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Abstract

In this article, we introduce a class of invariants of cubic fields termed “generalized discriminants”.

We then obtain asymptotics for the families of cubic fields ordered by these invariants. In addition, we

determine which of these families satisfy the Malle–Bhargava heuristic.

1 Introduction

A foundational result due to Davenport–Heilbronn [17] provides asymptotics for the number of real and
cubic fields, when these fields are ordered by their discriminants. Specifically, the theorem states:

Theorem 1 (Davenport–Heilbronn) Let N±
Disc(X) denote the number of cubic fields K, up to isomor-

phism, that satisfy |Disc(K)| < X and ±Disc(K) > 0. Then

N+
Disc(X) =

1

12ζ(3)
X + o(X);

N−
Disc(X) =

1

4ζ(3)
X + o(X).

The above theorem, its extensions, and the methods of their proofs, have had a host of applications.
Among many other applications, they are used by Yang [38] to verify the Katz–Sarnak heuristics [18] for
low-lying zeroes of Dedekind zeta functions of cubic fields; by Bhargava–Wood [11], Belabas–Fouvry [3] and
Wang [36] to prove Malle’s conjecture for various different Galois groups; by Martin–Pollack [24] and Cho–
Kim [12] to obtain the average value of the smallest prime satisfying certain prescribed splitting conditions;
by AS–Södergren–Templier [30] to prove that the Dedekind zeta functions of infinitely many S3-cubic fields
have negative central values.

Theorem 1 has also been generalized in numerous ways: Belabas–Bhargava–Pomerance [2] prove power
saving error terms; Bhargava [4, 6] determines the asymptotics of quartic and quintic fields, when ordered by
discriminant; Datskovsky–Wright [16], Taniguchi [31], and Bhargava–AS–Wang [9] count cubic extensions of
number fields and function fields; Belabas–Fouvry [3] count subfamilies of cubic fields satisfying congruence
conditions on their discriminants; Terr [34] proves that the “shapes” of cubic rings and fields are equidis-
tributed (see also work of Bhargava–Harron [7], who give a uniform proof that shapes of cubic, quartic, and
quintic rings and fields are equidistributed); Taniguchi–FT [32] and Bhargava–AS–Tsimerman [8] compute
secondary terms (of size ≍ X5/6) for the asymptotics of N±

Disc(X).
In this paper, we consider generalizations along a different direction: namely, we determine asymptotics

for families of cubic fields ordered by invariants more general than the discriminant. Let C(K) be the radical
of |Disc(K)|. That is, we have C(K) :=

∏

p|Disc(K) p. We then prove the following result.
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Theorem 2 Let N±
C (X) denote the number of cubic fields K, up to isomorphism, that satisfy C(K) < X

and ±Disc(K) > 0. Then

N+
C (X) =

33

120

∏

p

(

1 +
2

p

)(

1− 1

p

)2

X logX + o(X logX);

N−
C (X) =

(

3

10
+

33

40

)

∏

p

(

1 +
2

p

)(

1− 1

p

)2

X logX + o(X logX).

Note that we break up the main term in the asymptotics for N−
C (X) into two summands; they correspond

to what can be considered two disjoint subfamilies of cubic fields, namely, the family of pure cubic fields and
the family of non-pure cubic fields.

Theorem 2 will be deduced as a special case of a more general result that counts cubic fields ordered by
various different types of invariants.

Generalized discriminants of cubic fields

Let M be a Galois sextic field with Galois group S3 over Q. Then K has three cubic S3-subfields, which
are conjugate to each other. One would therefore expect to be able to understand the family of sextic S3-
fields via the family of cubic S3-fields. Bhargava–Wood [11] and Belabas–Fouvry [3] independently use this
philosophy to prove the following result.

Theorem 3 (Belabas–Fouvry, Bhargava–Wood) Let N±
∆6

(X) denote the number of Galois sextic num-
ber fields M with Galois group S3, such that |Disc(M)| < X and ±Disc(M) > 0.

Then, we have

N±
∆6

(X) =
C±

12

∏

p

cp ·X1/3 + o(X1/3),

where C+ = 1, C− = 3, the product is over all primes, and

cp =

{

(1− p−1)(1 + p−1 + p−4/3) p ̸= 3,

(1− 1
3 )(

4
3 + 1

35/3
+ 2

37/3
) p = 3.

A power saving error term for the above quantity was obtained by work of Taniguchi–FT [33]. In this work,
they also speculate about a possible secondary term, and discuss tensions between theoretical predictions
and the data.

Similarly to C(K), we will regard |Disc(M)| as a “generalized discriminant” of its cubic subfield. More
specifically, let K be a non-Galois cubic field, and denote the Galois closure ofK byM . ThenM has a unique
quadratic subfield, denoted L. We say that L is the quadratic resolvent field of K. Denote the discriminant
of the quadratic resolvent L of K by D(K). Then D(K) | Disc(K), and moreover, Disc(K)/D(K) is always a
perfect integer square. Denote its positive integer squareroot by F(K). We note that apart from a factor of
a bounded power of 3, the quantity F(K) is simply the product of primes that totally ramify in K, where p
is said to totally ramify in K if p splits as p = p3. Similarly, up to a bounded power of 2, the quantity D(K)
is the product of of primes that ramify, but not totally, in K. For a cubic S3-field K, let ∆6(K) denote the
discriminant of the Galois closure M of K. Then we have the decompositions

(1) Disc(K) = D(K)F(K)2, ∆6(K) = D(K)3F(K)4, C(K) = |D(K)|F(K),

where the final equality is true up to bounded factors of 2 and 3. For positive real numbers α and β, we say
that the invariant |D|αFβ is a generalized discriminant. This notion of generalized discriminant encompasses
all three invariants we have seen so far, namely, Disc(K), ∆6(K), and C(K).

When K is a cyclic cubic field, the invariant ∆6(K) has no special meaning but an otherwise similar
analysis holds with D(K) := 1. We also define the above quantities analogously when K is a cubic étale
extension of Qp.
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Let Σ = (Σv)v be a collection of cubic splitting types, where for each place v of Q, the set Σv is the set
of cubic étale extensions of Qv with specified inertial and ramification indices.1 The collection Σ is said to
be a finite collection if for all large enough primes p, Σp is the set of all cubic étale extensions of Qp (i.e.,
all inertial and ramification indices are allowed). Throughout, we write PΣ for the product of those primes
where Σp is a proper subset of these extensions.

Given a finite collection of cubic splitting types Σ, let F(Σ) denote the set of cubic fields K such that
K ⊗Qv ∈ Σv for all v. For a generalized discriminant I, we define

NI(Σ;X) := #{K ∈ F(Σ) : I(K) < X, D(K) ̸= −3}.

As the pure cubic fields (those with D(K) = −3) behave differently from those with other quadratic resol-
vents, we will treat them separately.

The next result determines asymptotics for the family F(Σ), excluding the pure cubic fields, ordered by
generalized discriminants.

Theorem 4 Fix positive real numbers α and β, and let I = |D|αFβ be a generalized discriminant. Let Σ be
a finite collection of cubic splitting types. Then

(a) When α < β, we have

NI(Σ;X) =
1

2

(

∑

K∈Σ∞

1

|Aut(K)|
)

∏

p

(

∑

K∈Σp

|D(K)|p|F(K)|β/αp

|Aut(K)|
)(

1−1

p

)

·X 1
α+Oϵ,I

(

(X
2

α+β+ϵ+X
5
6α )P

2/3
Σ

)

.

(b) When α > β, we have

NI(Σ;X) =
(

∑

d fund. disc ̸=−3

Ress=1 ΦΣ,d(s)

|d|α/β
)

·X 1
β +Oϵ,I

(

(X
3

2α+β+ϵ +X
2
3β+ϵ)P

1/3
Σ

)

,

where ΦΣ,d(s) are Dirichlet series introduced in §2.

(c) When α = β, we have

NI(Σ;X) =
1

2α

(

∑

K∈Σ∞

1

|Aut(K)|
)

∏

p

(

∑

K∈Σp

|D(K)|p|F(K)|p
|Aut(K)|

)(

1− 1

p

)2

·X 1
α logX + oΣ,I(X

1
α logX).

For the pure cubic fields, Cohen and Morra proved [14, Corollary 7.4] that, when Σv = Σall
v for all v,

(2) #{K ∈ F(Σ) : D(K) = 3,F(K) < Z} = C1Z(log(Z) + C2 − 1) +O(Z2/3+ϵ),

where

C1 :=
7

30

∏

p

(

1 +
2

p

)(

1− 1

p

)2

,

C2 := 2γ − 16

35
log(3) + 6

∑

p

log(p)

p2 + p− 2
,

where the sum and product are over all primes p. This result also generalizes to arbitrary Σ; see (13).
Taking Z = X1/β3−α/β , we see that adding the pure cubic fields adds a term of order X1/β log(X), along
with a secondary term of order X1/β , to each of the results in Theorem 4. For (a) this is subsumed by

1This is a less general notion than the one which allows Σv to be an arbitrary subset of étale cubic extensions of Qv . We
restrict ourselves to this less general notion for two reasons. First, this is the more natural notion from the point of view of
families of L-functions; see the discussion on Sato–Tate equidistribution at the end of the introduction. Second, we did not
obtain a version of Theorem 11 valid in this generality. Although this seems likely to be possible, it appears liable to be inelegant
while presenting additional complications in the proof.
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the error term, and the result is unchanged; for (b), this new contribution dominates the asymptotics by a
factor of ≍ logX, so that asymptotically 100% of cubic fields ordered by I will be pure cubic fields; for (c)
this contribution is of equal magnitude, and the pure and non-pure cubic fields each constitute a positive
proportion of cubic fields ordered by I.

We recover Theorem 3, with a power saving error term of O(X
2
7
+ϵ), by taking α = 3 and β = 4 in

Theorem 4 and carrying out an appropriate calculation at the 2- and 3-adic places. (This was also noted in

[10].) When β
α > 7

5 , the error term of O(X
5
6α ) in case (a) dominates the other error term and can be refined

into a secondary term extrapolating that proved in [8, 32] for α = 1 and β = 2. More precisely, we have the
following result.

Theorem 5 Let α and β be positive real numbers with β
α > 7

5 , and let I = |D|αFβ. Then we have

NI(Σ;X) = C1(I; Σ) ·X
1
α + C2(I; Σ) ·X

5
6α +Oϵ

(

(X
2

α+β+ϵ +X
2
3α+ϵ)P

2/3
Σ

)

,

where C1(I; Σ) is the leading constant appearing in the right hand side of the displayed equation in Part (a)
of the above theorem, and

C2(I; Σ) = C(∞)
4ζ(1/3)

5Γ(2/3)3ζ(5/3)

∏

p













∑
Kp∈Σp(f)

|D(Kp)|p|F(Kp)|
5β+2α

6α
p

|Aut(Kp)|

∫
OKp\pOKp

[OKp :Zp[x]]2/3dx

∑
Kp∈Σall

p

|D(Kp)|p|F(Kp)|2p
|Aut(Kp)|

∫
OKp\pOKp

[OKp :Zp[x]]2/3dx













where C(∞) is 1,
√
3 or 1+

√
3 depending on whether Σ∞ consists of R3, R⊕C or both, respectively. Also,

OK denotes the ring of integral elements in Kp.

The Malle–Bhargava heuristics

In [22, 23], Malle develops heuristics for asymptotics of the number of degree-n number fields with Galois
group G and bounded discriminant, where n > 1 is any integer and G is a finite group with an action on a
set with n elements. These heuristics are believed to be true in most cases. However, see [20] where Klüners
demonstrates a counter example in the case n = 3 and G = C3 ≀C2, and [35], where Türkelli modifies Malle’s
conjecture so that it holds in the above and similar cases. While Malle’s conjecture has been formulated
only for families of fields ordered by discriminant, the same method applies to other orderings, in particular
to the generalized discriminants that we work with.

Interestingly, the leading constants appearing in front of Malle’s heuristics are still shrouded with mystery.
In the case of degree-n Sn number fields ordered by discriminant, Bhargava [5] formulates a conjecture
for the leading coefficients, using a general recipe which constructs these constants from mass formulae
counting étale extensions of local fields. Once again, this recipe is quite general, applying to any family
of number fields constructed as follows: fix a degree n > 1 and a group G with a transitive action on the
set {1, . . . , n}. Then this recipe applies to the family of all degree-n number fields with Galois group G,
satisfying any finite set of splitting conditions, ordered by any generalized discriminant. (See also work of
Kedlaya [19] describing how these leading constants can be computed in the more general case of families of
Galois representations.) However, there are many instances where this prediction gives the incorrect leading
constant. The prototypical example is the family of quartic D4-fields ordered by discriminant, where the
asymptotic constant determined by Cohen–Diaz y Diaz–Olivier [13] is not expected to equal the constant
that this recipe would predict. On the other hand, when quartic D4-fields are ordered by conductor, Altuğ–
AS–Varma–Wilson [1] establish that the leading asymptotic constant does arise from the Malle–Bhargava
recipe. This leads to the natural question, as discussed by Bhargava in [5], of which families of number fields
ordered by which invariants satisfy this property.

We say that a family F of number fields, ordered by some generalized discriminant, satisfies the Malle–
Bhargava heuristic if the asymptotics of every subfamily defined by prescribed splitting at finitely many
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primes are as predicted by the Malle–Bhargava recipe. (Despite our terminology, we emphasize again that
Bhargava conjectured this only for Sn, and did not predict that it should always hold.)

A necessary condition is that the splitting behaviour of primes is independent. We now precisely define
this notion. Let G be a family of number fields having the same degree n.2 Let Σ = (Σv)v be a collection of
degree-n splitting types, where for each place v of Q, Σv is the set of degree-n étale extensions of Qv satisfying
specified inertial and ramification behaviour. For each place v, let Σall

v denote the set of all degree-n étale
extensions of Qv. Then Σ is said to be finite if Σp = Σall

p for all sufficiently large primes p. Let h : G → R>0

be a height function (i.e., there are only finitely many elements of G having bounded height). Let Nh(GΣ;X)
denote the number of elements in G satisfying Σ and having height less than X. Then we say that the family
G ordered by h satisfies independence of primes if the following is true. For all places v of Q, there exist
functions σv : Σall

v → R≥0 with
∑

Kv∈Σall
v

σv(Kv) = 1,

such that the following condition is satisfied. For each finite collection of splitting types Σ, we have

Nh(GΣ;X) ∼
(

∏

v

∑

Kv∈Σv

σv(Kv)
)

·Nh(G;X).

There are many known examples of families of number fields which do not satisfy independence of primes.
See for example [37], in which Wood studies families of number fields with any fixed abelian Galois group,
and proves in many cases that, when ordered by discriminant, these families do not satisfy independence
of primes. We note that the notion of satisfying independence of primes is a weaker notion than that of
satisfying the Malle–Bhargava heuristic, when both these notions make sense. Moreover, independence of
primes can be defined for a wider class of families, for example, this notion makes sense for the family of pure
cubic fields, the family of monogenic degree-n fields, and many other families for which the Malle–Bhargava
heuristics do not apply.

Next, we consider the family of all cubic fields. It is natural to partition this family into two subfamilies:
the family of pure cubics and the family of non-pure cubics. The ordering on the family of pure cubic fields
coming from any generalized discriminant is the same (since we have D(K) = −3 for every pure cubic field
K). It follows from the method of Cohen–Morra [14] described in §2.2 that the family of pure cubic fields
satisfies independence of primes. For the family of non-pure cubic fields ordered by generalized discriminants,
we have the following result.

Theorem 6 Let I = |D|αFβ be a generalized discriminant. Then the family of all non-pure cubic fields
ordered by I satisfies independence of primes and the Malle–Bhargava heuristic if and only if α ≤ β.

For the α ≤ β case, the above result is an immediate consequence of Theorem 4. This α > β case
requires a bit more work, since the residues of the Dirichlet series appearing in Part (b) of Theorem 4 are
not explicit. We give a general proof which also applies to many different situations, such as the family of
quartic D4-fields ordered by discriminant.

Finally, our counting results also have implications towards families of Artin L-functions associated to
cubic S3-fields. Indeed, let ρ : S3 → GLn(C) be any representation of S3. Given a cubic S3-field K, with
normal closure M , we obtain a Galois representation

Gal(Q/Q) → Gal(M/Q) ∼= S3 → GLn(C),

where the final map is ρ. We associate to this Galois representation its Artin L-function, denoted L(s; ρ,K).
Throughout, we assume that ρ contains at least one copy of the standard representation of S3, which is
necessary to ensure that different cubic fields give rise to different L-functions. Then, given a family F(Σ)

2It is not entirely clear exactly what constitutes a family of number fields. Being the set of all number fields having the
same degree and the same Galois group is assumed to be a sufficient though not a necessary condition. See [28], where a similar
question is discussed in detail.
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of cubic S3-fields K, we obtain a family of Artin L-functions L(s; ρ,K) that we denote by L(ρ,Σ). We order
the L-functions in L(ρ,Σ) by their conductors.

Ordering L(ρ,Σ) by conductor corresponds to ordering F(Σ) by a certain generalized discriminant I =
|D|αFβ depending on ρ. Indeed, we have (α, β) = c1(1, 2) + c2(1, 0) where c1 ≥ 1 and c2 ≥ 0 are the
multiplicities of the standard and sign representations respectively, so that α > 0 and β > 0. A consequence
of Theorem 4 is that the family L(ρ,Σ) satisfies Sato–Tate equidistribution in the sence of [28, Conjecture
1]. Loosely speaking, a family of L-functions arising from number fields satisfies Sato–Tate equidistribution
when the asymptotics of these number fields, ordered by the conductors of their L-functions, satisfy the
Malle-Bhargava heuristics on average over primes p. Identically to the arguments in [29, §3.1], when α ≤ β,
this follows immediately from the shape of the leading constant in Parts (a) and (c) of Theorem 4. When
α > β the situation is similar to the case of the family of Dedekind zeta functions of D4-fields considered in
[29, §6.2]. As there, we consider the family of cubic fields ordered by I to be a countable union of subfamilies,
one for each fixed quadratic resolvent field. Since each of these subfamilies contributes a positive proportion
to the full family, Sato–Tate equidistribution for the full family follows from Sato–Tate equidistribution for
each subfamily. Thus, we have the following consequence to Theorem 4:

Corollary 7 With notation as above, the families L(ρ,Σ) satisfy Sato–Tate equidistribution.

It is interesting to note that despite independence of primes not always holding, Sato–Tate equidistribution
is always satisfied for our families.

Organization of the paper

We begin in §2 by considering families of cubic fields with one fixed invariant. Invoking work of Bhargava–
Taniguchi–FT [10] on the Davenport-Heilbronn theorem, we obtain asymptotics for families of cubic fields
with fixed F; using work of Cohen–Morra [14] and Cohen–FT [15] on a Kummer-theoretic approach, we
deduce asymptotics for families of cubic fields with fixed D. The leading constants appearing in the asymp-
totics for the latter family are somewhat inexplicit, but in §3 we prove that the average values of these
constants have an explicit description given in terms of products of mass formulae.

The results of the previous two subsections allow us to determine asymptotics for F(Σ) ordered by
generalized discriminants. This is accomplished in §4, and we extract secondary terms and power saving
error terms when possible. We then establish exactly when independence of primes holds, thereby proving
Theorem 6. Finally, we conclude in §5 by presenting some numerical data.

Throughout, implied constants may depend on ϵ, α, and β, but not Σ unless otherwise noted.

2 Families of cubic fields with a fixed invariant

Recall that for each cubic field or étale algebra K/Q or K/Qp, we have a decomposition

(3) Disc(K) = D(K)F(K)2,

where D(K) is the discriminant of the quadratic resolvent algebra of K. When K is a S3-cubic field D(K) is
the discriminant of the unique quadratic field contained in the Galois closure of K, and when K is a cyclic
cubic field D(K) = 1. We decompose these quantities into local factors

(4) Disc(K) = ±
∏

p

Discp(K), D(K) = ±
∏

p

Dp(K), F(K) =
∏

p

Fp(K),

with Dp(K) = pvp(D(K)) and Fp(K) = pvp(F(K)). Then these quantities enjoy the following properties:

(a) When p > 3, then
(Dp(K),Fp(K)) ∈ {(1, 1), (p, 1), (1, p)},

with the three cases corresponding to the ramification type of p in K: unramified, partially ramified,
or totally ramified, respectively.

6



(b) When p = 3, we have

(D3(K),F3(K)) ∈ {(1, 1), (p, 1), (p, p), (1, p2), (p, p2)}.

Here p is unramified in the first case, partially ramified in the second case, and totally ramified in the
remaining cases.

(c) When p = 2, we have
(D2(K),F2(K)) ∈ {(1, 1), (p2, 1), (p3, 1), (1, p)}.

Here p is unramified in the first case, partially ramified in the next two cases, and totally ramified in
the last case.

Given a positive number f , squarefree away from 3, and indivisible by 27, we let F(Σ)(f) denote the set
of cubic S3-fields K ∈ F(Σ) with F(K) = f . Given a fundamental discriminant d, we let F(Σ)d denote
the set of cubic S3-fields K ∈ F(Σ) with D(K) = d. (By convention, we consider 1 to be a fundamental
discriminant.) In this section, we obtain asymptotics for the number of K ∈ F(Σ)(f) with |D(K)| < Y in
§2.1, and the number of K ∈ F(Σ)d with F(K) < Z in §2.2. In particular, we obtain error terms that control
the dependence on Σ.

2.1 Counting cubic fields K with fixed F(K)

Let f be a fixed positive integer, squarefree away from 3. To count cubic fields K where F(K) = f , we
appeal to a strengthening of the Davenport-Heilbronn theorem. Define the quantity

N(F(Σ)(f);Y ) := #{K ∈ F(Σ)(f) : |D(K)| < Y }.

Then we have the following:

Theorem 8 ([10], Theorem 1.4) We have

(5) N(F(Σ)(f);Y ) = C1(Σ, f) · Y + C2(Σ, f) · Y 5/6 +O
(

E(Y ; f,Σ)
)

,

for constants C1(Σ, f) and C2(Σ, f) described below, and with the following ‘averaged’ bound on E(Y ; f,Σ):
for each f ≤ F , choose independent and arbitrary values Yf ≤ Y . Then, we have

∑

f≤F

E(Yf ; f,Σ) ≪ϵ Y
2/3+ϵF 4/3+ϵP

2/3
Σ ,

uniformly in F .

The leading constant C1(Σ, f) is described as follows. First, for a prime p and a positive integer f , define the
set Σp(f) of f -compatible algebras in Σp to be those étale cubic extensions Kp of Qp such that the powers
of p dividing F(Kp) and f are the same. Then we have

C1(Σ, f) :=
1

2

(

∑

K∞∈Σ∞

1

|Aut(K∞)|
)

∏

p

[(

∑

Kp∈Σp(f)

|D(Kp)|p
|Aut(Kp)|

)(

1− 1

p

)]

.

For each prime p > 3, when Σp = Σall
p , we have

(6)
(

∑

Kp∈Σp(f)

|D(Kp)|p
|Aut(Kp)|

)(

1− 1

p

)

=















(

1− 1
p

)

when p | f ;
(

1− 1
p2

)

when p ∤ f.
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Meanwhile, the secondary constant C2(Σ, f) is given by

C2(Σ, f) := C(∞)
4ζ(1/3)

5Γ(2/3)3ζ(5/3)

∏

p

νp(Σp, f),

where C(∞) is 1,
√
3, or 1 +

√
3 depending on whether Σ∞ consists of R3, R⊕C, or both, respectively, and

(7) νp(Σp, f) :=

∑
Kp∈Σp(f)

|D(Kp)|p|F(Kp)|1/3p

|Aut(Kp)|

∫
OKp\pOKp

[OKp :Zp[x]]2/3dx

∑
Kp∈Σall

p

|D(Kp)|p|F(Kp)|2p
|Aut(Kp)|

∫
OKp\pOKp

[OKp :Zp[x]]2/3dx

.

Moreover we have C1(Σ, f) < 1 and |C2(Σ, f)| ≪ f−1/3 for all Σ and f .
To compute average values of these constants, we introduce the Dirichlet series L1(Σ, s) and L2(Σ, s)

given by

(8) L1(Σ, s) :=
∑

f

C1(Σ, f)f
−s; L2(Σ, s) :=

∑

f

C2(Σ, f)f
−s;

These series satisfy the following Euler product decomposition in their domains of absolute convergence.

Proposition 9 For ℜ(s) > 1, we have

L1(Σ, s) =
1

2

(

∑

K∈Σ∞

1

|Aut(K)|
)

∏

p

(

∑

K∈Σp

|D(K)|p|F(K)|sp
|Aut(K)|

)(

1− 1

p

)

;

L2(Σ, s− 1/3) = C(∞)
4ζ(1/3)

5Γ(2/3)3ζ(5/3)

∏

p











∑
Kp∈Σp

|D(Kp)|p|F(Kp)|sp
|Aut(Kp)|

∫
OKp\pOKp

[OKp :Zp[x]]2/3dx

∑
Kp∈Σall

p

|D(Kp)|p|F(Kp)|2p
|Aut(Kp)|

∫
OKp\pOKp

[OKp :Zp[x]]2/3dx











.

Proof: To prove the first equality in the above displayed notation, note that we have

(9)

L1(Σ, s) =
∑

f≥1

C1(Σ, f)

fs

=
1

2

(

∑

K∈Σ∞

1

|Aut(K)|
)

∑

f≥1

1

fs

∏

p

(

∑

K∈Σp(f)

|D(K)|p
|Aut(K)|

)(

1− 1

p

)

=
1

2

(

∑

K∈Σ∞

1

|Aut(K)|
)

∏

p

(

∑

K∈Σp

|D(K)|p|F(K)|sp
|Aut(K)|

)(

1− 1

p

)

,

as necessary. The second equality follows in identical fashion. 2

2.2 Counting cubic fields K with fixed D(K)

For each nonzero fundamental discriminant d, define a Dirichlet series

ΦΣ,d(s) := cred +
∑

K∈F(Σ)d

1

F(K)s
,

where cred is either 1/2 or 0 depending on whether or not the étale cubic algebra Q ⊕ Q(
√
d) satisfies the

splitting conditions specified by Σ. Using Kummer theory and class field theory, Cohen, Morra, and the
second author [14, 15] proved the following explicit formula for ΦΣ,d(s) when PΣ = 1, i.e. for counting all

cubic fields whose quadratic resolvent is Q(
√
d).

8



Theorem 10 ([15], Theorem 2.5) For any nonzero fundamental discriminant d we have

(10) cdΦd(s) =
1

2
M1,d(s)

∏

p∤3d

(

1 +
1 +

(−3d
p

)

ps

)

+
∑

E∈L3(d)

M2,E(s)
∏

p∤3d

(

1 +
ωE(p)

ps

)

,

where:

• cd = 1 if d = 1 or d < −3, and cd = 3 if d = −3 or d > 1.

• L3(d) is the set of cubic fields of discriminant −d/3, −3d, and −27d. (The first case can of course
only occur if 3 | d, and the second only if 3 ∤ d.)

• For any cubic field E and prime p ∤ Disc(E), we define

ωE(p) :=











2 if p is totally split in E,

0 if p is partially split in E,

−1 if p is inert in E,

• The 3-Euler factors M1,d(s) and M2,E(s) are given in the following table.

Condition on d M1,d(s) M2,E(s), Disc(E) ∈ {−d/3,−3d} M2,E(s), Disc(E) = −27d

3 ∤ d 1 + 2/32s 1 + 2/32s 1− 1/32s

d ≡ 3 (mod 9) 1 + 2/3s 1 + 2/3s 1− 1/3s

d ≡ 6 (mod 9) 1 + 2/3s + 6/32s 1 + 2/3s + 3ωE(3)/3
2s 1− 1/3s

We will use this result, together with standard analytic techniques, to count cubic fields K with fixed
D(K) and varying F (K). Such a result was given as [14, Proposition 6.3] and we give a version where the
dependence of the error term on D(K) is specified.

We also extend these results to PΣ > 1, counting cubic fields with specified splitting types. The key
result is where Σp = Q3

p for each p | PΣ, corresponding to a demand that each such p split completely in each
cubic field being counted. Write L3(PΣ, d) for the set of cubic fields whose discriminant is −k2d/3, −3k2d,
or −27k2d, where k is any positive divisor of PΣ. Thus the quadratic resolvent of every field in L3(PΣ, d) is
Q(

√
−3d).

Theorem 11 With Σp = Q3
p for each p | PΣ and L3(PΣ, d) defined as above, we have

(11) cd3
ω(PΣ)ΦΣ,d(s) =

1

2
M1,d(s)

∏

p∤3dPΣ

(

1 +
1 +

(−3d
p

)

ps

)

+
∑

E∈L3(PΣ,d)

M2,E(s)
∏

p∤3dPΣ

(

1 +
ωE(p)

ps

)

provided that
(

d
p

)

= 1 for every prime p | PΣ, and ΦΣ,d(s) = 0 otherwise. Here ω(PΣ) denotes the number

of prime divisors of PΣ, and if 3 | PΣ then the factors M1,d(s) and M2,E(s) are to be omitted.

The special cases 3 | PΣ and/or d ∈ {1,−3} are all allowed; if d = 1 then ΦΣ,d(s) counts cyclic cubic
fields, and if d = −3 then the fields in L3(PΣ, d) are cyclic.

Remark 12 The explicit form of ΦΣ,d stated in Theorem 11 will not be used in the proofs of our main
results. The “average residue computation” that is required for our proofs will be obtained indirectly from
results proved using geometry-of-numbers methods.

All that is necessary for us is an asymptotic formula for the partial sums of ΦΣ,d with bounds on the
error; this is done in Theorem 13 by interpreting ΦΣ,d as the weighted sum of incomplete Dedekind zeta
functions and incomplete Artin L-functions, both having conductor ≪Σ d.

9



We then immediately show that Φd,Σ(s) can be written as such a weighted sum in the case when Σ is an
arbitrary finite collection of splitting types in the following steps:

• The splitting type at infinity: the sign of the discriminant of a cubic field is the same as the sign of
the discriminant of its quadratic resolvent field. Hence, ΦΣ,d will be 0 if the prescribed splitting type
at infinity is incompatible with the sign of d, and unchanged if it is compatible.

• (21) – A prime p is partially split inK if and only if it is unramified inK and inert in Q(
√
d). Therefore,

if
(

d
p

)

= 1 for any such prime p then ΦΣ,d(s) = 0, and otherwise we eliminate all of the p-Euler factors

from ΦΣ,d(s).

• (121) – A prime p is partially ramified in K if and only if it is ramified in Q(
√
d); therefore, ΦΣ,d = 0

if p ∤ d for any such p, and otherwise ΦΣ,d(s) is unchanged.

• (13) – A prime p is totally ramified in K if and only if p | f(K). Accordingly we remove the constant
terms from the p-Euler factors.

• The remaining primes p are required to have splitting types (111) or (3). We handle the (111) case by
applying equation (11) directly, and the (3) case by inclusion-exclusion.

In summary, the proof of Theorem 11 follows from a careful reading of [14] and [15]. The proof in [14]
proceeds by setting L = Q(

√
d,
√
−3), and enumerating those cyclic cubic extensions Nz/L which contain an

appropriate K. By Kummer theory, any such extension is of the form Nz = L( 3
√
α). Writing αZL = a0a

2
1q

3

for squarefree integral coprime ideals a0 and a1, the conductor f(N/Q(
√
d)) is given (see [14, Theorem 3.7])

by a0a1 times a 3-adic factor, and this 3-adic factor depends on the solubility of x3 −α modulo powers of 3.
The splitting conditions in K/Q are equivalent to solubility in L of x3 − α modulo PΣ, or modulo 3PΣ

if 3 | PΣ, and hence the existing machinery of [14] is well suited to select for them. This is the reason that
Theorem 11 has a very similar shape to Theorem 10.

We now proceed to explain the proof of Theorem 11 in more detail. As discussed above we may assume
that

(

d
p

)

= 1 for every p | PΣ, as otherwise ΦΣ,d(s) = 0. Write P = PΣ if 3 ∤ PΣ, and P = 3PΣ if 3 | PΣ.

Step 1 – Parametrization. Let L = Q(
√
d,
√
−3) as before. In [14, Proposition 2.7], Cohen and Morra

enumerate the set of cubic fields K with resolvent Q(
√
d); each occurs as the cubic subextension (unique up

to isomorphism) of a field Nz = L( 3
√
α) with α = α0u, where α0 is determined by the class in I/I3 of the

ideal (α), and u represents an element u of a 3-Selmer group S3(L)[T ]. The notation [T ] indicates that u is
annihilated by two particular elements of F3[Gal(L/Q)] (one if d = 1 or d = −3).

A prime p splits in such a K if and only if: (1) it splits in Q(
√
d), and (2) every prime pz of L above p

splits completely in Nz. Since L contains the third roots of unity, each such pz of L splits completely in Nz

if and only if x3 = α is soluble in the completion of L at pz. By Hensel’s lemma, if 3 ∤ pz this happens if and
only if x3/α ≡ 1 (mod ∗pz) is soluble in L. Further, if α is coprime to 3, the primes above 3 split in Nz/L
if and only if x3/α ≡ 1 is soluble modulo 9; to see this, note that if v3(β

3 − α) > 3
2 with α, β integral, then

v3((β
′)3 −α) > v3(β

3 −α) with β′ := β− β3−α
3β2 , yielding a sequence of βi converging to a solution of x3 = α

in each 3-adic completion of L.

Step 2 – Conductors and Selmer group counting. In [14, Theorem 3.7], a formula is given for the
conductor f(N/Q(

√
d)). One writes αZL = a0a

2
1q

3 where a0 and a1 are integral coprime squarefree ideals, has
a0a1 = aαZL for an ideal aα of Q(

√
d), and has that f(N/Q(

√
d)) is the product of aα times a complicated

3-adic factor, depending on the solubility of x3/α ≡ 1 (mod ∗pnz ) for ideals pz over 3. They enumerate these
3-adic factors by inclusion-exclusion, involving a quantity

fα0
(b) = #|{u ∈ S3(L)[T ], x3/(α0u) ≡ 1 (mod ∗b) soluble in L}|,

where b ranges over (possibly fractional) powers of 3. This leads ([14, Proposition 4.6]) to a formula for
Φd(s), where b ranges over a set of 3-adic ideals B, and fα0

(b) appears as a counting function for the number
of ideals with fixed conductor.
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As discussed above, the splitting conditions in places in S are equivalent to requiring that x3/(α0u) ≡ 1
be soluble modulo other ideals. If 3 ∤ PΣ, multiply each b by P. If 3 | PΣ, then 3 cannot ramify in any cubic
field being counted: the sum over b ∈ B and all 3-adic factors disappear from Φd(s). In place of this sum,
one takes b equal to P.

The computation of fα0
(b) is carried out in Section 5 of [14], and also in Morra’s thesis [25] where more

detailed proofs are presented. One checks that, when varying b as above, the proofs are identical through
Lemma 5.4.

We diverge somewhat in Lemma 5.6, which computes the size of (Zb/Z
3
b
)[T ], where Zb := (ZL/bZL)

∗.
By the Chinese remainder theorem, the size of this group is multiplicative in b, so it suffices to carry out the
computation for b = (9) or b = (p) for p a rational prime other than 3.

For F equal to L, Q(
√
−3D), or Q write ΓF,b for the multiplicative group of ZF /(ZF ∩ b) modulo cubes,

so that ΓL,b = Zb/Z
3
b
by definition. Then for d ̸= 1,−3 a ‘descent’ argument similar to that presented in

the proof of [15, Proposition 3.4] yields an isomorphism ΓL,b[T ] ≃ ΓQ(
√
−3d),b[1 + τ ], and when d = 1 this

holds (tautologically) as an equality. Similarly to [15, Lemma 5.6], we obtain

(12) |(Zb/Z
3
b)[T ]| =

{

|ΓQ(
√
−3d),b|/|ΓQ,b| if d ̸= −3

|ΓQ,b| if d = −3.

By direct computation, we readily check that the right side of (12) is 3 in all cases. (Recall that
(

d
p

)

= 1.)

This yields a version of [14, Theorem 6.1], which gives an expression for Φd(s) in terms of characters of
Gb := (Clb(L)/Clb(L)

3)[T ], with the following modifications:

• If 3 ∤ PΣ, then each ideal b ∈ B is multiplied by P, and |(Zb/Z
3
b
)[T ]| is multiplied by 3ω(PΣ).

• If 3 | PΣ, then the sum over b ∈ B is replaced with the single choice b = P; (Zb/Z
3
b
)[T ] has size 3ω(PΣ).

Step 3 – Interpretation in terms of field counting. For d ̸= 1,−3 the analogue of [15, Proposition
3.4] continues to hold, yielding a ‘descent’ isomorphism Gb ≃ Ha′ , where a′ := b ∩ ZQ(

√
−3d), and Ha′ :=

(

Cla′(Q(
√
−3d))/Cl3a′(Q(

√
−3d))

)

[1 + τ ]. Then, Proposition 4.1 of [15] uses class field theory to establish a
bijection between pairs of nontrivial characters of Gb and cubic fields E. The same argument continues to
hold, with the set of cubic fields E is expanded to those whose discriminant is equal to −3d times the square
of any rational integer divisor of b. The second half of the proof of Proposition 4.1 in [15] is unnecessary, as
the conclusion follows more simply from Lemma 1.3 and equation (1.3) of earlier work of Nakagawa [26].

If d = 1 then as before the ‘descent’ isomorphism is replaced by an equality and we proceed identically.
If d = −3 then we obtain Gb ≃ Cla′(Q)/Cl3a′(Q) with a′ = b ∩ Z and a more direct application of class field
theory establishes the required bijection.

This completes the proof.

We turn now to the analytic consequences. Let d ̸= −3 be a fundamental discriminant and let Σ be a
finite collection of splitting types such that F(Σ)d is non-empty. In this case ΦΣ,d(s) is a Dirichlet series
with nonnegative coefficients, and we will see that it has a simple pole at s = 1 with positive residue. Define
the quantity

N(F(Σ)d;Z) := #
{

K ∈ F(Σ)d : F(K) < Z
}

.

Then we have the following consequence of Theorem 11 and its extension to arbitrary splitting conditions
described after Remark 12.

Theorem 13 Let d and Σ be as above. Then we have

N(F(Σ)d;Z) = Ress=1

(

ΦΣ,d(s)
)

· Z +Oϵ

(

|L3(PΣ, d)||d|1/6P 1/3
Σ Z2/3+ϵ

)

.

Proof: As this is standard, we give a brief account. Write the left side as

#
{

K ∈ F(Σ)d : F(K) < Z
}

=
1

2πi

∫ 2+i∞

2−i∞
ΦΣ,d(s)

Zs

s
ds.
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We then write each Euler product in ΦΣ,d(s) as the product of a Dedekind zeta function ζQ(
√
−3d)(s) or

an irreducible degree 2 Artin L-function, times a function holomorphic and bounded in any half plane
ℜ(s) ≥ σ0 > 1

2 .
As all of the L-functions have conductor ≪ |d|P 2

Σ, the convexity bound yields

∣

∣

∣

∣

ΦΣ,d(s)−
Ress=1

(

ΦΣ,d(s)
)

s− 1

∣

∣

∣

∣

≪ |L3(PΣ, d)| · |d|1/4
(

(1 + t)PΣ

)1/2
,

uniformly in ℜ(s) = σ + it with 1 > σ ≥ σ0.
Pick T > 1 to be optimized later. We shift the contour to the left, picking up one residue at 1, ending

up with a sum of the following integrals: from 1+ ϵ± iT to 1+ ϵ± i∞; from 1+ ϵ± iT to σ0 ± iT ; and from
σ0 − iT to σ0 + iT . The residue gives the required main term, while the sum of these integrals is

≪ |L3(PΣ, d)| ·
(

Z1+ϵ

T
+ Zσ0T 1/2|d|1/4P 1/2

Σ

)

.

The result now follows by optimizing the value of T to be Z1/3/(d1/6P
1/3
Σ ). 2

Remark 14 The error terms in the above theorem can clearly be improved by using subconvex estimates in
place of the convexity bound. However, we do not state this improvement since we have no need for it.

In the case d = −3, the same result and proof hold, except that
(−3d

p

)

= 1 for all p ∤ 3d, so that ΦΣ,−3(s)

has a double pole at s = 1, as opposed to a simple pole. Therefore, as explained in [14, Corollary 7.4], we
obtain the asymptotic (2) for PΣ = 1, and for PΣ > 1 this generalizes to

(13) #{K ∈ F(Σ) : D(K) = −3,F(K) < Z} = C1(Σ)Z(log(Z) + C2(Σ)− 1) +O(P
1/3+ϵ
Σ Z2/3+ϵ),

where

C1(Σ) := C1

∏

p|PΣ

p ̸=3

p

3p+ 6
·
∏

p|PΣ

p=3

1

7

C2(Σ) := C2 +
∑

p|PΣ

p ̸=3

2 log p

p+ 2
+
∑

p|PΣ

p=3

6

7
log 3.

3 The asymptotics of cubic fields with bounded invariants

For a finite collection Σ of splitting types and positive real numbers Y and Z, define

N(Σ;Y, Z) :=
{

K ∈ F(Σ) : 3 ̸= |D(K)| < Y, F(K) < Z
}

.

In this section, we compute asymptotics for N(Σ;Y, Z). We will handle the ‘large Y case’ (i.e., large log Y
logZ )

using Theorem 8 and the ‘small Y case’ using Theorem 13. Our error terms are strong enough that these
ranges of Y overlap, yielding an asymptotic estimate for all Y and Z. Indeed, we obtain asymptotic formulas
with different expressions for the main terms, which we may then conclude are equal.

These results will be used in the proofs of Theorems 2 and 4(c), where D and F are given equal weight.
For parts (a) and (b) of Theorem 4 we will instead use a more direct approach so as to optimize the error
terms. All of these proofs will be given in Section 4.

We begin with the following important uniformity estimate due to Davenport–Heilbronn (see, e.g., [2,
Lemma 3.3]).

Lemma 15 The number of cubic fields K such that |Disc(K)| < X and F(K) = f is bounded by Oϵ(X
1+ϵ/f2).

12



The key result of this section is the following proposition:

Proposition 16 Let Σ be an finite collection of splitting types, and let Y and Z be positive real numbers.
Then

N(Σ;Y, Z) =
(

∑

f<Z

C1(Σ, f)
)

· Y +Oϵ(Y
5/6Z2/3 + Y 2/3+ϵZ4/3P

2/3
Σ );

N(Σ;Y, Z) =
(

∑

|d|<Y
fund.disc ̸=−3

Ress=1 ΦΣ,d(s)
)

· Z +Oϵ,Σ

(

Y 7/6+ϵZ2/3+ϵP
1/3+ϵ
Σ

)

.

Proof: To prove the first equality, we fiber by F(K) and apply Theorem 8 (Davenport-Heilbronn), obtaining

N(Σ;Y, Z) =
∑

f<Z

N(F(Σ)(f);Y )

=
(

∑

f<Z

C1(Σ, f)
)

· Y +O
(

∑

f<Z

(f−1/3Y 5/6 + E(Y ; f,Σ))
)

=
(

∑

f<Z

C1(Σ, f)
)

· Y +O
(

Y 5/6Z2/3 + Y 2/3+ϵZ4/3P
2/3
Σ

)

,

as necessary. To prove the second equality, we fiber by D(K) and apply Theorem 13 (Cohen-Morra):

N(Σ;Y, Z) =
∑

|d|<Y
fund.disc ̸=−3

N(F(Σ)d;Z)

=
(

∑

|d|<Y
fund.disc ̸=−3

Ress=1 ΦΣ,d(s)
)

· Z +OΣ,ϵ

(

∑

|d|<Y
fund.disc ̸=−3

|L3(PΣ, d)||d|1/6Z2/3+ϵP
1/3
Σ

)

=
(

∑

|d|<Y
fund.disc ̸=−3

Ress=1 ΦΣ,d(s)
)

· Z +OΣ,ϵ(Y
7/6+ϵZ2/3+ϵP

1/3+ϵ
Σ ),

where the bound on the sum over d of the sizes of L3(PΣ, d) follows from Lemma 15. This concludes the
proof of the proposition. 2

Next, we estimate the leading constant in the right hand side of the first equation of Proposition 16.

Proposition 17 We have

∑

f<Z

C1(Σ, f) =
1

2

(

∑

K∈Σ∞

1

|Aut(K)|
)

∏

p

(

∑

K∈Σp

|D(K)|p|F(K)|p
|Aut(K)|

)(

1− 1

p

)2

· Z +Oϵ(Z
3/5+ϵ);

Proof: Recall the Dirichlet series L1(Σ, s) :=
∑

f C1(Σ, f)f
−s from §2.1. It is easy to see that L1(Σ, s) is

holomorphic to the right of ℜ(s) > 1/2 with a simple pole at s = 1. Indeed, the shape of C1(Σ, f) described
in (6) implies that L1(Σ, s)/ζ(s) converges absolutely and is bounded uniformly in Σ and s to the right of
ℜ(s) = σ for any σ > 1/2. Pick a real number T to be optimized later. Following the proof of Theorem 13,
we have

(14)

∑

f<Z

C1(Σ, f) =

∫

ℜ(s)=2

L1(Σ, s)(s)
Zs

s
ds

= Ress=1 L1(Σ, s) · Z +Oϵ

(Z1+ϵ

T
+ Z1/2+ϵT 1/4

)

,
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where we use the convex bound to estimate the growth of ζ(s) (and therefore L1(Σ, s)) on the line ℜ(s) =
1/2 + ϵ. From the Euler product expansion of L1(Σ, s) derived in Proposition 9, it follows that the residue
of L1(Σ, s) at s = 1 is given by

(15) Ress=1 L1(Σ, s) =
1

2

(

∑

K∈Σ∞

1

|Aut(K)|
)

∏

p

(

∑

K∈Σp

|D(K)|p|F(K)|p
|Aut(K)|

)(

1− 1

p

)2

.

The proposition follows by choosing T = Z2/5. 2

The above two propositions have the following consequence:

Corollary 18 We have

1

Y

∑

|d|<Y
fund.disc ̸=−3

Ress=1 ΦΣ,d(s) =
1

2

∏

p

(

∑

K∈Σp

|D(K)|p|F(K)|p
|Aut(K)|

)(

1− 1

p

)2

+Oϵ,Σ(Y
−1/12+ϵ).

Proof: The result follows from Propositions 16 and 17 by setting Z = Y 3/4. 2

In particular, the two estimates of Proposition 16 are asymptotic formulas for Y > Z1+ϵ and Y < Z2−ϵ,
respectively. Since these ranges overlap, we obtain the following result.

Theorem 19 We have

N(Σ;Y, Z) =
1

2

(

∑

K∈Σ∞

1

|Aut(K)|
)

∏

p

(

∑

K∈Σp

|D(K)|p|F(K)|p
|Aut(K)|

)(

1− 1

p

)2

· Y Z + oΣ(Y )Z + Y oΣ(Z).

Proof: Combining the above results yields the claimed result with an error term

≪ϵ,Σ (Y Z)ϵ
(

Y Z3/5 + Y 11/12Z +min(Y 2/3Z4/3, Y 7/6Z2/3)
)

,

which is sufficiently small. 2

4 Ordering cubic fields by generalized discriminants

In this section we determine asymptotics for the number of cubic fields with bounded generalized discrimi-
nant, thereby proving Theorem 4. We also then determine which generalized discriminants I are such that
the family of cubic fields ordered by I satisfy independence of primes, thus also proving Theorem 6.

For a generalized discriminant I = |D|αFβ , after normalizing we may assume that one of α or β equals
1 and the other is ≥ 1. We handle each of the three possible cases in turn.

Proposition 20 For a finite collection Σ of cubic splitting types and a real number β > 1, we have

N|D|Fβ (Σ;X) = L1(Σ, β) ·X + L2(Σ, 5β/6)X
5/6 +Oϵ,β

(

(X
2

β+1
+ϵ +X

2
3
+ϵ)P

2/3
Σ

)

,

with L1(Σ, β) and L2(Σ, 5β/6) as given in Proposition 9.

Proof: We fiber over f ≥ 1 and write

N|D|Fβ (Σ, X) =
∑

f

N(F(Σ)(f); f2−βX) +O(X
1
β log(X)),
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where N(F(Σ)(f); f2−βX) denotes the number of cubic fields K ∈ F(Σ)(f) such that |Disc(K)| < f2−βX,
and the error term accounts for the pure cubic fields. For any 1 < Y ≪ X1/β , by Lemma 15 we have

∑

f≥Y

N(F(Σ)(f); f2−βX) ≪ϵ

∑

f≥Y

f2−β+ϵX1+ϵ

f2
≪ϵ

X1+ϵ

Y β−1−ϵ
.

For f < Y , by Theorem 8 we have

∑

f<Y

N(F(Σ)(f); f2−βX) =
∑

f<Y

(C1(Σ, f)

fβ
X +

C2(Σ, f)

f5β/6
X5/6 +O

(

E(X/fβ , f,Σ)
)

)

.

The error term is bounded by
∑

k<log2 Y

∑

2k≤f<2k+1

E(X/fβ ; f,Σ) ≪
∑

k<log2 Y

X2/3+ϵ(2k)4/3−2β/3+ϵP
2/3
Σ

≪ X2/3+ϵP
2/3
Σ ·max(Y 4/3−2β/3+ϵ, 1).

Meanwhile, the two main terms are:

∑

f<Y

C1(Σ, f)

fβ
=

∑

f≥1

C1(Σ, f)

fβ
+Oβ(Y

1−β)

= L1(Σ, β) +Oβ(Y
1−β);

∑

f<Y

C2(Σ, f)

f5β/6
=

∑

f≥1

C2(Σ, f)

f5β/6
+Oβ(Y

1−5β/6)

= L2(Σ, 5β/6) +Oβ(Y
1−5β/6).

Optimizing (in X aspect), we pick Y = X
1

β+1 and obtain the result. 2

Proposition 21 For a finite collection Σ of cubic splitting types and a real number α > 1, we have

N|D|αF(Σ;X) =
(

∑

d fund. disc ̸=−3

Ress=1 ΦΣ,d(s)

|d|α
)

·X +Oϵ,α((X
3/(2α+1)+ϵ +X2/3+ϵ)P

1/3
Σ ).

Proof: We fiber over d and write

N|D|αF(Σ, X) =
∑

d fund. disc ̸=−3

N(F(Σ)d;X/|d|α),

Pick a real number 1 < Y ≪ X1/α to be optimized later. For each fundamental discriminant d such that
|d| ≥ Y , the condition |d|αf < X implies that f < X/Y α. Hence by Lemma 15 we have

∑

d fund. disc ̸=−3
|d|≥Y

N(F(Σ)d;X/|d|α) ≤
∑

f<X/Y α

#{K ∈ F(Σ)(f) : |Disc(K)| < X1/αf2−1/α}

≪
∑

f<X/Y α

Xϵ · (X/f)1/α

≪ X1+ϵ

Y α−1
.

To estimate the main term, we use Theorem 13 to write

∑

d fund. disc ̸=−3
|d|<Y

N(F(Σ)d;X/|d|α) =
(

∑

d fund. disc ̸=−3
|d|<Y

Ress=1 ΦΣ,d(s)

|d|α
)

·X +O(E),

15



where the error term E is easily bounded by breaking up the sum over d into dyadic ranges and using Lemma
15 to estimate the size of L3(PΣ, d):

E ≪
∑

d fund. disc ̸=−3
|d|<Y

|L3(PΣ, d)| · |d|1/6P 1/3
Σ (X/|d|α)2/3+ϵ

≪ X2/3+ϵ max(Y 7/6−2α/3, 1)P
1/3
Σ .

Optimizing, we pick Y = X2/(2α+1) and obtain the required result. 2

Theorem 22 We have

(16) N|D|F(Σ;X) =
1

2

(

∑

K∈Σ∞

1

|Aut(K)|
)

∏

p

(

∑

K∈Σp

|D(K)|p|F(K)|p
|Aut(K)|

)(

1− 1

p

)2

·X logX + o(X logX).

Proof: Given ϵ > 0, choose ϵ′ < ϵ so that the interval [1,
√
X) may be divided exactly into 1

2 (ϵ
′−1 +

O(1)) logX intervals of the form [(1+ ϵ′)k, (1+ ϵ′)k+1), and write Yk := (1+ ϵ′)k and Zk := X/(1+ ϵ′)k. By
Theorem 19, we have that

N(Σ;Yk+1, Zk)−N(Σ;Yk, Zk) = C1(DF,Σ) · ϵ′X + o(Yk)Zk,

where C1(DF,Σ) is the constant in (16), and the same is true with the roles of Y and Z reversed. Since
every field counted by N|D|F(F(Σ);X) is counted in one of the above rectangles, we obtain

N|D|F(F(Σ);X) ≤ C1(DF;Σ)X logX · (1 +O(ϵ) + ϵ′−1oX(1)).

Choosing ϵ → 0 as X → ∞, we obtain the result as an upper bound. To obtain the lower bound, proceed
analogously, choosing Zk := X/(1 + ϵ′)k+1 and subtracting the O(X) fields in N(Σ;

√
X,

√
X) which are

counted twice. 2

Theorems 4 and 5 follow immediately from Propositions 20 and 21, and Theorem 22. We conclude by
proving Theorems 2 and 6.

Proof of Theorem 2: For a prime p > 3 and étale cubic extension Kp of Qp, as noted previously we have
that p2 ∤ D(K)F(K). Therefore, for a cubic field K, we have rad(Disc(K)) = D(K)F(K) up to sign and
bounded powers of 2 and 3. Let δ2 and δ3 be powers of 2 and 3, respectively. For p = 2, 3 let S(δp) be the set
of cubic étale extensions Kp of Qp for which D(Kp)F(Kp) has p-adic part δp, and let Σ(δ2, δ3) be the finite
collection of cubic splitting types defined by Σ2 = S(δ2), Σ3 = S(δ3), and Σv = Σall

v for all other places v.
Then we have

#
{

K ∈ F(Σ) : C(K) < X, D(K) ̸= −3, ±Disc(K) > 0
}

= N|D|F
(

Σ;
δ2δ3

rad(δ2δ3)
·X
)

=
1

2σ±
C(δ2)C(δ3)

∏

p≥5

(

1 +
2

p

)(

1− 1

p

)2

·X logX

+o(X logX),

where σ+ = 6 and σ− = 2 are the sizes of the automorphism groups of R3 and R× C, respectively, and

C(δ2) =
(

1− 1

2

)2 ∑

K2∈S(δ2)

rad(δ2)
−1

|Aut(K2)|
; C(δ3) =

(

1− 1

3

)2 ∑

K3∈S(δ3)

rad(δ3)
−1

|Aut(K3)|
.

Summing over all δ2 and δ3, we obtain

#
{

K ∈ F : C(K) < X, D(K) ̸= −3, ±Disc(K) > 0
}

=
1

2σ±

∏

p

C(p)
(

1− 1

p

)2

·X logX + o(X logX),
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where for any prime p, the quantity C(p) is defined to be

C(p) :=
∑

K∈Σall
p

|rad(|D(K)|F(K))|p
|Aut(K)| .

To compute these constants, we use the database of local fields available at lmfdb.org [21], which lists each
quadratic or cubic ramified extension of Q2 and Q3 with its Galois group; we obtain that C(2) = 3 and
C(3) = 11/3.

Finally, to count the contribution of the pure cubic fields, observe that we have

∑

D(K)=−3

C(K)−s = −1

2
· 3−s +

3

2
· 3−s

∏

p ̸=3

(

1 +
2

ps
)

.

by [14, Proposition 7.3]. By an argument identical to that of Theorem 13 or [14, Proposition 7.4], we have

#
{

K ∈ F : C(K) < X, D(K) = −3, ±Disc(K) > 0
}

=
3

10

∏

p

(

1 +
2

p

)(

1− 1

p

)2

·X logX + o(X logX),

thereby completing the proof. 2

Proof of Theorem 6: For α ≤ β this follows immediately from the shape of the leading asymptotics in
parts (a) and (c) of Theorem 4. It remains to prove the result when α > β, and as before we may assume
that β = 1. For fixed ϵ > 0 let N(ϵ) be the smallest positive integer such that the following inequality is
satisfied:

(17) ϵ · Ress=1 ΦΣall,5

5α
>

∑

|d|>N(ϵ)
fund.disc.

Resd=1 ΦΣall,d

|d|α .

Such an N(ϵ) exists for each ϵ since the sum of Resd=1(ΦΣall,d)/|d|α is convergent, as can be seen from
Corollary 18 for example.

For each fundamental discriminant d with 3, 5 ̸= |d| ≤ N(ϵ), now let pd ̸= 7 be a prime such that the
splitting types of pd at Q(

√
5) and Q(

√
d) differ. (For d = 1, we choose p1 to be inert in Q(

√
5).) Define

Σ
(ϵ)
pd to be the set of all étale cubic extensions of Qpd

whose quadratic resolvents are equal to Q(
√
5)⊗Qpd

.

We then define the collection Σ(ϵ) by taking Σ
(ϵ)
pd as above, and choosing Σ

(ϵ)
p = Σall

p for p not equal to any
of the pd.

Then (17) holds with Σall replaced by Σϵ and |d| > N(ϵ) replaced by d ̸= −3, 5, as the newly imposed
splitting conditions do not exclude any of the fields counted on the left, nor do they include any of the fields
added to the right. Since K ⊗Q7 ̸∼= Q3

7 for any K with resolvent Q(
√
5), this implies that

0 < lim
X→∞

#{K ∈ F(Σ(ϵ)) : D(K) ̸= −3, D(K)αF(K) < X, K ⊗Q7
∼= Q3

7}
#{K ∈ F(Σ(ϵ)) : D(K) ̸= −3, D(K)αF(K) < X} <

ϵ

1 + ϵ
< ϵ.

In particular, since 7 does not split in Q(
√
5), the probability of the prime 7 splitting completely in

F(Σ(ϵ)) goes to 0 as ϵ tends to 0. Moreover, the probability that 7 splits completely in F(Σall) is positive,
since 7 splits completely a positive proportion of the time in cubic fields with resolvent, say, Q(

√
−19). The

result now follows from the fact that Σ
(ϵ)
7 is constant for all ϵ. 2

5 Numerical data

As a double check on our work we numerically verified Theorem 11 (the explicit Dirichlet series counting
cubic fields with local conditions, by quadratic resolvent), and the α = β = 1 case of Theorem 4 (counting
cubic fields with |D|F < X). Our code can be readily modified to cover additional cases of Theorem 4.
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We used the PARI/GP programming language [27], and our source code and data may be downloaded
from thornef.github.io: a program cm-test.gp to compute instances of Theorem 11, and compare against
known data when possible; a program cubic-count.gp to generate the data below; and lists of cubic fields
(rcf-1500k.gp and icf-1000k.gp) obtained from lmfdb.org [21].

For counting cubic fields with |D|F < X, the following table presents a comparison (for relatively small
X) of the asymptotics proved in Theorem 4(c) with the data:

X Theorem 4(c) Actual Data
100 50 38
1000 748 629
10000 9977 9181
20000 21456 20044
30000 33502 31427

We note the apparent presence of one or more negative lower order terms. There are at least three
possible explanations for the discrepancy between the data and the asymptotics:

• the negative secondary term in the Davenport-Heilbronn theorem (5);

• the exclusion of D = −3 from our counts, which is not ‘visible’ in the main term of Theorem 4(c);

• the natural tendency for asymptotics with logarithmic terms to have lower order terms without the
logarithms, e.g. the divisor sum estimate

∑

n<X d(n) = X logX + (2γ − 1)X +O(
√
X).

We leave a more detailed analysis for followup work.
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[20] J. Klüners. A counterexample to Malle’s conjecture on the asymptotics of discriminants. C. R. Math.
Acad. Sci. Paris, 340(6):411–414, 2005.

[21] LMFDB Collaboration, The. The L-functions and modular forms database. http://www.lmfdb.org,
2022.

[22] G. Malle. On the distribution of Galois groups. J. Number Theory, 92(2):315–329, 2002.

[23] G. Malle. On the distribution of Galois groups. II. Experiment. Math., 13(2):129–135, 2004.

[24] G. Martin and P. Pollack. The average least character non-residue and further variations on a theme
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