorphisms from before, we get (1). We also see that Hy(N') — H;(dZ) is the zero map.

Since H,(0Z) — H,(Z) is also the zero map, and H,(0Z) — H,(N \ v(A)) takes generators to
generators, Hy(Z) — Hy(N') is an isomorphism. |

We can now prove our main result:

Proof of Theorem 1.4 By Lemma 3.5, H,(N') is generated by the same surfaces that generate H,(Z).
These surfaces consist of Seifert surfaces which are capped off by O-framed 2-handles (along with the
homotopies that preserve the framing), and so have trivial normal bundle. They intersect geometrically
once in pairs, and the generators of their fundamental groups lie on a Seifert surface for J, and thus are in
the commutator subgroup of 7 (Z), which has a natural homomorphism into 71 (N’). Therefore N’ is a
(1)-solution for Py(J)#—P;1(J). |

Remark 3.6 If the map on fundamental groups induced by the inclusion from the Seifert surface for J
to the slice disk complement for J # —J has image in the n™ term of the derived series, then N’ will
be an (n)-solution for Py(J)#—P;(J). We did not have to use the usual slice disk for J #—J, and one
might be able to get a better result by choosing a different slice disk for J #—J. In Section 4, we will
give even stronger conditions that would guarantee that Py (J)#— P;(J) is topologically slice.

Given a slice knot, one might wonder if it is ribbon:

Definition 3.7 A (smoothly) slice knot K is ribbon if it has a (smooth) slice disk A such that the
restriction of the radial Morse function on B* to A has only index 0 and 1 critical points.

This gives rise to the following famous conjecture:
Conjecture 3.8 (slice-ribbon conjecture) Every slice knot is ribbon.

One can weaken ribbonness to the following algebraic topological condition, which makes sense in both
the smooth and topological settings (unlike ribbonness, which relies on a Morse function):

Definition 3.9 A (smoothly/topologically) slice knot is (smoothly/topologically) homotopy ribbon if it
bounds a (smooth/topological) slice disk A such that the inclusion-induced map 7; (Mg ) — 71 (B*\v(A))

is surjective.

Every ribbon knot is homotopy ribbon. This gives rise to the topological analogue of the slice-ribbon
conjecture:

Conjecture 3.10 Every topologically slice knot is topologically homotopy ribbon.
Smooth homotopy ribbonness can be extended to (7)-solutions:

Definition 3.11 An (/)-solvable knot for / € %N is homotopy ribbon (h)-solvable if it bounds an
(h)-solution W such that the inclusion map 7y (Mg) — 71 (W) is surjective. The manifold W is then
called a homotopy ribbon (h)-solution.
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maps to p

Figure 8: The arc « is homotopic fixing endpoints to the arc traveling along one whisker, then
traversing y, and finally traveling back along the other whisker.

Note that the homotopy ribbon (%)-solution must be a smooth manifold.

The (1)-solution we have constructed for Py(J)#— Py (J) is in fact a homotopy ribbon (1)-solution when
Ky #—K; is smoothly homotopy ribbon:

Proposition 3.12 In the notation of Definition 1.2 and Theorem 1.4, it Ko #— K is smoothly homotopy
ribbon via the disk C \ (an arc running from K to K;) (where C is the concordance between K and K1),
then the (1)-solution N’ for Py(J)# — P1(J) constructed in Theorem 1.4 is in fact a homotopy ribbon
(1)-solution.

Before proving this proposition, we will need the following lemma:

Lemma 3.13 Given a 4-manifold W with connected boundary M such that the inclusion map 1 (M) —
m1(W) is surjective, any arc o in W with both ends in M may be homotoped to an arc in M fixing the
endpoints of the arc.

Proof Choose the basepoint of both 771 (M) and 71 (W) to be a point p € M. Choose whiskers v and w
from the basepoint to each of the ends of « inside M. This gives a based loop ¥ = vaw™!. The loop y is
then homotopic (rel basepoint) to a loop y’ lying entirely in dW = M, ie there is a continuous map from
an annulus to W which on the boundary is y U y’. Therefore, the arc v—!y’w is homotopic rel boundary
to «, by homotoping along the map from an annulus (see Figure 8). |

Proof of Proposition 3.12 Recall that N’ = (N \ v(A4)) U Z, where N has schematic as depicted in
Figure 3 and Z has schematic as depicted in Figure 7 and partial Kirby diagram as shown in Figure 6.
Take any based loop y € 71 (N’). We will homotope this curve to lie entirely in 71 (Mp,(jy4—p, (1))
and, abusing notation, will also denote each step along the way by y. Without loss of generality, the
intersection of this curve with Z is a collection of arcs.

Since Z consists of the complement of a ribbon disk for J # —J, with some 1- and 2-handles attached,
m1(0Z) — m1(Z) is surjective since an inclusion-induced map from the boundary of a ribbon disk
complement is already surjective, and a standard argument shows that attaching 1- and 2-handles will
preserve surjectivity. Therefore, using Lemma 3.13, each of the arcs may be homotoped fixing their
endpoints to lie in 0Z, and then pushed off to lie entirely in N \ v(A4). The intersections of y with the
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(M x I)¢ can pushed straight outward to (M y x {0}). Since the attaching regions between W and the
(M x I)¢ are neighborhoods of curves, we can perturb y slightly so that it does not intersect them. At
this point, y lies entirely in (W \ v(4)) U IN".

Now, the intersections of y with W \ v(A) without loss of generality again consist of a collection of arcs.
Since K #— K is homotopy ribbon, these arcs could be homotoped to dW, again using Lemma 3.13
(since (S3 x I) \ v(C) is homeomorphic to the exterior of a homotopy ribbon disk for Ko # —K), but
might hit A along the way. However, this is no problem, as a meridian of 4 can be homotoped to a
curve in dZ which is isotopic through Z to the attaching curve of any of the 2-handles (it is a meridian
of an unknotted curve with framing (0)), and so in particular bounds a disk. Therefore, we can replace
neighborhoods of potential intersections with A with these disks, thus achieving the desired homotopy.

So now y lies entirely in d(N') = Mp(j)4—p, (s), and we are done. |

Remark 3.14 This proof holds as long as we use a smooth homotopy ribbon disk for J #—J in the
proof of Theorem 1.4. In particular, as long as we use a (smooth) homotopy ribbon disk for J # —J,
Remark 3.6 will still apply. Moreover, Proposition 4.1 below will still apply even if we only use a
topological homotopy ribbon disk for J #—J, though this involves an application of the sphere embedding
theorem up to s-cobordism with a s -null condition and topological input. See Theorem 6.1 of [18] as
well as the discussion at the beginning of Chapter 5 and Sections 5.2 and 5.3.

4 Some conditions that would guarantee topological sliceness

Proposition 4.1 If there is a smooth or topological slice disk complement for J # —J in which any
number of parallel longitudes of J bound disjoint framed m{-null immersed disks with algebraically
trivial self-intersections, then Py(J) #— P (J) is topologically slice.

Before proving this proposition, we will review some definitions and techniques from the theory of
4-manifolds. These make sense in both the smooth and topological settings.

Definition 4.2 An /A-cobordism rel boundary between two manifolds M" and N" with homeomorphic
(possibly empty) boundary P is a manifold W”*! with boundary M U (P x I) U N, where M and N
are glued to P x I along their boundaries, such that W deformation retracts to M and to N. Given
homeomorphic properly immersed submanifolds 4 & M, B &> N, an h-cobordism rel boundary of
the pairs (M, A) and (N, B) is an h-cobordism rel boundary W of M and N together with a proper
immersion 4 X I & W which is a product on P x I and such that the restriction to 4 x {0} gives 4 & M
and the restriction to A x {1} gives B & N. See Figure 9.

Definition 4.3 An s-cobordism (rel boundary of pairs) is an s-cobordism (rel boundary of pairs) such
that the Whitehead torsion t(W, M) vanishes. For a definition and discussion of the Whitehead torsion in
the topological setting, see [13, Section IV]. For a definition and discussion in the smooth setting, see [32].
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Figure 9: A schematic picture of an s-cobordism rel boundary of pairs. Note that 4 and B may
also be immersed, but must be homeomorphic.

Now we will describe a 4-dimensional analogue of O-surgery. Given a sphere embedded in a 4-manifold
S? < W* with trivial normal bundle (that is, the given embedding extends to an embedding of S? x D?),
we can cut out a neighborhood of the sphere. The new boundary is naturally homeomorphic to S x S1.
We then replace the piece we cut out with D3 x S, gluing along the identity homeomorphism S? x S —
S2 x S, If we are given two such spheres which intersect once transversely, each of which represents a
generator of a Z summand of H, (W), then, by Seifert—Van Kampen and Mayer—Vietoris, doing surgery
on one of the two spheres exactly kills the Z? summand in H, (W) and leaves r; (W) and the rest of the
homology groups unchanged.

Proof of Proposition 4.1 In the construction of Z depicted in Figures 6 and 7, use the slice disk comple-
ment for J #—J given by the conditions of Proposition 4.1. (For the purposes of Theorem 1.4, we could
have used any slice disk complement for J#—.J.) The meridian of n, together with the longitudes of J which
are freely homotopic to the attaching circles of the 2-handles, all bound disjoint framed 7 -null immersed
disks in the slice disk complement (these are all parallel longitudes of J); see Figure 10. Since the meridian
of n is then freely nullhomotopic in Z, we see that 771 (N’) is normally generated by A. By the topological

J
Nt
(0)

Figure 10: Two equivalent diagrams of the boundary of a slice disk complement for J # —J. Any

number of parallel copies of the gray curve must bound disjoint immersed 7r;-null disks in order
to prove Po(J) #—P;(J) is slice.
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version of [18, Theorem 6.1], there is an s-cobordism rel boundary of the pair (N’, immersed spheres)
to a pair (N”, embedded spheres), where the embedded spheres still come in pairs which intersect once
transversely. (See the discussion at the beginning of [18, Chapter 5] for how to extend Theorem 6.1 to
the topological setting.) Moreover, since the original disks were framed, these embedded spheres have
trivial normal bundles. We can then do surgery on one sphere from each pair as described above to get a
manifold that satisfies the conditions in Proposition 2.2, and so Py(J)#— Py (J) is topologically slice. O

Remark 4.4 In the usual slice disk complement for J #—J, the parallel longitude J is not nullhomotopic,
as the slice disk complement is homeomorphic to (S* \ J) x I and the longitude of a knot is not
nullhomotopic in its complement. So, in order for the conditions of Proposition 4.1 to be satisfied,
we would need to find a different (potentially topological) slice disk. A promising approach might
be the work of Friedl and Teichner [20] and Conway [15]. The first gives an algebraic condition on
a surjection w1 (Mg) — G which guarantees that K has a topological homotopy ribbon disk with
fundamental group G (this is a generalization of the theorem of Freedman that any knot with Alexander
polynomial 1 is topologically Z-slice, as their condition reduces to the Alexander polynomial 1 condition
for the abelianization map 71 (Mg) — Z). Conway expands on this, giving an algebraic classification of
topological homotopy ribbon disks corresponding to a given surjection 1 (Mg ) — G. So, if we could
find a surjection 71 (M j4—y) = G for some group G which satisfies the conditions in the paper and
which kills the longitude of J, this would be a large step towards producing a slice disk which satisfies the
conditions of Proposition 4.1. Howeyver, it is usually quite difficult to tell whether a particular surjection
w1 (M ys_y) — G satisfies the relevant algebraic conditions.

5 Casson—-Gordon invariants

We will now review the setup for Casson—Gordon invariants, first defined in [1]. For any knot K, let Lk ,
be the n-fold cyclic branched cover of .S 3 over K. Let x: Hi(Lg n) = Zm be a character. We will also
use x to denote the postcomposition of this map with the map Z,, — C* sending 1 — €27 i/m_To each
such character, Casson and Gordon associate a Witt class t(K, x) € Lo(C(2)) ® Q.

The Witt group Lg(k) for a field & is the set of equivalence classes of nondegenerate symmetric bilinear
forms, where two forms are equivalent if one can direct sum a metabolic form to each and get isometric
forms. A metabolic form is a form which has a half-dimensional subspace on which it vanishes. Such a
subspace is called a metabolizer. The set of nondegenerate symmetric bilinear forms under this equivalence
relation forms a group under the direct sum. For more information on Witt groups, see eg [29, Chapter 5].

The following is a theorem of Casson and Gordon:

Theorem 5.1 [1, Theorem 2] Fix n a prime power. If K is smoothly or topologically slice, then the
linking form on H; (L ) has a metabolizer R, and, for any character y with prime-power order m
which vanishes on R, we have t(K, x) = 0.

Algebraic € Geometric Topology, Volume 25 (2025)



2132 Alex Manchester

The sliceness condition on K can be weakened to (1.5)-solvability:

Theorem 5.2 (see [7, Theorem B.1; 12, Theorem 9.11]) The conclusion in Theorem 5.1 holds even if
K is only (1.5)-solvable.

So, Casson—Gordon invariants give us an obstruction to (1.5)-solvability, which we will show fails for
Po(J)#—P1(J).

Proposition 5.3 The conclusion of Theorems 5.1 and 5.2 hold for Py(J) #—P;1(J). In other words,
Theorem 5.2 tails to obstruct the (1.5)-solvability of the knot Py(J) #—Pi(J).

Before proving this proposition, we will review some results of Litherland about the Casson—-Gordon
invariants of satellite knots; see [26; 27]. For a satellite operator P given by K U n, let w = 1k(K, 1) be
the winding number of P. Let & = gcd(n, w) and let k = n/h. Write Ch,(K) = Hom(H;(Lk »),C¥)
for the group of characters. There are canonical isomorphisms

Hy(Lpyn) = Hi(Lkn) @hH(Lyg) and  Chy(P(J)) = Chy(K) @ h Chy (J),

where /A is the direct sum of / copies of the group A4, and the linking form on H; (L p(y),) is given by
the direct sum of the linking forms on the summands. (When k = 1, the 1-fold branched cover L ; is
just S3, and so Ch;(J) is the trivial group.)

Then, given a character x € Ch, (Pc(J)) which is identified under this isomorphism with (x g, X1, » X#)s

we have ,
T(P(J), plt] = (K, xx)[t] + Z t(J, Xi)[XK(ﬁi)lw/h],

i=1
where the 7' are the / lifts of n to Lk , (or, more precisely, the / lifts of k7).

Moreover, for any knot G, the map - # G is the satellite operator given by G U g, where ug is the
meridian of G. In this case, w =& = 1 and k = n, so we get

t(F#G, x) = t(F, xr) + (G, xc)
(note that i bounds a disk and in particular is nullhomologous in any cyclic branched cover over G, and
s0 xg(fig) =1€C").
Proof of Proposition 5.3 From the discussion above, we get the canonical isomorphisms
Hy (L po(ry—p1()n) = Hi(Lpy(r),n) ® Hi(L_p,(5),n)
> H\(Lkogn) ®hH\(Lyg)® Hi(L-k,n) ®hH(L_j)
=~ Hy(Lky#—Ky,n) D hH (L yg—g k)-
Similarly, we have canonical isomorphisms
Ch,(Po(J)#—P1(J)) = Ch,(Ky) @ hChy(J) ®Ch,y(—K;) ®hChi(—J)
>~ Ch,(Ko#—K1)®hChy(J#-J).
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By Theorem 5.1, the linking forms on branched cyclic covers of Ko#—K and J #—J have metabolizers
since these knots are topologically slice. Denote the metabolizer of H;(L g 4—k,,n) by R and the
metabolizer of Hy(L j4— s ) by S. The image of the submodule R @ /S under the canonical isomorphism
is thus a metabolizer for the linking form on Hy (L p,(s)4—p,(J),n)- A character x € Ch, (Po(J)#—P1(J))
vanishes on R @ AS if and only if ¢ vanishes on R and each v’ vanishes on S, where ¢ @ @?:1 Vle
Chy(Lgy#—k,,n) ®hChy(L y4_y k) corresponds to .

Now let x be a character which vanishes on R@® A.S. Using the canonical isomorphisms above, decompose

as
X h h

XPoy(J) ® X—P1(J) = XKo D EB X7 ®x-k, ® @ X

where the subscript denotes the knot whose character group contains the character.

Now we have

t(Po(N)#=P1(J), Oltl = T (Po(S). Xxpyr)lt] + T (=P1(S). X—p, ()]

h
= t(Ko, xx )1+ Y o X'y ()™ M+ 1 (= Ky, x-x,)l]
i=1
h
+ 3 e ek, (e
i=1

By 77'2 we are denoting the lifts of . for € € {0, 1}.

Now we wish to show that x g, (77'6) = X—kK, (—ﬁi]), after possibly reindexing the lifts of the 5. First
consider the n-fold cyclic branched cover of B* over the natural slice disk for Ko # — K. The boundary
of this branched cover is the n-fold cyclic branched cover of Ko #—K;. Now, by the homotopy lifting
property, the £ lifts of ng are each joined to one of the / lifts of —n; through an immersed annulus in
the branched cover of B* which is a lift of A (these lifts are all k-fold covers). Therefore, after possibly
reindexing, 77'6 <) —(—ﬁ’i) is nullhomologous in the branched cover of B*, so is in the kernel of the
inclusion-induced map, and therefore lies in the metabolizer R of the linking form on H;(Lg#—k, 1)
(We write two minus signs since the —77”1 are lifts of —n;, and —(—ﬁ"l) are the opposites of the homology
classes of these lifts.)

Now, since ¢ vanishes on the metabolizer R of H(Lk,4—k,)-
0 = (i & —(=71)) = Xko (7o) + X—k, (=(=T1)) = Xk (W) = X—k (=TT})
and so indeed xk, ('ﬁg) = X—K, (—ﬁ’i).

Therefore,

h h
T(Po(J)#—Py(J), x) = T(Ko# =K1, @)1} + Y t(J #—J. ) xx, )™/ "] =0+ 0=0

i=1 i=1
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since Ko #—K and J #—J are both topologically slice and the corresponding characters vanish on the
metabolizer by tracing through the isomorphism on H; (we could have equivalently written x_ g, (—'ﬁ’l)
instead of g, ('ﬁ’i) in the final equation). O

6 Metabelian p invariants

Recall that the rational Alexander module 4o (K) = H; (Mg, Q[t*!]) comes equipped with the Blanch-
field form

Blo: slo(K) x slo(K) — Q(1)/Q[1*']
defined in the following way: since sdo(K) is Q[t*!]-torsion, given homology classes [x], [y] € sdo(K),

there is a Laurent polynomial p € Q[t*!] such that py is nullhomologous. That is, there is some 2-chain
w € Co(Mg, Q[t*!]) such that py = dw. Then

Blo((x). ) = - D (s wy "

nez

This can be thought of as a linking form which is equivariant with respect to the deck action.

For a 3-manifold M (for our purposes, this will always be O-surgery on a knot) and a representation
¢:m (M) — I, Cheeger and Gromov [2] defined von Neumann p-invariants p(M, ¢). Typically, we
will assume that I is poly-torsion-free-abelian (PTFA), which means that it admits a normal series

<<y <, =T

such that each quotient I 4/ [ is torsion-free abelian. If M bounds a 4-manifold W, and v extends
to w1 (W), then p(M, ¢) is given by the difference 01(,2)(W, Y) —ao (W), where (W) is the ordinary
signature of W and Ulgz)(W, ¥) is a certain kind of twisted signature. In other words, the p-invariants
can be thought of as “signature defects”. We will not define them rigorously here, and instead will use a
few key properties:

e Given an injection I" < I", we get a map ¢’: 71 (M) — I' < TI"’. In this situation, p(M, ¢) =
p(M.¢").
e If ¢ is the zero map, then p(M, ¢) = 0.

e If K isslice, I' is a PTFA group and ¢: w1 (M) — I extends to the fundamental group of the
exterior of a slice disk, then p(Mg, ¢) = 0.

We will also abuse notation slightly, writing p(K, ¢) := p(Mg, ¢).
Given a submodule P C sdo(K), we get a normal subgroup of 71 (M),
P =ker(m (Mg)" — m1 (Mg)" /701 (Mg)P = (K) — slo(K) — sdo(K)/ P).

where A(K) = H; (Mg Z[tT']) is the ordinary Alexander module. A priori, P is only normal in
71 (Mg)®. But, since 7y (Mg) = 1 (Mg)™) x Z, we can write any element of 71 (Mg) as t*a, where
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t is the generator of Z and a € 71 (Mg ). Then, given an element p € P, we see that (tkayp(tka)=" =
tk(apa_l)t_k. Thus, since P is normal in 71 (M), we see that apa~! e P, and therefore its image
in sdo(K) is in P. But then, since P is a submodule of sdo(K), the element % (apa—)t =% =tk . apa™!
must also be in P, and therefore (rXa) p(zk a)y~le P. Thus, P is normal in the larger group 1 (Mg).
The normal subgroup P gives us a quotient map ¢ : w1 (Mg ) — 7y (MK)/ﬁ Since 7 (Mg)® P,
this quotient is metabelian. As in [9], the groups 771 (Mg )/ P are all PTFA, and so we will not need to
worry about this condition in the following discussion.

Recall from Section 5 that, given a form on some space (for example the Blanchfield form Bl on the
rational Alexander module ${o(K) of a knot K), a metabolizer is a subspace which is its own orthogonal
complement. Metabolizers of the Blanchfield form are intimately related with sliceness of knots: if K is
slice with a slice disk A, then

Pa = ker(slo(K)) = Hy(Mg: Qr*']) — Hi(B*\ A; Q[r*'])
is a metabolizer for the Blanchfield form on iy (K).

The following is a theorem of Cochran, Harvey and Leidy:

Theorem 6.1 [9, Theorem 4.2] If K is slice, then, for some metabolizer Po C #¢(K) corresponding
to a slice disk A, we have p(K, ¢ ﬁA) = 0. In particular, the set

{p(K,¢p) | P is a metabolizer for do(K)}

contains 0.

Cochran, Harvey and Leidy showed that, just as with Casson—Gordon invariants, the condition of sliceness
in the previous theorem can be weakened to (1.5)-solvability:

Theorem 6.2 [9, Theorem 10.1] If K is (1.5)-solvable, then the set
{p(K,¢p) | P is a metabolizer for do(K)}

contains 0.

Similarly to Casson—Gordon invariants, we can write the metabelian p invariants of a satellite knot P(J)
in terms of the p invariants of K = P(U) and J. For this we will need to choose a basepoint common to
Mpyy, Mg \v(n) and S 3\ v(J), as well as meridians and longitude for the boundaries of Mg \ v(n)
and S3\ v(J). Our choices are shown in Figure 11 for the particular case of the Mazur pattern. We will
implicitly carry this choice of basepoint with us throughout the following discussion.

Let I' be a metabelian group. Given a homomorphism v : 71 (Mp(s)) — I', we get homomorphisms
Vr: (Mg \v(n) — I and ¥y: 7;(S?*\ v(J)) = T since Mg \ v(n) and S3 \ v(J) are both
submanifolds of Mp (). When gluing together Mk \ v(n) and S3\v(J) to get Mp sy a meridian iy
of 7 and a longitude A ; of J are identified. And, since A s lies in 71 (S \ v(J))@®, which includes into
w1 (Mp( J))(z), we must have that ¥ sends the image of Ay (which is also the image of ;) to 0 € I'.
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Figure 11: Decomposition of Mp, as Mg \ v(n) and S 3\ J for the Mazur pattern. The torus,
with K sitting inside, should be tied into J, and so it bounds the two submanifolds on either side.
The basepoint is the intersection of the two labeled curves.

Therefore ¥ g and 1y extend uniquely to homomorphisms 7 (Mg) — I" and 71 (M) — I', which we
will also denote by ¥ g and ¥y, respectively. Similarly, Y x (n) = ¥ s (1 y).

Conversely, given homomorphisms Vg : 71 (Mg) — T and Yy :m (M) — T suchthat g (n) =5 (L),
we can restrict them to Mg \ v(n) and S* \ v(J), and they will be compatible on the torus boundary
when we glue these two manifolds together to get Mp( ) (notice that the meridian of 7 is nullhomotopic
in Mg and the longitude of J is in my (M])(z) and so both must be sent to 1 € I'). Thus, g and ¥y
give a homomorphism v : 7w (Mp(y)) — I' whose restrictions to Mg \ v(n) and S3\ v(J) are the
homomorphisms coming from g and ¥ s, respectively.

In summary, there is a bijection
Hom(ry(Mp(y)).I') < {(Yx:m1(Mkg) = T, Yy:mi(My) - T) [ vk () = ¥y (ns)j-

The following is [9, Lemma 2.1]:

Lemma 6.3 In the notation in the previous paragraph,
p(P(J).¢) = p(K,¢x) + p(J.0J).

Recall the setup from Section 1: we have satellite operators Py and P; given by KoL no and Kq U7y,
respectively, which are homotopically related. That is, Ky and K are concordant, and no x {0} and
n1 x {1} are homotopic through the complement of a concordance between Ky and K;. We showed in
Theorem 1.4 that, for any J, the difference Py(J)#—P;(J) is (1)-solvable.
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Proposition 6.4 The set
{p(Po(J)#—P1(J),pp) | P is a metabolizer for Ao(Po(J)#—P1(J))}
contains 0. In other words, Theorem 6.2 fails to obstruct the (1.5)-solvability of the knot Py(J)#—P1(J).

Before beginning the proof of Proposition 6.4, we will fix some notation which will make it easier to
work with metabelian groups.

Definition 6.5 The metabelianization of a group G is defined to be G/ G and will be denoted by G™2.

Since homomorphisms to a metabelian group factor through the metabelianization of the domain, we can
work with homomorphisms from metabelianizations. Since the longitude of a knot K lies in the second
commutator subgroup of the knot group, 7 (K)™® 2 71 (Mg )™, and so we can replace 7; (M) with
m1(K) or 71 (K)™® in the discussion above. It will be easier to think in terms of knot groups than in
terms of fundamental groups of O-surgeries, and this is what we will do for the remainder of this section.

We have the following group-theoretic lemma:
Lemma 6.6 There is a canonical isomorphism (G/G®)M) =~ g1 /G@),

This lemma gives us the following corollary, since the Alexander module of a knot group is the abelian-
ization of its commutator subgroup:

Corollary 6.7 The Alexander module of a knot is the commutator subgroup of the metabelianization of
the knot group.

Proof of Lemma 6.6 Throughout, we will denote by ¥ the equivalence class in G/ G® or g / G®
of an element x of G or G,

Define a map (G/G @) — G /G® by taking a commutator [, b] of elements @, b € G/G P with
representatives a, b € G to [a, b] € GV /G@ . Given different representatives ag, bg € G for a and b
(where g € G®), we have [ag, bg] = [a, b] since we are working mod G'®, and so this map is well defined.
Conversely, we can define a map G(V/G® — (G/G®)D by taking an element [a,b] € G /G?
where a, b € G to the commutator [@, b]. Given a different representative [a, b]g for [a, b] (where g € G@),
we see that its image is given by [a, b] x [, 7], where x;, y; € GO since g € G®). But, in G/G@,
commutators commute, and so this is equal to [a, I;], and thus the map is well defined.

These two maps are inverses, and so (G/G@®)D =~ G /G@. |
We will also frequently use the fact that any group homomorphism ¢: H — G induces a homomorphism

on the metabelianizations ™ : F™ s GMab (since o(H®) € G?). This appears most frequently
when H is a subgroup of G and ¢ is the inclusion map.

We will now recall some fundamental facts about the Alexander modules and Blanchfield forms of satellite
knots following [28] (see also [34]).
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Theorem 6.8 [28, Theorem 2] The Alexander matrix (ie a matrix giving a A-module presentation for
the Alexander module) of a satellite knot corresponding to a Seifert surface obtained from Seifert surfaces
for K and J is given by

Ap)(t) = Ax @) ® A7 ("),
where @ denotes the block sum, and w = 1k(K, 1) as in Section 5. In particular, the Alexander module is
given by

A(P(J)) = A(K) @ wsA(J]),
where, as an abelian group, wsd(J) is the direct sum of w copies of 4(J), but carries the A-module
structure defined by

t-(ay,az,....ay)={ aw,ay,...,ay—1).

Moreover, after choosing suitable bases, the matrix for the Blanchfield form has a similar decomposition:
Bp(t) = Bx (1) ® By(t").

Note that the A-module wsd(J) can be seen as the first homology of the cover corresponding to the
multiple of the abelianization map w - ab: w1 (J) — Z (taken with Z coefficients, and coming with a
Z-action giving a A-module structure). Note also that, if we restrict to the Z[¢t"]-module structure, then
wsA(J) is the direct sum of w copies of s4(J), where ¥ acts as the original ¢-action. Also, the map
wsA(J) = 71 (J)™® given by the inclusion map on each (Z-module) ¢(J) summand makes the following
diagram commute (all maps represented by solid arrows are inclusions or induced by inclusions):

A(P(J) —— 7 (P(J)™®
wA(J) ———3 > 1 (S

Implicit in the proof in [28] of Theorem 6.8 is that the diagram
ab

0 — AK) —— 7 (K)ma s 7 )
l" | l lid

() 0 — A(P(J)) —— m(PUJ)m® L5 7 — 40
iT T idT

w-

wl(J) ——— my(J)mad 22y 7

[TEE2]
1

commutes with exact rows, where the maps labeled with “i” are inclusion maps, the maps labeled with “ab”

are abelianization maps, the vertical maps to 71 (P (J))™® are induced by the inclusion of the appropriate
submanifolds, and the map wsf(J) — 71 (J)™® is the map described above.

In the special case of a connect sum, we have
AK#J) =A(K) D A(J]),

and similarly for the Blanchfield form and the commutative diagram, setting w = 1.
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Figure 12: Top leftis Py(J)#— Py (J) with the three satellite tori T4, Ty and 7. The other three
diagrams show the tori individually. For the metabelian p invariant calculations, take the basepoint

to be in the spot common to all three tori.

Proof of Proposition 6.4 We have isomorphisms of Alexander modules
A(Po(J)#—P1(J)) = A(Ko) BwA(J) @ A(—K;) @ wsd(—J)
= A(Ko#—K;) wsd(J #-J)
and the corresponding decompositions of the Blanchfield forms. There are metabolizers of A (Ky#—K1)

and wo(J #—J) coming from slice disks, whose direct sum is then a metabolizer for s4( Py (J)#—P1(J)).
Let ¥ : 1 (Po(J) #—P(J))™® — T be the quotient map killing the metabolizer as above.

We will now use several applications of the satellite formula for metabelian p invariants, cutting up S3
along the three satellite tori 7%, To and 77 shown in Figure 12. (Note that each torus is isotopic to
the torus depicted in Figure 11 with respect to the corresponding satellite operations.) Notice that we
will need to work with the fundamental group of the resulting submanifolds, and so want to choose an
appropriate basepoint. So, the tori have been chosen to coincide at a particular “spot”, and we choose the
basepoint to be in this spot.

From the satellite formula for metabelian p invariants, we have
p(Po(J) #—P1(J), V) = p(Po(J), ¥py()) + p(=P1(J). V—p, (1))

where ¥ p, 7y and ¥_p, () are the homomorphisms obtained by restricting to the submanifolds which
result from cutting S3 along the “swallow-follow” torus Ty in Figure 12. We have the relation

Vo) (L Py())) = V=P, (1) (U=P,(]))

(since these are the same curve on 7%).
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After filling in the boundary components as we did in the discussion preceding Lemma 6.3, we can cut
along the other two satellite tori, Ty and 77, and use the satellite formula for metabelian p invariants
again to obtain

p(Po()#—=P1(J). V) = p(Ko. Vk,) +p(J. ¥y) + p(=K1. V—k,) + p(=J. Y1)

with ¥ g,, V_k,, ¥y and ¥_; coming from restrictions to submanifolds as before. From our gluings,
we must have the identities

Vk,(mo) =vy(ns), Vi,(Lky) =V—k,(Uk,), Y-k, (=n1) =¥—y(-y).

Also, note that g, and g, are the same curves as wp, () and u_p, () from before, and the middle
relation follows from the relation coming from the first application of the satellite formula.

Now, since Py and P; have the same winding numbers, the concatenation g - (—71) is nullhomologous
in the complement of Ko #— K, and so lies in (Ko #—K) (recall that —n; denotes the mirror image
of n; inside the complement of the mirror image of K; in the connect sum Ky #—K7). Moreover, by
assumption, 7o and 1y cobound an immersed annulus in the complement of the slice disk for Ko #—K1,
and so 7g - (—71) is nullhomotopic in the complement of the slice disk and so lies in the kernel of the
inclusion-induced map on H; (—, Q[¢*1]). Therefore, ¥ (1o - (—11)) = 1, and so

VKo (o) = ¥ (o) = ¥ (=m1) = ¥—k, (=n1).
Thus, since Yk, (n0) = ¥y (1) and Y_g, (—=n1) = Y-y (11— ), we must have
Vi(ns) =v-y(pn-y).

Therefore there are maps Vg 4k, and ¥ yu_y on 7 (Ko #—K1)™® and 71 (J #—J ymab - respectively,
whose restrictions to the appropriate submanifolds are Vg, ¥_g,, ¥y and ¥_, and so
p(Po(J) #—Pi(J)) = p(Ko. Vo) + p(J.Vy) + p(=K1, ¥—k,) + p(=J. V)
= p(Ko# =K1, Vkyt—k,) + p(J #=J, Y yu-71).

Putting together the commutative diagrams corresponding to the various satellite operations as in (),
we obtain the commutative diagram shown in Figure 13 (we have omitted the maps V¥ g,, V_k,, Vs
and ¥ _ s to avoid cluttering up the diagram too much). The maps of (multiples of) Alexander modules are
all inclusions of summands. This diagram commutes by the commutativity of the diagrams corresponding
to the various satellite operations as in (x), plus the definitions of ¥, Vk 4k, VJs—71, VKo> Y—K,> VI
and ¥_ . In particular, the two pentagons with black arrows commute, and, since the maps of (multiples
of) Alexander modules are inclusions of summands, the kernels of V¥ g4k, and ¥ y4_; are exactly the
images of our chosen metabolizers of (Ko #—K) and wsd(J #—J), respectively.

Since these metabolizers came from a slice disk,
p(Po(J)#—P1(J)) = p(Ko, Vko) + p(J.¥y) + p(=K1. V—k)) + p(=J. V—y)
= p(Ko#—K1, Ykos—k,) +p(J #—=J, Yyu_7)
=04+0=0. o

Algebraic € Geometric Topology, Volume 25 (2025)



Action of the Mazur pattern up to topological concordance 2141

A(Ko#—K1) > 11 (Ko #—K )™ ) VKoK
/ \ //\\ \\\\\
A(Ko) A(—Ky) w1 (Ko)™® w1 (—K )™ \\\
\4/ \
\ L \ / " Y
A(Po(J)#—P1(J])) s 1 (Po(J) #—Py(J))™® ) f
/ \ //\\ //I
wsl(J) wsd(=J) i (J)™ T (=J)me
- - Vi
\ [ \ / Vorg
wsl(J #—J) s 7y (J #—J)meb
Figure 13
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