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Multiscale Physics-Informed Neural Networks for the
Inverse Design of Hyperuniform Optical Materials

Roberto Riganti, Yilin Zhu, Wei Cai, Salvatore Torquato, and Luca Dal Negro*

In this study, multiscale physics-informed neural networks (MscalePINNs) are
employed for the inverse design of finite-size photonic materials with stealthy
hyperuniform (SHU) disordered geometries. Specifically, MscalePINNs are
shown to capture the fast spatial variations of complex fields scattered by
arrays of dielectric nanocylinders arranged according to isotropic SHU point
patterns, thus enabling a systematic methodology to inversely retrieve their
effective dielectric profiles. This approach extends the recently developed
high-frequency homogenization theory of hyperuniform media and retrieves
more general permittivity profiles for applications-relevant finite-size SHU and
optical systems, unveiling unique features related to their isotropic nature. In
particular, the existence of a transparency region beyond the long-wavelength
approximation is numerically corroborated, enabling the retrieval of effective
and isotropic locally homogeneous media even without disorder-averaging, in

formation, spin systems, photonic band
structures and radiation engineering,
nanophotonics, and biological systems, to
name a few."?] A hyperuniform point pat-
tern is characterized by the vanishing of its
structure factor S(k) when the wavevector
goes to zero, resulting in the suppression of
long-wavelength density fluctuations.** In
the context of condensed matter physics, it
was shown that two- and three-dimensional
systems of particles can freeze into highly
degenerate  disordered  hyperuniform
states at zero temperature with stealthy
hyperuniform (SHU) point pattern ge-
ometry, challenging the traditional belief
that liquids freeze into highly symmetric

contrast to the case of uncorrelated Poisson random patterns. The flexible
multiscale network approach introduced here enables the efficient inverse
design of more general effective media and finite-size optical metamaterials
with isotropic electromagnetic responses beyond the limitations of traditional

homogenization theories.

1. Introduction

Disordered hyperuniform systems were recently discovered
in a variety of contexts and phenomena, including glass
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structures.’”) Among the hyperuniform
states of matter, SHU systems are charac-
terized by a structure factor that vanishes
over a compact interval of wavevectors.
Therefore, stealthy hyperuniformity is a
stronger condition than standard hyperuni-
formity because single scattering events
are prohibited within a large interval of
spatial frequencies, thus suppressing the
corresponding far-field radiation over sizeable angular ranges.
Importantly, the structural correlation properties of disordered
SHU media can be largely controlled by the y stealthiness pa-
rameter, which equals the ratio of the number of constrained
wave vectors in reciprocal space to the total number of degrees
of freedom, providing opportunities for tuning the structures
in between traditional (uncorrelated) random media for y =
0% and highly correlated (periodic) structures for y = 100%.
Moreover, it was established that the degree of short-range or-
der in these systems increases with y, inducing a transition
from disordered to crystalline phases when y > 50% in two
spatial dimensions. Recently, the interaction of hyperuniform
media with electromagnetic waves attracted significant interest
resulting in the discovery of amorphous materials with large
and complete photonic bandgaps, photon sub-diffusion and lo-
calization, as well as in the engineering of enhanced light ab-
sorbers, quantum cascade lasers, directional extractors of in-
coherent emission for light-emitting diodes, free-form waveg-
uides, and Luneburg lenses.[®31°] Moreover, the effective elec-
tromagnetic wave properties of stealthy hyperuniform systems
have been studied beyond the quasistatic regime within a rigor-
ously valid nonlocal theory in the thermodynamic limit of infi-
nite system size, leading to the prediction of perfect transparency
intervals up to finite wavenumbers.'>'? This characteristic
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“transparency regime” is manifested by a vanishing imaginary
part of the effective dielectric constant €, of the scattering struc-
ture within a prescribed range of wavelengths.['®!7] Recent work
has shown that this transparency is robust against multiple scat-
tering, opening the doors to numerous improvements in the de-
sign of photonic materials with applications ranging from light
harvesting in solar cells!?! to the design of waveguides.[*!=>°]
However, dynamic homogenization theory cannot be directly ap-
plied to finite-size structures when the strength of the multiple
scattering renders the effective permittivity spatially dependent.
This limitation establishes the need for a more general predictive
approach intended for the inverse design of the effective wave
characteristics of disordered hyperuniform media and photonic
devices.[26-%]

In this study, we propose and develop an accurate and flex-
ible deep-learning methodology to design novel optical mate-
rials by predicting the effective electromagnetic properties of
finite-size hyperuniform structures in the dynamic scattering
regime based on multiscale physics-informed neural networks
(MscalePINNGs). Specifically, we apply this approach to disordered
SHU and Poisson arrays of dielectric nanopillars of radius a
with constant relative permittivity €, and demonstrate enhanced
transparency enabling the accurate inverse retrieval of the ef-
fective dielectric permittivity £(x,y; k) of SHU structures with
different sizes, shapes, and dielectric contrast values. Our re-
sults for SHU structures show accurate inverse retrieval of di-
electric properties without averaging over multiple disorder re-
alizations, in contrast to the case of the uncorrelated Poisson
patterns of equivalent density. Moreover, we show that SHU ar-
rays allow for the retrieval of a locally homogeneous medium
at shorter wavelengths compared to Poisson arrays with identi-
cal particle volume fractions, conjecturing that SHU structures
are transparent over a wider range of wavelengths even in finite-
size systems. Importantly, we also establish through numerous
examples that MscalePINN is a necessary extension of tradi-
tional single-scale PINN platforms in situations where signifi-
cant multiple scattering effects contribute to determine the ef-
fective parameters. Furthermore, by exciting with plane waves
at different angles, we show that finite-size SHU arrays fea-
ture an isotropic locally homogeneous response, i.e., the re-
trieved effective parameters do not depend on the angle of the
incoming radiation. Finally, we introduce an improved architec-
ture of MscalePINN for retrieving binary effective optical media
that are suitable for experimental demonstration using available
nanofabrication techniques. In order to present a comprehen-
sive analysis, we vary the size, shape, incident wavelength, num-
ber of scatterers, stealthiness parameter, and direction of exci-
tation for the investigated structures. Our accompanying Sup-
porting Information details all the relevant calculation parame-
ters and provides additional comparisons with single-scale PINN
calculations.

2. Experimental Section

In optical science and photonics technology, it is often required
to solve differential or integro-differential models governing the
scattering and transport of vector waves inside complex and het-
erogeneous materials or in extended media containing resonant
optical nanostructures.[?-3!l While many advanced techniques
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have been developed for the forward solution of such mathe-
matical problems, the multiscale structure of heterogeneous me-
dia generally prevents the accurate and efficient solution of in-
verse scattering problems of relevance to imaging, acoustics, geo-
physics, remote sensing, and nondestructive testing. Specifically,
in the regime of multiple wave scattering where the transport
mean free path &, is smaller than the system’s size L, the in-
version of differential models becomes a nonlinear and com-
putationally intractable problem for traditional numerical tech-
niques. This prevents the accurate prediction of the desired pa-
rameters of multi-particle complex structures from a limited
set of available field data, driving the development of alterna-
tive and more powerful computational frameworks that leverage
automatic learning techniques and optimization methods.[*?-¢]
Specifically, in the context of photonic inverse design, machine
learning and deep learning techniques have been employed for
the design of state-of-the-art metasurfaces, nanodevices, and
more.[3437-51]

Motivated by the versatility and predictive power of these
techniques, recent developments in scientific machine learn-
ing (ML) introduced physics-informed neural networks (PINNs)
as a viable approach to solve forward and inverse integro-
differential problems efficiently and with minimal computa-
tional overhead.[>>>] Unlike standard deep learning approaches,
PINNS restrict the space of admissible solutions by enforcing
the validity of the PDE models governing the actual physics of
the problem. This is achieved by using relatively simple feed-
forward neural network architectures as trainable surrogate so-
lutions of the partial differential equations (PDEs) on the inte-
rior and boundary points of their definition domains and leverag-
ing automatic differentiation (AD) techniques readily available in
all the most powerful machine learning packages.’?*>%) Specif-
ically, PINNSs are trained on a set of randomly distributed colloca-
tion points to minimize the PDE residues in a suitable norm.[>*>4
Therefore, PINNs can use as little as one training dataset to
obtain the desired inverse solutions, thus relaxing the burdens
often imposed by the massive datasets utilized by alternative,
i.e., non-physics-constrained, traditional data-driven deep learn-
ing approaches.33] These characteristics render PINNs uniquely
effective in solving differential and integro-differential inverse
problems with a minimal overhead compared to the correspond-
ing forward problem.[>>°7-%]

2.1. Mathematical Formulation of MscalePINN

Recently, it became apparent in the ML community that deep
neural networks (DNNs) learn the low-frequency content of avail-
able training data quickly and with a good generalization er-
ror but fail to do so when high-frequency data are involved.
This general Fourier-type principle creates an implicit spectral
bias as DNNs preferentially fit training data using low-frequency
functions.[%6-63] To solve this issue in the context of PINNs sim-
ulations, the approach of multiscale PINN (MscalePINN) was re-
cently introduced. MscalePINN employs different sub-networks
specialized to learn down-shifted frequency representations of
the original datasets and functions by converting the learning and
approximation of high-frequency data to that of low-frequency
ones.[646%]
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To illustrate the approach of the multiscale PINN, a band-
limited function f(x), x € R¢ was considered, whose Fourier

transform f (k) has a compact support, i.e.,

Suppf (k) C B(Kyy,) = {k €R?, [k| <K,,.} (1)

The domain B(K,,,) can be patitioned as a union of M con-
centric annulus with uniform or non-uniform width, e.g., for the
case of uniform width K,

A ={k €R?, (i— 1)K, < k| <iK,},

, (2)
K0=Kmax/M; 1SlSM
so that
B(Kyna) = A (3)

i=1

Asaresult, the functionf(k) can be decomposed in the Fourier
domain as before

M M

Fl) = xa (kf (k) 2 D fi(k) (4)
i=1 i=1

and

Suppfi(k) € A; (5)

This decomposition in the Fourier space gives a corresponding
one in the physical space

M
fo = 2fM (©)
where
fix) = F R k)(x) (7)

From Equation (5), a simple downward scaling can be applied
to convert the high frequency region A; to a low-frequency one.
Namely, a scaled version of f;(k) is defined as

F50%) = filak), o> 1 (8)

1

and, correspondingly, in the physical space

scale 1 ].
£ ) = il (9)
or
fi0) = £ (ax) (10)

So, the spectrum of the scaled function fi(scale) (k) is of low fre-
quency if a; is chosen large enough, i.e.,

(i-1)K, iK,
v < |k| 57} (11)

i 1

Suppf(scale) (k) c {k R,
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Now with DNN’s preference toward low-frequency learning,
with iK,/a; being small, i.e. iK,/a; = O(27 /L), where Lis the char-
acteristic length of the cluster, we can train a DNN f,», (x) to learn
f; (<<al¢) (%) quickly

£ ~ fon () (12)

giving an approximation to f;(x) immediately

fi®) ~ affyni (2x) (13)

and, to f(x) as well

M
@)~ ) alfyn () (14)
i=1

giving the format of the MscalePINN.I®#%] The scale factors «;
can also be converted into trainable parameters to best fit the
target functions. In fact, the factor af can be absorbed into the
weights of the last layer, being linear in most cases, of the sub-
network fy., («;x). Therefore, the factor af outside the sub-network
can be set to be one to avoid involving large values when a; or dis
large without affecting the overall efficiency of MscalePINN after
training. Each sub-network with scaled inputs can be written as:

fo(x) = Wgo(... (Weo(Wx + b + 1) ... ) + B (15)

The general MscalePINN architecture employed in this study
is shown in Figure 1a. The unscaled spatial input parameters x, y
were passed through n independent sub-networks u; (e, a;; 0,)
with activation function sin(x), scaling «;, and hyperparameters
0,. The output of each sub-network u; was then combined into
the MscalePINN solution fi(x,y; 8) according to Equation (14)
and then, through automatic differentiation, it was used to sat-
isfy the PDE, boundary and initial conditions of the differen-
tial equation. The improvement in the expressive power of the
MscalePINN architecture compared to traditional PINNs was
due to the enhanced convergence across a wide range of frequen-
cies through the scaling of the input x with a factor «; together
with the sinusoidal activation function sin(x). In the diagram
shown in Figure 1b,a schematic illustrating the basic idea behind
the MscalePINN approach is presented. In this diagram, a repre-
sentative short-wavelength training field is displayed, where each
component of the electric field is composed of multiple spatial
frequencies. To tackle this multiscale problem, each MscalePINN
sub-network solved the Helmholtz equation in a “zoomed-in”
sub-domain defined by «; - X. That is, the product of «; and the
unnormalized spatial inputs allowed the sine activation function
MscalePINN to access different spatial frequency information
in each sub-network. In doing so, the MscalePINN architecture
can precisely tackle the forward and inverse multiscale solutions
of complex electromagnetic problems. For this reason, the con-
vergence and accuracy of the method for inverse problems can
be improved by extracting spectral information from the inverse
training datasets to inform the settings of the multiscale sub-
networks.

For inverse electromagnetic problems, the following PDE was
considered with the unknown permittivity distribution €(x, y; k),
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Figure 1. a) Schematics of the MscalePINN architecture employed for the inverse design of photonic structures. b) Diagram displaying MscalePINN’s
training approach in practice. In regions of the electromagnetic field with large frequency components, MscalePINN’s sub-networks can train on a

specialized sub-domain of interest and avoid the spectral bias.

generally wavevector-dependent, for the surrogate solution #i(x)
with x = (x,, ..., x;) defined on a domain Q c R%:[>>*7]

A ~ 2;\ 2/\
@ xad_ud_ud_u el ;.56 ] =0 (16)
0x, 0% 0x? 0x,0%,

The calculated values were then combined into the global loss
function £(f), generally of the form:
L(0) = L,(0; Niy) + L, (0; N) + £

ny

(0: Ni) (17)

int

In the loss function above, the component

olorh o o e

2

(18)

2

. 1
L@ Ni) = —— >
int ( WLf«) | Mnt | (xyy)ej\fmt

represents the loss term calculated for the PDE in the interior of
the domain Q and

1

Ly(O;N,) = m
b

> 1B x|, (19)

(xY)EN}

is the loss term for the boundary conditions of the PDE, where (x,
y) € 0Q. Finally, in order to solve general inverse electromagnetic
problems,

£’inv(é; inv) = |N~1 | 2 ||Re[ﬁ’(x’ Y)] - Re[uobs(x’ Y)]I Ii
vl (%)) €N,
+|[Tmid(x, y)] — Im(ug, (% ]| |; (20)

is introduced as the inverse loss term calculated on the real and
imaginary parts of a complex field obtained through numeri-
cal simulations, and V,,,, N}, N;,, are the number of residual
points for each loss term. In the next section, the specific imple-
mentation of MscalePINN employed in this work is described.
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2.2. MscalePINN for Electromagnetic Design

This study deals with electromagnetic parameter retrieval and
homogenization problems for which the Helmholtz equation
was used to constrain MscalePINNs and retrieve the effective
model parameters of optical materials. In particular, the complex
Helmholtz equation was considered for inhomogeneous two-
dimensional effective media under TM polarization excitation:

V2E,(x,y) + &,(x, y; K)K.E, = 0 (21)
where E, is the z-component of the electric field, k, = 2 is the
wavenumber in free space, and €,(x, y; k) is the relative permit-
tivity of the inhomogeneous effective medium (spatially depen-
dent), which is almost constant in the case of a homogenized ef-
fective medium at sufficiently long wavelengths. Because E, and
€,(x, y; k) are complex variables, separating Equation (21) into real
and imaginary parts yields:

V2Re[E,](x,}) = —Re[E,IRele, (x, y; K)JkZ + Im[E,]Imle, (x, y; K)}k2

V2Im{E,)(x,y) = ~Im[E,]Rele, (x, y; k2 — Re[E,]Ime, (x, y; K)}k2

This framework enables to predict Re[e,(x, y; k)] and Imle,(x, y;
k)] independently for the inhomogeneous effective medium and
therefore to naturally quantify the radiation losses that are partic-
ularly difficult to account within the effective index theory.[°*¢7]
Using the introduced MscalePINNs framework, the effective
permittivity parameter €, (x, y; k) of the Helmholtz equation was
inversely retrieved by training the MscalePINNs over a spatial
grid of collocation points and a synthetic dataset composed of
complex field values generated by solving the forward scattering
problem using COMSOL Multiphysics.[®®! For each SHU or Pois-
son array considered, the full complex field in COMSOL was first
generated and then exported the real and imaginary parts in grids
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of a maximum of 350 X 350 points. Smaller grids of 100 x 100
points were sufficient to sample long-wavelength fields, but for
short-wavelength fields, we needed to increase the sampling rate.
The general electromagnetic loss function in Equation (17) was
therefore adapted to the problem by introducing two L,,(0; N,,)
terms, one for the real and one for the imaginary part of Equa-
tion (21). Similarly, the inverse loss term L,,,(0; N,,) was split
into two terms, one for the real and one for the imaginary part
of the field E,. For this inversion problem, it was not needed
to include a boundary condition loss term £,(8; N}). The final
MscalePINN loss function is:

[’(é) = [’Re,int(é; N

Re,int) + L (§7 Nlm,int) + [’Re,inv(é; NR

e,inv)

(23)

Im,int

+£Im,inv(§; NI

m,inv)

After each training was completed and the total loss decreases
to a minimum of 1072, the precision of the effective medium re-
trieved following the methodology that was introduced in refer-
ences was evaluated.[®>*”] To establish the accuracy of the results,
a forward FEM simulation was performed in COMSOL using the
retrieved £(x, y; k), and real and imaginary parts of the fields were
compared with those resulting from considering the actual ge-
ometry of the arrays. Moreover, in this work, the resulting ac-
curacy was quantified using the relative L, error defined in the
Supporting Information S4. If the relative L, error against the
original FEM field was low enough (<10%), then MscalePINN re-
trieved an accurate effective medium. However, for the loss func-
tions, MscalePINN was trained with [? functions (also known
as mean squared error functions®*)) that emphasized large er-
rors nonlinearly, a feature required to retrieve structures in the
multiple scattering regime with high accuracy. Furthermore, as
additional post-processing, for each retrieved £(x, y; k), the aver-
age and standard deviation of its real and imaginary components
were calculated inside an area with a radius equal to the size of
the array. The average over the imaginary part ((Im[é(x, y; k)]))
will determine the onset of the transparency regime predicted by
Torquato et al.l'%”] In contrast, the average and standard devia-
tion over the real part ((Re[é(x, y; k)]), o{(Re[£(x, y; k)])) will char-
acterize the degree of spatial homogeneity of the retrieved effec-
tive medium while providing a quantitative metric to compare
with results from traditional effective medium theory, such as
the Bruggeman mixing formula.[®® It will be shown that, in the
long wavelength regime, the average over the real part of £(x;, y; k)
will agree with the predictions based on the Bruggeman formula.
However, it is shown that the method can also be successfully uti-
lized at shorter wavelengths and in finite-size device structures of
arbitrary shapes beyond the reach of traditional homogenization
theories. Throughout this study, different MscalePINN architec-
tures are employed and, for this reason, Table S1 (Supporting In-
formation) is included that lists all the relevant hyperparameters
employed in our study for each architecture. In addition, Table S1
(Supporting Information) lists the size of the synthetic dataset of
collocation points employed during training. All the codes were
developed in-house using TensorFlow,*’] and numerical simu-
lations were performed using different GPUs depending on the
problem, i.e., either an NVIDIA P100, NVIDIA V100, or NVIDIA
A40 was employed.
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3. Results and Discussion

3.1. MscalePINN Versus Single-Scale PINN Beyond the
Long-Wavelength Regime

We begin our study by showing in Figure 2a direct comparison
between the retrieved effective medium profiles obtained using
the multiscale and the traditional single-scale PINN for a stealthy
hyperuniform array with N = 663 dielectric nanocylinders of ra-
dius a = 67.5 nm, packing fraction ¢ = 0.16, and array diameter
L ~ 8.5 um. Here ¢ = pv(a), where p is the number density of
the array and v(a) is the cross-sectional area of the nanocylinders.
We have included the point pattern employed for this comparison
in Figure S2 (Supporting Information). For this comparison, we
have selected three different datasets for performing the train-
ing for the inverse permittivity retrieval. These datasets are the
distributions of the complex total fields by the SHU structure at
different wavelengths with respect to the predicted “transparency
regime” according to the inequality below that characterizes the
full extent of the transparency region:[*’]

kop™/? = Zﬂ'% <15 p= N (24)

where R is the radius of the SHU array. For the SHU structure
considered in this example, the inequality (24) can be satisfied
up to the threshold wavenumber k,;, ~ 5.4 um~!. Figure 2a, b
show the agreement of the multi-scale and single-scale PINNs
for an incident k, = 2.0 um~! (corresponding to 4 = 3.14 um).
This agreement is expected since this k, value is well below the
threshold value for the transparency region. In Figure 2c,d, how-
ever, we notice that the single-scale PINN architecture cannot
properly retrieve an effective medium for k, = 4.0 um™! (4 =
1.57 pm) since this wavenumber value is much closer to the
edge of the transparency region. In contrast, the MscalePINN
has no trouble retrieving a well-localized and homogeneous ef-
fective medium even at k, = 4.0 um~!. Finally, in panels (e) and
(), we show the complete failure of single-scale PINN to retrieve
a physically meaningful effective medium distribution when the
wavenumber of the incoming radiation crosses the transparency
edge and enters the strong multiple scattering regime at k,, = 5.5
pm~! (1 = 1.14). On the other hand, the MscalePINN retrieves
a well-localized, albeit inhomogeneous, effective medium also in
this case. Therefore, the developed MscalePINN is a powerful ex-
tension of the traditional single-scale PINN that becomes nec-
essary when solving the inverse parameter retrieval problem in
the multiple scattering regime. Additional characterizations of
the investigated SHU structure and the utilized training fields
can be found in Figures S2 and S3 of our Supporting Informa-
tion. Furthermore, we have included a comparison of the train-
ing loss functions for the single-scale PINN and MscalePINN
employed to generate the structures displayed in Figure 4 in
the Supporting Information Figure S11. In the next section,
we will address the role of disorder averaging in retrieving the
effective medium of stealthy hyperuniform and uncorrelated
Poisson arrays.
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Figure 2. Panels displaying the real part of £(x, y; k). Panels (a), (c), and (e) display the accurately retrieved localized effective medium under incoming
field ko vector of 2.0, 4.0, and 5.5 um~" retrieved by MscalePINN. Panels (b), (d), and (f) show that the single-scale PINN can only retrieve an effective

medium in the long-wavelength domain, i.e., ko = 2.0 um™", but fails for the higher k, vectors 4.0 and 5.5 um~".

3.2. MscalePINN Analysis of SHU Ensemble Average

We are interested here in retrieving the homogenized complex
permittivity of the SHU array with diameter L ~ 10 pm com-
posed of N = 396 dielectric nanocylinders of radius a = 125nm,
displayed in Figure 3a. The corresponding structure factor S(k) is

H
o
y (pm)
L, =
o o < o <
"_. <

N

-0 -5 0 5 10

x (pum)
@
2
L4y

5 11t

~ 12 =
g £ 0
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Figure 3. a) SHU array of 396 particles, y = 0.5, ¢, = 3.0, (d)/4 = 0.15
employed for the MscalePINNs homogenization validation. b) The real
part of the FEM electric field inverse train dataset is employed to train
MscalePINNs to homogenize panel (a). The incident plane wave wave-
length is A =3.0 um. c) MscalePINN'’s retrieved real part of £(x, y; k), which
is then used to perform a forward COMSOL simulation displayed in panel
(d) (the real part) to compare with the “true” field used in training.

x (pm)
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shown in Figure S1 of the Supporting Information. For this ex-
ample, we used y =0.5, ¢, =3.0, (d)/4=0.15, and ¢ = 0.2, where
(d) is the average first-neighbor distance of the cylinders in the
array. The MscalePINNs utilized to solve this inverse problem is
a 4-scale MscalePINNs with 4 layer, each with 64 neurons, and it
is trained on the real and imaginary parts of the total electric field
considering the excitation wavelength 4 = 3.0 ym.

In Figure 3b, we display the real part of the electric field dis-
tribution used during training. The effective permittivity profile
(x,y; k) retrieved by MscalePINNs for a single realization of the
investigated SHU array is displayed in panel (c). Remarkably, the
effective permittivity is well-localized within the geometrical sup-
port of the array with a spatially uniform distribution quantified
by the average value (Re[¢(x, y; k)]) = 1.39 + 2.8%. To better char-
acterize the retrieved homogeneous permittivity profile in the
static regime we also calculated the effective medium theory pre-
diction using the Bruggeman mixing formula valid for the bulk
case:(°]

Yrif oo (25)

g te,

where ¢, is the effective permittivity, f; is the filling fraction, and
€, is the permittivity of the i-th component. For a two-phase sys-
tem under TM polarized incident radiation, Equation 25 reduces
to [17]:

Ebrugg =fl‘91 +fZ‘€2 (26)

For the system studied in Figure 3c it yields €prugy = 14 dif-
fering only by 0.6% from MscalePINNs and within the un-
certainty range predicted. In Figure 3d we display the real
part of the total electric field obtained via a forward FEM
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Table 1. Comparison of the real part of the homogenized effective per-
mittivity £ (x, y; k) between the ensemble average and single realization for
SHU and Poisson structures with the same size.

Structure Calculation (Re[&(x, y; K)]) o{(Re[&(x, y; K)])

SHU Single realization 1.391 2.8%
Ensemble average 1.404 1.9%

Poisson Single realization 1.412 8.8%
Ensemble average 1.413 3.4%

calculation performed using the retrieved permittivity profile
from panel (c), which is then used to calculate the L; rela-
tive error including both the real and imaginary part of the
training field. The obtained relative error between the origi-
nal complex field and the one obtained through the retrieved
permittivity parameter was found to be less than 9%, demon-
strating the high accuracy of the solution achieved by the
developed MscalePINNs.

To further investigate the quality of the reconstruction, we also
performed an ensemble average of 10 different SHU configura-
tions all generated with the same stealthiness parameter y = 0.5,
€, = 3.0, and N = 395 + 5 and with constant ¢ = 0.2. Our find-
ings are summarized in the first row of Table 1, which displays
almost identical results to the single realization case when point-
wise spatial averaging is performed over the SHU realizations. As
a comparison, we also show in Table 1 the results of the same en-
semble averaging procedure performed over 10 different realiza-
tions of Poisson uncorrelated random (UR) structures with €, =
3.0, N=395 + 5, and ¢ = 0.2. We note that, compared to the SHU
configuration, the single realization for the Poisson structure fea-
tures a significant inhomogeneity in the spatial distribution of
Re[€(x, y; k)] due to the presence of larger fluctuations among the
different disorder realizations. However, even in this case the re-
trieved effective medium permittivity for the Poisson point pat-
tern has a cumulative L? training error lower than 10~ and a
relative L, error lower than 8% when the forward total FEM field
of the array was compared to the one obtained from the inversely
retrieved permittivity. This indicated that MscalePINNs has re-
trieved an accurate spatially dependent permittivity, i.e., an in-
homogeneous effective medium, demonstrating the importance
of the more general network approach developed here. There-
fore, we conclude that MscalePINNSs retrieved an accurate field
distribution and £(x, y; k) for both the SHU and Poisson arrays
and that, at the single realization level, a locally homogeneous
permittivity can only be retrieved for the SHU structures. In the
next section, we investigate the behavior of the MscalePINN at
shorter wavelengths for both the SHU structures and the uncor-
related Poisson arrays, focusing on a scattering regime where
£(x,y; k) cannot be homogenized using conventional mixing
formulas.[%¢]

3.3. SHU and Poisson Point Patterns Beyond the Long
Wavelength Regime
To compare the effective medium behavior of SHU and Pois-

son structures we generate a Poisson array comparable to the
SHU structure discussed in Section 3.1 with N =~ 660 dielectric
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nanocylinders of radius a = 67.5 nm, ¢ = 0.16, and diameter L »
8.5 um. The arrays and their structure factors S(k) are shown in
Figure S2 of the Supporting Information. Figure 4a, ¢ show the
retrieved £(x, y; k) through the MscalePINN for k, = 3.0 um~! and
5.0 um™!, respectively (corresponding to A = 2.09 pm and 1.26
um). The considered SHU structure has y = 0.3 and ¢, = 4.0. We
observe thatin panels (a) and (c) both solutions are more spatially
homogeneous than the corresponding ones shown in panels (b)
and (d) for the Poisson pattern. Specifically, for the SHU struc-
ture we found (Re[é(x,y; k)]) = 1.48 + 4% and (Im[é(x,y; k)]) =
1073 ~ 0 for 4 = 2.09 um and (Re[(x, y; k)]) = 1.51 + 6.0% and
(Im[£(x, y; k)]) = 10~* ~ 0 for A= 1.26 um. Moreover, we note that
for the short-wavelength simulation near the edge of the trans-
parency region (i.e., k, = 5.5 pm~'), the MscalePINN retrieves an
average value of Re[£(x, y; k)] that is different from the Brugge-
man predicted value of 1.48.

However, for the retrieved permittivity of the Poisson struc-
tures shown in panels (b) and (d), the degree of spatial non-
uniformity becomes apparent already away from the SHU crit-
ical value of 5.5 um~!. Figure 4b shows the inhomogeneous pro-
file of the real part for the Poisson’s effective permittivity profile
&(x, y; k) predicted by the MscalePINNs for A = 2.09 um. For this
inhomogeneous effective medium, (Re[£(x, y; k)]) = 1.49 + 6.8%
and (Im[é(x, y; k)]) = 1073, with an [? training loss lower than
107* and a relative L, error on the FEM validation of 9%. The
inability to retrieve a locally homogeneous effective permittivity
is even more apparent at shorter wavelengths (panel d), where for
A =1.26 ym the MscalePINN correctly predicts an effective per-
mittivity profile &(x, y; k) with (Re[£(x, y; k)]) = 1.52 + 11% shown
in Figure 4d, while (Im[(x, y; k)]) ~ 1072. This evident failure to

(a) P) (b) 2

10
1.8
1.6
g
14
{12
- 1

-10 0 10 -10 0 10
x (pm) x (pm)

Figure 4. Panels displaying the real part of £(x, y; k). a) and b) Comparison
between the retrieved permittivity profile Re[£ (x, y; k)] of a stealthy hyper-
uniform array with y = 0.3, N = 663 particles and the inhomogeneous
effective medium of a Poisson array of N = 661 particles. The inverse total
field used in training had A = 2.09 um ((d)/A = 0.1), or kg = 3.0 um~".
c) and d) Comparison of the same structures used in panels (a) and (b)
but with a lower wavelength of the incident scattering field, A = 1.26 pm
((d)/A=0.14), or kg = 5.0 um~". Already at A = 2.09 um, the Poisson array
displays evident losses and a more inhomogeneous retrieved Re[€ (x, y; k)].
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retrieve a locally homogeneous medium for the random Poisson
pattern for A =2.09 um and 1.26 pm compared to the SHU struc-
ture is both qualitative and quantitative. In fact, the spatial non-
uniformity of Re[£(x, y; k)] for the Poisson structure, measured
by the standard deviation o, is consistently greater than that of
the SHU structure for the same incoming wavelength. We have
included an additional figure that summarizes these findings in
Figure S5 of the Supporting Information where we show the con-
sistent difference in spatial non-uniformity for the Poisson pat-
terns, quantified by both ¢ and (Im[é(x, y; k)]). In Figure S5, we
have included the MscalePINN’s prediction on the single realiza-
tion beyond the k, critical value in the grey-shaded region, where
the relative L, error was higher with a value of 14%. We also note
that for the SHU array, the real part of £(x,y; k) becomes less
homogeneous as we approach the edge of the predicted trans-
parency region. In this case, the MscalePINN continues to accu-
rately retrieve a locally homogeneous effective medium until the
predicted edge of k,, ~ 5.4 pm™~!, while it fails for the Poisson
array far from this critical value. This scenario supports the con-
clusion that it is easier to retrieve a locally homogeneous effec-
tive medium for SHU structures compared to traditional Poisson
random media, and that the SHU local homogenization eventu-
ally fails at larger incident wave vectors than their Poisson coun-
terparts. In the next section, we will address the effects of size
scaling on the MscalePINN predictions of the £(x, y; k) retrieved
permittivity distribution.

3.4. Transparency of Finite-Size SHU Structures

Recent work by Torquato and Kim('®!] led to an exact non-local
strong-contrast expansion of the effective dynamic dielectric ten-
sor €(x, y) in the thermodynamic limit,!'®! and more recently they
extended these results beyond the long-wavelength regime for
layered and transversely isotropic media.['”] Their work provides
an analytical prediction for the wavelength range in which SHU
structures achieve perfect transparency or, equivalently, for the
wavelength regime where the effective dielectric constant has a
zero imaginary part. However, to the best of our knowledge, no
previous work has established if this transparency prediction is
modified by finite-size arrays. In order to address this open ques-
tion we performed a study over several SHU arrays with different
sizes and numbers of pillars N = 299, 633, 1002, and 1553. We
also computed the structure factors for the corresponding point
patterns and displayed the results in Figure S6 of the Supporting
Information. Interestingly, we note that characteristic stealthy hy-
peruniform behavior begins to manifest itself already at relatively
small N.

In Figure 5 we display the retrieved effective permittivity
£(x,y; k) for these four stealthy hyperuniform structures with
parameters y = 0.3, ¢, = 4.0, and ¢ = 0.25, which were kept
constant for all the arrays to compare with the theoretical pre-
dictions for the infinite bulk limit shown in ref. [17]. We train
a 4-scale MscalePINNs with 2 layers and 64 neurons each us-
ing FEM computed forward fields at plane wave excitation wave-
length A = 6.28 pm, corresponding to the regime of perfect trans-
parency predicted by Torquato et al.['’] We display the real part
of the retrieved permittivity profiles &(x, y; k) in order of increas-
ing array size in Figure 5a—d, and compute the mean and stan-
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Figure 5. Panels displaying the real part of £(x, y; k). a)-d) Scaling analy-
sis of the retrieved effective medium performed on four SHU arrays with
299, 633, 1002, and 1553 particles, respectively, and (d)/4 = 0.06. The av-
erage of MscalePINNs’s permittivity profile displayed in the four panels
all have a computed average value within the region of (Re[¢(x, y; k)]) =
1.70 + 5.9%, independently of the size of the hyperuniform array.

dard deviation inside of the array region. The average of the
retrieved effective dielectric function for the four structures is
(Re[£(x, y; k)]) = 1.7 + 5.9% and (Im[é(x, y; k)]) = 107, indepen-
dent of the array size. This result is extremely close to the pre-
dicted value in ref. [17] for transversely isotropic media with y =
0.3,e,=4.0, and ¢ =0.25. Furthermore, due to the relatively large
wavelength regime, the predicted € agrees with the Bruggeman
mixing formula of €, = 1.75 with a 3% error, and the structures
reproduced the original fields with a 9% relative L, error. There-
fore, from this analysis, we conclude that finite-size scaling does
not perturb appreciably the value of the retrieved dielectric con-
stant of SHU arrays. In the next sections, we conclude our anal-
ysis by first demonstrating that MscalePINN can be employed
to retrieve locally homogeneous effective media that leverage the
isotropic response featured by SHU structures, a property that
is highly desired for engineering angle-insensitive effective me-
dia of finite size. Furthermore, we show a relevant application to
photonics inverse design, specifically in the context of waveguid-
ing and focusing structures. Lastly, we discuss how it is possi-
ble to employ MscalePINN for the inverse design of binary opti-
cal metamaterials.

3.5. Isotropic Response of Finite-Size SHU Structures

The development of complex photonic media with isotropic scat-
tering responses is important to for engineering device applica-
tions as it naturally result in robust performances with enhanced
light-matter coupling. In order to demonstrate numerically that
locally homogeneous stealthy hyperuniform arrays are isotropic
with respect to the direction of the incoming electric field, we per-
form angle-dependent simulations on a stealthy hyperuniform
array N = 236 with y = 0.5, ¢, = 3.0, and ¢ = 0.20. In Figure 6a
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Figure 6. a) Schematics of the angles employed to study the angular in-
dependence in the homogenization of a SHU array of N = 236 particles,
x =05, ¢ = 3.0, (d)/2 = 0.09, and packing fraction ¢ = 0.20. b—d)
MscalePINN’s reconstructed real part of £(x, y; k). These locally homo-
geneous permittivity profiles £(x, y; k) were retrieved by training on inci-
dent light with wavelength A = 6.28 um at three different angles: § =
0°, 45°, —30°. The averages of (Re[£(x, y; k)]) in the homogenized regions
agree and show that the homogenization is independent of the angle of
incidence.

we display the SHU array with the angles employed to generate
the forward FEM numerical simulations utilized to train the 4-
scale MscalePINNs with 4 layers by 64 neurons each. As in the
previous studies, we have included the corresponding structure
factor S(k) in the Supporting Information Figure S7, together
with the inverse training FEM fields displayed in Figure S8.
The retrieved locally homogeneous permittivity profiles £(x, y; k)
are shown in Figure 6b-d, displaying the MscalePINNs preci-
sion in capturing contour features on the boundary of the hy-
peruniform array. All three permittivity profiles present an accu-
rate agreement in the real and imaginary part of £(x, y; k), with
(Re[é(x, y; k)]) = 1.28 + 3% and (Im[(x, y; k)]) = 107*, while the
relative L, error was close to 5% against the original field in all
three cases. To confirm that the three locally homogeneous effec-
tive media have indeed the same electromagnetic response, we
selected the permittivity profile trained with the incoming radi-
ation at # = 0° and performed two forward FEM simulations at
0 = 45° and —30°. We then computed the relative L, error be-
tween the forward field used in training on the SHU array at 6
= 45° and —30° and the one just recomputed by utilizing the
homogenized structure trained with the incoming radiation at
6 = 0°. Both errors were close to 10%, showing that the effective
medium retrieved by MscalePINNs when trained with incoming
radiation at @ = 0° reproduced the same training FEM field when
the incoming angle was set to 6 = 45° and —30°. Furthermore, we
show that the retrieved contour displayed in the three structures
from Figure 6 is important to reproduce the original field dis-
tribution with high fidelity. When we considered a structure with
perfectly circular e(x, y; k) with radius L/2 and a constant Brugge-
man value, we obtained a field with a L, relative error of ~26%
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over the original training field. This shows that MscalePINN’s
£(x, y; k) accurately detects even the very small features that are
present in the contour of the array in Figure 6a. In conclusion,
we showed numerically that single-realization finite-size SHU ar-
rays feature an isotropic homogenized response to the incoming
radiation and we present evidence that MscalePINN can be em-
ployed to retrieve topological features without a priori knowledge
of the object boundary with high accuracy.

3.6. MscalePINN for the Design of a SHU Waveguide

There has been growing interest in exploiting the transparency
region of SHU structures due to their robustness against mul-
tiple scattering. In fact, recent work has shown that this trans-
parency regime can be leveraged to improve the design of pho-
tonic materials and devices such as waveguides.[*!"?}] Here, we
employ MscalePINN to demonstrate the retrieval of a locally
homogeneous medium corresponding to a stealthy hyperuni-
form photonic array in a rectangular waveguide geometry simi-
lar to the one originally investigated in ref. [22] to demonstrate
enhanced wave transport beyond the diffusive regime. Specif-
ically, we consider the rectangular stealthy hyperuniform dis-
tribution of N & 700 cylindrical scatterers with e, = 2.2 inside
a waveguide with stealthiness y = 30% shown in Figure 7a.
This stealthiness value is within the range discussed by Cheron
et al. We then performed a forward FEM simulation and trained
the MscalePINN on the inverse training dataset field shown in
Figure 7c¢ with k, = 1.57 um™!, which is away from the pre-
dicted transparency threshold wavenumber k,, ~ 3.0 um~!. The
retrieved effective medium Re[£(x, y; k)] is shown in panel (b),
and its distribution of values is displayed in the histogram in
panel (e). We found that the average value for the real part of the

(a) X
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3
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o 12
> 5 1
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© @ , xi0
3 : (Re[é(z,y; B)]) 1
—_ 1 1
i 0 0
> -1
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(d)g 2
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g 0 0
> -1
-3 )

<10 -5 0 5 10 09 1 11 1.2 13 14
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Figure 7. a) Geometry employed for the forward FEM field simulation dis-
played in panel (c) with ky = 1.57 um™, where the blank space on the
left is intended for wave propagation outside of the structure. b) Inversely
retrieved Re[€(x, y; k)] with its distribution displayed in panel (e), where
we have labeled the average value (Re[¢(x, y; k)]) = 1.252 inside the effec-
tive medium. The distribution of values is bimodal around the effective
medium average and air outside of the structure. d) The real part of the for-
ward FEM field computed through the inversely retrieved structure shown
in panel (b).
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permittivity was (Re[£(x, y; k)]) = 1.252 + 6%. In addition, the I?
cumulative training error was lower than 107, while the rela-
tive L, error computed on the homogeneous é(x, y; k), displayed
in panel (d), and the original field was 3%. These results show
that MscalePINN can be employed to accurately retrieve a locally
homogeneous effective medium in a waveguide configuration,
leveraging the enhanced transparency properties of SHU arrays
of scattering nanocylinders. This enables the efficient design of
materials and devices with desired permittivity distributions and
enhanced optical transparency beyond the diffusion limit of tradi-
tional random media, a problem of great relevance for photonics
applications.??] This includes the ability to design spatially inho-
mogeneous and compact metamaterials that implement low-loss
mode transformation and control of the effective index of refrac-
tion for on-chip integrated photonic couplers in the near-infrared
spectral range.’] In the next and final section, we describe an
implementation of the MscalePINN architecture that enables
the inverse design of optical materials with a choice of binary
permittivity values.

3.7. MscalePINN for the Inverse Design of Binary Optical
Materials

Throughout this paper, we have shown that MscalePINN is
a powerful extension of traditional single-scale PINN in the
context of photonic inverse design from the long- to short-
wavelength regime. In particular, using k,, as a metric, we
displayed the MscalePINN’s ability to retrieve effective me-
dia for wavelengths close to the multiple scattering regime.
However, the retrieved structures so far allowed for a con-
tinuously varying permittivity, a feature that makes their fab-
rication very challenging. In order to overcome this limita-
tion, we introduce here a different MscalePINN architecture
that enables the accurate inverse design of binary optical ma-
terials and metamaterials with an optimal permittivity distri-
bution £(x,y; k) to achieve a functionality. Importantly, in this
implementation the binary values of the retrieved permittivity
profile can be largely determined by the designer, thus mak-
ing our approach compatible with a large class of available
optical materials.

So far, we have employed the multiscale architecture displayed
in Figure 1, where the final layer’s output #i is a linear com-
bination of the sub-networks’ outputs u;. As a result, the ef-
fective medium featured a continuous distribution of &(x, y; k)
values, only limited by the PDE and synthetic data character-
istics. However, in most engineering applications the effective
medium design is constrained by the limitations of available ma-
terials, i.e., we must choose a well-characterized material with
a suitable refractive index. When considering the inverse de-
sign of the optimal shape of a functional optical structure in
air, given the availability of a chosen optical material, we must
modify the MscalePINN to enable retrieving a spatial distribu-
tion £(x,y; k) with binary values corresponding to the one of
air and of the chosen material. We achieve this task by bound-
ing the network’s final output with a custom sigmoid activation
function:

4

Ocust = 1+ e_f*x

+7 (27)
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where y, £, 5 are user-defined parameters determining the mate-
rial and background effective permittivity of the retrieved effec-
tive medium. In particular, # is the background medium, usu-
ally set to 1.0 (air), while y determines the epsilon values above
1.0. For example, an effective medium of relative permittivity
2.2 immersed in air should have y = 1.2 and # = 1.0. Finally,
& is the slope of the final layer’s sigmoid function, determin-
ing how sharp the binarization in & should be during training.
This is the hardest parameter to set, as higher values of & do
ensure sharper transitions, but MscalePINN becomes difficult
to train due to very large gradients during the back-propagation
of the network. These large gradients are caused by the large
derivatives of the sigmoid function that approximates a sharp
step function. In practice, we experienced that it is safer to keep
& at the default value of 1.0 during training, and in the exam-
ples that follow, we will describe an alternative way to improve
binarization while keeping the training stable. Furthermore, in
the following discussion, we will consider two different scenar-
ios, namely the retrieval of a constant-epsilon medium (the ho-
mogenization case) and a binary-epsilon medium embedded in
an air background (the multiple-scattering case). We refer to the
latter case as the multiple-scattering one because we consider
plane wave excitations close to the given structure’s k,, value.
The MscalePINN architectures employed hereafter are similar,
as they both use a multiscale network such as the one dis-
played in Figure 1 for the real and imaginary part of the elec-
tric field. Still, they differ in the coupled £ network that retrieves
the permittivity profile. For the homogenization architecture, we
employ a full-domain single-scale network with a binary sig-
moid output. Instead, we employ a multiscale network with a
binary output trained only in a square region of interest for the
multiple-scattering case. In practice, what this means is that in
the homogenization case, we let MscalePINN choose where the
transition between air and the material occurs in the computa-
tional domain Q, while in the multiple-scattering case, we let
MscalePINN determine the transition between the two materials
only within a region of interest while keeping £ constant at unit
values outside.

In Figure 8a we display an example of MscalePINN binariza-
tion for a square SHU structure under plane wave excitation at
A = 3.0 um. For this example, we have picked the same struc-
tural parameters from the arrays in Figure 2, but we cut the
array in a square instead of a circle to display the versatility
of MscalePINN when retrieving objects with sharp corners. In
Figure 8D, we have overlayed the SHU array to the field retrieved
with a forward FEM simulation on the homogeneous structure.
In this simulation, we chose to find an effective medium with
£=1.8, so we set y = 0.8, &£ = 1.0, n = 1.0. As the results
show, the effective medium is binarized, with a relative L, er-
ror on the true field of 6%. In Figure 8c we display the bi-
nary effective medium retrieved when the square SHU struc-
ture employed in panel (b) is excited by a plane wave at A =
2.0 pum. For this wavelength, it is impossible to retrieve a sin-
gle homogeneous medium because we are at the edge of the
transparency region, with k, = 3.14 and k,; = 3.5, so we re-
strict the training of the £ MscalePINN to a square subset (x,,
Vi) of Q in the central region with dimensions 11 pm x 11
um. To display the power of MscalePINN, we set y = 0.5, £ =
1.0, n = 1.5, which are meant to model a binary material with
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Figure 8. a) Real part of the binary structure retrieved on the 4 = 3 um field using the modified MscalePINN approach with the custom sigmoid
activation function from Equation 27. b) Real part of the field from the forward simulation on the structure displayed in (a) with the original SHU pattern
superimposed. The error between the forward field in b) and the original was 6%. c) Real part of the two-level binarized structure retrieved at A = 2.0
um, or kg = 3.14 um~", on the SHU pattern shown in panel (b). d) The real part of the forward field scattered through the binarized structure displayed
in panel (c), which had a relative L, error of 12% on the original. ) Real part of the focusing effective medium retrieved by MscalePINN at 4 = 1.0 um
with £ = 1.9. f) For better visualization, we display the focusing intensity of the total field obtained by performing a forward FEM simulation through the

effective medium displayed in panel (e).

&€, =15 and £, = 2.0. To ensure a proper binarization, we add
the additional loss term L£;, to Equation 23. This new term is
defined as:

1

Ebm(é¢ Niin) = ——

i 2 et b e v bl @8

(%igYsq) ENpin

here, © is a step function centered at n + y/2. We switch on
L, after 1/4 of the total training epochs to ensure that the £
MscalePINN retrieves is more binarized. In panel (c) we display
the binarized structure obtained on post-processing the final out-
put of MscalePINN with the ® function described above. The
pre-processed output is displayed in section S9 of the Support-
ing Information. This is a common strategy employed in opti-
mization algorithms that are constrained by fabrication require-
ments, and it ensures that the final output of MscalePINN is
very close to a fabricable structure.””! The [? cumulative train-
ing error of MscalePINN to produce the pre-processed structure
is 1073, while the relative L; error on both the pre-processed
and binarized structure shown in panel (d) is 13%. Finally, we
inversely retrieve the structure of a binary material from train-
ing on the focusing fields studied in ref. [71], with 4 = 1.0 um.
The training datasets corresponding to the focusing field are
shown in section S10 of the Supporting Information. Panel (f)
displays the intensity of the total field obtained with a forward
simulation on the structure retrieved in panel (e), demonstrat-
ing a clear focusing behavior at a distance of 15 um. For this
simulation, we chose y = 0.9, & = 1.0, n = 1.0, correspond-
ing to pillars with £ =1.9. Despite the wavelength being in

Adv. Optical Mater. 2025, 13, 2403304
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the multiple-scattering regime, the retrieved structure accurately
reproduced the focusing field with an L, relative error below
14%.

4, Conclusions

In this article, we developed and applied the MscalePINN frame-
work to inversely retrieve the effective dielectric permittivity of
finite-size arrays of scattering nanocylinders with stealthy hyper-
uniform and uncorrelated Poisson geometries. Through numer-
ous examples, we established that MscalePINN is a necessary
powerful extension of traditional single-scale PINN architectures
when dealing with multiple scattering contributions in the re-
trieval of the effective medium parameters of complex media,
thus enabling a systematic methodology to retrieve the general
spatial dependence of the effective dielectric behavior of scatter-
ing arrays in device-relevant geometries beyond traditional ho-
mogenization theories. In particular, we demonstrated the exis-
tence of a transparency region in finite-size SHU structures be-
yond the long-wavelength approximation, enabling the retrieval
of effective and isotropic locally homogeneous media even with-
out disorder-averaging, in contrast to the case of uncorrelated
Poisson random patterns. Specifically, we found that the retrieved
permittivity distribution £(x, y; k) obtained for a single-realization
of stealthy hyperuniform disorder agrees with the ensemble av-
erage calculations with an error close to 1%, whereas a large stan-
dard deviation of £(x, y; k) is obtained for Poisson arrays of com-
parable sizes. Importantly, we showed that locally homogeneous
SHU structures feature isotropic responses to an incoming plane
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wave excitation that are not appreciably modified by their finite
size, which is a highly desired characteristic for the engineering
of angle-insensitive photonic media and metamaterial devices.
Furthermore, we applied our approach to accurately retrieve a lo-
cally homogeneous medium in a rectangular waveguide geome-
try corresponding to a scattering SHU array with enhanced trans-
parency. Lastly, we show how to achieve the inverse design of bi-
nary optical media trained on desired field profiles and material
parameters using a modified MscalePINN architecture that gen-
erates structures suitable for experimental demonstration using
available nanofabrication techniques. These results enable the ef-
ficient design of functional photonic structures that operate in
the multiple scattering regime and motivate future developments
of MscalePINN for accurate inverse shape (topological) identifi-
cation and remote sensing applications at optical wavelengths.
In conclusion, our work provides an efficient route towards the
discovery of novel structures with effective medium properties
arising from the interaction of disordered scattering geometries
and vector or scalar waves of arbitrary nature, including acoustic,
mechanical, and quantum wave phenomena.
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