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ABSTRACT

Sudden reductions in crop yield (i.e., yield shocks) severely disrupt the food supply, intensify food insecurity, de-
press farmers' welfare, and worsen a country's economic conditions. Here, we study the spatiotemporal patterns
of wheat yield shocks, quantified by the lower quantiles of yield fluctuations, in 86 countries over 30 years.
Furthermore, we assess the relationships between shocks and their key ecological and socioeconomic drivers
using quantile regression based on statistical (linear quantile mixed model) and machine learning (quantile ran-
dom forest) models. Using a panel dataset that captures spatiotemporal patterns of yield shocks and possible
drivers in 86 countries, we find that the severity of yield shocks has been increasing globally since 1997. More-
over, our cross-validation exercise shows that quantile random forest outperforms the linear quantile regression
model. Despite this performance difference, both models consistently reveal that the severity of shocks is associ-
ated with higher weather stress, nitrogen fertilizer application rate, and gross domestic product (GDP) per capita
(a typical indicator for economic and technological advancement in a country). While the unexpected negative
association between more severe wheat yield shocks and higher fertilizer application rate and GDP per capita
does not imply a direct causal effect, they indicate that the advancement in wheat production has been primarily
on achieving higher yields and less on lowering the possibility and magnitude of sharp yield reductions. Hence, in
the context of growing extreme weather stress, there is a critical need to enhance the technology and manage-
ment practices that mitigate yield shocks to improve the resilience of the world food systems.
© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

particularly those countries that rely on a handful of export countries.
As the production of a major commodity concentrates in a few region-

To meet rising food demand and ensure food security, increasing
crop yield over the long term has been the focus of agricultural produc-
tion (Ray et al., 2013). However, large year-to-year fluctuations in crop
yield pose a significant threat to global food security. These fluctuations,
if not within manageable limits, can trigger a cascade of effects on global
food systems (Heslin et al., 2020). In particular, large and abrupt reduc-
tions in yield compared to its average level can result in shortages of
crop products, reduced farmers' income, increased volatility of com-
modity markets, disrupted resilience of food supply, and a surge in
food prices (Chen and Villoria, 2019; Davis et al., 2021; Tigchelaar
et al., 2018). Such a situation is concerning for countries that are unable
to absorb the shocks due to low economic and biophysical capacity,
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ally specialized countries, simultaneous failure of production may be-
come more likely, due to rising future vulnerabilities in the face of
changing climatic conditions and extreme weather (Heslin et al.,
2020; Mehrabi and Ramankutty, 2019; Tigchelaar et al., 2018). There
is a need to understand the historical patterns of severe yield shocks
to reduce crop production volatility caused by them.

While many studies have characterized spatiotemporal variations in
crop yield, few have focused on yield shocks. The yield variability is pri-
marily measured using statistical dispersion indicators such as the coef-
ficient of variation (CV) and standard deviation (SD) (SI Appendix,
Section S1). Implemented at multiple spatial scales (regional to global),
these indicators include both positive and negative deviations of crop
yield from its average. However, large negative deviations have a dis-
proportionately higher adverse impact on farmers' revenues and am-
plify production-related risks. These negative deviations in yield are
most felt by the world's poor, who spend 50-70 % of their income on
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food (von Braun, 2008). Hence, this study addresses the critical global
food security challenge by conducting an in-depth investigation on
the spatiotemporal patterns of negative shocks and their drivers.

Among the limited number of studies on yield shocks, most define
the yield shocks in a relative scale using the lower percentile of normal-
ized yield anomalies (Yield residuals/Expected yield) (Cernay et al.,
2015; Schauberger et al., 2018; Zhu et al., 2021). Although the normal-
ization reduces dimension dependency and allows for cross-region
comparison, it conceals the actual magnitude of shock, which is critical
for food security. The size of a shock is required to assess the time and
resources needed to recover from shocks while maintaining a country's
food supply (Cottrell et al., 2019; Gephart et al., 2017). Therefore, in this
study, we define yield shocks as lower quantiles of yield anomalies.

Although several studies have investigated potential drivers for yield
shocks, many fall short in considering both ecological and socioeco-
nomic drivers and quantifying their effects. Crop production is ex-
tremely sensitive to environmental conditions, especially climate and
extreme weather (Gomez et al., 2021; Mueller et al., 2012; Ray et al.,
2013; Tittonell et al., 2008; Zhu et al., 2021), but yield variability is
also affected by other factors (Tigchelaar et al., 2018). A qualitative
global shock assessment conducted by Cottrell et al. (2019) showed
that about half of the crop sector shocks occurred due to climate and
weather events, while the rest happened due to mismanagement, eco-
nomic factors, geopolitical events, policy change, and other unknown
factors. This demonstrates that, in addition to extreme weather and cli-
mate, it is critical to consider other drivers of yield shocks. In the thor-
ough investigation by Cottrell et al. (2019), the drivers' assessment
was qualitative, and their effects remained unquantified. Quantification
of these effects is required to assess the shock risk in various countries
and inform actions to reduce shocks. In this study, we quantitatively
evaluated these shock-driver relationships.

We address the above research gaps with a focused data analysis by
combining statistical and machine learning methods, applying them to
extensive datasets on agricultural production, weather, and socioeco-
nomic development, and extracting data-driven conclusions and rec-
ommendations. Using wheat as an example, we characterize yield
shocks for countries around the world during 1979-2014 with the
lower quantiles, such as 1 %, 5 %, and 10 %, of the yield fluctuations
(see Section 2.1.5 for the definition of the yield fluctuations). Wheat is
chosen because it is one of the staple crops that is grown, consumed,
and traded globally (Asseng et al., 2015; Khater et al., 2023; Ray et al.,
2015; Vishwakarma et al., 2022). Our quantile regression models inves-
tigate the relationship of both environmental (e.g., extreme weather
stress) and socioeconomic (e.g., gross domestic product (GDP) per
capita) drivers with the yield shocks. These types of models have rarely
been implemented to yield shocks in particular. The quantile regression
approach enables us to concentrate on the lower quantiles of crop yield
anomalies (i.e., negative shocks) and assess their relationships with var-
ious drivers (Arshad et al., 2018; Barnwal and Kotani, 2013; Evenson

Table 1
Data types and sources of variables used in the analysis.

Artificial Intelligence in Agriculture 15 (2025) 564-572

and Mwabu, 2002; Gyamerah et al., 2019; Makowski et al., 2007;
Nyamekye et al., 2016; Ricker-Gilbert and Jayne, 2012). This global
study advances previous research on quantifying yield variability,
shocks, and their drivers, and discusses the implications for food
security.

2. Materials and methods
2.1. Data sources

This study examined the relationship between yield shocks and their
drivers using panel data for 86 countries from 1979 to 2014. We derived
the crop yield shocks from wheat yield (kg N ha=! yr—') representing
nitrogen (N) in the harvested crop from the Global Database of Nitrogen
Budget in Crop Production (Zhang et al., 2015). The wheat yield is
expressed in kg N ha~!yr—!, considering the protein provision per hect-
are of wheat plantation. This yield variable is a multiplication of the
yield level and N content of crop wheat. Therefore, the spatial and tem-
poral pattern of this yield variable is the same as that of yield measured
by kg ha=! yr~! (SI Appendix, Section S3). The major drivers included
extreme weather stress, GDP per capita, percentage value of agriculture
in GDP (namely, agricultural GDP), N fertilizer application, and percent-
age area irrigated. Table 1 shows the data sources and spatiotemporal
resolutions of the drivers. We also listed the hypothesized relationships
of drivers with shocks and underlying mechanisms in SI Appendix,
Table S1. The analysis was carried out for countries with at least ten
years of wheat yield records. Furthermore, we eliminated those country
and year combinations with missing data in either of the collected
datasets. Countries that split or merged during the study period were
analyzed as a single region (e.g., the Former Soviet Union).

Both climatic and non-climatic factors were examined as drivers of
yield shocks. For the climate variables, we chose extreme weather stress
as it has been shown in the past to adversely impact crop yield and food
security. Under the category of non-climatic drivers, we considered four
factors: N fertilization, area equipped for irrigation, per capita GDP, and
percentage value of agriculture in GDP. While numerous other non-
climatic factors can result in shocks, these variables were selected be-
cause of their strong relationship to country-level crop yields, high
data quality, and low collinearity among them (SI Appendix, Fig. S7
and Table S3). We discussed the uncertainty and limitations of the un-
considered variables in the discussion section of this paper.

2.1.1. Extreme weather stress

To evaluate the extreme weather stress during the growing period of
a crop, we developed a range of crop-specific extreme weather indices
(Vishwakarma et al., 2022). These weather indices have been used to
quantify the weather conditions that are outside the optimal crop grow-
ing conditions (Lyubchich et al.,, 2019; Zhu et al,, 2015). The indices
were derived in a five-step process. First, daily temperature and

Data Data source Spatial scale Temporal scale
Weather

Maximum temperature ECMWEF (Berrisford et al., 2011) 0.75° 1979-2014
Minimum temperature

Total daily precipitation

Crop presence

Harvested area (ha) Monfreda et al. (2008) 5 arcmin 2000

Crop calendar Sacks et al. (2010) 0.5° 1-365 (day of year)
Wheat-specific nitrogen fertilization (kg N ha=!' yr=1) Zhang et al. (2015) 86 countries 1979-2014
Wheat-specific nitrogen yield (kg N ha=' yr=') Zhang et al. (2015) 86 countries 1979-2014
Area equipped with irrigation (1000 ha) FAOSTAT (2018) 86 countries 1979-2014
Cropland area (1000 ha) FAOSTAT (2018) 86 countries 1979-2014
GDP per capita (constant US$2010) World Bank (2018) 86 countries 1979-2014
Agriculture, forestry, and fishing, value added (% of GDP) World Bank (2018) 86 countries 1979-2014
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precipitation data within the wheat growing season (based on the crop
calendar map, Sacks et al. (2010)) were used to calculate 17 weather in-
dices (SI Appendix, Table S5) for each grid cell and each year from 1979
to 2014. Second, using the gridded harvested area as weights, we aggre-
gated each of the 17 weather indices to a national scale. Third, to reduce
the dimensionality and avoid collinearity of the weather indices (SI Ap-
pendix, Fig. S21), we applied principal component analysis (PCA). With
the heuristic elbow method, we selected the first two principal compo-
nents (PCs) that represented heat and water, and cold weather stresses
in a country (SI Appendix, Figs. S22-S23). Fourth, within each PC, we se-
lected the dominant weather indices using the elbow method (SI Ap-
pendix, Fig. S23). The first PC is dominated by all cold stress related
weather indices (i.e., Day growing degree low, DGDL, and Night growing
degree low, NGDL). The second PC generally represents heat and water
stress as it comprises the heat (i.e., Day growing degree high, DGDH)
and drought (i.e, Precipitation low, PREL) indices (SI Appendix,
Fig. S23). Finally, we calculated the extreme weather stress for each se-
lected PC as a linear combination of the selected weather indices,
weighted by the estimated contribution of the weather indices in that
PC. We hypothesized that higher severity of shocks corresponds to
higher weather stress in a country (SI Appendix, Table S1). We per-
formed analyses for both spring wheat and winter wheat. Here we pre-
sented the results based on spring wheat, but the results for winter
wheat are in SI Appendix, Section S11.

2.1.2. Gross domestic product (GDP) and agricultural GDP

The GDP per capita (constant US$2010) indicates the level of a
country's economic development and technological advancement. The
GDP per capita involves the investment in fertilizers, management prac-
tices, and machinery (Furman et al., 2002; Najafi et al., 2018). We in-
cluded GDP per capita as one of the potential drivers in the analysis
because we consider technological improvement to be one of the critical
factors to reduce yield shocks. Furthermore, we considered the percent-
age share of the agricultural sector in total GDP, namely agricultural
GDP, which indicates the contribution of agriculture to the economy
of a country by producing goods and generating labor and capital. We
hypothesized that higher GDP per capita and agricultural GDP corre-
spond to smaller yield shocks and higher crop yields.

2.1.3. Nitrogen fertilizer application

Fertilizer is a regularly used input in the field by farmers to boost
crop yield, influence grain protein concentration, and achieve yield
stability. We hypothesized that higher N fertilizer application results
in lower yield shocks and higher yields. N fertilizer application
(kg N ha=! yr™ "), obtained from Zhang et al. (2015), is the N fertilizer
used on cropland at the country level.

2.1.4. Irrigated area

The establishment of irrigated facilities in a region tends to reduce
the impact of climate variation on yield and, thus, the severity of shocks
(Najafi et al., 2018). The fraction of cropland area equipped with
irrigation was used in this study to quantify the role of irrigation in alle-
viating yield shocks. The percentage irrigated area (PIA) (Eq. 1) is the
ratio of the land area equipped with irrigation (AEI) and the cropland
area (CA):

_ AElgoyr
CAco,yr

PlAcoyr = (1

where AEI includes the “areas equipped for full control irrigation,
equipped lowland areas, and areas equipped for spate irrigation”
(Portmann et al., 2010). The subscripts co and yr represent the country
and year, respectively. The selection of AEI in this study is due to its high
data quality and coverage of majority of countries compared to other
country-level datasets representing irrigated area (e.g., wheat-specific
irrigated area from AQUASTAT(FAOQ, 2018)).
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2.1.5. Quantifying yield shocks

To quantify yield shocks, we chose lower quantiles (i.e., 1%, 5 %, and
10 %) of yield fluctuations, which have been used to investigate extreme
yield losses (Cernay et al., 2015; Schauberger et al., 2018; Zhu et al.,
2021). The choice of quantiles was motivated by the impact of large
abrupt yield declines and their consequent effects on food security.
More specifically, in this study, a two-step approach was adopted to
quantify yield shocks. First, we detrended each country's wheat yield
time series using a locally weighted regression approach (Cleveland,
1979; Hastie et al., 2009) (see detailed steps in Vishwakarma et al.
(2022) and SI Appendix, Section S3). We calculated the yield fluctua-
tions as the difference between wheat yield and expected yield value.
Our analysis focuses on the actual yield drop instead of the relative
yield drop as it reflects the actual magnitude of the production gap re-
quired to fulfill the typical wheat demand in the supply chain, and it
has a more direct effect on food security and consumer prices. In
quantile regression models, these yield fluctuations were used as the re-
sponse variable. Second, the lower quantiles of the fluctuations were
calculated to quantify yield shocks per country and sub-period. We vi-
sualized these lower quantiles to describe the spatial and temporal pat-
terns of the shocks (SI Appendix, Section S4). Since the yield
fluctuations are defined as deviations from the local time mean (not
from some fixed value), all deviations that adversely impact yields are
negative numbers. Particularly, the lower quantiles of the fluctuations
are negative; and more negative numbers imply more severe shocks.
In addition to testing the actual yield fluctuations, we performed a sen-
sitivity test using relative yield drops (SI Appendix, Table S2 and Fig. S6).
Following these definitions of shocks, the hypothesized relationships of
shocks with drivers are in SI Appendix, Table S1.

2.2. Modeling the effects of drivers on yield shocks

2.2.1. Linear quantile mixed model

The linear quantile mixed model (LQMM) was chosen to investigate
the relationship between yield shocks and drivers because of its popu-
larity in food security and agricultural studies, as well as its ease of
regressing drivers on quantiles (Asante et al., 2021; D'Souza and
Jolliffe, 2014; Kingwell and Xayavong, 2017; Penafiel et al., 2019;
Tadesse et al., 2014). It is based on the parametric quantile regression
approach, which is an extension of linear regression to analyze the con-
ditional distribution of the response. In addition to the existing features
of quantile regression, LQMM provides a flexible framework to include
random intercepts and random slopes (Eq. 2). In this study, only ran-
dom intercept was used at the level of the country:

Yipo = @+ By Xict + Y + € (2)
where Y, represents is the p™ quantile of yield fluctuations, covariates
X; include heat and water stress, cold stress, N fertilization, per capita
GDP, percentage value of agricultural GDP, and percentage irrigated
area (i=1,...,6), a and 3 are fixed intercept and slopes, *y is random
intercept, c =1, ..., C; Cis the number of countries, ¢ is random error,
and t represents the year. We used the R package Igmm (Geraci,
2014) to fit LQMMs. For selecting significant covariates in LQMM, step-
wise regression was used with a forward selection approach.

This study employs a tree-based model (random forest), which is
another form of additive models, instead of spline-based methods to ap-
proximate nonlinear relationships (Hastie et al., 2009). The parametric
linear model (2) can be extended to a nonlinear case by replacing
(some of) the coefficients 3 with nonparametric smooth functions f
(X). These functions provide local scatterplot smoothing by using linear
or nonlinear building blocks such as the splines in generalized additive
models (GAMs) and multivariate adaptive regression splines (MARS)
(Hastie et al., 2009). Spline-based estimates are gaining popularity in
the analysis of weather patterns (Lobell et al., 2011; Wongsai et al.,
2017), crop yields (Bucheli et al., 2022; Lobell et al., 2014), and food
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security (Hanspach et al., 2017; Na et al., 2022) due to their ability to
accommodate the nonlinearity and nonmonotonicity of individual
relationships.

2.2.2. Quantile random forest

Quantile random forest (QRF), a machine learning method, was
adopted as a complementary nonparametric approach to validate the
results of the LQMM analysis. Unlike LQMM, the QRF assesses nonlinear
relationships between the shocks and their drivers. The R packages grf
(Athey et al, 2019), ranger (Wright et al, 2017), and MML
(Lyubchich, 2021) were used to fit the models and display partial de-
pendence plots. To assess the statistical significance of the covariates
in QRF, we used the 95 % simultaneous confidence intervals (SCIs) for
the proportions of times each covariate was selected for making a split
in the QRF trees. Covariates for which the lower end of the SCI was
above zero were considered statistically significant. Furthermore, we
assessed and ranked the importance of the covariates based on the
proportions that were used for calculating SCL.

2.2.3. Assessing model performance

The model performance was evaluated in a cross-validation study.
The cross-validation was repeated 100 times, with 70 % of the panel
data randomly selected for training and the remaining 30 % for testing
the models. The performance of each model was evaluated using the
quantile-weighted errors (Eq. 3) (Haupt et al., 2011):

ATWE(p) = nlpzl-z]pp v; — &) 3)

where nj, is the number of observations, y; is the observed values, g;(v)
represents the predicted quantiles, p is the probability for calculating

quantiles (e.g., we used p = 0.01, 0.05, and 0.10), and p,, is the quantile
loss function (Eq. 4):

pp(u) =(p—li<o)u, (4)
where I, - ¢ is the indicator function taking on the value of 1 when the
inequality u <0 is true and the value of 0 otherwise, and u is the input
value of the quantile loss function.

Artificial Intelligence in Agriculture 15 (2025) 564-572

A higher value of ATWE indicates a higher error, while a lower value
shows a low error.

3. Results
3.1. Historical trends of crop yield variation

Although wheat yield has increased globally since 1979 (Fig. 1c),
the variation of wheat yield has either increased or stagnated, and
yield shocks have become more intense. The two indicators, SD and
CV, typically used for measuring yield variability, show slightly differ-
ent global trends: the distribution of SDs shifts to the right during the
9-year periods, suggesting increased variability (Fig. 1a); the shift in
the distribution of CVs is less apparent and some countries have
even shown a reduction in CV (Fig. 1b). Nevertheless, the lower
quantiles of detrended yields indicate that negative shocks have inten-
sified, as evidenced from the leftward shifts of the density curves
(Figs. 1d-f). To further validate relationships observed in the density
plots, we examined pairwise relationships between the yield
shock indicators and the year using linear regression (SI Appendix,
Table S8).

The general pattern of SD and CV observed globally still holds for
most countries with only a few exceptions (SI Appendix, Figs. S1-S5).
Both SD and CV of yield increase in European and African countries. In
these two regions, a few countries, including Namibia, Mali, Chad,
Niger, Sweden, France, and the Netherlands, have consistently experi-
enced higher variability compared to other countries, particularly after
1988 (SI Appendix, Figs. S1 and S2). The same set of countries also
faced large negative shocks (i.e., very low 1 % quantile) from 1997 to
2014 (SI Appendix, Fig. S3). The findings for these countries align with
other studies assessing yield variability, demonstrating higher yield var-
iations in European and African regions (Ben-Ari and Makowski, 2014).
In western Europe, around 31-51 % yield variations are explained by cli-
mate variations (Ray et al., 2015). While climate variability could be one
of the dominant factors impacting wheat yield variations, the remaining
variations can be attributed to a complex interplay between manage-
ment practices, regional characteristics, and geopolitical factors
(Cottrell et al.,, 2019).

a b
( ) 10.0 ( )
20.0015 275
2 0.0010 2 50
£ 0.0005 S 25
0.0000+ . ; ; 0.0+ . ; : ’ :
0 5 10 0.0 0.1 0.2 0.3 0.4
Standard deviation (kg N ha™' yr") Coefficient of variation
(c) (d)
20.00015 29e-04 1979-1987
£0.00010 2 6e-04 1988-1996
o} 5] 1997-2005
-3 0.00005 < 3e-04 [ 2006-2014
0.00000+ ; ; ; 0e+00-+, ; ; ; ;
0 50 100 150 -25 -20 -15 -10 -5 0
Mean (kg N ha™ yr) Lower 1% of yield fluctuations
(kg N ha' yr")
(e) ®
> 16-03 >‘0.0015
21e- 2
g, g 0.0010
g 5e-04 $0.0005
0e+00- ¢ - ; ; 0.0000 y ; ;
-20 -15 -10 -5 -15 -10 -5 0
Lower 5% of yield fluctuations Lower 10% of yield fluctuations
(kg N ha' yr) (kg N ha' yr')

Fig. 1. Shifts in the distribution of yield and its variability over time, quantified with different indicators (panels a-f). The x-axes show the values of the indicator in kg N ha~! yr~! except for
the coefficient of variation that is dimensionless, while the y-axes show the distribution densities estimated using Gaussian kernel and plotted using R package ggplot2 function
geom_density(). Darker colored lines correspond to distributions for more recent sub-periods. The red circle demonstrates the declines in density (i.e., shocks of —5 to 0 kg N ha=! yr!
become less common) in the recent years, while red rectangles show heavier left tails (i.e., increase in yield shocks) in more recent sub-periods.
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Table 2
Estimated coefficients of the linear quantile mixed models (LQMMs) for 1979-2014 for
the three lower quantiles. Standard errors of the coefficients are in parentheses.

Response Driver Coefficient
Yield shock level (1 % Heat and water —1.86 x 1073(3.35 x 107%)
quantile) stress

—3.41 x 1074 (4.22 x 107%)
—8.24 x 1074 (1.18 x 107%)

GDP per capita
Heat and water
stress

Cold stress
GDP per capita
Heat and water
stress

Cold stress
GDP per capita

Yield shock level (5 %
quantile)

—4.94 x 1074 (1.83 x 107%)
—234 x 1074 (1.76 x 1075)
Yield shock level (10 % —542 x 1074 (757 x 107°)
quantile)
—3.68 x 1074 (1.57 x 107%)
—1.74 x 1074 (2.19 x 107%)

Note: see Method section for details related to the selection of drivers in the models.

3.2. Relationship between yield shocks and potential drivers

The results from both the quantile random forest (QRF) and linear
quantile mixed model (LQMM) show that higher extreme weather
stress corresponds to more severe yield shocks for all three selected
shock levels (i.e., quantiles 1 %, 5 %, and 10 %; Table 2 and Fig. 2a-b).
This finding is consistent with the hypothesized relationships (SI Ap-
pendix, Table S1). Besides linear relationships estimated with LQMM,
the QRF, which is used as a complementary approach to LQMM, cap-
tures nonlinearities between shocks and extreme weather stress. The
variables that indicate extreme weather stress conditions (e.g., heat
and water stress, and cold stress) in this study are unitless, because

Quantile

‘— 0%  — 5% 1%

(a)
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they are derived using a dimensionality reduction technique, applied
to a set of variables quantifying the number of days crops face extreme
weather stress conditions within the growing period (see Method sec-
tion for more information). Further exploring the partial dependence
plots from QRF (Fig. 2a), we find more prominent negative relationships
with the yield shocks when heat and water stress is in the range
6000-10,000, than when heat and water stress is below 6000. The ma-
jority of shocks in this range are seen in the Middle East and North
Africa. The severity of shocks also increases with the increase in cold
stress, especially when cold stress approaches the threshold of 2000
(Fig. 2b) but stagnates after that. The sudden drop in yield due to higher
cold stress is typical for Eurasian countries such as Denmark, Hungary,
and Norway. The shown pairwise relationships may not fully represent
all the complexity of random forest models and interaction effects cap-
tured with consecutive tree splits. At all levels of quantiles, we found
strong interaction of the heat and water stress with other variables
(Molnar et al., 2022) (see SI Appendix, Section S12).

The per capita GDP is associated with severe yield shocks in both the
QRF and LQMM. Further investigation of the data-driven relationship
from QRF (Fig. 2d) confirms that countries with lower per capita GDP
face less severe shocks compared to higher per capita GDP. The shock
levels in countries with per capita GDP less than US$25,000 do not
vary much, but become intense (i.e., more negative by about 4 kg N ha=—!-
yr—1) between US$25,000-50,000 of GDP per capita. Within this GDP
range, some countries also show a slight alleviation in shocks level
(for example, the USA in 2006-2007, Canada in 2012, and Sweden in
2004, when their per capita GDP was in the range of US
$47,000-50,000). Overall, higher GDP corresponds to more severe

(b)
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shocks, which refutes the proposed hypothesis that countries with
higher GDP per capita tend to have better crop management and
more resources and technologies available, resulting in less intense
shocks (see the mechanism of impact in SI Appendix, Table S1).

In contrast to per capita GDP, increase in the percentage of
agriculture's contribution to GDP (namely, agricultural GDP) corre-
sponds to an overall decrease in severity of yield shocks. The shocks at
all quantiles reduce by about 2 kg N ha~! yr=! with the increase in
agriculture's contribution to GDP (Fig. 2f), except for a few extreme
cases. Those exceptions show a sudden drop in shock (1 % quantile) be-
tween 40 and 50 % of agricultural GDP, mostly due to Chad and Niger in
Sub-Saharan Africa. Among the few countries with agricultural GDP
higher than 50 % (e.g., Nigeria), the 1 % and 5 %-quantile shocks show
an extreme loss in yield.

Similar to per capita GDP, higher N fertilization also corresponds to
severe shocks. The majority of countries' N fertilizer application rates
range from O to 300 kg N ha=! yr~! (i.e., the gray-shaded area in
Fig. 2c). According to the QRF model, the severity of yield shocks in-
creases across all quantiles in that range of N fertilization. After a sudden
increase in severity around 200 kg N ha=! yr=! of N fertilization, the
change in severity of shocks slows down between 200 and
300 kg N ha=! yr~. The countries falling in this range of N fertilization
and shock levels include Bulgaria, Norway, Sweden, and the UK. Only a
few countries have the application rates greater than300kg Nha~'yr— .
Among those countries, Ireland and the Netherlands are the primary lo-
cations for the large shocks at the 1 % quantile level.

The irrigated area exhibits a nonlinear relationship with yield
shocks. For countries with an irrigated area of less than 25 %, an increase
inirrigated area is accompanied by a reduction in the severity of shocks.
In contrast, for countries that heavily rely on irrigation (e.g., where more
than 50 % of cropland area is irrigated), higher irrigated area is associ-
ated with more severe shocks. Furthermore, in water-stressed countries
such as Egypt and Iraq, where up to 100 % of cropland area is irrigated,
shock severity levels off.

3.3. Different importance of drivers

Among all tested drivers for yield shocks, the three most important
ones are heat and water stress, N fertilizer, and agricultural GDP.
While these drivers remain the top three across all quantile levels tested
in this study, their QRF-derived rankings differ across the models (SI Ap-
pendix, Fig. S8). In the QRF for 1 %-quantile shocks, heat and water stress
(the most important) is followed by N fertilizer and agricultural GDP. At
the 5 % shock level, N fertilizer ranks first, and heat and water stress
ranks second. At the 10 % quantile, heat and water stress ranks first,
followed by agricultural GDP and N fertilizer. Cold stress is the least im-
portant factor of all the considered shock quantiles, with the percentage
irrigated area ranking second last. This ranking highlights the most im-
portant factors that can predict the severity of shocks.

3.4. Model performance

In the cross-validation study, we find that the QRF outperforms the
LQMM in predicting shocks (Table 3). A lower average quantile-
weighted absolute error (ATWE) indicates better performance of the
model in estimating the desired quantile. The ATWE uses asymmetric

Table 3
Average quantile-weighted absolute error (ATWE, kg N ha~! yr—!) obtained from QRF and
LQMM for three quantiles from 100 cross-validation runs.

Response LQMM QRF
Shock level (1 % quantile) 0.21 0.16
Shock level (5 % quantile) 0.57 0.52
Shock level (10 % quantile) 0.87 0.83

Note: QRF: quantile random forest; LQMM: linear quantile mixed model.
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penalties depending on the quantile, hence the values should be com-
pared only for the same quantile (within each row of Table 3, not across
the rows). This cross-validation study demonstrates the better ability of
QRF to model quantiles by capturing the nonlinear relationships be-
tween shocks and drivers that cannot be modeled in the linear statistical
model. Furthermore, in cross-validation, LQMM does not show statisti-
cal significance for the majority of drivers except for heat and water
stress, cold stress, and GDP per capita. In the QRF model, however, all
of the considered drivers are significant.

4. Discussion
4.1. Increasing severity of yield shocks and variations in yield

Many indicators have been used to quantify the year-to-year yield
variation, but these indicators show different pictures. In this study,
we considered three indicators, namely CV, SD, and lower quantiles
(1%, 5%, and 10 %) of yield anomalies. Although less apparent, the CV
decreases for some countries over time, indicating a decrease in varia-
tion of wheat yield. In contrast, SD and lower quantiles suggest an in-
crease in variation and intensity of shocks, respectively.

Among these indicators, CV and SD use both the positive and nega-
tive fluctuations in the crop yield to assess the variation in wheat
yield. The different historical trends of yield variability depicted by CV
and SD are mainly caused by the increasing average yield. Overall, the
assessment of SD emphasizes the yield variation in the absolute term,
while CV emphasizes the yield variation in a relative term as it is nor-
malized by the average yield level for the country during a certain pe-
riod (Schauberger et al., 2018; Stuch et al., 2020).

In contrast to these two indicators, lower quantiles quantify the neg-
ative shocks in the crop yield. The negative shocks demonstrate the re-
duction in crop yield and the subsequent severe impact on the two
critical dimensions of food security (i.e., food availability and food stabil-
ity). In particular, we chose the lower quantiles (1 %, 5 %, and 10 %) of
yield anomalies as indicators of shocks because they show extreme
drops in crop yield that threaten food security. Our results show that
in many countries the severity of shocks increased, and this could be
of concern for reaching potential food supply targets by 2050 when
the population is expected to rise by 9 billion (United Nations, 2019).
Our analysis, based on the lower quantiles, will assist in the formulation
of agricultural system policies for climate adaptation and mitigation to
strengthen food security in many regions.

The variable patterns revealed by different indicators for yield varia-
tions highlight the importance of selecting indicators based on the scope
of the study and the emphasis on food security. SD and CV can be used to
quantify the overall historical variations of crop yield. However, indica-
tors such as lower quantiles that emphasize large yield reductions
(i.e., shocks) may assist in developing strategies to avoid potential
shocks and mitigate their impact to maintain food supply and ensure
food security.

4.2. The need to address yield shocks besides achieving higher yield

Although the relationship between shocks and extreme weather
stress is consistent with studies that reported the sensitivity of crops
to weather stress during the growing stage of crop (Arshad et al.,
2018; Ben-Ari et al., 2018; Cottrell et al., 2019; Farooq et al., 2011;
Gomez et al., 2021; Mondal et al., 2013), the association of shocks
with the GDP and N fertilization observed from the RF partial depen-
dence plots is unexpected. The partial dependence plots reveal nonlin-
ear (thresholded) relationships between the yield shock and the two
climatic stresses, which may correspond to a certain climatic region.
For example, there is an apparent negative relationship when the heat
and water stress is in the range of 6000-10,000, compared to when it
is below 6000. This indicates that yield shocks tend to be more sensitive
to heat and water stress when it is high. The LQMM results confirm
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generally negative associations between the shocks and the weather
stresses, although disregard the nonlinearity of these relationships.
Both LQMM and RF show negative associations of shocks with GDP,
and RF suggests a negative association between shocks and N fertiliza-
tion during the research period 1979-2014.

After normalizing yield fluctuations by the average yield, the find-
ings were generally consistent except for some of the relationships
with N fertilization and GDP per capita (SI Appendix, Fig. S6). The
LQMM shows a consistent negative relationship of GDP per capita
with yield shocks (SI Appendix, Table S2, and Table 2), but the RF partial
dependence plots provide more details on the nonlinearities. Thus, the
partial dependence plots in SI Appendix Fig. S6d show the shocks be-
come less severe when GDP rises to about US$7000, but shocks become
more pronounced (more negative) for GDP higher than US$50,000.
Analysis of relative yield shocks revealed that higher fertilization rates
were associated with less severe relative shocks (i.e., fertilization of up
to 100 kg N ha~—! yr~! helped to reduce relative yield shocks, but higher
fertilization rates did not result in further improvements, see Fig. S6¢).
These findings indicate that the unexpected relationships between fer-
tilization rate, GDP, and more severe shocks may be associated with
the higher average yield level enabled by increased fertilization but
not matched with management practices that mitigate other distur-
bance to yield.

This study focuses on the actual size of shocks, which is crucial for
food security. To further investigate these relationships, we classified
countries based on their income levels (SI Appendix, Section S8).
High-income countries have more resources to enhance yield (for ex-
ample, N inputs and irrigation). Even with such resources, these coun-
tries are subject to severe shocks (although not necessarily severe
relative shocks), demonstrating that advances in agricultural produc-
tion technology and management approaches are primarily focused
on achieving higher yields rather than reducing the severity of yield
fluctuations (Bacsi and Hollésy, 2019; Najafi et al., 2018).

Contrary to per capita GDP, the severity of shocks either reduces or
stays the same with the increase in the percentage share of the agricul-
ture sector in GDP for majority of countries. Except for high-income na-
tions, agriculture accounts for a sizable portion of GDP. A substantial
contribution of agriculture to GDP demonstrates the importance of agri-
culture in the economy, especially in developing countries (Kim et al.,
2019). Despite the importance of agricultural GDP in developing coun-
tries, heavy reliance of a country on agriculture makes it vulnerable to
yield shocks as seen in the results. This potentially could result in a
less stable economy and a difficult situation for future food security.

The unexpected results with GDP and N fertilization suggest the ur-
gent need to alleviate yield shocks which have been often overlooked in
the pursuit of higher yield. It is critical to guide the utilization of re-
sources (e.g., fertilizer, labor, energy, irrigation, and land), investment
in technology and management practices, and credit expansion initia-
tives from a focus on yield enhancement to reducing the severity of
yield shocks and their consequential impacts on food security. Other ad-
aptation strategies include investing in climate-smart agriculture
(Lipper et al., 2014), diversifying production and supply to avoid over-
reliance on a few crops for production and consumption (Gomez et al.,
2021; Renard and Tilman, 2019), and planting heat-tolerant crop varie-
ties (Yadav et al., 2018). These adaptations can minimize negative re-
percussions that occur due to shocks (i.e., unemployment, migration,
and conflicts) (Buhaug et al., 2015; Gephart et al., 2017) beyond the
farm level.

4.3, Limitations and future research

Besides the six drivers tested in our modeling analysis, other factors
may contribute to yield shocks. In addition to the six drivers, we exam-
ined a range of socioeconomic and ecological drivers, such as warfare
and fertilizer prices. We checked the data quality and possible collinear-
ity of those drivers (SI Appendix, Section S6). We find that data are
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available for various socioeconomic drivers globally, but many countries
lack high-quality long-term data (SI Appendix, Table S3). For example,
fertilizer price has a monumental influence on yield shocks due to its
role in a farmer's decision to purchase fertilizer, but many developing
countries have either zero-inflated data or missing values. Similar data
constraints are observed when accounting for other variables such as
agricultural machinery, refugees, and warfare. Other socioeconomic
variables are available but are collinear with the variables already in-
cluded in our models. For example, employment in agriculture was
not used in the models because it strongly correlates with agriculture's
contribution to GDP, which is a covariate used in this study (SI Appen-
dix, Section S6). Water stress conditions play a crucial role in crop
growth. Therefore, indicators for water stress (e.g., precipitation high
(PREH) and precipitation low (PREL)) are among the 17 weather indices
examined in this study (SI Appendix, Table S5). Many of these weather
indices (e.g., NGDL and DGDL) have collinearity issues that need to be
addressed before using the variables in a model (SI Appendix,
Section S10). Therefore, we used a matrix of weather indices and re-
duced it to the top PCs and variables within. We named the first princi-
pal component (i.e., PC1) “cold stress” because it mostly consists of cold
stress related weather indices (e.g., NGDL and DGDL), and the second
principal component (i.e., PC2) is named “heat and water stress” due
to the dominance of heat (i.e., DGDH) and water (i.e., PREL) stress re-
lated weather indices (SI Appendix, Fig. S23). The present methodology
employed for developing new covariates to represent extreme weather
stress conditions does not highlight precipitation as a dominant factor,
forming a separate PC (SI Appendix, Fig. S23). Future research will
focus on enhancing the existing approach to specifically investigate
the individual impact of water stress, such as floods, on crop growth.

5. Conclusion

Our work shows that wheat yield shocks, measured by lower
quantiles of yield fluctuations (i.e., 1 %, 5 %, and 10 %), have become
more intense in the past decades. In comparison, standard deviation
(SD) shows an increase in variation over time, while coefficient of vari-
ation (CV) shows a less apparent decrease in yield variation globally and
some countries even show a reduction in CV. Quantile regression anal-
ysis shows that the severity of yield shocks increases with extreme
weather stress, GDP per capita, and nitrogen fertilization, while it de-
creases with the percentage contribution of agriculture to GDP. The as-
sociation of GDP per capita and fertilizer application with shocks
suggests that efforts to improve cropping systems have prioritized in-
creasing yields with less focus on mitigating intense yield shocks. Our
findings highlight the importance of including historical assessments
of shocks and their drivers when evaluating adaptive mechanisms at a
national scale to improve the resilience of global food systems.
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