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Abstract

In this article, we introduce a class of invariants of cubic fields termed “generalized discriminants”.
We then obtain asymptotics for the families of cubic fields ordered by these invariants. In addition, we
determine which of these families satisfy the Malle-Bhargava heuristic.

1 Introduction

A foundational result due to Davenport—Heilbronn [17] provides asymptotics for the number of real and
cubic fields, when these fields are ordered by their discriminants. Specifically, the theorem states:

Theorem 1 (Davenport—Heilbronn) Let NSZSC(X) denote the number of cubic fields K, up to isomor-
phism, that satisfy | Disc(K)| < X and £ Disc(K) > 0. Then
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The above theorem, its extensions, and the methods of their proofs, have had a host of applications.
Among many other applications, they are used by Yang [38] to verify the Katz—Sarnak heuristics [18] for
low-lying zeroes of Dedekind zeta functions of cubic fields; by Bhargava—Wood [11], Belabas—Fouvry [3] and
Wang [36] to prove Malle’s conjecture for various different Galois groups; by Martin—Pollack [24] and Cho-
Kim [12] to obtain the average value of the smallest prime satisfying certain prescribed splitting conditions;
by AS-Sédergren—Templier [30] to prove that the Dedekind zeta functions of infinitely many Ss-cubic fields
have negative central values.

Theorem 1 has also been generalized in numerous ways: Belabas-Bhargava—Pomerance [2] prove power
saving error terms; Bhargava [4, 6] determines the asymptotics of quartic and quintic fields, when ordered by
discriminant; Datskovsky—Wright [16], Taniguchi [31], and Bhargava—AS—Wang [9] count cubic extensions of
number fields and function fields; Belabas—Fouvry [3] count subfamilies of cubic fields satisfying congruence
conditions on their discriminants; Terr [34] proves that the “shapes” of cubic rings and fields are equidis-
tributed (see also work of Bhargava—Harron [7], who give a uniform proof that shapes of cubic, quartic, and
quintic rings and fields are equidistributed); Taniguchi—FT [32] and Bhargava—AS—Tsimerman [8] compute
secondary terms (of size < X5/0) for the asymptotics of N (X).

In this paper, we consider generalizations along a different direction: namely, we determine asymptotics
for families of cubic fields ordered by invariants more general than the discriminant. Let C(K) be the radical
of | Disc(K)|. That is, we have C(K) := ][, pisc(x) P- We then prove the following result.



Theorem 2 Let NZ(X) denote the number of cubic fields K, up to isomorphism, that satisfy C(K) < X
and £ Disc(K) > 0. Then

NE(X) = 1% p<1+;)(1;>2XlogX+o(X10gX);
No(X) = (130+33>H<1+;)<1;)2XlogX+0(XlogX).
p

Note that we break up the main term in the asymptotics for N (X) into two summands; they correspond
to what can be considered two disjoint subfamilies of cubic fields, namely, the family of pure cubic fields and
the family of non-pure cubic fields.

Theorem 2 will be deduced as a special case of a more general result that counts cubic fields ordered by
various different types of invariants.

Generalized discriminants of cubic fields

Let M be a Galois sextic field with Galois group S3 over Q. Then K has three cubic Ss-subfields, which
are conjugate to each other. One would therefore expect to be able to understand the family of sextic S3-
fields via the family of cubic Ss-fields. Bhargava—Wood [11] and Belabas—Fouvry [3] independently use this
philosophy to prove the following result.

Theorem 3 (Belabas—Fouvry, Bhargava—Wood) Let Nfs (X) denote the number of Galois sextic num-
ber fields M with Galois group Ss, such that | Disc(M)| < X and %+ Disc(M) > 0.
Then, we have

C:I:
Ni (X)= = [ X2 +o(x'3),
p

where CT =1,C~ = 3, the product is over all primes, and
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A power saving error term for the above quantity was obtained by work of Taniguchi-FT [33]. In this work,
they also speculate about a possible secondary term, and discuss tensions between theoretical predictions
and the data.

Similarly to C(K), we will regard | Disc(M)| as a “generalized discriminant” of its cubic subfield. More
specifically, let K be a non-Galois cubic field, and denote the Galois closure of K by M. Then M has a unique
quadratic subfield, denoted L. We say that L is the quadratic resolvent field of K. Denote the discriminant
of the quadratic resolvent L of K by D(K). Then D(K) | Disc(K), and moreover, Disc(K)/D(K) is always a
perfect integer square. Denote its positive integer squareroot by F(K). We note that apart from a factor of
a bounded power of 3, the quantity F(K) is simply the product of primes that totally ramify in K, where p
is said to totally ramify in K if p splits as p = p3. Similarly, up to a bounded power of 2, the quantity D(K)
is the product of of primes that ramify, but not totally, in K. For a cubic Ss-field K, let Ag(K) denote the
discriminant of the Galois closure M of K. Then we have the decompositions

(1) Disc(K) = D(K)F(K)?, A¢(K) = D(K)’F(K)!, C(K) = [D(K)[F(K),

where the final equality is true up to bounded factors of 2 and 3. For positive real numbers o and 5, we say
that the invariant |D|*F? is a generalized discriminant. This notion of generalized discriminant encompasses
all three invariants we have seen so far, namely, Disc(K), Ag(K), and C(K).

When K is a cyclic cubic field, the invariant Ag(K) has no special meaning but an otherwise similar
analysis holds with D(K) := 1. We also define the above quantities analogously when K is a cubic étale
extension of Q.



Let ¥ = (X,), be a collection of cubic splitting types, where for each place v of Q, the set X, is the set
of cubic étale extensions of Q, with specified inertial and ramification indices.! The collection ¥ is said to
be a finite collection if for all large enough primes p, ¥, is the set of all cubic étale extensions of Q, (i.e.,
all inertial and ramification indices are allowed). Throughout, we write Ps for the product of those primes
where ¥, is a proper subset of these extensions.

Given a finite collection of cubic splitting types X, let F(X) denote the set of cubic fields K such that
K®Q, € %, for all v. For a generalized discriminant I, we define

N (2 X) = #{K € F(2): I(K) < X, D(K) # —3}.

As the pure cubic fields (those with D(K) = —3) behave differently from those with other quadratic resol-
vents, we will treat them separately.

The next result determines asymptotics for the family F(X), excluding the pure cubic fields, ordered by
generalized discriminants.

Theorem 4 Fiz positive real numbers a and 3, and let I = |D|*F? be a generalized discriminant. Let 3 be
a finite collection of cubic splitting types. Then

(a) When a < 3, we have
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(b) When o > B, we have

Ress=1 Py 4(s) 1 3 . 2 4c\1/3
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where Oy, 4(s) are Dirichlet series introduced in §2.

(¢) When a =, we have

Ni(2:.X) = 21a( EZE: |Aut )E[(Z W)O_;)zx;1OgX+OE’I(Xi1°gX)'

KeXx

For the pure cubic fields, Cohen and Morra proved [14, Corollary 7.4] that, when ¥, = ¥ for all v,

(2) #{K € F():D(K) =3,F(K) < Z} = C1 Z(log(Z) + Cy — 1) + O(Z%/3%¢),

Cim g (1+2)(1—%)Qv
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where

where the sum and product are over all primes p. This result also generalizes to arbitrary 3; see (13).
Taking Z = X1/#3/8 we see that adding the pure cubic fields adds a term of order X'/# log(X), along
with a secondary term of order X'/# to each of the results in Theorem 4. For (a) this is subsumed by

1This is a less general notion than the one which allows ¥, to be an arbitrary subset of étale cubic extensions of Q,. We
restrict ourselves to this less general notion for two reasons. First, this is the more natural notion from the point of view of
families of L-functions; see the discussion on Sato—Tate equidistribution at the end of the introduction. Second, we did not
obtain a version of Theorem 11 valid in this generality. Although this seems likely to be possible, it appears liable to be inelegant
while presenting additional complications in the proof.



the error term, and the result is unchanged; for (b), this new contribution dominates the asymptotics by a
factor of =< log X, so that asymptotically 100% of cubic fields ordered by I will be pure cubic fields; for (c)
this contribution is of equal magnitude, and the pure and non-pure cubic fields each constitute a positive
proportion of cubic fields ordered by I.

We recover Theorem 3, with a power saving error term of O(X%“), by taking a = 3 and 8 = 4 in
Theorem 4 and carrying out an appropriate calculation at the 2- and 3-adic places. (This was also noted in
[10].) When g > I the error term of O(X =) in case (a) dominates the other error term and can be refined
into a secondary term extrapolating that proved in [8, 32] for & = 1 and 8 = 2. More precisely, we have the
following result.

Theorem 5 Let o and B be positive real numbers with g > %, and let I = |D|*FA. Then we have

Ny (3 X) = Co(I;D) - Xo 4 Cy(I; ) - X o + O, (X =i+ 4 X5at¢)PY/3),

where C1(I;X) is the leading constant appearing in the right hand side of the displayed equation in Part (a)
of the above theorem, and
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where C(00) is 1, v/3 or 1 ++/3 depending on whether ¥o, consists of R3, R@® C or both, respectively. Also,
Ok denotes the ring of integral elements in K.

The Malle-Bhargava heuristics

In [22, 23], Malle develops heuristics for asymptotics of the number of degree-n number fields with Galois
group G and bounded discriminant, where n > 1 is any integer and G is a finite group with an action on a
set with n elements. These heuristics are believed to be true in most cases. However, see [20] where Kliiners
demonstrates a counter example in the case n = 3 and G = C51C, and [35], where Tiirkelli modifies Malle’s
conjecture so that it holds in the above and similar cases. While Malle’s conjecture has been formulated
only for families of fields ordered by discriminant, the same method applies to other orderings, in particular
to the generalized discriminants that we work with.

Interestingly, the leading constants appearing in front of Malle’s heuristics are still shrouded with mystery.
In the case of degree-n S, number fields ordered by discriminant, Bhargava [5] formulates a conjecture
for the leading coefficients, using a general recipe which constructs these constants from mass formulae
counting étale extensions of local fields. Once again, this recipe is quite general, applying to any family
of number fields constructed as follows: fix a degree n > 1 and a group G with a transitive action on the
set {1,...,n}. Then this recipe applies to the family of all degree-n number fields with Galois group G,
satisfying any finite set of splitting conditions, ordered by any generalized discriminant. (See also work of
Kedlaya [19] describing how these leading constants can be computed in the more general case of families of
Galois representations.) However, there are many instances where this prediction gives the incorrect leading
constant. The prototypical example is the family of quartic Dy-fields ordered by discriminant, where the
asymptotic constant determined by Cohen-Diaz y Diaz—Olivier [13] is not expected to equal the constant
that this recipe would predict. On the other hand, when quartic Dy-fields are ordered by conductor, Altug—
AS-Varma—Wilson [1] establish that the leading asymptotic constant does arise from the Malle-Bhargava
recipe. This leads to the natural question, as discussed by Bhargava in [5], of which families of number fields
ordered by which invariants satisfy this property.

We say that a family F' of number fields, ordered by some generalized discriminant, satisfies the Malle—
Bhargava heuristic if the asymptotics of every subfamily defined by prescribed splitting at finitely many



primes are as predicted by the Malle-Bhargava recipe. (Despite our terminology, we emphasize again that
Bhargava conjectured this only for S,,, and did not predict that it should always hold.)

A necessary condition is that the splitting behaviour of primes is independent. We now precisely define
this notion. Let G be a family of number fields having the same degree n.? Let ¥ = (3,), be a collection of
degree-n splitting types, where for each place v of Q, X, is the set of degree-n étale extensions of Q,, satisfying
specified inertial and ramification behaviour. For each place v, let X2!! denote the set of all degree-n étale
extensions of Q,. Then ¥ is said to be finite if 3, = E;}“ for all sufficiently large primes p. Let h: G — Ry
be a height function (i.e., there are only finitely many elements of G having bounded height). Let N, (Gs; X)
denote the number of elements in G satisfying ¥ and having height less than X. Then we say that the family
G ordered by h satisfies independence of primes if the following is true. For all places v of Q, there exist
functions o, : L2 — R>q with

Z Oy (K'u) = ]-7

K,exall

such that the following condition is satisfied. For each finite collection of splitting types X, we have

NG5 X) ~ (IT 32 oulhn) - NulG: X).

v K,eX,

There are many known examples of families of number fields which do not satisfy independence of primes.
See for example [37], in which Wood studies families of number fields with any fixed abelian Galois group,
and proves in many cases that, when ordered by discriminant, these families do not satisfy independence
of primes. We note that the notion of satisfying independence of primes is a weaker notion than that of
satisfying the Malle-Bhargava heuristic, when both these notions make sense. Moreover, independence of
primes can be defined for a wider class of families, for example, this notion makes sense for the family of pure
cubic fields, the family of monogenic degree-n fields, and many other families for which the Malle-Bhargava
heuristics do not apply.

Next, we consider the family of all cubic fields. It is natural to partition this family into two subfamilies:
the family of pure cubics and the family of non-pure cubics. The ordering on the family of pure cubic fields
coming from any generalized discriminant is the same (since we have D(K) = —3 for every pure cubic field
K). Tt follows from the method of Cohen—Morra [14] described in §2.2 that the family of pure cubic fields
satisfies independence of primes. For the family of non-pure cubic fields ordered by generalized discriminants,
we have the following result.

Theorem 6 Let I = |D|*F? be a generalized discriminant. Then the family of all non-pure cubic fields
ordered by I satisfies independence of primes and the Malle-Bhargava heuristic if and only if a < .

For the a < f case, the above result is an immediate consequence of Theorem 4. This o« > 3 case
requires a bit more work, since the residues of the Dirichlet series appearing in Part (b) of Theorem 4 are
not explicit. We give a general proof which also applies to many different situations, such as the family of
quartic Dy-fields ordered by discriminant.

Finally, our counting results also have implications towards families of Artin L-functions associated to
cubic Ss-fields. Indeed, let p : S3 — GL,,(C) be any representation of S3. Given a cubic Ss-field K, with
normal closure M, we obtain a Galois representation

Gal(Q/Q) — Gal(M/Q) = S3 — GL,(C),

where the final map is p. We associate to this Galois representation its Artin L-function, denoted L(s; p, K).
Throughout, we assume that p contains at least one copy of the standard representation of S3, which is
necessary to ensure that different cubic fields give rise to different L-functions. Then, given a family F (%)

21t is not entirely clear exactly what constitutes a family of number fields. Being the set of all number fields having the
same degree and the same Galois group is assumed to be a sufficient though not a necessary condition. See [28], where a similar
question is discussed in detail.



of cubic S3-fields K, we obtain a family of Artin L-functions L(s; p, K) that we denote by L(p,X). We order
the L-functions in £(p,X) by their conductors.

Ordering L(p,X) by conductor corresponds to ordering F(X) by a certain generalized discriminant I =
ID|*F# depending on p. Indeed, we have (a,3) = c1(1,2) + c2(1,0) where ¢; > 1 and ¢z > 0 are the
multiplicities of the standard and sign representations respectively, so that o > 0 and g > 0. A consequence
of Theorem 4 is that the family £(p,X) satisfies Sato—Tate equidistribution in the sence of [28, Conjecture
1]. Loosely speaking, a family of L-functions arising from number fields satisfies Sato—Tate equidistribution
when the asymptotics of these number fields, ordered by the conductors of their L-functions, satisfy the
Malle-Bhargava heuristics on average over primes p. Identically to the arguments in [29, §3.1], when o < §,
this follows immediately from the shape of the leading constant in Parts (a) and (c) of Theorem 4. When
« > [ the situation is similar to the case of the family of Dedekind zeta functions of Dy-fields considered in
[29, §6.2]. As there, we consider the family of cubic fields ordered by I to be a countable union of subfamilies,
one for each fixed quadratic resolvent field. Since each of these subfamilies contributes a positive proportion
to the full family, Sato—Tate equidistribution for the full family follows from Sato—Tate equidistribution for
each subfamily. Thus, we have the following consequence to Theorem 4:

Corollary 7 With notation as above, the families L(p,X) satisfy Sato—Tate equidistribution.

It is interesting to note that despite independence of primes not always holding, Sato—Tate equidistribution
is always satisfied for our families.

Organization of the paper

We begin in §2 by considering families of cubic fields with one fixed invariant. Invoking work of Bhargava—
Taniguchi-FT [10] on the Davenport-Heilbronn theorem, we obtain asymptotics for families of cubic fields
with fixed F; using work of Cohen-Morra [14] and Cohen-FT [15] on a Kummer-theoretic approach, we
deduce asymptotics for families of cubic fields with fixed D. The leading constants appearing in the asymp-
totics for the latter family are somewhat inexplicit, but in §3 we prove that the average values of these
constants have an explicit description given in terms of products of mass formulae.

The results of the previous two subsections allow us to determine asymptotics for F(3) ordered by
generalized discriminants. This is accomplished in §4, and we extract secondary terms and power saving
error terms when possible. We then establish exactly when independence of primes holds, thereby proving
Theorem 6. Finally, we conclude in §5 by presenting some numerical data.

Throughout, implied constants may depend on €, «, and 3, but not ¥ unless otherwise noted.

2 Families of cubic fields with a fixed invariant

Recall that for each cubic field or étale algebra K/Q or K/Q,, we have a decomposition
(3) Disc(K) = D(K)F(K)?,

where D(K) is the discriminant of the quadratic resolvent algebra of K. When K is a Ss-cubic field D(K) is
the discriminant of the unique quadratic field contained in the Galois closure of K, and when K is a cyclic
cubic field D(K) = 1. We decompose these quantities into local factors

(4) Disc(K) = =+ [ [ Disc,(K), D(K)==+]][D,y(K), F(K)=]]Fu(K),

with D, (K) = pr@P ) and F,(K) = p?»FE))  Then these quantities enjoy the following properties:
(a) When p > 3, then
(DI)(K)7 FP(K)) € {(13 1)7 (pa 1)7 (17p)}a

with the three cases corresponding to the ramification type of p in K: unramified, partially ramified,
or totally ramified, respectively.



(b) When p = 3, we have

(DS(K)aF3(K)> € {(17 1), (pa 1)) (p,p), (17p2)7 (p7p2)}'

Here p is unramified in the first case, partially ramified in the second case, and totally ramified in the
remaining cases.

(¢) When p = 2, we have
(D2(K), F2(K)) € {(1,1), (p27 1), (p37 1), (L,p)}

Here p is unramified in the first case, partially ramified in the next two cases, and totally ramified in
the last case.

Given a positive number f, squarefree away from 3, and indivisible by 27, we let (X)) denote the set
of cubic Ss-fields K € F(X) with F(K) = f. Given a fundamental discriminant d, we let F(X)4 denote
the set of cubic Ss-fields K € F(X) with D(K) = d. (By convention, we consider 1 to be a fundamental
discriminant.) In this section, we obtain asymptotics for the number of K € F (X)) with |D(K)| < Y in
§2.1, and the number of K € F(X)4 with F(K) < Z in §2.2. In particular, we obtain error terms that control
the dependence on X.

2.1 Counting cubic fields K with fixed F(K)

Let f be a fixed positive integer, squarefree away from 3. To count cubic fields K where F(K) = f, we
appeal to a strengthening of the Davenport-Heilbronn theorem. Define the quantity

NFE)UVY) = #{K € F(£)) : D(K)| < Y}.
Then we have the following:

Theorem 8 ([10], Theorem 1.4) We have
(5) NFEE)DY) = Ci (S, f) - Y + Co(S, f) - Y35+ O(E(Y; £,5)),

for constants C1(X, f) and Co(X, f) described below, and with the following ‘averaged’ bound on E(Y; f,X):
for each f < F, choose independent and arbitrary values Yy <Y . Then, we have

Z E(Yf7 fa E) < Y2/3+6F4/3+6P§/37
f<F

uniformly in F.

The leading constant C(X, f) is described as follows. First, for a prime p and a positive integer f, define the
set X, (f) of f-compatible algebras in 3, to be those étale cubic extensions K, of Q, such that the powers
of p dividing F(K,) and f are the same. Then we have

Ci(S, f) = ;(K;E:Ew Wl&oﬂ) Il > m) (- %)}

P KpeX,(f)

For each prime p > 3, when ¥, = E;”, we have
(1— l) when p| f;
(©) ( > ID(Kp)lp ) (1 _ 1) _ :
| Aut(K)| p

Ky,eX,(f)

(1—1)%) when pft f.



Meanwhile, the secondary constant Cy (X, f) is given by

4¢(1/3)

Cy(%, f) = C(OO)W Hyp S f)s

where C'(o0) is 1, V3, or 14+ 1/3 depending on whether ¥, consists of R3, R @& C, or both, respectively, and

D(K,)|p|F(K,)[L/3
UL [ oy, 2yl

[ Aut(Kop)]

KypeX,(f) Kp \POKp,
(7) V;D(Epvf) = L p)
ID(Kp)|p|F(Kp)IZ 2/3
> Aut(K,)] Ok, :Zpla]]*/*dx
Kpexal Okp\POK,

Moreover we have Cy (X, f) < 1 and |Co(%, f)| < f~1/3 for all ¥ and f.
To compute average values of these constants, we introduce the Dirichlet series L1 (X, s) and Lo(X, )
given by

(8) Li(S,8) =Y Ci(S,/)f % La(S,s) 202 S ) f
f

These series satisfy the following Euler product decomposition in their domains of absolute convergence.

Proposition 9 For R(s) > 1, we have

Ia(®s) = %(Z |Aut )Q(ZW)(1_1>;

KESuo Kex p
ID(Kp)|p|F(Kp)l, 9
bt £ e 2 Ok 7 /34
( " oo 4¢(1/3) H K,,gz,, [Aut(K,)] /Oxp\pOKIE K, Zplx]]?/3dx
Lg ¥,s—1/3 = @)
’ 50(2/3)3¢(5 ID(Ky) |p|F(Kp)[2
@/36/3) 5 Kga” TAG R / \poK[OK :Zp[z]]*/3dx

Proof: To prove the first equality in the above displayed notation, note that we have

Ll(E,S) _ Z Cl(]ivf)
f=1

o =X ) 2SR )

p

\D( )|p|F( )y
= ;(Kgxmug(fm)l;[(K;p [ Aut(K)| )(1_1)’

p

as necessary. The second equality follows in identical fashion. O

2.2 Counting cubic fields K with fixed D(K)

For each nonzero fundamental discriminant d, define a Dirichlet series

Dy 4(8) = Crea + Z

KeF( E)d

where ¢;oq is either 1/2 or 0 depending on whether or not the étale cubic algebra Q @ Q(\/&) satisfies the
splitting conditions specified by 3. Using Kummer theory and class field theory, Cohen, Morra, and the
second author [14, 15] proved the following explicit formula for ®x 4(s) when Ps; = 1, i.e. for counting all
cubic fields whose quadratic resolvent is Q(v/d).



Theorem 10 ([15], Theorem 2.5) For any nonzero fundamental discriminant d we have
1 1+ (=) wg(p)
(10) ca®a(s) = 5 M1.a(s) 11 (1 Al > Myg(s) ][] (1+ ps) ,
pt3d EcL3(d) pt3d
where:
ecy=1lifd=1ord< -3, andcqg=3ifd= -3 ord>1.

o L3(d) is the set of cubic fields of discriminant —d/3, —3d, and —27d. (The first case can of course
only occur if 3| d, and the second only if 31d.)

e For any cubic field E and prime p{ Disc(E), we define

2 if p is totally split in F,
wg(p) =<0 if p is partially split in F,
-1 if p is inert in E,

e The 3-Euler factors My 4(s) and M g(s) are given in the following table.

| Condition on d || My q(s) | M3 5(s), Disc(E) € {—d/3,-3d} | My g(s), Disc(E) = —27d |
31d 112/3% 1+2/3% 1_1/3%
d=3 (mod 9) 1+2/3° 1+2/3° 1-1/3°
d=06 (mod 9) || 1+2/3° + 6/3% 1+ 2/3° 1 3wg(3)/3% 1-1/3°

We will use this result, together with standard analytic techniques, to count cubic fields K with fixed
D(K) and varying F(K). Such a result was given as [14, Proposition 6.3] and we give a version where the
dependence of the error term on D(K) is specified.

We also extend these results to Ps, > 1, counting cubic fields with specified splitting types. The key
result is where ¥, = Qg for each p | Py, corresponding to a demand that each such p split completely in each
cubic field being counted. Write L3(Ps,d) for the set of cubic fields whose discriminant is —k2d/3, —3kd,
or —27k?d, where k is any positive divisor of Ps. Thus the quadratic resolvent of every field in £3(Px,d) is

Q(v—3d).
Theorem 11 With ¥, = Qf; for each p | Ps and L3(Ps,d) defined as above, we have

—3d
(11) Cd3w(PE)‘I)E,d(3):%M1,d(5) 1T <1+1+]Esp)>+ S Mep(s) ] <1+°"E(p)>

s
pt3dPs EeLlL3(Ps,d) pt3dPs p

provided that (%) =1 for every prime p | Ps, and ®x, q(s) = 0 otherwise. Here w(Ps) denotes the number
of prime divisors of Ps, and if 3 | Py then the factors Mi 4(s) and M g(s) are to be omitted.

The special cases 3 | Py and/or d € {1, -3} are all allowed; if d = 1 then @y 4(s) counts cyclic cubic
fields, and if d = —3 then the fields in L5(Ps,d) are cyclic.

Remark 12 The explicit form of ®x 4 stated in Theorem 11 will not be used in the proofs of our main
results. The “average residue computation” that is required for our proofs will be obtained indirectly from
results proved using geometry-of-numbers methods.

All that is necessary for us is an asymptotic formula for the partial sums of ®x 4 with bounds on the
error; this is done in Theorem 18 by interpreting ®x q as the weighted sum of incomplete Dedekind zeta
functions and incomplete Artin L-functions, both having conductor <sx d.



We then immediately show that @4 x(s) can be written as such a weighted sum in the case when X is an
arbitrary finite collection of splitting types in the following steps:

e The splitting type at infinity: the sign of the discriminant of a cubic field is the same as the sign of
the discriminant of its quadratic resolvent field. Hence, ®x. 4 will be 0 if the prescribed splitting type
at infinity is incompatible with the sign of d, and unchanged if it is compatible.

e (21) - A prime p is partially split in K if and only if it is unramified in K and inert in Q(v/d). Therefore,
if (%) =1 for any such prime p then ®x 4(s) = 0, and otherwise we eliminate all of the p-Euler factors
from Py 4(s).

e (121) — A prime p is partially ramified in K if and only if it is ramified in Q(v/d); therefore, Oy q=0
if p t d for any such p, and otherwise ®x 4(s) is unchanged.

e (1%) — A prime p is totally ramified in K if and only if p | f(K). Accordingly we remove the constant
terms from the p-Euler factors.

e The remaining primes p are required to have splitting types (111) or (3). We handle the (111) case by
applying equation (11) directly, and the (3) case by inclusion-exclusion.

In summary, the proof of Theorem 11 follows from a careful reading of [14] and [15]. The proof in [14]
proceeds by setting L = Q(\/&, v/=3), and enumerating those cyclic cubic extensions N, /L which contain an
appropriate K. By Kummer theory, any such extension is of the form N, = L(/a). Writing aZr, = apa?q?
for squarefree integral coprime ideals ag and a;, the conductor f(N/Q(v/d)) is given (see [14, Theorem 3.7))
by apa; times a 3-adic factor, and this 3-adic factor depends on the solubility of 23 — o modulo powers of 3.

The splitting conditions in K/Q are equivalent to solubility in L of 23 — @ modulo Ps, or modulo 3Ps
if 3 | Py, and hence the existing machinery of [14] is well suited to select for them. This is the reason that
Theorem 11 has a very similar shape to Theorem 10.

We now proceed to explain the proof of Theorem 11 in more detail. As discussed above we may assume
that (%) =1 for every p | Py, as otherwise @y, 4(s) = 0. Write P = Py if 31 P, and P = 3Py if 3| Px.

Step 1 — Parametrization. Let L = Q(v/d,v/—3) as before. In [14, Proposition 2.7], Cohen and Morra
enumerate the set of cubic fields K with resolvent Q(v/d); each occurs as the cubic subextension (unique up
to isomorphism) of a field N, = L(/a) with o = agu, where g is determined by the class in I/I® of the
ideal («), and u represents an element @ of a 3-Selmer group S3(L)[T]. The notation [T indicates that @ is
annihilated by two particular elements of F3[Gal(L/Q)] (one if d =1 or d = —3).

A prime p splits in such a K if and only if: (1) it splits in Q(v/d), and (2) every prime p. of L above p
splits completely in N,. Since L contains the third roots of unity, each such p, of L splits completely in N,
if and only if 2% = « is soluble in the completion of L at p,. By Hensel’s lemma, if 3 { p, this happens if and
only if 23/a = 1 (mod *p,) is soluble in L. Further, if « is coprime to 3, the primes above 3 split in N,/L
if and only if 23/a = 1 is soluble modulo 9; to see this, note that if v3(83 — a) > % with «, 8 integral, then
v3((B')% —a) > v3(B3 — a) with B := 3 — ’Bg’T_f‘, yielding a sequence of 3; converging to a solution of 23 = a
in each 3-adic completion of L.

Step 2 — Conductors and Selmer group counting. In [14, Theorem 3.7], a formula is given for the
conductor f(N/Q(v/d)). One writes aZy, = aga?q® where ag and a; are integral coprime squarefree ideals, has
apa; = a,Zg for an ideal a, of Q(v/d), and has that f(N/Q(v/d)) is the product of a, times a complicated
3-adic factor, depending on the solubility of z3/a =1 (mod *p?) for ideals p, over 3. They enumerate these
3-adic factors by inclusion-exclusion, involving a quantity

fao (0) = #|{7@ € S3(L)[T), 2*/(apu) =1 (mod *b) soluble in L}|,

where b ranges over (possibly fractional) powers of 3. This leads ([14, Proposition 4.6]) to a formula for
®4(s), where b ranges over a set of 3-adic ideals B, and f,,(b) appears as a counting function for the number
of ideals with fixed conductor.

10



As discussed above, the splitting conditions in places in S are equivalent to requiring that 3/(agu) = 1
be soluble modulo other ideals. If 31 Py, multiply each b by P. If 3 | Py, then 3 cannot ramify in any cubic
field being counted: the sum over b € B and all 3-adic factors disappear from ®4(s). In place of this sum,
one takes b equal to P.

The computation of f,,(b) is carried out in Section 5 of [14], and also in Morra’s thesis [25] where more
detailed proofs are presented. One checks that, when varying b as above, the proofs are identical through
Lemma 5.4.

We diverge somewhat in Lemma 5.6, which computes the size of (Z,/Z3)[T], where Zy := (Z1,/bZ1)*.
By the Chinese remainder theorem, the size of this group is multiplicative in b, so it suffices to carry out the
computation for b = (9) or b = (p) for p a rational prime other than 3.

For F equal to L, Q(v/—3D), or Q write I for the multiplicative group of Zp/(Zp Nb) modulo cubes,
so that ',y = Zp/Z3 by definition. Then for d # 1,—3 a ‘descent’ argument similar to that presented in
the proof of [15, Proposition 3.4] yields an isomorphism I'y s [T'| >~ T'(,/=33) (1 + 7], and when d = 1 this
holds (tautologically) as an equality. Similarly to [15, Lemma 5.6], we obtain

(12) ((Zo/Z3)[T]| = Tocv=3a),6l/ITel if d# -3
T.ol it d= 3.

By direct computation, we readily check that the right side of (12) is 3 in all cases. (Recall that (%) =1.)

This yields a version of [14, Theorem 6.1], which gives an expression for ®4(s) in terms of characters of
G = (Clp(L)/Cly(L)*)[T], with the following modifications:

e If 31 Py, then each ideal b € B is multiplied by P, and |(Z,/Z2)[T]| is multiplied by 3*(7=).
e If 3 | Ps, then the sum over b € B is replaced with the single choice b = P; (Z,/Z3)[T) has size 3*(F=).

Step 3 — Interpretation in terms of field counting. For d # 1, —3 the analogue of [15, Proposition
3.4] continues to hold, yielding a ‘descent’ isomorphism Gy ~ H,/, where @’ := b N ZQ(@), and Hy =
(Clar (Q(v=3d))/CL, (Q(v=3d)))[1 + 7]. Then, Proposition 4.1 of [15] uses class field theory to establish a
bijection between pairs of nontrivial characters of G, and cubic fields E. The same argument continues to
hold, with the set of cubic fields E is expanded to those whose discriminant is equal to —3d times the square
of any rational integer divisor of b. The second half of the proof of Proposition 4.1 in [15] is unnecessary, as
the conclusion follows more simply from Lemma 1.3 and equation (1.3) of earlier work of Nakagawa [26].

If d = 1 then as before the ‘descent’ isomorphism is replaced by an equality and we proceed identically.
If d = —3 then we obtain Gy, ~ Cly(Q)/C12,(Q) with o/ = b N Z and a more direct application of class field
theory establishes the required bijection.

This completes the proof.

We turn now to the analytic consequences. Let d # —3 be a fundamental discriminant and let ¥ be a
finite collection of splitting types such that F(3)y is non-empty. In this case ®x 4(s) is a Dirichlet series
with nonnegative coefficients, and we will see that it has a simple pole at s = 1 with positive residue. Define
the quantity

N(FX)a; Z) = #{K eF(X)q:F(K) < Z}.

Then we have the following consequence of Theorem 11 and its extension to arbitrary splitting conditions
described after Remark 12.

Theorem 13 Let d and X be as above. Then we have
N(F(S)a; Z) = Resoey (Psa(s)) - Z + O, (\cg(PE, d)|\d|1/ﬁpg/3z2/3+f).

Proof: As this is standard, we give a brief account. Write the left side as

2-+1i00 S
4{K € F(S)a: F(K) < Z) = i/ @E,d(s)%ds.

210 Jaico
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We then write each Euler product in @y 4(s) as the product of a Dedekind zeta function (g,/=35)(s) or
an irreducible degree 2 Artin L-function, times a function holomorphic and bounded in any half plane
5}%(8) > o9 > %

As all of the L-functions have conductor < |d|P2, the convexity bound yields

_ Ress—1 (@g7d(8))
s—1

1/2

By als) \ < L5(Po.d)| - /(1 + 1) Ps) .

uniformly in R(s) = o + it with 1 > o > 0.
Pick T' > 1 to be optimized later. We shift the contour to the left, picking up one residue at 1, ending

up with a sum of the following integrals: from 1+ € +47T to 1+ €+ io0; from 1+ € 4T to o¢ = ¢T'; and from
oo — 1T to o9 + ¢T. The residue gives the required main term, while the sum of these integrals is

1+€

Z
< |£3(Pz7d)| . ( + eroTl/2|d1/4Pz1:/2> .

The result now follows by optimizing the value of T to be Z'/3/(d"/SPY/?). O
Remark 14 The error terms in the above theorem can clearly be improved by using subconvex estimates in

place of the convexity bound. However, we do not state this improvement since we have no need for it.

In the case d = —3, the same result and proof hold, except that (*ng) =1 for all p 1 3d, so that 5, _3(s)
has a double pole at s = 1, as opposed to a simple pole. Therefore, as explained in [14, Corollary 7.4], we
obtain the asymptotic (2) for Py = 1, and for Ps > 1 this generalizes to

(13) #{K € F(2): D(K) = —3,F(K) < Z} = C1(2)Z(log(Z) + C3() — 1) + O(PL/ 3T 72/3+¢),

where

o= ]] 3pp+6' 11 %

p|Ps p|Ps
p#3 p=3
Co(%) = Oy 4 30 2182 5~ Oy
2 =02 ) 7 g o.
p|Ps p|Ps
p#3 p=3

3 The asymptotics of cubic fields with bounded invariants
For a finite collection ¥ of splitting types and positive real numbers Y and Z, define
N(%:Y,Z) = {K eF(X):34£|DK)| <Y, F(K) < Z}.

In this section, we compute asymptotics for N(3;Y, Z). We will handle the ‘large Y case’ (i.e., large igi;)
using Theorem 8 and the ‘small Y case’ using Theorem 13. Our error terms are strong enough that these
ranges of Y overlap, yielding an asymptotic estimate for all Y and Z. Indeed, we obtain asymptotic formulas
with different expressions for the main terms, which we may then conclude are equal.

These results will be used in the proofs of Theorems 2 and 4(c), where D and F are given equal weight.

For parts (a) and (b) of Theorem 4 we will instead use a more direct approach so as to optimize the error
terms. All of these proofs will be given in Section 4.

We begin with the following important uniformity estimate due to Davenport—Heilbronn (see, e.g., [2,
Lemma 3.3]).

Lemma 15 The number of cubic fields K such that | Disc(K)| < X and F(K) = f is bounded by O (X+¢/ f?).

12



The key result of this section is the following proposition:

Proposition 16 Let X be an finite collection of splitting types, and let Y and Z be positive real numbers.
Then

N(Z;Y,Z) = (Z Cl(E,f)) Y 4 O (YP/0 733 4 y2/3He 43 pIYy,
<z
N(:Y,Z) = ( 3> Rescs <I>g7d(s)) ~Z+OE,E(Y7/6+622/3+6P;/3+5).
|d|<Y
fund.disc#—3

Proof: To prove the first equality, we fiber by F(K') and apply Theorem 8 (Davenport-Heilbronn), obtaining

N(ZY,Z) = ) NFEE);Y)
f<z
- (Z Cl(z,f)) ~Y+O(Z(f*1/3y5/6 JrE(Y;f’E)))
<z j<z
- (Z C1(E,f)) 'Y+O(Y5/622/3+Y2/3+€Z4/3P§/3),
<z

as necessary. To prove the second equality, we fiber by D(K) and apply Theorem 13 (Cohen-Morra):

N(ZY,Z) = > NFE)42)

|d|<Y
fund.disc#—3

Z Res,—1 (I)E,d(s)) -7+ OZ,&( Z \53(132,d)||d|1/622/3+spé/3)

|[d|<Y ld|<Y
fund.disc#—3 fund.disc#—3
- 1/3+
= 3> Resc @Z)d(s)) - Z + O (YT/6+e z2/3+e pl/3+e)
|d|<Y
fund.disc#—3

where the bound on the sum over d of the sizes of L3(Ps,d) follows from Lemma 15. This concludes the
proof of the proposition. O

Next, we estimate the leading constant in the right hand side of the first equation of Proposition 16.

Proposition 17 We have

ZCl (3, f) = ( Z |Aut )H( Z D( |A1|11;|F >|p)(1—;)2~Z+O€(Z3/5+6);

<z

Proof: Recall the Dirichlet series L1(X,s) := >, C1(Z, f) f~° from §2.1. It is easy to see that Li(X, s) is
holomorphic to the right of (s) > 1/2 with a simple pole at s = 1. Indeed, the shape of C1(%, f) described
in (6) implies that L1 (X, s)/((s) converges absolutely and is bounded uniformly in ¥ and s to the right of
R(s) = o for any o > 1/2. Pick a real number T to be optimized later. Following the proof of Theorem 13,
we have

S G = / L(8,5)(5) 2 ds
(14) <z R(s)=2

Z1te
Resg—1 L1(X,s) - Z + OE(T + Zl/2+€T1/4)’

13



where we use the convex bound to estimate the growth of ((s) (and therefore Lq(%,s)) on the line R(s) =
1/2 + €. From the Euler product expansion of L;(X,s) derived in Proposition 9, it follows that the residue
of L1(%,s) at s =1 is given by

1 ID(K)|p|F(K)| 12
1 e 1159 = 2( 3 e ) I UL, (1 - 1)
(15) eser La(2.9) = 5 2 e LI —am@ 5
KeXo p Kex,
The proposition follows by choosing T = Z%/5. O
The above two propositions have the following consequence:

Corollary 18 We have

% Z Ress—1 Py d %H( Z = |A1|11t)|F >|p) (1 — 1)2 + Oe,z(Y”/u*E).
p

|d|<Y p
fund.disc#—3

Proof: The result follows from Propositions 16 and 17 by setting Z = Y?3/4. O

In particular, the two estimates of Proposition 16 are asymptotic formulas for Y > Z'7¢ and Y < Z27¢,
respectively. Since these ranges overlap, we obtain the following result.

Theorem 19 We have

N(Z;Y’,Z)z%( 3 ‘Aut )];[( Z W)(l11))2~YZ+02(Y)Z+Y02(Z).

KeYe €x,
Proof: Combining the above results yields the claimed result with an error term
e (YZ2)(YZ35 4 Y27 4 min(Y2/3 243 YT/0 72/3)),

which is sufficiently small. O

4 Ordering cubic fields by generalized discriminants

In this section we determine asymptotics for the number of cubic fields with bounded generalized discrimi-
nant, thereby proving Theorem 4. We also then determine which generalized discriminants I are such that
the family of cubic fields ordered by I satisfy independence of primes, thus also proving Theorem 6.

For a generalized discriminant I = |D|*F”, after normalizing we may assume that one of o or 3 equals
1 and the other is > 1. We handle each of the three possible cases in turn.

Proposition 20 For a finite collection 3 of cubic splitting types and a real number 8 > 1, we have
Nipps (55X) = Li(S, 8) - X + La(%,58/6) X0 + O, g (X 7+ 4 X5+)P2/?),

with L1 (X, 8) and L2(X2,55/6) as given in Proposition 9.

Proof: We fiber over f > 1 and write

Nipjrs (2,X) = Y N(F®)D; £277X) + O(X 7 log(X)),
f

14



where N(F(X)); f2-8X) denotes the number of cubic fields K € F(X)) such that |Disc(K)| < f>~#X,
and the error term accounts for the pure cubic fields. For any 1 <Y <« X'/# by Lemma 15 we have

dNFEEW;PX) < Y

2y rzy

f2—ﬁ+eX1+e X1+e
> L o
f Yﬁ 1—e¢

For f <Y, by Theorem 8 we have

3N - J;(Cl(ﬁ; D G xom oo, 1.9).

The error term is bounded by

Z Z E(X/fﬁ;f, E) < Z X2/3+5(2k)4/372[3/3+epg/3

k<log, Y 2k f<2k+1 k<log, Y

< XQ/?"*'GPé/3 -max(Y4/3728/3%¢ 1),

Meanwhile, the two main terms are:

Z 01;2;7f) — 201§i7f) +Oﬂ(yl—ﬁ)
<y 21

= Li(%,8) +0s(YF),

Cy(%, f Co(3, f _
A A
<y f>1

= Ly(%,58/6) + Op(Y1758/6),

Optimizing (in X aspect), we pick Y = X 71 and obtain the result. O

Proposition 21 For a finite collection ¥ of cubic splitting types and a real number o > 1, we have
Resg—1 (bE,d S o € e\ pl/3
Nipjor (% X) = ( > d|a()) C X o+ O o (X3/Rarlte g x2/3+) pl/s),
dfund. disc#—3
Proof: We fiber over d and write

Nppr(S,X) = > NFS)aX/|d*),
dfund. disc#—3

Pick a real number 1 <Y < X/ to be optimized later. For each fundamental discriminant d such that
|d| > Y, the condition |d|*f < X implies that f < X/Y“. Hence by Lemma 15 we have

Y NFE®@«X/NdY) < Y #{K e F(E)D 1 | Dise(K)| < XV f2 e}

dfund. disc#—3 f<X/Y«
ld|=Y
< ) X(x/pte
f<X/Y«
X1+e
< v

To estimate the main term, we use Theorem 13 to write

S NEEexdn = (Y REEsdly oy om)

d @
d fund. disc#—3 d fund. disc#—3 | ‘
|d|<Y |d| <Y
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where the error term F is easily bounded by breaking up the sum over d into dyadic ranges and using Lemma
15 to estimate the size of L3(Pg, d):

E < S ILs(Ps.d)| - [d]VOPYE (X |d))

d fund. disc#—3
|d|<Y

< XP¥emax(Y7/6-20/3 1)pL/®,

Optimizing, we pick Y = X?/(22+1) and obtain the required result. O

Theorem 22 We have
| ID(K Ip\F )lp 1\
(16)  Npw(X) =5 ( Y 7‘ — )H( Z T e ) (1 p) Xlog X + o(X log X).
KeXo =,

Proof: Given e > 0, choose € < € so that the interval [1,v/X) may be divided exactly into 3(¢'~! +
O(1))log X intervals of the form [(1+¢)*, (1+¢)*1), and write Y, := (1 +¢)* and Zj, := X/(1+¢€)*. By
Theorem 19, we have that

N (5 Yit1, Z) — N(%; Y, Zy) = C1(DF, %) - € X + o(Yy) Zk,

where C4(DF,X) is the constant in (16), and the same is true with the roles of ¥ and Z reversed. Since
every field counted by Npp(F(X); X) is counted in one of the above rectangles, we obtain

Npp(F(2); X) < C1(DF;2)X log X - (1+ O(e) + € tox (1))

Choosing € — 0 as X — 0o, we obtain the result as an upper bound. To obtain the lower bound, proceed
analogously, choosing Zj, := X/(1 + ¢)F*! and subtracting the O(X) fields in N(Z;vX,v/X) which are
counted twice. O

Theorems 4 and 5 follow immediately from Propositions 20 and 21, and Theorem 22. We conclude by
proving Theorems 2 and 6.

Proof of Theorem 2: For a prime p > 3 and étale cubic extension K, of ), as noted previously we have
that p? { D(K)F(K). Therefore, for a cubic field K, we have rad(Disc(K)) = D(K)F(K) up to sign and
bounded powers of 2 and 3. Let d2 and d3 be powers of 2 and 3, respectively. For p = 2,3 let S(6,,) be the set
of cubic étale extensions K, of Q, for which D(K,)F(K,) has p-adic part d,, and let 3(d2,d3) be the finite
collection of cubic splitting types defined by $o = S(62), X3 = S(d3), and %, = X2!! for all other places v.
Then we have

0203
: = —. X
#{K € F(%): C(K) < X, D(K) # —3, 4 Disc(K) > 0} N|D|F(E 5 )
1\ 2
= 5, C6)C() H(1+ )(1—5) - Xlog X
p>5
+o(X log X),
where 0, = 6 and o_ = 2 are the sizes of the automorphism groups of R? and R x C, respectively, and
1\2 rad(dz) 1 1\2 rad(d3) 7!
d)=1(1-= —_— d3)=(1—= —— -
C( 2) ( 2) Z |AU.’B(I(2)|7 C( 3) ( 3) Z |Aut(K3)\
Kzes(éz) K3€S(53)

Summing over all J; and d3, we obtain

#{K € F: O(K) < X, D(K) # =3, £ Disc(K) > 0} = 5— Hc (1 - 7) - X log X + o(X log X),
+
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where for any prime p, the quantity C(p) is defined to be

_ [rad ([D(K)[F (X)),
)= 2 [Au(K)|

11
Kess

To compute these constants, we use the database of local fields available at 1mfdb. org [21], which lists each
quadratic or cubic ramified extension of Qg and Qs with its Galois group; we obtain that C(2) = 3 and

C(3) =11/3.
Finally, to count the contribution of the pure cubic fields, observe that we have
1 3 2
Ky =—-.3°4-.3"° 14+ —).
Y o) 3y s [+ )
D(K)=-3 p#3

by [14, Proposition 7.3]. By an argument identical to that of Theorem 13 or [14, Proposition 7.4], we have

#{K € F: C(K) < X, D(K) = —3, +Disc(K) > 0} = 1—301_[(1 + %) (1 . %)2 - X log X + o(X log X),
p

thereby completing the proof. O

Proof of Theorem 6: For @ < 3 this follows immediately from the shape of the leading asymptotics in
parts (a) and (c) of Theorem 4. It remains to prove the result when o > 3, and as before we may assume
that 8 = 1. For fixed € > 0 let N(e) be the smallest positive integer such that the following inequality is
satisfied:

Ress=1 (I)Zau 5 Resg=1 @Eall d
17 P LS - =
( ) € Ho Z |d‘o¢
|d|>N(e)
fund.disc.

Such an N(e) exists for each e since the sum of Resg—1(®yan 4)/|d|* is convergent, as can be seen from
Corollary 18 for example.

For each fundamental discriminant d with 3,5 # |d| < N(e), now let pg # 7 be a prime such that the
splitting types of pg at Q(v/5) and Q(v/d) differ. (For d = 1, we choose p; to be inert in Q(v/5).) Define
E](fd) to be the set of all étale cubic extensions of Q,, whose quadratic resolvents are equal to Q(v/5) ® Q,,.

We then define the collection ¥(¢) by taking E,(,Z) as above, and choosing E,(f)

of the py.

Then (17) holds with X2 replaced by ¢ and |d| > N(e) replaced by d # —3,5, as the newly imposed
splitting conditions do not exclude any of the fields counted on the left, nor do they include any of the fields
added to the right. Since K ® Q7 % Q2 for any K with resolvent Q(v/5), this implies that

= Eg“ for p not equal to any

0 < piy P EFE) :D(K) # =3 D(K)'F(K) < X, K©Qr = Q3 _ e

ey K € F(5©): D(K) # -3, D(K)*F(K) < X} The €

In particular, since 7 does not split in (@(\/5), the probability of the prime 7 splitting completely in
]-'(Z(E)) goes to 0 as € tends to 0. Moreover, the probability that 7 splits completely in F(X!) is positive,
since 7 splits completely a positive proportion of the time in cubic fields with resolvent, say, Q(v/—19). The

)

result now follows from the fact that 2(76 is constant for all e. O

5 Numerical data
As a double check on our work we numerically verified Theorem 11 (the explicit Dirichlet series counting

cubic fields with local conditions, by quadratic resolvent), and the & = 8 = 1 case of Theorem 4 (counting
cubic fields with |D|F < X). Our code can be readily modified to cover additional cases of Theorem 4.
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We used the PARI/GP programming language [27], and our source code and data may be downloaded
from thornef.github.io: a program cm-test.gp to compute instances of Theorem 11, and compare against
known data when possible; a program cubic-count.gp to generate the data below; and lists of cubic fields
(rcf-1500k.gp and icf-1000k.gp) obtained from 1mfdb.org [21].

For counting cubic fields with |D|F < X, the following table presents a comparison (for relatively small
X) of the asymptotics proved in Theorem 4(c) with the data:

X Theorem 4(c) | Actual Data
100 50 38
1000 748 629

10000 9977 9181
20000 21456 20044
30000 33502 31427

We note the apparent presence of one or more negative lower order terms. There are at least three
possible explanations for the discrepancy between the data and the asymptotics:

e the negative secondary term in the Davenport-Heilbronn theorem (5);
e the exclusion of D = —3 from our counts, which is not ‘visible’ in the main term of Theorem 4(c);

e the natural tendency for asymptotics with logarithmic terms to have lower order terms without the
logarithms, e.g. the divisor sum estimate Y, _ d(n) = Xlog X + (2y — 1)X + O(VX).

We leave a more detailed analysis for followup work.
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