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Abstract

We introduce a new class of almost periodic measures, and consider one-dimensional almost
periodic Schrodinger operators with measure-valued potentials. For operators of this kind
we introduce a rotation number in the spirit of Johnson and Moser.
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1 Introduction
1.1 Background

The landmark paper [20] by Johnson and Moser introduced the concept of the rotation number
for one-dimensional continuum Schrodinger operators with almost periodic potentials. The
idea is to consider the solutions ¥ of the associated differential equation and to study the
average winding per unit of the associated two-vector given by the solution and its derivative
around the origin in the (¥, v)-plane. This number of course depends on the value of spectral
parameter appearing in the differential equation, and hence the resulting function is an object
that may be associated with the operator in question.

In fact, it is more natural to associate the rotation number with an operator family, namely
the one that is obtained by letting the potential run through the hull (i.e., the closure of the
set of translates in the uniform topology) of the given almost periodic function. Indeed, the
unique ergodicity of the translation flow on the hull is the very reason for the existence of
the limit defining the rotation number, and it will then work uniformly for all elements of the
hull.

The rotation number plays a key role in the spectral analysis of this family of almost peri-
odic Schrodinger operators, as shown by Johnson and Moser. The spectrum of the operator,
which again is uniform across the hull, can be identified with the points of non-constancy of
the rotation number. The gaps of the spectrum (i.e., the connected components of the com-
plement of the spectrum in R) are therefore such that the rotation number must be constant
on any one of them. As the rotation number is monotone and locally increasing at each point
of the spectrum, this constant value associated with a gap may be used to label it uniquely.
Moreover, the possible values that can be taken in gaps belong to a countable set that can
be determined by considering the frequency module of the initial almost periodic function.
This is a special instance of the so-called gap-labelling theorem, which holds in a suitable
formulation in a more general setting; see, for example, [3-5, 10, 19].

Our goal in this paper is to discuss the concept of the rotation number for almost periodic
Schrodinger operators in a more general setting, namely in the case where the potential term
is given by a measure. This is partly motivated by the significant recent interest in the study
of almost periodic measures from the perspective of aperiodic order; see, for example, [2, 16,
22,24-27, 36, 38, 39] and references therein. The theory of aperiodic order has grown out
of the desire to study mathematical models of quasicrystals, which are structures that lack
translational symmetry, but are sufficiently ordered so that their diffraction is pure point, and
hence of the type exhibited by crystals. The concept of almost periodicity has been identified
in the papers mentioned above as being intimately connected to pure point diffraction, and
hence this naturally motivates the study of almost periodic measures.
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1.2 The setting

Let us now describe the setting we consider in more detail. We are interested in Schrodinger
operators with measure-valued potentials given by

2

a2

Here, w is a translation bounded Radon measure on R that will be defined precisely in Sect. 3.
On the one hand, 1 may be interpreted as a form of small perturbation of the classical Dirich-
let form on R; see the monograph by Ma and Réckner [32] where the higher-dimensional
space/manifold is considered. On the other hand, for the one-dimensional space R, H, can
be understood along the lines of the classical Sturm-Liouville theory by the so-called quasi-
derivative as

H, = + . (1.1)

A () =y D) - /0 POAE), ¥ € W (®),

The operator H,, is self-adjoint once it is defined on a suitable space. The spectral analysis
of H,, has been discussed in [6, 13, 23, 34, 35, 37, 41]. If the measure possesses some sort of
recurrence, such as almost periodicity, then we may introduce the rotation number for (1.1)
in the spirit of Johnson and Moser [20]. Let E € R. We define the solution of

Hyy = EY (1.2)

in the weak sense. We understand that the solution v/ (x) is continuous and ¥'(x) = ¥/ (x+)
is right-continuous; see Appendix A. By the choice of a suitable homotopy class to deal with
discontinuities of ¥'(x), we have a well-defined argument as

0(x) = 0p (x, ) == arg (¥'(x) + V=19 (x)); (1.3)
see Sect. 4. If the ergodic limit

lim 2 —6© (1.4)
xX——+00 X

exists, then we call it the rotation number of (1.2), and denote it by pg. The concept of
the rotation number is due to Poincaré and is used to obtain a classification of orientation
preserving self-homeomorphisms of the circle; see the monograph by Katok and Hasselblatt
[30]. Extensions of this concept have been considered by many authors in the literature; see,
for example, [1, 8, 17, 28, 31, 42] and references therein. The main result in this paper is the
following, whose proof is given in Sect. 6.

Theorem 1.1 Assume that i is a a-norm almost periodic measure, and the pure point part
pp is uniformly away from the 0-measure. Then (1.2) admits a well-defined rotation number.

Remark 1.2 (a) For the terminology used in this theorem, see Definition 3.5 and (3.12).

(b) The condition that fi, is uniformly away from the 0-measure is technical. A natural
question is whether we can require a weaker condition such as supp(upp) being weakly
uniformly discrete instead of this condition, or whether we can even get rid of this
condition entirely. We presently do not know the answer to this question. Compared
with our recent work [11], these two papers are related but do not contain each other.
For example, if the measure © may be explicitly expressed as the sum of its absolutely
continuous part and its pure point part, then the result [11, Theorem 5.3.] showed that the
concept of the rotation number can be introduced without the condition on ztpp. But the

@ Springer



71 Page4of27 D. Damanik et al.

paper [11] did not discuss the case when the measure-valued potential includes a singular
continuous part while Theorem 1.1 does.

(c) It is by now well established that almost periodicity plays a central role in the study
of pure point diffraction. Lenz, Spindeler, and Strungaru have shown that a translation
bounded measure has pure point diffraction if and only if it is mean almost periodic [25].
In fact they go on to also show in [25] that Besicovitch and Weyl almost periodicity are
intimately related to other natural and fundamental questions in diffraction theory. See
[2, 16, 24] for related work and [26] for a very accessible introduction to their work.
The notion of almost periodicity that we assume, namely o-norm almost periodicity, is
stronger than the almost periodicity notions mentioned above, and hence the Schrodinger
operators we consider may be placed in the pure point diffractive realm.

(d) When the potential is a Bohr almost periodic function, Johnson and Moser showed that
the spectrum of the Schrodinger operator may be identified with the set of points of non-
constancy of the rotation number [20]. Moreover, there is a resulting gap labelling theory
that puts the values taken in constancy intervals in correspondence with the frequency
module. This has been generalized to general dynamically defined potentials by Johnson
[19], with the Schwartzman group of the base dynamics providing the set of values of the
rotation number in spectral gaps; see also the survey [10] and the monographs [9, 21].
When the potential is measure-valued, it can be reasonably expected that analogous results
will hold. However, some of the tools that are used in establishing the characterization
of the spectrum in terms of the rotation number and the resulting gap labelling theory do
not yet exist in this generality. We plan to address these issues in future work.

(e) Furthermore, the Fourier—Bohr coefficients of @-norm almost periodic measures can be
well defined; see [27]. It is interesting to study the connection between the coefficients
and the operator H,,. We also plan to discuss this issue in future work.

Notations. Throughout this paper, let Ra“ := R* U{0}. Denote by B(R) the Borel o-algebra
on R, by M(R) the space of all signed Radon measures, by C(R) the space of all continuous
functions on R, by C.(R) the space of all continuous functions has a compact support on R,
and by L1 joc (R) the space of all locally Lebesgue integrable functions on R. | x | denotes the
maximal integer less than x € R, and §r denotes the Dirac measure supported on a point set
I' C R. A is the Lebesgue measure on R, i := +/—1 is the imaginary unit and e is the Euler
number.

2 Almost periodicity

In this section we recall some fundamental results on almost periodicity from [11, 12] and
discuss the concept of a uniform almost periodic family in a formulation suitable to our
setting.

2.1 Almost periodic point

Let (Y, dist) be a complete metric space. We consider a Z action on Y by shifts and denote
fory € Y and t € Z the corresponding shifted elementin Y by y - . This shift action satisfies
the following conditions:

e group structure:

y-0=y,andy - (n+n)=G(-1)-n, VyeY, u, nei 2.1)
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e isometry:
dist(yy - 7, y2 - T) = dist(y, y2), VteZ, yjeY,i=1,2. 2.2)
For y € Y, denote the orbit of y by
Orb(y) :={y-t:7€Z}CY,

and the hull of y by

H(y) := Orb() "™,

Denote by K either Z or R. A set A C K is said to be relatively dense (with window size £)
if there exists £ € K™ such that

ANla,a+ €] #40, VaekK.

Definition 2.1 [12] We say that y € Y is almost periodic if one of the following equivalent
conditions holds:

(i) forany ¢ > 0,P(y,¢) :={r € Z : dist(y - 7, y) < ¢} is relatively dense in Z;
(i) H(y) is compact;
(iii) for any sequence {Tx}xen C Z, one can extract a subsequence {tx} C {7} such that
{y - 7} is convergent in (Y, dist), i.e., Orb(y) is relatively compact.

Denote the subset of ¥ consisting of all almost periodic points by Y,p. We have
Lemma 2.2 [11] Yy is closed in (Y, dist). Thus, (Yap, dist) is a complete metric space.

We equip H(y) with a group operation as follows. Fori = 1, 2and y € Yyp, let {T]i}keN C
7 be a sequence, and

yi = lim y-t} € H(y). (2.3)
k—+00
Then we define the group operation by
yIXy2:= lim y- (‘ck1 + 1',3), 2.4)
k—+00
and the inverse of y; is given by

o)~ = Jim v (7). (2.5)

Both y; x y> and (y1)~! are well defined and independent of the choice of the sequences
{t¢}ken in (2.3). Denote the one-time shift y - 1 by 7'(y), where y = . lim y -7 € H(y).
—+00

Then we have the following results.

Lemma2.3 [11] For y € Yap, one has

(i) H) = H(y) for each 5 € H(y);
(i) (H(), x,~ V) is a compact abelian topological group;
(iii) T : H(y) — H(y) is uniquely ergodic with the Haar measure, denoted by vy, being
the only invariant measure.
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In particular, we consider the case ¥ := £°°(Z). The norm | - || induces the metric
(®(Z) x £*(Z) — R} by

dist(V1, V2) := | V1 — Valleo = sup v} — 7], (2.6)
i€Z

where Vj := {U,k}iez € £°(Z), k = 1, 2. The following is well known.

Lemma 2.4 (£°°(Z), dist) is a complete metric space.

For V = {v;}icz € £*°(Z) and T € Z, the shift V - T of V is defined by
V1= {Viscliez: @7
Obviously for Vi € £°°(Z), k = 1, 2, we have
dist(Vy - 7, Vo - 1) = dist(Vy, Va), Vrtel. (2.8)

This means that (£°°(Z), dist) satisfies the isometry condition (2.2). Then Definition 2.1
defines almost periodic bi-sequences. We denote by £,,(Z) the space of all almost periodic
bi-sequences. By Lemma 2.2, we know that (£,p(Z), dist) is a complete space. Moreover we
have

Lemma 2.5 [14] Let V := {U,k}ieZ € Lap(Z) be real-valued, k € [1, ko] " N. Then

3, Vi = 4 man ez € L@

2.2 Uniformly almost periodic family

The concept of a uniformly almost periodic family has been introduced for continuous func-
tions defined on R; see [14]. In this subsection we extend this concept to our case.

Definition 2.6 We say that a family ) C Y of almost periodic points is uniformly almost
periodic if for any ¢ > 0, P(Q), ¢) := ﬂye@ P(y, ¢) is relatively dense in Z.

Bochner’s translation functions are well defined for almost periodic functions. In our
setting, we introduce the so-called translation bi-sequence for almost periodic points, that
is, a discrete version of Bochner’s translation functions. For y € Y, denote the translation
bi-sequence of y by

Vy i={v,(0)}, 5 = {disty - 7, M}, ;- (2.9

Obviously the translation bi-sequence is real-valued.

Lemma 2.7 Assume thaty € Y and Vy € £°°(Z). For ¢ > 0 and 11, 12 € Z, one has

(i) P(y.e) ={t e Z:vy(r) <s};
(i) vy(r) =0, vy(—7) = vy (1), v, (0) = 0;
(i) vy(t1 + 12) < vy(11) + vy(T2);
(iv) vy(7) = vy, (7);
(V) y € Yopifand only if Vy € Lyp(Z).
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Proof | (i), (ii), and (iii) | They are obvious from (2.2). By (i1) and (iii) we have

Uy(fZ) > sup |Uy(T1 +1)— Uy(fl)| = ||Vy =V loo = UV},(TZ)
1,'1€Z

> |vy(12) — vy (0)] = vy(72).

Then ((iv) follows immediately.
: Due to (i) and (iv), we have P(y, ) = P(V,, €). Thus (v) is deduced. O

Remark 2.8 From the proof of Lemma 2.7 (iv), we may conclude that if a bi-sequence V €
£2°(Z) satisfies (ii) and (iii) in Lemma 2.7, then the translation bi-sequence of V is itself.

For a family ) C Y, denote

vy (T) := sup {vy (r)}.
ved
The following result gives a characterization of a uniformly almost periodic family.

Lemma 2.9 Assume that Vyy := {v;n (r)} 7 € L°°(Z). Then we have

TE

@) vy (1) = vvy (7);
(i) Q) is a uniformly almost periodic family if and only if Vi) € Lyp(Z).

Proof Forany y € 2),vy(7) satisfies (i) and (iii) in Lemma 2.7. Taking the sup operation,
we obtain that vy () satisfies (ii) and (iii) in Lemma 2.7 as well. Then (i) is deduced by
Remark 2.8. We first show the implication =. Let t € P(9), ¢/2). By Definition 2.6

and Lemma 2.7 (i), we have vy (t) < ¢/2 for all y € Q). It follows that vy (1) < ¢/2 < &.
From (i) and Lemma 2.7 (i), one has

P(®Q),e/2) CP(Vy,e).

Since P(Q), £/2) is relatively dense, then Vi € £,,(Z).

Next we show the implication <=. Let t € P(Vy), €). Again by (i) and Lemma 2.7 (i),
we have vg) () < &. This implies that vy () < ¢ forall y € ). Due to Lemma 2.7 (i), one
has that T € P(y, ¢), for all y € ). Thus we have

P(Vy.e) C [ | P(y.2) =P, e),
yed
finishing the proof by the relative denseness of P(Vy, ¢). O

In particular, we may consider a family consisting of a finite number of elements, which
will be useful in the following section.

Lemma 2.10 Suppose that yi € Yap, and Vy, € £°(Z), k € [1,ko]l N N. Then ) = {y :
1 <k <ko} CY isauniformly almost periodic family.

Proof Since V,, € £°°(Z), then we have

Vg = max {V,,} € >().

I <k<ko

By Lemma 2.7 (v), we know that Vy, € £ap(Z). It follows from Lemma 2.5 that Vy) € £,p(Z).
Thus the desired result is deduced by Lemma 2.9 (ii). O
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3 a-Norm almost periodic measure

There are different hierarchies of almost periodic measures under different topologies, such
as weak almost periodicity, strong almost periodicity, and norm almost periodicity, where
the topology is stronger in order; see [39, p. 273 and Proposition 5.3.3] and [15, 22, 27, 38].
However, when we consider the Schrodinger operator with measure-valued potentials, all
topologies above are not strong enough to introduce the so-called rotation number of (1.1).
In this section, to overcome this difficulty, we will use the argument in Sect. 2 to introduce a
new class of almost periodic measures on R which is the so-called o-norm almost periodic
measure; see Definition 3.5. This new class is included in that of norm almost periodic
measures, but includes some interesting cases. For example, when the measure is absolutely
continuous with respect to the Lebesgue measure, the «-norm almost periodic measure can be
exactly regarded as the Stepanov almost periodic function; see Lemma 3.6 and Example 3.11.

3.1 Definition

We collect some facts about Radon measures here, which are standard and can be found
in [18, 33, 36, 40]. For any u € M(R), there is a unique closed subset A C R such that
w(Ay =0and p(ANU) > 0if U C Risopenand ANU # @. The set A is called the
support of |1, denoted by supp(i). Anelement x € R is said to be an atom of v if u({x}) # 0.
The set of all atoms of u is denoted by atom(u). With A the Lebesgue measure on R, write

MaeR) :={n e MR) : p K A},
M R) :={u € M(R) : u L A and p is continuous},
MppR) := { € M(R) : p is pure point}.

It is well known that © € M(R) has a unique Lebesgue decomposition
M = Mac + Msc + Upp,
where e € M(R), o € {ac, sc, pp}; see [33, Theorem 6.14].

Lemma 3.1 Forany u € M(R), atom(u) C R is at most countable.

Let K C R be any bounded subset with a non-empty interior. We define

lullk := sup [u|(x + K), 3.1

xeR

where || := py + p— is the total variation of p € M(R). Due to [18, Theorem 14.11], we
obtain

w1 + pol < lpal +lu2l,  wi e MR), i=1, 2. (3.2)
Denote [ := (—%, %). Then there exist two constants 0 < ¢; < ¢» < 0o such that

ctlimllg < llwllr = c2limllk-

This implies that ||| x and ||w||; are equivalent [39, Remark 5.3.2]. The reason why we
make use of the special interval / is given in [38, Remark 4.3].

Definition 3.2 [37, p. 6] [36, Definition 4.9.17.] [27, Definition 1.1.] A measure u € M(R)
is said to be translation bounded if || ||; < 400.
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Denote by M*°(R) the space of all translation bounded signed Radon measures on R.
For any ¢ € R, we define the shift action 7; on R by T;x := x — ¢, x € R. For any function
f on R, the shift 7; f of f is defined by

(T f)(x) == f(Tx) = f(x +1).
For any u € M®(R), the shift T; u of u is defined by

() (f) = (T f) = /Rf(x —ndu(x),  feC(R). (3.3)

Lemma3.3 [38] Let u € M®(R), t € R and e € {ac, sc, pp}.

O NTpellr = Nlpells-
i) (M), || - |l7) is a Banach space.
(i) (Tipn)e = T;(te).
(iv) Tyér = ér—.
W) Tu(S) = u(T—;S) = u(S +t), where S € B(R).
(vi) supp(T;p) = T; supp(p).
vii) llpellr < lllls < llivaclls + Neesellr + Nlieppllz-
(viil) MP[R) = MEZR) & ML [R) & MSIO)(R), where M (R) = Mo (R) N M*®(R).
(ix) MPR) C M*®(R) is closed, and hence (MZ°(R), || - |I1) is a Banach space.

For f € C(R), we can use an R translation action or a Z translation action on C (R) to
define the so-called Bohr almost periodic function. Both approaches are equivalent because
of uniform continuity of f. However this is different from the case u € M (R). When
considering an R translation action on M*(R), we have the following known concept.

Definition 3.4 [38, Definition 2.4] A measure u € M (R) is said to be norm almost periodic
if, for any ¢ > 0,

Pr(u, &) :={r e R: |Tip— plr < &} (3.4)

is relatively dense in R. The space of all norm almost periodic measures is denoted by
MES,(R).

Let o > 0 be a fixed step length. Now we consider a Z action on M*°(R) by shifts and
denote for u € M*°(R) and t € Z the corresponding shifted element in M*°(R) by

n-t =Ty . 3.5)

By Lemma 3.3 (i) and (ii), we know that the shift action (3.5) satisfies the isometry condition
(2.2), and (M*°(R), || - |I1) is a complete space. Then we are able to apply the argument on
almost periodicity in Sect. 2 to introduce a new concept of almost periodic measures.

Definition 3.5 The elements of (M“(R))ap under the shift action (3.5) are called a-norm
almost periodic measures.

We replace the notation (/\/l°° (R)) . by MS° . (R). The relation and difference between

a a-nap

Miep®) and MGZ, . (R) are shown in the following lemmas.

Lemma3.6 Foranya > 0, one has M . (R) ¢ ML (R).

a-nap nap
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Proof Assume that © € MZ2 . (R). Due to Definition 2.1, we know that for any ¢ > 0,

a-nap
there exists £ := £, € N such that

P(u,e)N[n,n+£] #0, VnelZ.
By construction (3.5), we have
Pr(u, &) Nlan, an + al] # 0, VnelZ. 3.6)
Denote ¢ := o (€ + 1). We assert that

PR(/,L,S)O[a,a—i-Z];éQ, Vael.

[a(LgJ—i—l)a(LgJ +e+1)] cla.a+l.

Then (3.6) yields the assertion. This implies that u € M3 (R). O

nap

Indeed, we see that

Lemma3.7 M

a-nap (R) is closed under the operation of addition.

Proof Assume that u; € MS°. . (R), i = 1,2. For any ¢ > 0, both P(u,&/2) and

a-nap
P(u2, £/2) are relatively dense in Z. Due to Lemma 2.10, we know that

P(u1,€/2) N P(uz, €/2) is relatively dense in Z. 3.7

For any t € Z, it follows from (3.2) that

N1 4+ p2) -7 — (1 +p2)llr = 1 -t — 1) + (2 - T — p2)lls
S lpr -t —prlls + e -t —p2lly.

Combining this with (3.7), we have that P(t1 + w2, €) is relatively dense in Z. O

Remark 3.8 /\/l;’gp(R) is not closed under the operation of addition. For instance, §7 €

Mﬁgp(R), and § s, € M (R), but 87 + 8 a7 ¢ M2 (R). This is one of differences

nap nap
between MgZ,,, (R) and M7, (R).

nap

By Lemma 2.2 and Lemma 3.7, we have

Lemma 3.9 Mg‘fnap(R) C M*®(R) is closed. Thus, (M2 . (R), || - ||7) is a Banach space.

a-nap

Another difference between Mg2,.,

(R) and M2 (R) is stated as follows.

nap

Lemma3.10 p € M2, (R) if and only if j1e € MG?

a-nap

(R), where o € {ac, sc, pp}.

Proof The implication = is obvious by Lemma 3.3 (iii) and (vii). Now we prove the
implication <=. For any ¢ > 0, due to Lemma 2.10, we know that

P(ptac, €/3) N P(use, £/3) NP (pp, £/3) is relatively dense in Z. (3.8)
For any t € Z, by Lemma 3.3 (iii) and (vii) again, we have
-t —nllz

= -t = wacllr + 1w - T = wWsellr + 11 - T — wpplls
= |lptac - T — Racllr + llitse - T — tscllr + llitpp - T — ppplls-

Combining this with (3.8), we conclude that P(u, ¢) is relatively dense in Z. ]
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Example 3.11 Let g € Lj 10c(R) be a Stepanov almost periodic function, and f, : R - R
is a non-decreasing and continuous function such that for any n € Z, fyljan,an+a] — fo(an)
is the Devil’s staircase. Then uz, € M (R), where f, is the distribution function of 1, .
Due to Lemma 3.10, we have

Wi=qA+ s, +8az € Mg‘f“ap(R).

Indeed, it is obvious that puz, € MEPR) N MZ Znap (R) and §,7 € M (R) NnMZP nap( ).
By the definition of Stepanov almost periodic functions, for any ¢ > 0, PR (g, ) is relatively
dense in R. Along with the idea of Lemma 2.10, {«t : T € Z} N PRr(q, ¢) is relatively dense
in R. This implies that g.A € MSS(R) N M2 Znap (R). Note that the Stepanov norm || - || 51
possesses uniform continuity, but || |l7 does not. For more details, see [7, 43].

3.2 The pure point case

Foru € M (R) we assume by Lemma 3.1 that atom(u) := {x;};cz. Then u can be written
as

wi= Y p((xhse =Y ulxi))sy,. (3.9)

xeatom(i) i€Z

We introduce a new norm on the space Mgg(]R) by

lilloo := sup {In({xh1}. for u € MB(R). (3.10)
xeR
Obviously we have
lielloo < Nellz,  for w € My (R); 3.11)

see [39, Lemma 5.3.5].

A subset A C R is called uniformly discrete if there exists an open neighborhood U of
OeRsuchthat (x +U)N(y+U) =@ forall x,y € A withx # y. Asubset A C Ris
called weakly uniformly discrete if for any compact subset K C R and any x € R, one has

#AN K+ K)) <ck,

where #(-) is the function counting the number of elements in a set and ck is a constant that
depends on K. Obviously, A = Z U {n + % : n € Z} is weakly uniformly discrete but not
uniformly discrete. We say that u € MSE(R) is uniformly away from the 0-measure if

inf i 0. 3.12
}EZ{W({X’})'} > (3.12)
The space of all above measures is denoted by Mupp (R). Note that Mupp (R) is not a closed
subset in (M (R) Il - |l7), because ;(SZ converges to the 0-measure.
Lemma3.12 Letu € Mupp(]R) NML ndp(]R) be fixed.

(1) supp(w) is weakly uniformly discrete, and thus totally ordered.
(ii) There exist a finite set F, := {x; : 1 < i < k,} and t, € N such that supp(n) =
at, Z + F.
(i) {15}, ey, € bap(@).
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Proof By (3.2) and (3.12), we see that atom() is weakly uniformly discrete. It follows
from the definition of the support of measures that supp(p) = atom (). Letsupp(n) :=

oo

{xi}iez and g9 = Jinficz {In({x; )|} > 0. Since p € M2 ap(R), P(1, 0) is relatively
dense in Z. By Lemma 3.3 (iv), (3.9), (3.10), and (3.11), forany y € R and 7 € P(u, &9),
we have

D i (xiD8s—ar (YD) = D w(xi Doy (yD] < 1 Tarit — ptlloo < 20, (3.13)

ieZ i€eZ

Let y € supp(u). Then there exists iy € Z such that x;, = y. It follows from (3.13) that

D xiDSg—ar (¥)) — 1({xi,)

ieZ

< &.

This implies that y € supp(u) — o, and therefore supp(u) C supp(u) — at. Conversely,

using a similar argument, we have supp(u) — at C supp(u). Denote 7, := min 7.
P(p,e0)NN
Hence
supp(u) — aty, = supp(u). (3.14)

Due to (i), we may assume that x; < x;1, foralli € Z. By (3.14), there exists k,, € N such
that

Xitk, — 0y = Xj. (3.15)

Denote F,, = {x1,x2, -+, Xk, }. The desired result is obtained.
For any ¢ > 0 and 7, € N in (ii), due to Lemma 2.10, A, := P(u, &) Nt,Z is
relatively dense in Z. By (3.10) and (3.11), we have

sup {|(Tur, e — W (x|} <&, forallr e t;lAg C Z. (3.16)
xeR

Note that

Tagyeit = Y p({xiD) Tugr8; = > w({xiD8y; —ar, v

i€Z i€Z
=Y nxiD8y e = Y wXitk, Dy
i€z i€Z

where (3.9) and (3.15) are used. Then we have

sup {|(Tar,r it — ) ({x 1}

xeR
= Suﬁgi (Z(M({xi+kur}) - M({Xi}))(Sx,) ({xh }
re ieZ
= SHIZD {lnxisr, o) — ndxiPl}.

Denote V, := {u({xiD},, € £°(Z). It follows from (3.16) that

Vi kT = Villoo = sup {|n({xix, o)) — nxiDl} <&, forall T € 1, A,.
i€Z
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This implies that %Ag C P(V,, €). Since A, is relatively dense, we have the desired result.
O

Remark 3.13 Conversely, let u € Mgg(R) with the expression (3.9), and ¢ > 0. Suppose that

there exist a finite set F' := {x1, x2, - -+ , Xk,} C Rand#y € Nsuchthat {x;};cz = atoZ+ F,
and V,, = {n((xiD},o; € Lap(Z). We claim that 1 € MZ,,,(R); see Appendix C. Note

that in the proof of this implication, we do not require condition (3.12). A natural question
is whether we can remove condition (3.12) in the proof of Lemma 3.12. We leave it to the
reader.

3.3 The sub-hull

Applying the argument in Sect.2 to . € M22 . (R) under the shift action (3.5), we see that

a-nap

Hw = (n-t:rez @I

is compact in (M (R), || - |I;), where u € Mgo_nap(R). Then H(u) can be equipped with
a group operation. The result in this subsection plays a fundamental role in the proof of our
main theorem. We use the following notation,

MG napR) = {1 € M2, (R) : the pure point part of 11 belongs to My, (R)}.

Due to Lemma 3.10, we know that ppp € Mg2,,,(R) if u € Mg_,, (R). Thus the following
notation is well defined.

Definition 3.14 For u € M_ . (R), the sub-hull of u is defined by

a-nap

MR,

Hy(w) = (it it € ) C H(w),

where 7, € Nis introduced in Lemma 3.12 (ii).

Lemma3.15 Let u € M;_nap(R) and 1 € Hg(). Then we have

(1) Hgs(w) is closed, and hence compact in (M R), || - ||I7);
(i) Hs(it) = Hg(w);
@) [l = Neellzs
(iv) supp(fipp) = supp(ipp);
) e M;’i_nap(R).

Proof This is obvious by Definition 2.1 (ii) and Definition 3.14. This is obvious

by Lemma 2.3 (i). m For fi € H¢(w), there exists a sequence {tx}xez C 7Z such that
klim e -ty — ll; = 0. Due to (3.1) and (3.5), we have |u - t |y = llpll; and
—+00

[l = Nl - tptells| < it — p - tuticlly for all k € Z. Then we have the desired result.

Using the notation in (iii), we have
kEI-&I-loo ||Tat,lrkﬂpp — fppllr =0,
where Lemma 3.3 (iii) and (vii) are used. Combing this with (3.11), we obtain

lim ”TOét,lTk/’Lpp - llpp”oo =0. (3.17)
k—+00
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Note that
supp(Tar, o pp) = Tor, 7 SUPP(ipp) = supp(upp), forallk € Z, (3.18)
where Lemma 3.12 (ii) is used. By (3.18), we have
xesui;:)i;upp) {1 Tat, me pp (X DI} = xesupp(i;gwﬂpp) {1 Tty e tpp (1x D1}
= Xesuipr;prp) {lupp(xD1} > 0.

It follows from (3.17) that supp(fipp) = supp(ipp)- Due to Lemma 3.9, we obtain that
i e Mgl .n(R). Denote I' := supp(fipp). It follows from (3.17) that

a-nap

lim T, o ppp({x}) = fipp({x}), uniformly forall x € I'.
—+00

This implies that infyer {|Zpp (x|} > §infyer {Iupp({xDI} > 0, where (iii) and (3.12)
are used. Thus fip, € Mpp (R). O

Similarly as for H(x), we equip Hg(1) with a group operation as follows. Let
wi= lim w-1,7 eHy(p), i=1,2. (3.19)
k—+o00
We define the group operation by
X pp = lim w1, (g) + TP), (3.20)
k—+00
and the inverse of i1 is given by
()l i= lim - (—1, ). (3.21)
k——+00

All the limits above are taken in the sense of || - || ;. It is not difficult to check that both 11 X w2
and (j11)~! are well defined and independent of the choice of the sequences {Tli}ng. Then
due to Lemma 2.3, we have

Lemma3.16 Let u € M;_nap(]R). Then (Hg(u), x " DYisa compact abelian group with the
Haar measure, denoted by v = vy (), being the unique invariant measure of Hy(j1) under
the shift L — W - t,.

Remark 3.17 Recall the corresponding part in [20], Johnson and Moser used a continuous-
time action f(x) — f(x + t) to equip the hull of Bohr almost periodic functions with the
structure of a compact Abelian group. For our situation, we use a discrete-time action to
do this. In fact, the existence of rotation numbers in [20] may be also established via the
discrete-time approach, because the unique ergodicity of the Haar measure is preserved. For
more details, see [43].

4 Argument

Denote by M(2, 2) the space of all 2 x 2 real matrices. Let J, be the standard symplectic

matrix
0-—1
Jr = (1 0 )
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A matrix D € M(2, 2) is called to be symplectic, if DT J,D = J,, where DT is the transpose
matrix of D. It is easy to see that the collection of all 2 x 2 real symplectic matrices forms a
group with respect to the matrix multiplication. Denote this group by Sp(2, R). We have

Sp(2, R) =SLa(R) = {D € M(2,2) : det(D) = 1}.

From now on, let u € Ma_nap (R) be fixed. By Lemma 3.12 (ii), we denote supp(itpp) :=
{xi}iez. Without loss of generality, we assume that O is one of the atoms of rp, and

xo := 0. 4.1

Recall the discussion in Appendix A. It follows from Lemma A.4 (iii) and Lemma A.3 (iv)
that the planar system (A.4) is equivalent to

Y@\ _ (0 dux) — Edx ) (¢ (x) N
d(\/f(x)>_<dx 0 )(#f(x))’XER\{xl}lEZ’ 42)
V) _ (Lt (Vo) ‘e, '
v+ ) o 1 Yix—) ) et
For definiteness, the solution of (4.2) is understood to be right-continuous with respect to

x € R, thatis, (' (x), ¥ (x)T = (¥’ (x+), ¥ (x+))T. Due to Lemma A.3 and Lemma A 4,
¥'(x) and ¥ (x) are well defined on R. By Lemma A.5, we have

Lemma4.1 For any (a,b)T € R?, there exists a unique global solution (' (x), ¥ x)T of
(4.2) with the initial value (' (0), ¥ (0)T = (a, b)T.

Let W(x) := Wg(x; u) be the fundamental matrix solution of (4.2) with the initial value
W (0) = I,. Then we have the following result.

Lemma4.2 Forany x € R, ¥(x) € Sp(2, R).

Proof We only check the case x € (xo, x1]. For the general case, we may obtain the result
by induction. Consider the system (4.2) on (xg, x1). We have

dw(x) = (d(; d“(x)o_ de) W(x), x e (xo, x1).
It follows that
d(w )T KW (x))
(AW ()) B @) + W) HdW(x)
T 0 dx T 0 du(x) — Edx
W (x) (du(x) " e 0 ) LY x) +¥x)" ), (dx 0 >\Il(x)
=0.

Due to (4.1), we have W (xg)T /oW (xg) = J». Since W(x) is right-continuous, we find that
V) hY(x) =/,  x € lxo,x).
By the group property of Sp(2, R), we obtain that W (x) € Sp(2, R). O

If (' (x), ¥ (x))T hastheinitial value (¥’ (0), ¥ (0))T = (a, b)T, wehave (¥'(x), v (x))T =
W (x)(a, b)T. Introduce the so-called Priifer transformation as

v iy =ret?. (4.3)
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Then the argument & = 6(x) may be denoted by
0(x) = arg (¥'(x) +i¢(x)),

where (¥/(x), w ()T is any non-trivial solution of (4.2). When the system (4.2) is
restricted to R \ {x;};cz, we understand arg(-) as a continuous branch on (x;, x;+1), because
(' (x), ¥ (x))T is continuous on this interval. It is easy to obtain that the equation for 6 is

d(x) = (cos® O(x) + Esin? 0(x))dx —sin? 0 (x)du(x),  x € R\ {x;}iez.

As in [12], we use the homology class [ P,] that is induced by (B.2) to deal with the jump of
6 (x) at the atoms of wpp. Thus via the Priifer transformation (4.3), the evolution of 6 (x) is
found to be

{ do(x) = (cos? O(x) + E sin® 0 (x))dx — sin? 0(x)dp(x), x € R\ {x;};ez,
O(x+) —0(x—) = J(n({x}), 6(x—)), x € {xi}iez,

where J (-, -) is defined by (B.3). Similarly as for (¢¥'(x), ¥ (x))T, we understand that 6 (x)
is right-continuous with respect to x € R as well. It follows from Lemma 4.1 that

4.4)

Lemma4.3 For any ® € R, there exists a unique solution of (4.4) defined for all x € R
passing through (0, ®). Moreover, the solution is continuous at x € R\{x;};cz. We denote it
by 0(x) := O (x+; i, ©).

Remark 4.4 The initial value problem of (4.4) is equivalent to the existence of the solution
of an integral equation. Because u is involved, (4.4) is not a classical ODE. Fortunately, the
Lebesgue dominated convergence theorem is valid for any measure. We can prove Lemma 4.3
with the aid of the Lebesgue dominated convergence theorem and the fixed point theorem.
When u € M (R), the proof can be founded in [43, Lemma 3.1].

5 Reduction to skew-products
Let u € M(’;_nap(R) and supp(upp) = atyZ + F, = {x;}icz where (4.1) is satisfied. We
need to embed (4.4) in a family of systems as follows

{ do(x) = (cos? 0(x) + E sin? 6(x))dx — sin®> 0 (x)dfi(x), x € R\ at,Z + Fy,

O(x+) —0(x—) = J(a({x}). 0(x—)), x € at,Z+ Fy, SR

where i € Hg(u) and Lemma 3.15 (iv) are used. In the following we state some results about
Og (x; i, ®) that we need, which are not surprising. We nevertheless decide to sketch their
proofs, because (5.1) is not a classical ODE. One should be careful of the difference caused

by fi.
Lemma5.1 Let i € Hy(i) and E € R be fixed.
(1) Foranyx € R, ® € Rand k € Z, we have
Op(x; L, ® + 2km) — (O + 2kmw) = O (x; 1, ®) — O.
(i) For ® € Rand 11, ©» € Z, we have
Op(at,t) +aty 1o ft, ®) = Op(at,T1; it -ty T2, Op (aty 125 i, ©)),

where t,, is introduced in Lemma 3.12 (ii), and i - t, 75 is defined by (3.5).
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(iii) We have the following relation

6 i, ®) — 0 6 tyn; 1, ®) — O
lim e(x; i, ©) — lim elatyun; o, ©) ’ 5.2)

xX——+00 X n—-+oo (xt'un

that is, if one of limits exists, then the other one exists as well and they are equal.

Proof By Lemma B.2, we know that the vector field of (5.1) is 2z -periodic with respect

to 6. Then both 6 (x) := 0p (x; fi, © + 2k) and 6, (x) := O (x: fi, ©) + 2k satisfy (5.1)
with the same initial value 6; (0) = ® + 2km, i = 1, 2. By Lemma 4.3, we have

Op(x; i, ©® +2km) = O0p(x; i, ©) + 2km,

finishing the proof of (i). Due to (3.5), Lemma 3.3 (iii), (v) and Lemma 3.12 (ii), we
have

supp((ft -t 2)pp) = @ty Z + F,.

Denote 0; (x) := 0g (x; M- 1,12, O (at, 125 i, ©)). Then 0 (x) satisfies the following equa-
tion,

do(x) = (cos? O(x) + E sin? 0(x))dx — sin® 0(x)df - 1,2 (x), x € R\ at, Z + F,
O(x+) —0(x—) = J (- tya({x}), 0(x—)), x € at,Z + Fy,
(5.3)

\yith the initial value 6, (0) = 6 (atyt2; 1, ©). Denote 0 (x) := O (x +at,; i, ©). Then
6> (x) satisfies the following equation,

do(x) = (cos? O(x) + E sin? 0 (x))dx — sin® 0 (x)d(x + at,12), x € R\ at, Z + F,
O(x+) — 0(x—) = J(2({x + aty2}), 0(x—)), x € atyZ+ F,
(5.4)

with the initial value 6,(0) = 0 (at, 125 i, ©®). It follows from (3.3), (3.5) and Lemma 3.3
(v) that

dip - tyo(x) =dip(x +aty), x eR\atyZ+ F,,
and
ity = px + a2},  xeR

Then (5.32 coincides with (5.4). Since 6;(0) = 6,(0), we conclude from Lemma 4.3 that
01(x) = 62(x) for all x € R. Taking x = at, 7|, we have the desired result. Due

to (4.1), we know that xx,; = af,7, T € Z. For any x € R, there exists 7, € Z such that
x € (aty Ty, at, e +aty,]. Forany 0 <i <k, — 1, consider the following case,

X € Xk rotis Xyrovi+1] = (@ T + X, 2ty Ty + Xip1]-
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By (5.1) and Lemma B.2, we have
10k (x; @t, ©) — Op(at, T + Xi; L, ©))]

<

/ |cos? (x) + E sin® 0(x)| dx
(ot Te+xi 0ty Te+Xi41)

+ f sin® 6(x) dIfi|(x)
(atu Ty +Xi, 0t T +Xi 1)

+ |7 (e ry i1 D)2 0 ki 1)) |
< (i1 —x) (L + [ED + (xig1 —xi + D@l + 7.
This implies that
10k (x; @t, ©) — Op(at, Ty i, ©)]
k=1

< Y (Gipr = x)A+ED + (i1 — X + DIl +7)
i=0
=at, (1 +|E]) + (ky +at )il +kum < +oo, forall x € (ot Ty, oty Ty + ety ].

Thus the relation (5.2) follows readily by the boundedness of |0 (x; i, ®)—0g (at, Ty; ft, ®)].
O
Lemma5.2 Let Tt € Z be fixed. Then, O (at,7; i, ©) : Hy(u) x R — R is continuous.

Proof Tt suffices to show that Og (x1; ft, ®) : Hg(u) x R — R is continuous. Let 6; (x) :=
Op(x; i, ©;),i =1, 2. Then for any x € (0, x1), we have

0i(x) =0; +/

(cos?6;(s) + E sin’ Oi(s))ds—/ sin? 0; (s) djti(s), i=1,2.
(0.x)

0,x)
Denote D(x) := 62(x) — 01(x), x € (0, x1). It follows that

D(x) = (0, — ©1) + / (cos? 6> (s) + E sin? 62 (s) — cos? 0 (s) — E sin® 0y (s)) ds
0.%)

+/ (sin? 62(s) — sin® 61 (5)) dfia(s) +/ sin 01 (s) d(fia — fi1)(s).
(0,x)

0.x)

This implies that

D) = |@2—@1|+/ (2 +2/EDID(s)] ds

0.x)

+[ 2|D(s)|d|;12|(s>+/ dlfiz — A l(s)
0,x) 0,x)

<102 = O] + (aty + D2 — i1l +/ |D(s)| dfi(s),

(0.x)

where (i := (2 + 2|E|)A + 2|f12]. By Lemma A.6, we have
ID(X)| < 102 = O1] + (aty + D2 — i lls
+f (182 — ©1] + (@t + Dllfia — firll7) eC djas)
0,x)

< (182 = O1] + (aty + D2 — il (1 +e€0),
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where C := (2 4 2|E|)at, + 2(at, + 1)||p|l; and Lemma 3.15 (iii) is used. It follows that
O(x1—; it, ®) : Hg(u) x R — Ris Lipschitz continuous. Furthermore, we have

0(x1) = 0(x1—) + J (2({x1)), 0 (x1-)).

Since ’ﬁz({xl}) — ({xl})’ < |lft2 — fi1l1, the desired result is deduced from Lemma B.2.
O

Lemma5.3 Let ji € Hy() and t € Z be fixed. Then, O (at,T; i, ®) : R — Ris a strictly
increasing self-homeomorphism.

Proof Due to Lemma 4.3 and Lemma B.3, we know that 6g (at,,7; ji, ®) : R — Ris strictly
increasing. By Lemma 5.1 (ii), we have

Op(at,T; i, Op(—at,T; i - T, 0)) =0 =0p(—aty,T, i - 1,7, Op(at,T; i, ©)).

This implies that the inverse of 6 (at,,T; ji, ®) is givenby g (—at,T; i+, T, ®). By Lemma
5.2, we obtain the desired result. ]

Let Sy := R/277Z. We introduce the following product space
Z = Hg(1t) X Spx,
which will play a central role in Sect. 6. The distance on Z is defined by
dist (71, 91), (1, 91)) == max {|| i1 — fiallz, [91 = D2ls,, } (5.5

where (i1;, %) € Z, i = 1, 2. We know that (Z, dist) is a compact metric space. For any
T € 7Z, the skew-product transformation ®* on Z is defined by

DL(fL, V) == (fL - ty 7, Op(at,T; i, ®) mod 27), (5.6)

where (i1, 9) € Z and ® € R satisfies ¥ = ® mod 2. By Lemma 5.1 (i), GD% is well
defined for any t € Z. Moreover we have

Lemma5.4 {7}
the compact space Z.

is a discrete-time and skew-product continuous dynamical system on

Proof Due to Lemma 3.3 (i) and Lemma 5.2, we know that <I>TE is continuous on Z for any
7 € Z. Now we aim to prove that

<I>E+T2 = dDE o @? forall 7y, 1) € Z.

In fact, assume that ({1, ) € Z and there exists ® € R satisfying 9 = ® mod 27. By (5.6)
and Lemma 5.1 (ii), we have

DY o PP, V)
= @Y (i 1,72, O (ot 725 1, ©) mod 27)
= (/1 S(tu 1), 9E(Oll,ﬂf1; Q- Op(at, 5 L, @)) mod 271)
=P (L, ).

The proof is completed. O
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Introduce the observable Fr : Z — R by
Fe(f,9) := O0p(aty; ft, ®) — O, 5.7

where ® € R satisfies ¥ = ® mod 2. By Lemma 5.1 (i), Fg (i, ¥) is well defined on Z.
Furthermore, by Lemma 5.2, we know that F (ft, ©) is continuous on Z. By the construction
above, we reduce the existence of (5.2) to that of the following ergodic limit with respect to
the skew-product dynamical system {®7.};¢z.

Lemma 5.5 Assume that (j1, ) € Z and ® € R satisfies © = © mod 2w. Then, the
following relation holds,

n—1

. eG4+, 0) - O T
xly}kloo X - n»lToo O{l‘/ﬂ’l ;} FE( E(’u” ﬁ)) (58)

That is, if one of the limits exists, then the other one exists as well and they are equal.

Proof By Lemma 5.1 (ii) and (5.7), we have
O (atyn; 1, ©) — O

n—1

=Y (Oe(atu(r + 1); fi. ©) — Op(at,T: fi, ©))
=0
n—1

=3 (e (s i u7. Op (1,75 i, ©) = B (@t T i, ©))
=0
n—1

= Z Fg(f - tut, 0p(at,t; i1, ®) mod 27)
=0
n—1

= Z FE(Q% (1, 9)).

=0

Then the desired result is deduced via Lemma 5.1 (iii), provided one of the limits exists. O

6 Rotation number

To show the existence of rotation numbers, inspired by Lemma 5.5, we introduce the following
notation

ln 1
.~ N o~ -
i, 0) = lim ZO FE(®L (i, ), (L) €Z,
=l
provided the limit exists. For ;i € Hg(u) and ® € R, denote
Op (atun; 1, ©) — ©

S~ S 3
FR(i.©) = lim_ o : 6.1)

provided the limit exists.

Lemma 6.1 If FL(fi, Oq) exists for Oy € R, then FR(ji, ®) exists for all ® € R and is
independent of the choice of ® € R.
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Proof By Lemma 5.1 (i), we know that F(ji, ® + 2km) exists for all k € Z. Then for any
® € R, there exists kg € Z such that ® € [@ + 2kgm, ©g + 2(ke + 1)7r). By Lemma 5.3,
for all n € N, we have

O (atyn; i, O + 2kem) < Op(atyn; i, ®) < O (atyn; it, Og + 2kem) + 27.

This implies that Fj(ji, ®) = FZ(ft, ©p), forall © € R. O

The following uniform ergodic theorem due to Johnson and Moser plays a fundamental
role in the proof of the main result.

Lemma 6.2 [20] Let {¢" };cz be a continuous discrete-time dynamical system on a compact
metric space X. Then, for any continuous function f on X satisfying

/dewzo

for all invariant Borel probability measures w under {¢*};c7, one has

ngrfooan o () =

uniformly for all x € X.

Proof of Theorem 1.1 By the Krylov—Bogoliubov theorem and Lemma 5.4, there exists an
invariant Borel probability measure under {CDTE}T <z denoted by . Then by the Birkhoff
ergodic theorem, there exists a Borel set Z,, C Z, which depends on the measure w, such
that w(Z,) = 1 and F§(ji, ¥) exists for all (ft, ©) € Z,,. Furthermore, Fy, is integrable and
satisfies

/FE do = / Fpdw =: pg.o. (6.2)
z Z

Due to Lemma 6.1, Z,, can be written in the form Z,, = E,, x S,,, where E,, is a Borel
set in Hg(). Due to Lemma 3.16, let v be the Haar measure on Hg(u). Then we have
v(Ey) = 1. By the unique ergodicity of the Haar measure, there exists a set E C E, such
that v(Ew) = a)(E X S2z) = land Fg(ji, ¥) is a constant function on E, X Say. It follows
from (6.2) that the constant must be pg .

By (6.1), we know that pg , in (6.2) is independent of the choice of the measure w. Set
I:“E = Fg—pg.ByLemma5.2, I:’E is continuous on Z. By (6.2), ﬁE satisfies the requirement
of Lemma 6.2. Thus,

nl

lim ZFE L (L, ) = Jim ZFE % (1, 9)) — pg =0, (6.3)

n—+oon

uniformly for all (&, ¥) € Z.
Atlast, taking it = p in (6.3), then by Lemma 5.2 and Lemma 5.5, we obtain the existence
of the desired limit. O
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Appendix A. Solutions

The way to understand the solutions of H,y¥ = Ev is twofold, where u© € M (R). One
is to use the concept of weak derivatives from the point of view of PDEs, and the other is to
extend the theory of ODE:s to the so-called measure differential equations (MDESs). First, we
recall from [6, 13, 37] some basic facts on solutions of (1.2) in the weak sense. For k € N,
denote the Sobolev space W{i 1oc (R) by

Wi oeR) = {¥ € L11oc(R) : ¥ € Ly 1oc(R), fori =1,2,... .k},

where ¥ @) is the iM-weak/distributional derivative of 1. Due to the regularity, we know that

every Y € Wfloc (R) has a locally absolutely continuous representative.

Definition A.1 [37, p. 8] For ¢ € Wll’loC (R), the quasi-derivative A,y of ¥ is defined by

Apr(x) =y D) — f Y (s)du(s) € Lijoc(R),  A-ae.x €R,
0

/X={ﬁ0,x] xZO,
0 —f(LO)x<O,

and is understood as a Lebesgue-Stieltjes integral.

where [, stands for

Definition A.2 A function ¢ € L 10c(R) is called a solution of (1.2) if € Wll’loc(R)
satisfies

— AV =Ey (A.1)

in the sense of distributions.

This implies that A, ¢ € le 1oc(R), and then A,y can be understood as a continuous
representative. Since f(;c is right-continuous, we may choose a right-continuous representative

of ¥V . Further properties of (! are listed in the following lemma.

Lemma A.3 Let i be a solution of (1.2). Then with x € R arbitrary, we have

@) ¥ € C(R);

(1) v x+) and vV (x—) exist, y D (x) = v D (x+);
(i) ¥V (x+) is right-continuous, while V) (x—) is left-continuous;
(i) vV — P —) = ypdxh.

Define the one-sided derivative of i by

Dy (x) = hlim M

A2
-0+ h (A-2)

Note that (1 is the derivative in the weak sense, whereas DT are the derivatives in the
classical sense. The relationship between 1) and D* 1 is described in the following lemma.

LemmaA.4 Let  be a solution of (1.2). Then we have:

Q) for all x € R, DTy (x) exists, DTy (x) = v (x+), and x — DTy (x) is right-
continuous,
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(i) for all x € R, D™y (x) exists, D¢ (x) = vD(x—), and x — D™y (x) is left-
continuous;
(iii) forall x € R\ atom(w), ¥’ (x) exists, and ¥'(x) = D¥yr(x) = v D (x).

Remark A.5 The property of 1/f(1)(x+) and DV (x) has been proved in [37]. By a similar
way, we state the corresponding property of ¥ () (x—) and D~ (x) in Lemma A.3 and
Lemma A.4. A crucial point in the proof is that the Newton-Leibniz formula holds as well
when ' is replaced by DT 1. At last, Lemma A.4 (iii) is deduced via Lemma A.3 (iv).

Due to u € M*°(R) and the contraction mapping principle, we have

LemmaA.5 Leta, b € R be arbitrary. Then there exists a unique solution g (x; i) of (1.2)
defined for all x € R such that 1//21)(04—; w) =aand Yy 0; u) = b.

The second way to understand the solutions of (1.2) is from the point of view of MDEs.
Using the argument in [34, 41], we write (1.2) as the following second-order scalar linear
MDE,

dD Y (x) — v (x)du(x) + E¥(x)dx =0, x € R, (A3)

where DT is the same as ¥® in [34, 41]. The solution (v (x), D (x)) of (A.3) possesses
the same properties as those in Lemma A.3, Lemma A.4 and Lemma A.5. For our purpose,
(A.3) can be written as the following planar system,

DTy (x)\ _ (0 du(x)—Edx) (D¢ (x)
d( ¥ (x) )_(dx 0 )( v (x) ) x eR. (A4)

A measure version of Gronwall’s inequality is stated as follows.

LemmaA.6 [37, Lemma A.1] Let x > 0 and let 1 € M(R) be fixed. Assume that u :
[0, x] = R is continuous, a : [0, x] — RS’ is measurable with respect to |1, and

u(x) < alx) +/ u(s) dua(s).

0.x)

Then we have

u(x) < a(x) +/ a(s) e ) dp(s).
0.x)

Appendix B. Homotopy

The following result can be found in [29, Lemma 3, p. 5].
LemmaB.1 Forany D € Sp(2, R), there exists a unique decomposition such that D = AU,

where A € Sp(2, R) is a symmetric and positive-definite matrix, and U € Sp(2, R) is an
orthogonal matrix. Explicitly, we have:

roz cos ¥t —sin ¥
D_(Z 1t22><sinz9 cos ¥ > (B.1)
where (r,®,z) € RT x R/2nZ — m) x R is uniquely determined by D.
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Due to the expression of (4.2), we consider the following sub-group

1c

Trig(2, R) := {Rc = (0 |

) ic € R} C Sp(2, R).

The unique decomposition of R, can be calculated as

242 c 2 c
R, = <«/02+4 N/c;Jr4> ( «/C22-4 @) )
70 - —_——
Velt+d Jel+4 V24 J2t4
Construct a continuous path P.(-) : [0, 1] — Sp(2, R) as

(re)242 Tc 2 zc
P — | V@04 J(zo)2+4 Jaorea Jor+a | _ (L Te B2
C(T) - Tc 2 _ TC 2 - 0 1 . ( . )
V@244 (o) +4 A (T2 +4 L/ (te)?+4

P.(-) connects I, and R.. The path is shown in [12, Figure 1]. The homotopy class of P.(-)
is denoted by [P.]. Let V(Rz) be the set of all vectors starting from the origin in R2. The
equivalence ~ on V(R?) is defined by

V| ~ Uy < 0| = kv, forsomek € RT.

Then L(R) := V(R?) / ~ is an orientable compact manifold of dimension one, and may be
regarded as a two-covering of the real projective line RP'.
Let ® € R. By (B.2), we have

P.(t)(cos ®, sin @)T = (cos ® + 7csin O, sin ®)T.

Since the homotopy class [ P.] is fixed and arg(-) is understood as a continuous branch, the
argument function

F(c, t,®) = arg(cos ® + 7csin O + isin ®)

is continuous with respect to (¢, 7, ®) € R x [0, 1] x R. In particular, we may choose one
continuous branch of F(c, t, ®) such that when t = 0, we have

arg(cos ® +isin®) = ©.
Then [ P.] yields the difference of arguments by

J(c,®):=F(c,1,0)— F(c0, ®). (B.3)

LemmaB.2 [12] J : R? — (—m, ) is continuous with respect to (c, ®) € RZ2. Moreover;
one has

J(c,®+2m) = J(c, O).

LemmaB.3 Let ¢ € R be fixed. Then, J(c, ®) + O is strictly increasing with respect to
®cR
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Appendix C. Proof of Remark 3.13

For any ¢ > 0, due to Lemma 2.10, A, = P(V,, &) N koZ is relatively dense in Z. This
implies that

Vi kot — Villoo = I Targe it — tlloo = It - 10T — ptlloo < &, fort e kalAa.

Since supp() is uniformly discrete, there exists ¢y > 0 such that

1T — pllr < collTrpe — plloo, forallz € R.

By the equivalence of the properties listed in Definition 2.1, we know that

Note that

—_———(M®®R),[]l]) . L
{uw-tor: 7t € Z}(M 0D is compact. This implies that
(M>(@R),|- . .
{w-(or+i):te Z}\M 0D is compact, foralli € [0,70 — 1] NN.
ME®), -1 _ (M®®R), [I1lr)

H(w) ={u-t:71 €z}

U - wr+:cez)

0<i<ty—1

It follows that H(u) is compact. By the equivalence of the properties listed in Definition 2.1
again, we obtain that © € M2 . (R). O

a-nap
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