

LETTER • OPEN ACCESS

Provincial-scale assessment of direct air capture to meet China's climate neutrality goal under limited bioenergy supply

To cite this article: Hanwoong Kim *et al* 2024 *Environ. Res. Lett.* 19 114021

View the [article online](#) for updates and enhancements.

You may also like

- [Public attitudes and emotions toward novel carbon removal methods in alternative sociotechnical scenarios](#)
Emily Cox, Rob Bellamy and Laurie Waller

- [Carbon dioxide removal to combat climate change? An expert survey on perception and support](#)
Christoph Kerner, Annina Thaller and Thomas Brudermann

- [The role and deployment timing of direct air capture in Saudi Arabia's net-zero transition](#)
Yang Qiu, Gokul Iyer, Jay Fuhrman *et al.*

The advertisement features a blue and green color scheme. The top section is blue with the ECS logo and text. The middle section is green with a circular logo for 'SUSTAINABLE TECHNOLOGIES' and text for the meeting. The bottom section is green with a blue background image and text for the submission deadline.

ECS The Electrochemical Society
Advancing solid state & electrochemical science & technology

SUSTAINABLE TECHNOLOGIES

249th ECS Meeting
May 24-28, 2026
Seattle, WA, US
Washington State Convention Center

Spotlight Your Science

Submission deadline:
December 5, 2025

SUBMIT YOUR ABSTRACT

ENVIRONMENTAL RESEARCH LETTERS

OPEN ACCESS

RECEIVED
29 May 2024

REVISED
9 August 2024

ACCEPTED FOR PUBLICATION
6 September 2024

PUBLISHED
1 October 2024

Original content from
this work may be used
under the terms of the
[Creative Commons
Attribution 4.0 licence](#).

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Provincial-scale assessment of direct air capture to meet China's climate neutrality goal under limited bioenergy supply

Hanwoong Kim¹, Yang Qiu¹, Haewon McJeon², Andres Clarens³, Parisa Javadi³, Can Wang⁴ , Rui Wang⁵, Jiachen Wang⁴, Hanying Jiang⁴, Andy Miller⁶ , Ryna Cui⁶ , Jenna Behrendt⁶, Yang Ou^{7,8}, Sha Yu⁶ and Jay Fuhrman^{1,*}

¹ Joint Global Change Research Institute, University of Maryland and Pacific Northwest National Laboratory, College Park, MD 20740, United States of America

² Graduate School of Green Growth and Sustainability (GGGS), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

³ University of Virginia, Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA 22904, United States of America

⁴ State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China

⁵ Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, People's Republic of China

⁶ Center for Global Sustainability, School of Public Policy, University of Maryland, College Park, MD, United States of America

⁷ College of Environmental Sciences and Engineering, Peking University, Beijing, People's Republic of China

⁸ Institute of Carbon Neutrality, Peking University, Beijing, People's Republic of China

* Author to whom any correspondence should be addressed.

E-mail: jay.fuhrman@pnnl.gov

Keywords: negative emissions, direct air capture, China, net-zero emissions

Supplementary material for this article is available [online](#)

Abstract

China has large, estimated potential for direct air carbon capture and storage (DACCs) but its deployment locations and impacts at the subnational scale remain unclear. This is largely because higher spatial resolution studies on carbon dioxide removal (CDR) in China have focused mainly on bioenergy with carbon capture and storage. This study uses a spatially detailed integrated energy-economy-climate model to evaluate DACCs for 31 provinces in China as the country pursues its goal of climate neutrality by 2060. We find that DACCs could expand China's negative emissions capacity, particularly under sustainability-minded limits on bioenergy supply that are informed by bottom-up studies. But providing low-carbon electricity for multiple GtCO₂ yr⁻¹ DACCs may require over 600 GW of additional wind and solar capacity nationwide and comprise up to 30% of electricity demand in China's northern provinces. Investment requirements for DACCs range from \$330 to \$530 billion by 2060 but could be repaid manyfold in the form of avoided mitigation costs, which DACCs deployment could reduce by up to \$6 trillion over the same period. Enhanced efforts to lower residual CO₂ emissions that must be offset with CDR under a net-zero paradigm reduce but do not eliminate the use of DACCs for mitigation. For decision-makers and the energy-economy models guiding them, our results highlight the value of expanding beyond the current reliance on biomass for negative emissions in China.

1. Introduction

Leading up to the Glasgow Climate Conference in 2021, China submitted its mid-century strategy for low-emissions development, as well as an updated nationally determined contribution (NDC), in which the country officially pledged to peak its greenhouse

gas (GHG) emissions by 2030 and to reach 'carbon neutrality' by 2060 (UNFCCC 2021a, 2021b). China's goal is of similar ambition to a spate of recent mid-century net-zero emissions targets announced by other high-emitting nations (UNFCCC 2020, 2022, 2023, United States Department of State 2021a). As the leading GHG emitter, China's commitment alone

could reduce end-of-century warming by approximately 0.2 °C–0.3 °C (Climate Action Tracker 2020). Collectively, these pledges, if achieved, could keep the Paris Agreement's 2 °C temperature goal within reach (UNFCCC 2015, Rogelj *et al* 2016, Höhne *et al* 2021, Ou *et al* 2021)

China's existing policies to improve energy efficiency and expand renewable energy capacity and low emissions technology adoption (e.g. electric vehicles) appear to have the country on-track to meet its goal of peaking its emissions before 2030 (Department of Resource Conservation and Environmental Protection 2021, National Development and Reform Commission 2021, Climate Action Tracker 2023). However, as with any other country, meeting China's longer-term and more ambitious carbon neutrality goal will also require a redoubling of efforts to phase down unabated fossil fuel infrastructure (Pan *et al* 2020, Zhou *et al* 2021, IEA 2022).

Recent modeling studies on deep decarbonization in China suggest this could be achieved in part with carbon capture and storage (CCS) deployment to dispose of multiple GtCO₂ yr⁻¹ of point-source emissions (Yu *et al* 2019, Sun *et al* 2022). Often, scenarios also project similarly large annual rates of carbon dioxide removal (CDR)—primarily underpinned by CCS—to compensate for emissions from distributed (e.g. from shipping and aviation) or otherwise highly costly to abate sources (Zhang *et al* 2023b). These results are driven in part by the country's large, estimated geologic carbon storage capacity (Dahowski *et al* 2010, 2017, Kearns *et al* 2017). By definition, achieving net-zero emissions without the use of CDR would require a complete elimination of residual emissions, which could drastically increase transition costs and/or require reductions in energy and material demands that are at odds with recent trends (Grubler *et al* 2018, Fankhauser *et al* 2021, Iyer *et al* 2021). For these reasons, the development and deployment of carbon capture, utilization and storage (CCUS) and CDR technologies was called out specifically in China's NDC and mid-century strategy documents (UNFCCC 2021a, 2021b).

China's NDC submissions in both 2015 and 2021 also include efforts to enhance its land carbon sink by expanding forested land area, which could allow for some residual emissions to continue in the context of a net-zero target (van Soest *et al* 2021, UNFCCC 2021a). While restoring forested ecosystems and avoiding their further degradation is critical for both climate objectives and biodiversity preservation (Roe *et al* 2019, Xu *et al* 2023), the efficacy and permanence of large-scale afforestation efforts in China and elsewhere have been mixed, and have sometimes led to issues with land and water competition (Cao 2008, Cao *et al* 2011, Jia *et al* 2017). Measurement, monitoring, reporting, and verification (MMRV) concerns also limit the realistic role

of afforestation and other biospheric storage in offsetting large volumes of geologic carbon from fossil and industrial sources—which comprise the majority of China's current emissions (Fankhauser *et al* 2021, Dooley *et al* 2022, IPCC 2022, West *et al* 2023).

Many recent studies on carbon removal in China have therefore focused on bioenergy with carbon capture and storage (BECCS) with particular focus on the electricity sector (Pan *et al* 2018, Weng *et al* 2021, Sammarchi *et al* 2024). China has abundant arable land and geologic storage resources, and BECCS electricity could help avoid asset stranding by allowing a great number of China's existing coal-fired power plants to remain operational while contributing net CO₂ removals rather than emissions (Li *et al* 2020, Wang *et al* 2021, Zhang *et al* 2023b). Additionally, BECCS could use agricultural and forestry residues, presenting a waste-to-energy approach that could reduce environmental impacts associated with dedicated bioenergy crop production (Shahbaz *et al* 2021, Zhang *et al* 2021). However, waste biomass alone will be unable to meet China's projected GtCO₂ yr⁻¹ CDR needs (Yang *et al* 2023). This could lead to land and water use competition between large-scale dedicated energy crop cultivation, food production and biodiversity (Li *et al* 2023, Perkins *et al* 2023, Ampah *et al* 2024). Procuring imported biomass sufficient for multi-GtCO₂ yr⁻¹ BECCS may be at odds with China's efforts to enhance its energy security and risks transferring the sustainability tradeoffs of such large-scale bioenergy cultivation abroad (Wu *et al* 2023, Feng 2024, Wang *et al* 2024).

Direct air capture with carbon storage (DACCs) refers to several liquid solvent or solid sorbent-based processes to separate CO₂ from the atmosphere and store it in geologic reservoirs (Keith *et al* 2018, Beuttler *et al* 2019). DACCs is distinct from BECCS in that it consumes, rather than produces energy, but its relatively small land footprint could help soften the tradeoffs of relying solely on BECCS for CDR (Chen and Tavoni 2013, Marcucci *et al* 2017, Stler *et al* 2018, Realmonte *et al* 2019, Fuhrman *et al* 2020, Terlouw *et al* 2021). Evaluations of DACCs in the context of national net-zero emissions targets have consistently found large contributions of this technology to offset the most difficult-to-avoid emissions at relatively low cost (Bergero *et al* 2022, Horowitz *et al* 2022, Kim *et al* 2022, Browning *et al* 2023, Qiu *et al* 2024). Studies on DACCs in China have found similarly large potential, even at high costs, owing again to the country's vast, estimated geologic carbon storage resources (Fuhrman *et al* 2021b, IEA 2022).

Most of the studies above used integrated assessment modeling (IAM) frameworks, which dynamically represent the energy, land, water, and climate systems in a fully coupled manner (O'Neill *et al* 2020). However, the spatial resolution of these models is often at the level of major countries and geopolitical

regions, with relatively few studies (IAM or otherwise) offering results at sub-national resolution (Shi *et al* 2017, Malik and Bertram 2022). A study by Wang *et al* (2023a) evaluated DACCS installations at major airports in China, but did not consider its interactions with other sectors. Fauvel *et al* (2023) conducted more spatially detailed but globally coupled modeling of DACCS at the U.S. state-level, but similar analysis—to our knowledge—has not yet been conducted in the context of China's net-zero goal.

Filling this gap will be critical because while China's governance follows a relatively centralized approach, it places significant importance on sub-national regions in allocating the resources to implement its policy goals (Zhang *et al* 2020). Most of China's population and industrial output is located in the country's eastern provinces, as is much of the country's existing installed wind and solar capacity, and agricultural land (Chen *et al* 2020, Duan *et al* 2021, Jing *et al* 2022, Global Energy Monitor 2024). In contrast, the largest carbon storage reservoirs are located in the western part of the country (Dahowski *et al* 2010, 2017). Pathways for carbon emissions reduction and DACCS deployment thus vary significantly among provinces (Zhang *et al* 2023a, Wang *et al* 2023b).

To close this research gap, we enhanced GCAM-China—a version of Global Change Analysis Model with provincial level representation for China—with the ability to model DACCS (Center for Global Sustainability at the University of Maryland *et al* 2024). We then used this capability to evaluate which provinces in China could accommodate the largest deployments of DACCS, as well as its demand for low carbon energy in these locations. We ran several scenarios with varying constraints on biomass supply that were informed by bottom-up modeling of residual biomass availability and sustainable levels of bioenergy cultivation in China and globally (Wang *et al* 2022, 2023b). Finally, we assessed the value of DACCS availability on transition costs, and the investment requirements to achieve the projected levels of deployment.

2. Methods

2.1. Subnational Implementation of DACCS in GCAM-China

GCAM-China has been used extensively to evaluate China's transportation, buildings, power, industrial sectors (Cui *et al* 2021, Lou *et al* 2023, Yu *et al* 2023). We extended GCAM-China by incorporating the capability to model DACCS technologies at the provincial level. GCAM-China already includes BECCS and land-use change pathways for negative emissions (Yu *et al* 2019). Parameters of DACCS processes follow Fuhrman *et al* (2021a) with moderate improvements in the cost and performance over time.

We consider two distinct archetypes for DACCS in China: a solvent-based process utilizing high temperature heat ($>900\text{ }^{\circ}\text{C}$) generated from electricity and a solid sorbent process utilizing low temperature heat generated from an electric heat pump. Following consultations with stakeholders in China that indicated unlikelihood for the deployment of a natural gas based DACCS process, we have disabled this technology in China. It is possible to use alternative heat sources (e.g. from industrial processes, nuclear electricity generation, geothermal) for sorbent regeneration in the low-temperature DACCS process, which could substantially reduce the energy requirement (Fasihi *et al* 2019, Sizewell *et al* 2022, Leveni and Bielicki 2023, Bertoni *et al* 2024). Our choice of an electric heat pump to provide the low-grade heat is intended to provide a conservative representation of this still-nascent technology, given that DACCS represents only one of many prospective uses of waste heat (Forman *et al* 2016, Lu *et al* 2016, Arnaudo *et al* 2021).

To downscale DACCS potential to the provincial level, we adopt the approach of Fauvel *et al* (2023) and linearly scale the potential for DACCS based on each province's cumulative onshore geologic CO₂ storage capacity relative to the national total (see supplementary figure 1). The onshore CO₂ storage capacity for DACCS, BECCS, and captured fossil CO₂ in each province is based on Dahowski *et al* (2010, 2017) and utilizes cost and cumulative capacity estimates for nearly 1700 geologic formations in China. These are processed into quantiles to create a graded 6-point supply curve for each province.

2.2. Scenario design

We developed seven core scenarios to investigate the impact of DACCS availability, biomass resources, and additional efforts to lower residual CO₂ emissions in the context of China's 2060 carbon neutrality target (table 1). Constraints on biomass were based on the study of Wang *et al* (2023b) on available nationwide biomass resources in China. The 20 EJ constraint includes all estimated biomass energy potential from agricultural and forestry residues (17.9 EJ) and includes 2.1 EJ of dedicated bioenergy grown on marginal land. The 10 EJ lower bound on bioenergy availability reflects a 50% reduction from the 20 EJ constraint and is equal to 55% of the estimated biomass energy available from the full use of available agricultural and forestry residues (17.9 EJ). While bioenergy within GCAM may be provided from either dedicated bioenergy crops, or residual biomass, we did not prescribe the allowable biomass sources *a priori* and instead allowed the model to solve for the combination of dedicated and residual bioenergy under market equilibrium, within the constraint. Similarly, an endogenously solved combination of domestically cultivated and imported biomass

Table 1. Scenario design.

Scenario name	CO ₂ emissions constraint ^a	DACCS availability	Biomass constraint (EJ/year)	Enhanced ambition on residual CO ₂ emissions
Reference (Ref)	NA	No	20	NA
NZ60_Dac_LowBio	Net-Zero by 2060	Yes	10	No
NZ60_NoDac_LowBio	Net-Zero by 2060	No	10	No
NZ60_Dac_MedBio (Central)	Net-Zero by 2060	Yes	20	No
NZ60_NoDac_MedBio	Net-Zero by 2060	No	20	No
NZ60_Dac_HighBio	Net-Zero by 2060	Yes	Unconstrained	No
NZ60_NoDac_HighBio	Net-Zero by 2060	No	Unconstrained	No
NZ60_LowCDR	Net-Zero by 2060	Yes	20	Yes

^a The CO₂ emission constraints of the seven NZ60 scenarios follow the same trajectory. Emissions outside of China are also constrained to decline to net-zero by 2060 (see supplementary figure 2).

may be used, so long as total consumption does not exceed the constraint value.

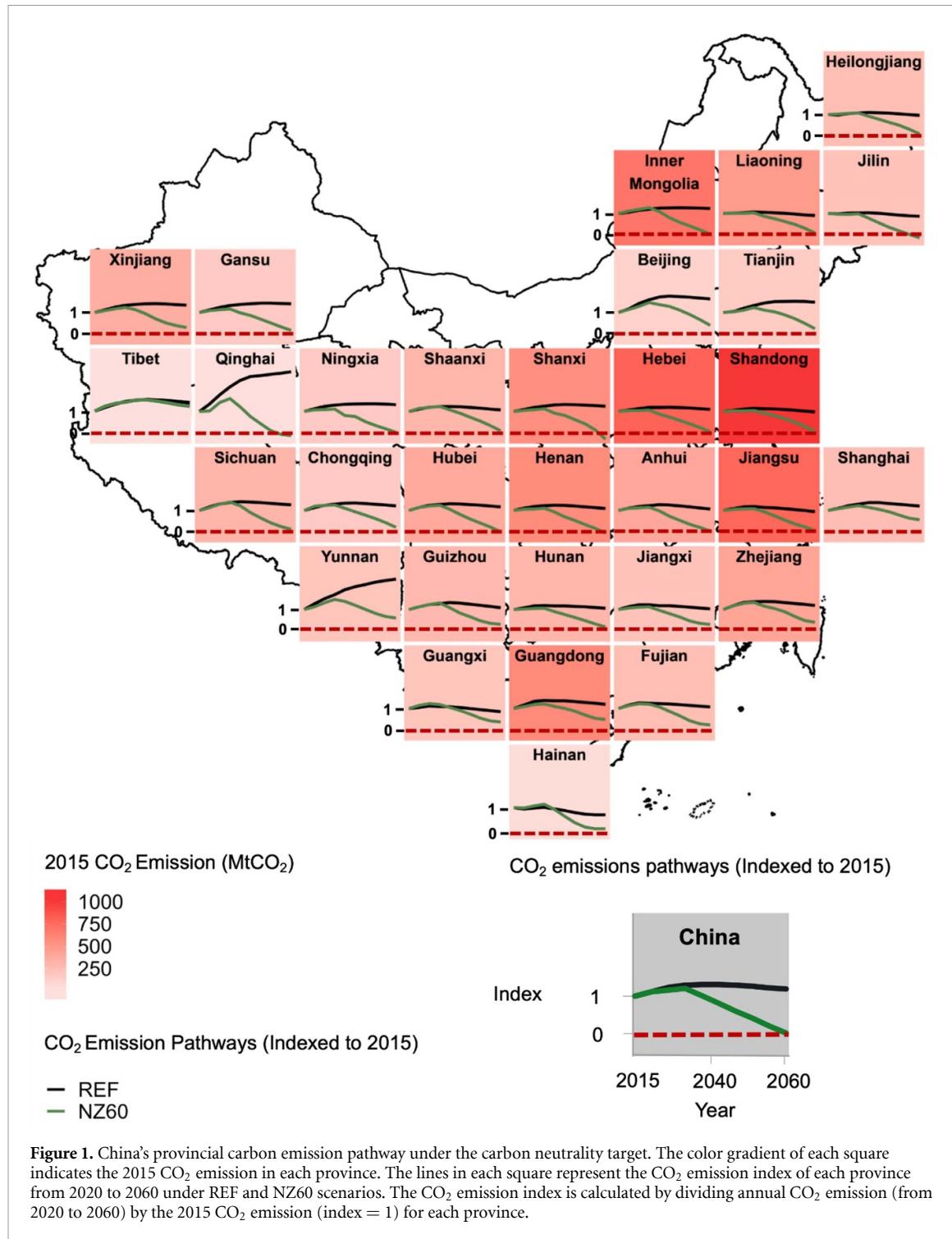
3. Results

3.1. Provincial decarbonization pathways under net-zero emissions

Provinces exhibit unique decarbonization pathways under national net-zero ambitions (figure 1). Some provinces including Shaanxi (SX) and Liaoning (LN) achieve net-zero CO₂ emissions by 2060 (i.e. positive and negative CO₂ emissions are balanced). While all provinces peak their emissions around 2030 and then substantially decline their CO₂ emissions thereafter, continued net-positive emissions in some, generally more densely populated and/or industrialized provinces may be offset by net-negative emissions achieved with BECCS and DACCS in other provinces. Per-capita CO₂ emissions pathways are reported in supplementary figure 12. For example, Guangdong (GD) and Shanghai (SH) are projected to have positive CO₂ emissions until 2060 as they have more limited onshore geologic storage capacity with which to dispose of CO₂ from point sources, and a higher share of residual emissions coming from transportation. (Supplementary figure 17).

3.2. Provincial geologic CO₂ storage

Figure 2 provides additional detail on how provinces utilize their geologic CO₂ storage resources for DACCS, BECCS and fossil CCS if and when the country reaches net-zero emissions. In the NZ60_Dac_MedBio scenario, fossil CCS is deployed at large scale in many provinces to abate emissions from industry and electric power generation. GD has large, estimated potential for offshore CO₂ storage, and it along with Hainan see this technology deployed at relatively large scale to abate fossil CO₂ emissions. However, the high cost of offshore storage results in comparatively lower BECCS and DACCS deployment in these provinces. Instead, their remaining CO₂ emissions are offset in other provinces more favorable


for BECCS and DACCS. The largest DACCS deployments are limited to a few provinces in northeastern China. DACCS deployment in Shanxi, Hebei, Henan, Shandong, and Jiangsu enables these provinces to lead the way in net-negative emissions and offset net-positive emissions from other provinces (e.g. GD). Xinjiang, which has the highest cumulative CO₂ storage capacity, is projected use a larger share of this capacity for fossil CCS (i.e. captured and thus avoided emissions, but not removals; see also supplementary figures 1 and 16). Because CO₂ removal from BECCS electricity and liquids is essentially a coproduct of energy production, the scale of energy use is one of the main drivers of BECCS deployment, which is distributed somewhat more evenly across provinces than DACCS, but at smaller scale.

3.3. Renewable electricity requirements for DACCS

Large-scale DACCS deployment in China would compete substantially with other prospective uses of low-carbon electricity including buildings, industry, and transportation. As shown in figure 3, DACCS could account for up to 20%–30% of electricity consumption in Shanxi, Inner Mongolia, and Shandong, which are also among the provinces with the largest projected renewable capacity additions under the net-zero emissions constraint. Country-wide, based on proportional electricity demand, DACCS could require approximately 635 GW of additional renewable generation capacity by 2060. This is approximately 10% of the 6300 GW projected to be installed nationwide, and over half of the current 1200 GW renewable capacity goal for 2030. The substantial renewable energy capacity requirement to support DACCS nationwide could be further magnified at the provincial scale, with provinces like Inner Mongolia (200 GW additional renewable capacity for DACCS), Shandong (70 GW), and Shanxi (64 GW).

3.4. Electricity generation and inter-provincial transfers

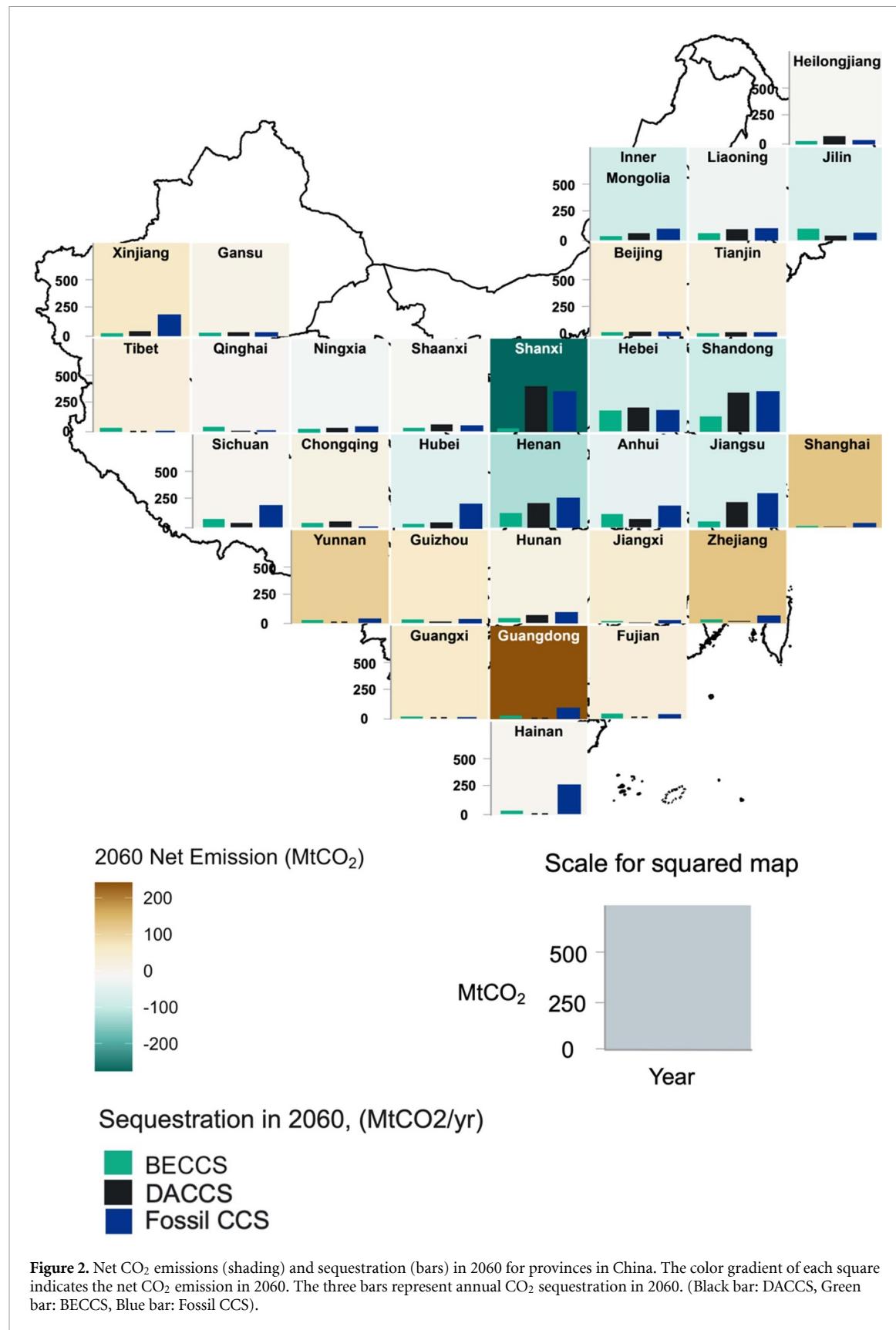
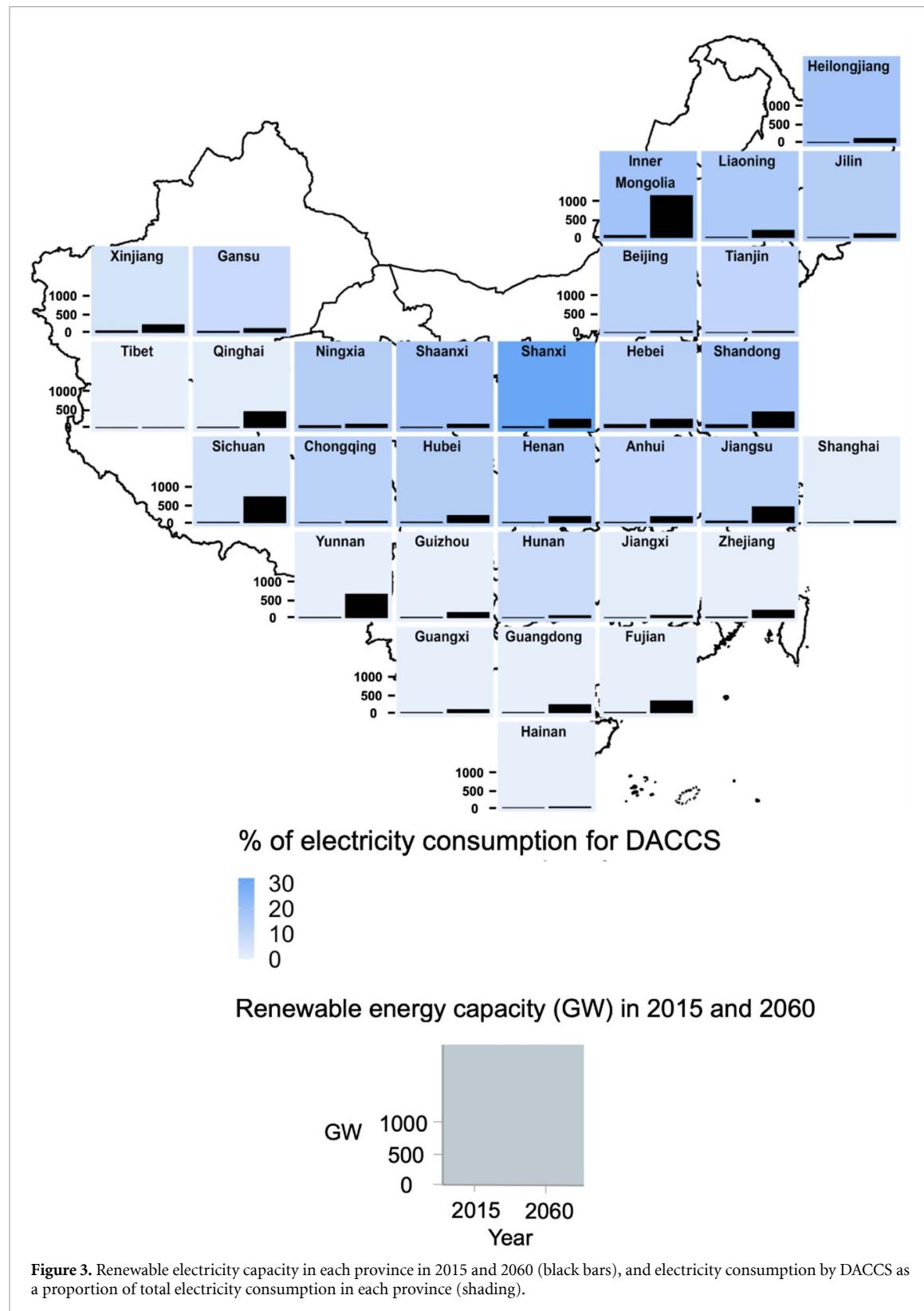

Figure 4 reports a breakdown of electricity generation and consumption in 2015 and 2060, as

Figure 1. China's provincial carbon emission pathway under the carbon neutrality target. The color gradient of each square indicates the 2015 CO₂ emission in each province. The lines in each square represent the CO₂ emission index of each province from 2020 to 2060 under REF and NZ60 scenarios. The CO₂ emission index is calculated by dividing annual CO₂ emission (from 2020 to 2060) by the 2015 CO₂ emission (index = 1) for each province.

well as net exports by province in 2060 for the NZ60_Dac_MedBio scenario. As expected, by 2060, most provinces substantially increase their electricity production while transitioning from coal-dominated grids to a mix of renewables, nuclear, and fossil generation equipped with CCS. Notably, biomass (both conventional and with CCS) generation does not play a large role in any province's electricity mix, as the limited biomass supply under the sustainability constraint is mostly allocated to producing liquid fuels,


which have fewer low-carbon technology options available to produce them. Additionally, provinces like Inner Mongolia, Sichuan, Yunnan, and Qinghai have an excess of renewable energy production compared to their demand. In contrast, more heavily populated and/or industrialized provinces such as GD, Hebei, and Shandong can import low-carbon electricity to meet demand. Figure 4 also helps further contextualize the potential electricity demand of large-scale DACCS deployment, which is projected to be

similar or greater in magnitude to all 2015 electricity consumption in Shanxi, Inner Mongolia, Shandong, and Hebei.

3.5. Sensitivity analysis

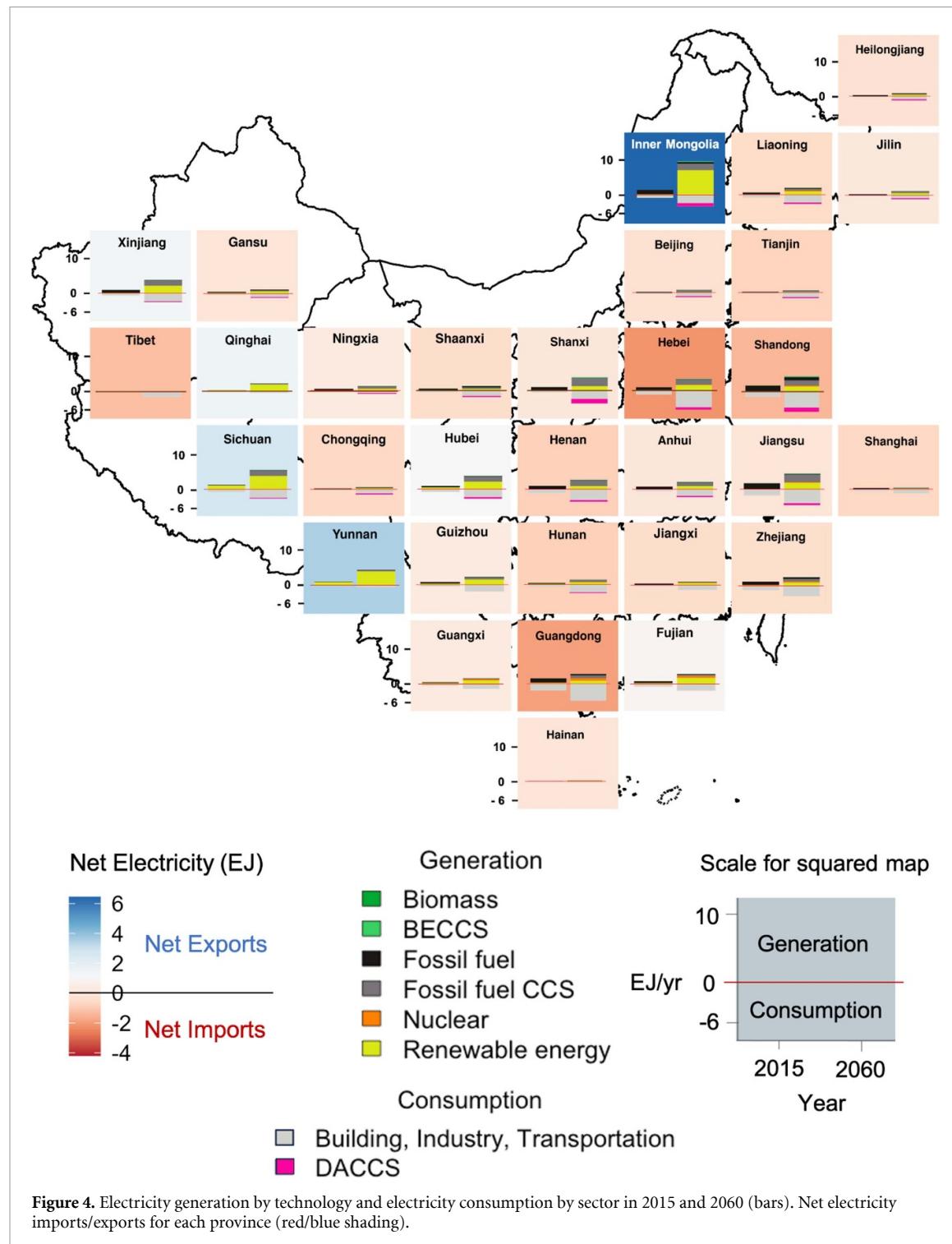
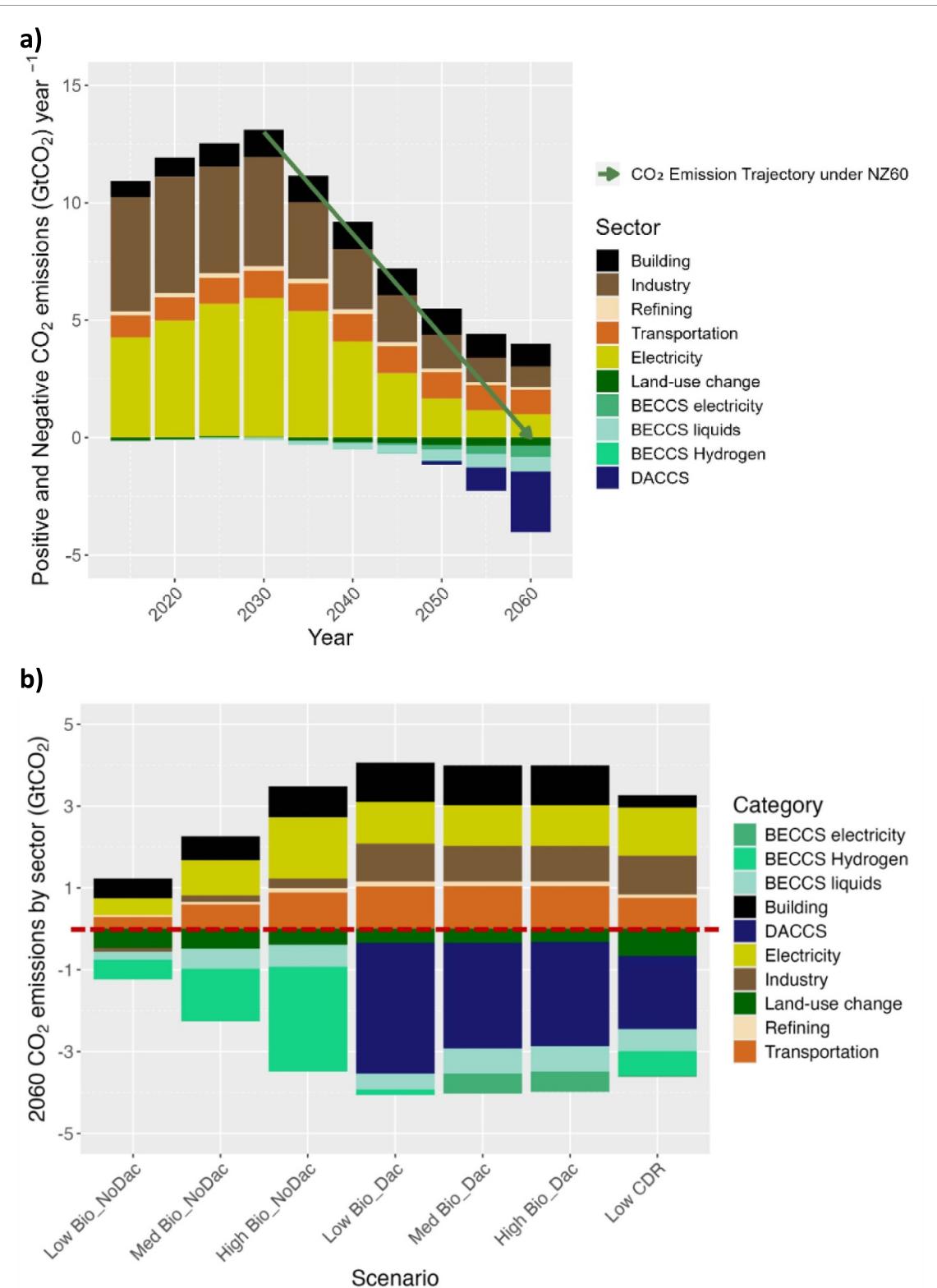

Figure 5 reports the results of a sensitivity analysis in which we compare 2060 CO₂ emissions

Figure 3. Renewable electricity capacity in each province in 2015 and 2060 (black bars), and electricity consumption by DACCS as a proportion of total electricity consumption in each province (shading).


by sector in each of our net-zero scenarios to the central NZ60_Dac_MedBio scenario. The NZ60_NoDac_LowBio scenario, which has the most restrictive supply-side constraints on CDR availability, results in sharply reduced residual CO₂ emissions, slightly reduced levels of negative emissions from

BECCS, and slightly increased negative emissions from land-use change relative to the central scenario. However, a higher share of carbon-negative bioenergy comes from electricity generation as opposed to liquid fuels production compared to the central scenario. As the biomass constraints are progressively

relaxed while holding the lack of DACCS availability constant, negative emissions from BECCS electricity can increase by up to 2 GtCO₂ yr⁻¹ under unconstrained biomass supply. The scenarios in which large-scale DACCS is available are far less sensitive in terms of total CDR deployment to restrictions in biomass supply. Moderate sustainability-minded constraints on biomass barely affect BECCS deployment, whereas in the most restrictive biomass supply case (NZ60_Dac_LowBio), the approximately factor of two reduction in BECCS negative

emissions can be made up for by increased DACCS deployment. The CDR demand-side measures in the low CDR scenario can reduce residual CO₂ emissions by approximately 1 GtCO₂ yr⁻¹ with a corresponding reduction in DACCS deployment. In the low CDR scenario, BECCS deployment remains mostly unchanged with a slight increase in the net land-use sink. However, electricity emissions slightly increase relative to the central scenario due to increased electrification for transport and buildings.

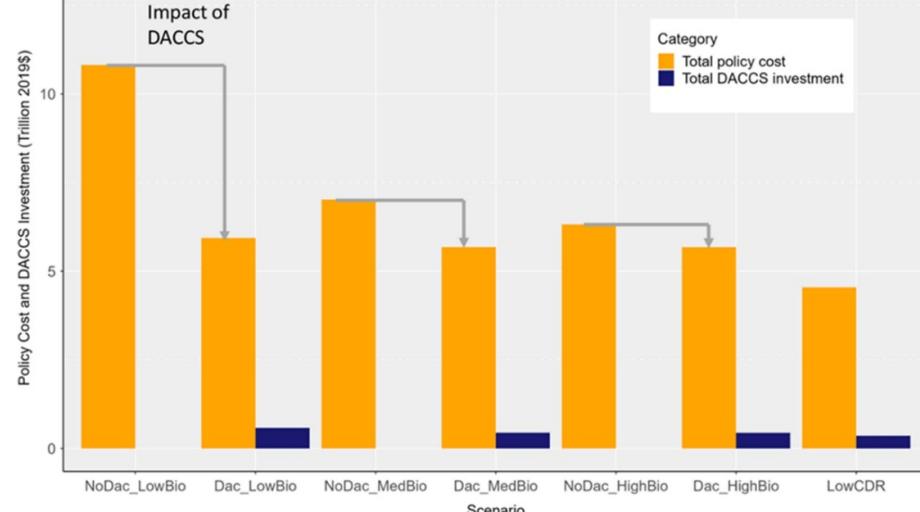


Figure 5. Positive and negative CO₂ emission trajectories for China in the central NZ60_Dac_MedBio scenario (a); CO₂ emissions in 2060 for all scenarios (b).

3.6. Transition cost and DACCS Investment by Net Zero scenario

Investment in DACCS may significantly reduce transition (policy) costs associated with meeting China's carbon neutrality goal, particularly if bioenergy is highly restricted (figure 6). Under the most tightest

bioenergy constraint (LowBio), DACCS availability could reduce the mitigation cost to reach net-zero CO₂ emissions by approximately a factor of two. This would entail DACCS investment of approximately \$530 billion (NPV with 5% discount rate, \$2.5 trillion undiscounted) between now and 2060. For reference

Figure 6. Cumulative (2025 ~ 2060) Policy Cost (Orange Bar) and DACCS Investment (Blue Bar) in China by Net Zero scenario (a 5% discount rate is assumed for all scenarios; see SI 1.6 for detailed policy and investment cost calculations).

China's 2023 GDP was approximately 17.5 trillion. DACCS investment is slightly reduced under a more relaxed constraint (MedBio), at the increased risk of some food and land tradeoffs. With unrestricted biomass supply (HighBio), DACCS investment requirement remains approximately the same as in the Dac_MedBio scenario, as does the cumulative policy cost. These less restrictive limits on bioenergy supply considerably reduce the policy cost without DACCS availability, but the policy cost reduction exceeds the DACCS investment irrespective of bioenergy supply restrictions. However, DACCS investment requirements, as well as mitigation policy costs may be further reduced if additional low-carbon technology adoption and behavioral change result in lower levels of residual emissions that require DACCS to offset (LowCDR scenario). The detailed calculation method for mitigation cost and DACCS investment requirements is reported in the supplementary information.

4. Discussion and conclusions

China has large potential for DACCS but its contribution and value-added under limited bioenergy supply, especially at subnational scale has remained unclear. This has, in turn, limited the ability of decisionmakers to understand which jurisdictions in China are best positioned for DACCS deployment and to proactively prepare for side-effects induced by the substantial reallocation of resources to it and other forms of CO₂ removal. This work begins to address these gaps in knowledge by providing the first provincial-scale integrated assessment of DACCS technology, making use of, and further extending the large body of spatially detailed studies on BECCS in

China. The results of this study may help national and regional policymakers in China plan for prospective DACCS hubs like those being envisaged in the United States, furthering the aims of the recent Glasgow Declaration and Sunnylands Statement (United States Department of State 2021b, U.S. Department of State 2023).

We find that DACCS deployment in 2060 of approximately 2 GtCO₂ yr⁻¹, led by China's northern provinces, could substantially add to China's CDR capacity while keeping bioenergy consumption within limits aimed at avoiding excessive food and land-use competition. Building out this level of DACCS capacity could require investment of \$530 billion by 2060 for the capture facilities alone (i.e. excluding additional low-carbon electricity capacity to power them, which is discussed below). However, such investment could lower the cost of reaching the net-zero emissions goal by up to 50% under the most stringent constraints on biomass supply. DACCS deployment may also necessitate substantial new low-carbon generation capacity in China, potentially exceeding 50% of its current 1200 GW renewable capacity goal.

The 5 yr model timesteps used in this study are too coarse to evaluate the use of excess variable renewable generation to power DACCS. This would increase the levelized costs of DACCS by reducing its capacity factor and/or requiring dedicated energy storage. Higher temporal resolution models that model daily or hourly DACCS operation endogenously, optimizing its utilization of renewable energy, could help refine the planning of renewable capacity expansion and grid operation needed to realize the levels of DACCS deployment projected here. Furthermore, more high-resolution modeling

can help evaluate tradeoffs between transmission of low carbon electricity and/or captured CO₂ from DACCS and other sources over potentially long distances. Finally, we did not consider the potential use of waste heat for sorbent regeneration in low-temperature DACCS processes, which could substantially lower the energy impacts found here. Future work could characterize the availability of waste heat in China and elsewhere and evaluate how DACCS might compete with other prospective uses of this resource (e.g. district heating, point-source CO₂ capture) for decarbonization.

This study also did not consider the full breadth of prospective CDR technologies such as enhanced weathering, biochar, or other methods to enhance soil carbon. These are beginning to be incorporated into global models and notably do not entail the use of subsurface CO₂ storage reservoirs (Strefler *et al* 2021, Bergero *et al* 2022, Fuhrman *et al* 2023). Because China was revealed to have among the largest potentials to deploy several of these CDR pathways, subnational IAM and/or downscaling studies could help decision makers plan for implementation, and prepare for their unique side-effects and co-benefits for agriculture (Beerling 2017, Jeffery *et al* 2017, Borchard *et al* 2019). Reducing reliance on subsurface storage CO₂ generally may become especially important as this work, like most other IAM studies, considers only cumulative geologic CO₂ storage capacity and does not consider practical limits on CO₂ injection rates due to lack of available data. These have been suggested as a challenge to real-world deployment of CCS technologies for both emissions avoidance and CDR in China and elsewhere (Lane *et al* 2021). Detailed data on the rates at which prospective receiving formations can accept large volumes of CO₂ will be critical to inform the large infrastructure and institutional scale-ups required to reach multi GtCO₂-scale CCS, which underpins both DACCS and BECCS.

If geologic storage is highly constrained in China and elsewhere, captured CO₂ from DACCS and other sources could also be used to produce synthetic fuels (Mignone *et al* 2024). However, their favorability relative to biofuels could be limited by the need to combine two thermodynamically expensive processes (i.e. atmospheric CO₂ capture and zero-carbon hydrogen production), unless both undergo significant cost declines (Ueckerdt *et al* 2021, Speizer *et al* 2024). Additional global-scale and spatially detailed research is required to help inform optimal uses of captured CO₂, as well as constrained biomass and geologic storage resources.

Efforts to reduce residual emissions that must be offset with CDR can help reduce side-effects of its deployment and enhance its long-term efficacy in drawing down CO₂ concentrations (Fuhrman *et al* 2024). To this end we find that successful measures

to reduce CO₂ emissions across the buildings, transportation, and industrial sectors could reduce the DACCS required to reach net-zero CO₂ emissions in China by approximately 1 GtCO₂ yr⁻¹ (50%), saving approximately \$80 billion (NPV) in future DACCS investment. The cost of such measures is beyond scope of this study to evaluate fully, but will depend in turn on future developments in cost, performance, and adoption of zero-emissions technologies, which like DACCS and BECCS are highly uncertain (Wilson 2012, Lamontagne *et al* 2018, van Vuuren *et al* 2018, Giannousakis *et al* 2021). However, they could also come with substantial co-benefits including reduced local air pollution and perhaps equally critically, avoiding infrastructure lock-in that could drive the need for additional future CDR if the achievement of net-zero emissions is delayed as a result. Analyses conducted with alternative modeling frameworks (e.g. computable general equilibrium) can complement this study's integrated assessment approach and provide a clearer picture of these and other tradeoffs between releasing emission space for difficult-to-abate sectors, and large capital investments in non-productive projects.

The high cost of DACCS presently limits its demand in voluntary carbon markets but setting explicit targets for DACCS in future NDC submissions and valuing durable CDR in China's emissions trading system could help create such demand. Additionally, developing measurement, reporting, and verification and permanence standards for CDR, in collaboration with the international community, can help policymakers and investors evaluate the higher costs of DACCS against its benefits (Fuss *et al* 2018, Nemet *et al* 2018). Such efforts may help China position itself as an exporter of high-quality carbon removal credits while demonstrating success in scaling up DACCS, benefiting international climate objectives.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: <https://doi.org/10.5281/zenodo.13381829>.

Acknowledgments

This research was supported by the ClimateWorks Foundation. C.W., R.W., J.W. and H.J. were supported by the National Natural Science Foundation of China (No. T2261129475 and No.72348001). A.F.C and P.J. were supported by the U.S. National Science Foundation award number 2215396. H.M. was supported by the National Research Foundation of Korea (BP Grant: RS-2023-00219466).

Author contributions

H.K. led the model development, ran and analyzed the scenarios, and wrote the first draft of this manuscript, supported by J.F. and Y.Q. C.W., R.W., H.J., J.W., A.C., and P.J., co-developed the input assumptions and scenario design. S.Y., R.C., A.M., H.M., J.B., and Y.O. contributed to the modeling tools. All authors contributed to the study formulation, interpretation of results, and editing of this manuscript.

Code availability statement

The GCAM-China model code supporting the findings of this article is available in a public repository accessible at <https://github.com/umd-cgs/gcam-china/tree/gcam-china-v6/input/gcamdata/R>

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work the author(s) used ChatGPT to correct grammatical errors and unnatural expressions. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

ORCID iDs

Can Wang <https://orcid.org/0000-0002-1136-792X>

Andy Miller <https://orcid.org/0000-0001-6103-1685>

Ryna Cui <https://orcid.org/0000-0002-1186-8230>

Jay Fuhrman <https://orcid.org/0000-0003-1853-6850>

References

Ampah J D, Jin C, Liu H, Yao M, Afrane S, Adun H, Fuhrman J, Ho D T and McJeon H 2024 Deployment expectations of multi-gigatonne scale carbon removal could have adverse impacts on Asia's energy-water-land nexus *Nat. Commun.* **15** 6342

Arnaudo M, Dalgren J, Topel M and Laumert B 2021 Waste heat recovery in low temperature networks versus domestic heat pumps—a techno-economic and environmental analysis *Energy* **219** 119675

Beerling D J 2017 Enhanced rock weathering: biological climate change mitigation with co-benefits for food security? *Biol. Lett.* **13** 20170149

Bergero C et al 2022 Technology, technology, technology: an integrated assessment of deep decarbonization pathways for the Canadian oil sands *Energy Strategy Rev.* **41** 100804

Bertoni L, Roussanaly S, Riboldi L, Anantharaman R and Gazzani M 2024 Integrating direct air capture with small modular nuclear reactors: understanding performance, cost, and potential *J. Phys. Energy* **6** 025004

Beutler C, Charles L and Wurzbacher J 2019 The role of direct air capture in mitigation of anthropogenic greenhouse gas emissions *Front. Clim.* **1** 10

Borchard N et al 2019 Biochar, soil and land-use interactions that reduce nitrate leaching and N₂O emissions: a meta-analysis *Sci. Total Environ.* **651** 2354–64

Browning M et al 2023 Net-zero CO₂ by 2050 scenarios for the United States in the energy modeling forum 37 study *Energy Clim. Change* **4** 100104

Cao S 2008 Why large-scale afforestation efforts have failed to solve the desertification problem *Environ. Sci. Technol.* **42** 1826–31

Cao S, Chen L, Shankman D, Wang C, Wang X and Zhang H 2011 Excessive reliance on afforestation in China's arid and semi-arid regions: lessons in ecological restoration *Earth Sci. Rev.* **104** 240–5

Center for Global Sustainability at the University of Maryland, Department of Earth System Sciences at Tsinghua University and College of Environmental Sciences and Engineering at Peking University 2024 GCAM-China (available at: <https://github.com/umd-cgs/gcam-china>)

Chen C and Tavoni M 2013 Direct air capture of CO₂ and climate stabilization: a model based assessment *Clim. Change* **118** 59–72

Chen M, Vernon C R, Graham N T, Hejazi M, Huang M, Cheng Y and Calvin K 2020 Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios *Sci. Data* **7** 1–11

Climate Action Tracker 2020. China going carbon neutral before 2060 would lower warming projections by around 0.2–0.3 degrees C (available at: <https://climateactiontracker.org/press/china-carbon-neutral-before-2060-would-lower-warming-projections-by-around-2-to-3-tenths-of-a-degree/>)

Climate Action Tracker 2023 China (available at: <https://climateactiontracker.org/countries/china/>)

Cui R Y et al 2021 A plant-by-plant strategy for high-ambition coal power phaseout in China *Nat. Commun.* **12** 1468

Dahowski R T, Davidson C L, Yu S, Horing J D, Wei N, Clarke L E and Bender S R 2017 The impact of CCS readiness on the evolution of China's electric power sector *Energy Proc.* **114** 6631–7

Dahowski R, Li X, Davidson C, Wei N and Dooley J 2010 Regional opportunities for carbon dioxide capture and storage in China

Department of Resource Conservation and Environmental Protection 2021 Action plan for carbon dioxide peaking before 2030 (available at: https://en.ndrc.gov.cn/policies/202110/t20211027_1301020.html)

Dooley K, Nicholls Z and Meinshausen M 2022 Carbon removals from nature restoration are no substitute for steep emission reductions *One Earth* **5** 812–24

Duan J, Ren C, Wang S, Zhang X, Reis S, Xu J and Gu B 2021 Consolidation of agricultural land can contribute to agricultural sustainability in China *Nat. Food* **2** 1014–22

Fankhauser S et al 2021 The meaning of net zero and how to get it right *Nat. Clim. Change* **12** 15–21

Fasihi M, Efimova O and Breyer C 2019 Techno-economic assessment of CO₂ direct air capture plants *J. Clean. Prod.* **224** 957–80

Fauvel C, Fuhrman J, Ou Y, Shobe W, Doney S, McJeon H and Clarens A 2023 Regional implications of carbon dioxide removal in meeting net zero targets for the United States *Environ. Res. Lett.* **18** 094019

Feng R 2024 China's energy security and geopolitical imperatives: implications for formulating national climate policy *Energy* **2** 100034

Forman C, Muritala I K, Pardemann R and Meyer B 2016 Estimating the global waste heat potential *Renew. Sustain. Energy Rev.* **57** 1568–79

Fuhrman J, Bergero C, Weber M, Monteith S, Wang F M, Andres F, Doney S C, Shobe W and McJeon H 2023 Diverse carbon dioxide removal approaches could reduce energy-water-land impacts *Nat. Clim. Change* **13** 341–50

Fuhrman J, Clarens A F, McJeon H, Patel P, Ou Y, Doney S C, Shobe W M and Pradhan S 2021b The role of negative

emissions in meeting China's 2060 carbon neutrality goal *Oxf. Open Clim. Change* **1** 1–15

Fuhrman J, Clarens A, Calvin K V, Doney S C, Edmonds J A, O'Rourke P, Patel P, Pradhan S, Shobe W M and McJeon H C 2021a The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards +1.5 °C and +2 °C futures *Environ. Res. Lett.* **16** 114012

Fuhrman J, McJeon H, Patel P, Doney S C, Shobe W M and Clarens A F 2020 Food–energy–water implications of negative emissions technologies in a +1.5 °C future *Nat. Clim. Change* **10** 920–7

Fuhrman J, Speizer S, O'Rourke P, Peters G P, McJeon H, Monteith S, Lopez L A and Wang F M 2024 Ambitious efforts on residual emissions can reduce CO₂ removal and lower peak temperatures in a net-zero future *Environ. Res. Lett.* **19** 064012

Fuss S et al 2018 Negative emissions—part 2: costs, potentials and side effects *Environ. Res. Lett.* **13** 063002

Giannousakis A, Hilaire J, Nemet G F, Luderer G, Pietzcker R C, Rodrigues R, Baumstark L and Kriegler E 2021 How uncertainty in technology costs and carbon dioxide removal availability affect climate mitigation pathways *Energy* **216** 119253

Global Energy Monitor 2024 Global integrated power tracker (available at: <https://globalenergymonitor.org/projects/global-integrated-power-tracker/tracker-map/>)

Grubler A et al 2018 A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies *Nat. Energy* **3** 515–27

Höhne N et al 2021 Wave of net zero emission targets opens window to meeting the Paris Agreement *Nat. Clim. Change* **11** 820–2

Horowitz R, Binsted M, Browning M, Fawcett A, Henly C, Hultman N, McFarland J and McJeon H 2022 The energy system transformation needed to achieve the US long-term strategy *Joule* **6** 1357–62

IEA 2022 An energy sector roadmap to carbon neutrality in China (available at: <https://iea.blob.core.windows.net/assets/9448bd6e-670e-4cf8-953c-32e822a80f77/> *AnenergysectorroadmaptocarbonneutralityinChina.pdf*)

IPCC 2022 Climate change 2022: mitigation of climate change working group III contribution to the sixth assessment report of the intergovernmental panel on climate change (available at: www.ipcc.ch/report/ar6/wg3/)

Iyer G, Clarke L, Edmonds J, Fawcett A, Fuhrman J, McJeon H and Waldhoff S 2021 The role of carbon dioxide removal in net-zero emissions pledges *Energy Clim. Change* **2** 100043

Jeffery S, Abalos D, Prodana M, Bastos A C, Van Groenigen J W, Hungate B A and Verheijen F 2017 Biochar boosts tropical but not temperate crop yields *Environ. Res. Lett.* **12** 053001

Jia X, Shao M, Zhu Y and Luo Y 2017 Soil moisture decline due to afforestation across the Loess Plateau, China *J. Hydrol.* **546** 113–22

Jing C, Su B, Zhai J, Wang Y, Lin Q, Gao M, Jiang S, Chen Z and Jiang T 2022 Gridded value-added of primary, secondary and tertiary industries in China under shared socioeconomic pathways *Sci. Data* **9** 309

Kearns J, Teletzke G, Palmer J, Thomann H, Kheshgi H, Chen Y-H-H, Paltsev S and Herzog H 2017 Developing a consistent database for regional geologic CO₂ storage capacity worldwide *Energy Proc.* **114** 4697–709

Keith D, Holmes W, Angelo G, St D and Heidel K 2018 A process for capturing CO₂ from the atmosphere *Joule* **2** 1573–94

Kim H, McJeon H, Jung D, Lee H, Bergero C and Eom J 2022 Integrated assessment modeling of Korea's 2050 carbon neutrality technology pathways *Energy Clim. Change* **3** 100075

Lamontagne J R, Reed P M, Link R, Calvin K V, Clarke L E and Edmonds J A 2018 Large ensemble analytic framework for consequence-driven discovery of climate change scenarios *Earth's Future* **6** 488–504

Lane J, Greig C and Garnett A 2021 Uncertain storage prospects create a conundrum for carbon capture and storage ambitions *Nat. Clim. Change* **11** 925–36

Leveni M and Bielicki J M 2023 A potential for climate benign direct air CO₂ capture with CO₂-driven geothermal utilization and storage (DACCUS) *Environ. Res. Lett.* **19** 014007

Li J et al 2020 China's retrofitting measures in coal-fired power plants bring significant mercury-related health benefits *One Earth* **3** 777–87

Li M, He N, Xu L, Peng C, Chen H and Yu G 2023 Eco-CCUS: a cost-effective pathway towards carbon neutrality in China *Renew. Sustain. Energy Rev.* **183** 113512

Lou J, Sha Y, Cui R Y, Miller A and Hultman N E 2023 A provincial analysis on wind and solar investment needs towards China's carbon neutrality (available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4477714)

Lu H, Price L and Zhang Q 2016 Capturing the invisible resource: analysis of waste heat potential in Chinese industry *Appl. Energy* **161** 497–511

Malik A and Bertram C 2022 Solar energy as an early just transition opportunity for coal-bearing states in India *Environ. Res. Lett.* **17** 034011

Marcucci A, Kypreos S and Panos E 2017 The road to achieving the long-term Paris targets: energy transition and the role of direct air capture *Clim. Change* **144** 181–93

Mignone B K et al 2024 Drivers and implications of alternative routes to fuels decarbonization in net-zero energy systems *Nat. Commun.* **15** 3938

National Development and Reform Commission 2021 Working guidance for carbon dioxide peaking and carbon neutrality in full and faithful implementation of the new development philosophy (available at: https://en.ndrc.gov.cn/policies/202110/t20211024_1300725.html)

Nemet G F, Callaghan M W, Creutzig F, Fuss S, Hartmann J, Hilaire J, Lamb W F, Minx J C, Rogers S and Smith P 2018 Negative emissions—part 3: innovation and upscaling *Environ. Res. Lett.* **13** 063003

O'Neill B C et al 2020 Achievements and needs for the climate change scenario framework *Nat. Clim. Change* **10** 1074–84

Ou Y N et al 2021 Can updated climate pledges limit warming well below 2 °C? *Science* **374** 693–5

Pan X, Chen W, Wang L, Lin L and Li N 2018 The role of biomass in China's long-term mitigation toward the Paris climate goals *Environ. Res. Lett.* **13** 124028

Pan X, Chen W, Zhou S, Wang L, Dai J, Zhang Q, Zheng X and Wang H 2020 Implications of near-term mitigation on China's long-term energy transitions for aligning with the Paris goals *Energy Econ.* **90** 104865

Perkins O, Alexander P, Arneth A, Brown C, Millington J D A and Rounsevell M 2023 Toward quantification of the feasible potential of land-based carbon dioxide removal *One Earth* **6** 1638–51

Qiu Y, Iyer G, Fuhrman J, Hejazi M, Kamboj P and Kyle P 2024 The role and deployment timing of direct air capture in Saudi Arabia's net-zero transition *Environ. Res. Lett.* **19** 064042

Realmonte G, Drouet L, Gambhir A, Glynn J, Hawkes A, Köberle A C and Tavoni M 2019 An inter-model assessment of the role of direct air capture in deep mitigation pathways *Nat. Commun.* **10** 3277

Roe S, Streck C, Obersteiner M, Frank S, Griscom B, Drouet L, Fricko O, Gusti M, Harris N and Hasegawa T 2019 Contribution of the land sector to a 1.5 C world *Nat. Clim. Change* **9** 817–28

Rogelj J, Den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, Schaeffer R, Sha F, Riahi K and Meinshausen M 2016 Paris Agreement climate proposals need a boost to keep warming well below 2 °C *Nature* **534** 631–9

Sammarchi S, Li J, Yang Q, Yu J and Chen L 2024 Decarbonizing China's coal power with sustainable BECCS: a techno-spatial analysis *Clean Technol. Environ. Policy* **26** 1553–70

Shahbaz M, AlNouss A, Ghiat I, Mckay G, Mackey H, Elkhalifa S and Al-Ansari T 2021 A comprehensive review of biomass based thermochemical conversion technologies integrated with CO₂ capture and utilisation within BECCS networks *Resour. Conserv. Recycle* **173** 105734

Shi W, Ou Y, Smith S J, Ledna C M, Nolte C G and Loughlin D H 2017 Projecting state-level air pollutant emissions using an integrated assessment model: GCAM-USA *Appl. Energy* **208** 511–21

Sizewell C (University of Nottingham, Strata Technology and Atkins and Doosan Babcock) 2022 DAC and GGR innovation programme project NNB202043—heat-driven direct air capture powered by nuclear power plant (available at: https://dualchallenge.npc.org/files/CCUS_V1-FINAL.pdf)

Speizer S, Fuhrman J, Aldrete Lopez L, George M, Kyle P, Monteith S and McJeon H 2024 Integrated assessment modeling of a zero-emissions global transportation sector *Nat. Commun.* **15** 4439

Strefler J, Bauer N, Humpenöder F, Klein D, Popp A and Kriegler E 2021 Carbon dioxide removal technologies are not born equal *Environ. Res. Lett.* **16** 074021

Strefler J, Bauer N, Kriegler E, Popp A, Giannousakis A and Edenhofer O 2018 Between Scylla and Charybdis: delayed mitigation narrows the passage between large-scale CDR and high costs *Environ. Res. Lett.* **13** 044015

Sun L-L, Cui H-J and Ge Q-S 2022 Will China achieve its 2060 carbon neutral commitment from the provincial perspective? *Adv. Clim. Change Res.* **13** 169–78

Terlouw T, Treyer K, Bauer C and Mazzotti M 2021 Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources *Environ. Sci. Technol.* **55** 11397–411

U.S. Department of State 2023 Sunnylands statement on enhancing cooperation to address the climate crisis (available at: www.state.gov/sunnylands-statement-on-enhancing-cooperation-to-address-the-climate-crisis/)

Ueckerdt F, Bauer C, Dirnachner A, Everall J, Sacchi R and Luderer G 2021 Potential and risks of hydrogen-based e-fuels in climate change mitigation *Nat. Clim. Change* **11** 384–93

UNFCCC 2015 *Paris Agreement* vol 26

UNFCCC 2020 2050 carbon neutral strategy of the Republic of Korea (available at: https://unfccc.int/sites/default/files/resource/ITS1_RKorea.pdf)

UNFCCC 2021a China's achievements, new goals and new measures for nationally determined contributions (available at: <https://unfccc.int/sites/default/files/NDC/2022-06/China%20%28%20Achievements%20%20New%20Goals%20and%20New%20Measures%20for%20Nationally%20Determined%20Contributions.pdf>)

UNFCCC 2021b China's mid-century long-term low greenhouse gas emission development strategy (available at: <https://unfccc.int/sites/default/files/resource/China%20%28%20%20%20Mid-Century%20Long-Term%20Low%20Greenhouse%20Gas%20Emission%20Development%20Strategy.pdf>)

UNFCCC 2022 Japan's nationally determined contribution (NDC) (available at: https://unfccc.int/sites/default/files/NDC/2022-06/JAPAN_FIRST%20NDC%20%28UPDATED%20SUBMISSION%29.pdf)

UNFCCC 2023 EU National long-term strategies (available at: https://commission.europa.eu/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-long-term-strategies_en)

United States Department of State 2021a The long-term strategy of the United States: pathways to net-zero greenhouse gas emissions by 2050 (United States Department of State and the United States Executive Office of the President) (available at: www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf)

United States Department of State 2021b U.S.-China joint glasgow declaration on enhancing climate action in the 2020s (U.S. Department of State) (available at: www.state.gov/u-s-china-joint-glasgow-declaration-on-enhancing-climate-action-in-the-2020s/)

van Soest H L, den Elzen M G J and van Vuuren D P 2021 Net-zero emission targets for major emitting countries consistent with the Paris Agreement *Nat. Commun.* **12** 2140

van Vuuren D P et al 2018 Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies *Nat. Clim. Change* **8** 391–7

Wang F, Wang P, Xu M, Li X, Tan W and Li H 2023a Near-term suitability assessment of deploying DAC system at airport: a case study of 52 large airports in China *Atmosphere* **14** 1099

Wang R et al 2022 Alternative pathway to phase down coal power and achieve negative emission in China *Environ. Sci. Technol.* **56** 16082–93

Wang R et al 2023b A high spatial resolution dataset of China's biomass resource potential *Sci. Data* **10** 384

Wang R, Chang S, Cui X, Li J, Ma L, Kumar A, Nie Y and Cai W 2021 Retrofitting coal-fired power plants with biomass co-firing and carbon capture and storage for net zero carbon emission: a plant-by-plant assessment framework *GCB Bioenergy* **13** 143–60

Wang S, Fang C, Chen X, Liang J, Liu K, Feng K, Hubacek K and Wang J 2024 China's ecological footprint via biomass import and consumption is increasing *Commun. Earth Environ.* **5** 1–12

Weng Y, Cai W and Wang C 2021 Evaluating the use of BECCS and afforestation under China's carbon-neutral target for 2060 *Appl. Energy* **299** 117263

West T A P, Wunder S, Sills E O, Börner J, Rifai S W, Neidermeier A N, Frey G P and Kontoleon A 2023 Action needed to make carbon offsets from forest conservation work for climate change mitigation *Science* **381** 873–7

Wilson C 2012 Up-scaling, formative phases, and learning in the historical diffusion of energy technologies *Energy Policy* **50** 81–94

Wu Y, Deppermann A, Havlík P, Frank S, Ren M, Zhao H, Ma L, Fang C, Chen Q and Dai H 2023 Global land-use and sustainability implications of enhanced bioenergy import of China *Appl. Energy* **336** 120769

Xu H, Yue C, Zhang Y, Liu D and Piao S 2023 Forestation at the right time with the right species can generate persistent carbon benefits in China *Proc. Natl Acad. Sci.* **120** e2304988120

Yang P et al 2023 The global mismatch between equitable carbon dioxide removal liability and capacity *Natl Sci. Rev.* **10** nwad254

Yu S et al 2019 CCUS in China's mitigation strategy: insights from integrated assessment modeling *Int. J. Greenhouse Gas Control* **84** 204–18

Yu S et al 2023 Co-benefits between air quality and climate policies in Guangdong and Shandong Provinces in China p 44

Zhang A et al 2021 The implications for energy crops under China's climate change challenges *Energy Econ.* **96** 105103

Zhang X, Geng Y, Shao S, Dong H, Wu R, Yao T and Song J 2020 How to achieve China's CO₂ emission reduction targets by provincial efforts?—an analysis based on generalized Divisia index and dynamic scenario simulation *Renew. Sustain. Energy Rev.* **127** 109892

Zhang X, Yang X and Lu X 2023a CCUS progress in China (available at: www.globalccsinstitute.com/wp-content/uploads/2023/03/CCUS-Progress-in-China.pdf)

Zhang Y-L, Kang J-N, Dai M, Hou J-J, Liu L-C, Wei Y-M and Liao H 2023b The role of BECCS technology in achieving carbon neutrality: evidences from China's coal power sector *Environ. Dev. Sustain.* **1** 1–25

Zhou S, Tong Q, Pan X, Cao M, Wang H, Gao J and Ou X 2021 Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: a global perspective *Energy Econ.* **95** 105137