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Abstract
We introduce a new class of almost periodic measures, and consider one-dimensional almost
periodic Schrödinger operators with measure-valued potentials. For operators of this kind
we introduce a rotation number in the spirit of Johnson and Moser.
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1 Introduction

1.1 Background

The landmark paper [20] by Johnson andMoser introduced the concept of the rotation number
for one-dimensional continuum Schrödinger operators with almost periodic potentials. The
idea is to consider the solutions ψ of the associated differential equation and to study the
average winding per unit of the associated two-vector given by the solution and its derivative
around the origin in the (ψ ′, ψ)-plane. This number of course depends on the value of spectral
parameter appearing in the differential equation, and hence the resulting function is an object
that may be associated with the operator in question.

In fact, it is more natural to associate the rotation number with an operator family, namely
the one that is obtained by letting the potential run through the hull (i.e., the closure of the
set of translates in the uniform topology) of the given almost periodic function. Indeed, the
unique ergodicity of the translation flow on the hull is the very reason for the existence of
the limit defining the rotation number, and it will then work uniformly for all elements of the
hull.

The rotation number plays a key role in the spectral analysis of this family of almost peri-
odic Schrödinger operators, as shown by Johnson and Moser. The spectrum of the operator,
which again is uniform across the hull, can be identified with the points of non-constancy of
the rotation number. The gaps of the spectrum (i.e., the connected components of the com-
plement of the spectrum in R) are therefore such that the rotation number must be constant
on any one of them. As the rotation number is monotone and locally increasing at each point
of the spectrum, this constant value associated with a gap may be used to label it uniquely.
Moreover, the possible values that can be taken in gaps belong to a countable set that can
be determined by considering the frequency module of the initial almost periodic function.
This is a special instance of the so-called gap-labelling theorem, which holds in a suitable
formulation in a more general setting; see, for example, [3–5, 10, 19].

Our goal in this paper is to discuss the concept of the rotation number for almost periodic
Schrödinger operators in a more general setting, namely in the case where the potential term
is given by a measure. This is partly motivated by the significant recent interest in the study
of almost periodic measures from the perspective of aperiodic order; see, for example, [2, 16,
22, 24–27, 36, 38, 39] and references therein. The theory of aperiodic order has grown out
of the desire to study mathematical models of quasicrystals, which are structures that lack
translational symmetry, but are sufficiently ordered so that their diffraction is pure point, and
hence of the type exhibited by crystals. The concept of almost periodicity has been identified
in the papers mentioned above as being intimately connected to pure point diffraction, and
hence this naturally motivates the study of almost periodic measures.
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1.2 The setting

Let us now describe the setting we consider in more detail. We are interested in Schrödinger
operators with measure-valued potentials given by

Hμ := − d2

dx2
+ μ. (1.1)

Here,μ is a translation bounded Radonmeasure onR that will be defined precisely in Sect. 3.
On the one hand,μmay be interpreted as a form of small perturbation of the classicalDirich-
let form on R; see the monograph by Ma and Röckner [32] where the higher-dimensional
space/manifold is considered. On the other hand, for the one-dimensional space R, Hμ can
be understood along the lines of the classical Sturm–Liouville theory by the so-called quasi-
derivative as

Aμψ(x) := ψ(1)(x) −
∫ x

0
ψ(s)dμ(s), ψ ∈ W 1

1,loc(R).

The operator Hμ is self-adjoint once it is defined on a suitable space. The spectral analysis
of Hμ has been discussed in [6, 13, 23, 34, 35, 37, 41]. If the measure possesses some sort of
recurrence, such as almost periodicity, then we may introduce the rotation number for (1.1)
in the spirit of Johnson and Moser [20]. Let E ∈ R. We define the solution of

Hμψ = Eψ (1.2)

in the weak sense. We understand that the solution ψ(x) is continuous and ψ ′(x) = ψ ′(x+)

is right-continuous; see Appendix A. By the choice of a suitable homotopy class to deal with
discontinuities of ψ ′(x), we have a well-defined argument as

θ(x) = θE (x, μ) := arg
(
ψ ′(x) +√−1ψ(x)

); (1.3)

see Sect. 4. If the ergodic limit

lim
x→+∞

θ(x) − θ(0)

x
(1.4)

exists, then we call it the rotation number of (1.2), and denote it by ρE . The concept of
the rotation number is due to Poincaré and is used to obtain a classification of orientation
preserving self-homeomorphisms of the circle; see the monograph by Katok and Hasselblatt
[30]. Extensions of this concept have been considered by many authors in the literature; see,
for example, [1, 8, 17, 28, 31, 42] and references therein. The main result in this paper is the
following, whose proof is given in Sect. 6.

Theorem 1.1 Assume that μ is a α-norm almost periodic measure, and the pure point part
μpp is uniformly away from the 0-measure. Then (1.2) admits a well-defined rotation number.

Remark 1.2 (a) For the terminology used in this theorem, see Definition 3.5 and (3.12).
(b) The condition that μpp is uniformly away from the 0-measure is technical. A natural

question is whether we can require a weaker condition such as supp(μpp) being weakly
uniformly discrete instead of this condition, or whether we can even get rid of this
condition entirely. We presently do not know the answer to this question. Compared
with our recent work [11], these two papers are related but do not contain each other.
For example, if the measure μ may be explicitly expressed as the sum of its absolutely
continuous part and its pure point part, then the result [11, Theorem 5.3.] showed that the
concept of the rotation number can be introduced without the condition on μpp. But the

123



   71 Page 4 of 27 D. Damanik et al.

paper [11] did not discuss the case when the measure-valued potential includes a singular
continuous part while Theorem 1.1 does.

(c) It is by now well established that almost periodicity plays a central role in the study
of pure point diffraction. Lenz, Spindeler, and Strungaru have shown that a translation
bounded measure has pure point diffraction if and only if it is mean almost periodic [25].
In fact they go on to also show in [25] that Besicovitch and Weyl almost periodicity are
intimately related to other natural and fundamental questions in diffraction theory. See
[2, 16, 24] for related work and [26] for a very accessible introduction to their work.
The notion of almost periodicity that we assume, namely α-norm almost periodicity, is
stronger than the almost periodicity notions mentioned above, and hence the Schrödinger
operators we consider may be placed in the pure point diffractive realm.

(d) When the potential is a Bohr almost periodic function, Johnson and Moser showed that
the spectrum of the Schrödinger operator may be identified with the set of points of non-
constancy of the rotation number [20]. Moreover, there is a resulting gap labelling theory
that puts the values taken in constancy intervals in correspondence with the frequency
module. This has been generalized to general dynamically defined potentials by Johnson
[19], with the Schwartzman group of the base dynamics providing the set of values of the
rotation number in spectral gaps; see also the survey [10] and the monographs [9, 21].
When the potential ismeasure-valued, it canbe reasonably expected that analogous results
will hold. However, some of the tools that are used in establishing the characterization
of the spectrum in terms of the rotation number and the resulting gap labelling theory do
not yet exist in this generality. We plan to address these issues in future work.

(e) Furthermore, the Fourier–Bohr coefficients of α-norm almost periodic measures can be
well defined; see [27]. It is interesting to study the connection between the coefficients
and the operator Hμ. We also plan to discuss this issue in future work.

Notations. Throughout this paper, letR+
0 := R

+ ∪ {0}. Denote by B(R) the Borel σ -algebra
onR, byM(R) the space of all signed Radon measures, by C(R) the space of all continuous
functions on R, by Cc(R) the space of all continuous functions has a compact support on R,
and by L1,loc(R) the space of all locally Lebesgue integrable functions onR. �x	 denotes the
maximal integer less than x ∈ R, and δ� denotes the Dirac measure supported on a point set
� ⊂ R. λ is the Lebesgue measure on R, i := √−1 is the imaginary unit and e is the Euler
number.

2 Almost periodicity

In this section we recall some fundamental results on almost periodicity from [11, 12] and
discuss the concept of a uniform almost periodic family in a formulation suitable to our
setting.

2.1 Almost periodic point

Let (Y , dist) be a complete metric space. We consider a Z action on Y by shifts and denote
for y ∈ Y and τ ∈ Z the corresponding shifted element in Y by y ·τ . This shift action satisfies
the following conditions:

• group structure:

y · 0 = y, and y · (τ1 + τ2) = (y · τ1) · τ2, ∀ y ∈ Y , τ1, τ2 ∈ Z; (2.1)
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• isometry:

dist(y1 · τ, y2 · τ) = dist(y1, y2), ∀ τ ∈ Z, yi ∈ Y , i = 1, 2. (2.2)

For y ∈ Y , denote the orbit of y by

Orb(y) := {y · τ : τ ∈ Z} ⊂ Y ,

and the hull of y by

H(y) := Orb(y)
(Y ,dist)

.

Denote by K either Z or R. A set A ⊂ K is said to be relatively dense (with window size �)
if there exists � ∈ K

+ such that

A ∩ [a, a + �] 
= ∅, ∀ a ∈ K.

Definition 2.1 [12] We say that y ∈ Y is almost periodic if one of the following equivalent
conditions holds:

(i) for any ε > 0, P(y, ε) := {τ ∈ Z : dist(y · τ, y) < ε} is relatively dense in Z;
(ii) H(y) is compact;
(iii) for any sequence {τ̃k}k∈N ⊂ Z, one can extract a subsequence {τk} ⊂ {τ̃k} such that

{y · τk} is convergent in (Y , dist), i.e., Orb(y) is relatively compact.

Denote the subset of Y consisting of all almost periodic points by Yap. We have

Lemma 2.2 [11] Yap is closed in (Y , dist). Thus, (Yap, dist) is a complete metric space.

We equip H(y)with a group operation as follows. For i = 1, 2 and y ∈ Yap, let {τ ik }k∈N ⊂
Z be a sequence, and

yi := lim
k→+∞ y · τ ik ∈ H(y). (2.3)

Then we define the group operation by

y1 × y2 := lim
k→+∞ y · (τ 1k + τ 2k ), (2.4)

and the inverse of y1 is given by

(y1)
−1 := lim

k→+∞ y · (−τ 1k ). (2.5)

Both y1 × y2 and (y1)−1 are well defined and independent of the choice of the sequences
{τ ik }k∈N in (2.3). Denote the one-time shift ỹ · 1 by T (ỹ), where ỹ = lim

k→+∞ y · τ̃k ∈ H(y).

Then we have the following results.

Lemma 2.3 [11] For y ∈ Yap, one has

(i) H(ỹ) = H(y) for each ỹ ∈ H(y);
(ii) (H(y),×,−1 ) is a compact abelian topological group;
(iii) T : H(y) → H(y) is uniquely ergodic with the Haar measure, denoted by νy , being

the only invariant measure.
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In particular, we consider the case Y := �∞(Z). The norm ‖ · ‖∞ induces the metric
�∞(Z) × �∞(Z) → R

+
0 by

dist(V1, V2) := ‖V1 − V2‖∞ = sup
i∈Z

|v1i − v2i |, (2.6)

where Vk := {vki }i∈Z ∈ �∞(Z), k = 1, 2. The following is well known.

Lemma 2.4 (�∞(Z), dist) is a complete metric space.

For V = {vi }i∈Z ∈ �∞(Z) and τ ∈ Z, the shift V · τ of V is defined by

V · τ := {vi+τ }i∈Z. (2.7)

Obviously for Vk ∈ �∞(Z), k = 1, 2, we have

dist(V1 · τ, V2 · τ) = dist(V1, V2), ∀ τ ∈ Z. (2.8)

This means that (�∞(Z), dist) satisfies the isometry condition (2.2). Then Definition 2.1
defines almost periodic bi-sequences. We denote by �ap(Z) the space of all almost periodic
bi-sequences. By Lemma 2.2, we know that (�ap(Z), dist) is a complete space. Moreover we
have

Lemma 2.5 [14] Let Vk := {vki }i∈Z ∈ �ap(Z) be real-valued, k ∈ [1, k0] ∩ N. Then

max
1≤k≤k0

{
Vk
} := { max

1≤k≤k0
{vki }

}
i∈Z ∈ �ap(Z).

2.2 Uniformly almost periodic family

The concept of a uniformly almost periodic family has been introduced for continuous func-
tions defined on R; see [14]. In this subsection we extend this concept to our case.

Definition 2.6 We say that a family Y ⊂ Y of almost periodic points is uniformly almost
periodic if for any ε > 0, P(Y, ε) :=⋂y∈Y P(y, ε) is relatively dense in Z.

Bochner’s translation functions are well defined for almost periodic functions. In our
setting, we introduce the so-called translation bi-sequence for almost periodic points, that
is, a discrete version of Bochner’s translation functions. For y ∈ Y , denote the translation
bi-sequence of y by

Vy :=
{
vy(τ )

}
τ∈Z := { dist(y · τ, y)}

τ∈Z. (2.9)

Obviously the translation bi-sequence is real-valued.

Lemma 2.7 Assume that y ∈ Y and Vy ∈ �∞(Z). For ε > 0 and τ1, τ2 ∈ Z, one has

(i) P(y, ε) = {τ ∈ Z : vy(τ ) < ε};
(ii) vy(τ ) ≥ 0, vy(−τ) = vy(τ ), vy(0) = 0;
(iii) vy(τ1 + τ2) ≤ vy(τ1) + vy(τ2);
(iv) vy(τ ) = vVy (τ );
(v) y ∈ Yap if and only if Vy ∈ �ap(Z).
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Proof (i), (ii), and (iii) They are obvious from (2.2). (iv) By (ii) and (iii) we have

vy(τ2) ≥ sup
τ1∈Z

∣∣vy(τ1 + τ2) − vy(τ1)
∣∣ = ‖Vy · τ2 − Vy‖∞ = vVy (τ2)

≥ |vy(τ2) − vy(0)| = vy(τ2).

Then ((iv) follows immediately.
v) : Due to (i) and (iv), we have P(y, ε) = P(Vy, ε). Thus (v) is deduced. ��
Remark 2.8 From the proof of Lemma 2.7 (iv), we may conclude that if a bi-sequence V ∈
�∞(Z) satisfies (ii) and (iii) in Lemma 2.7, then the translation bi-sequence of V is itself.

For a family Y ⊂ Y , denote

vY(τ ) := sup
y∈Y

{
vy(τ )

}
.

The following result gives a characterization of a uniformly almost periodic family.

Lemma 2.9 Assume that VY := {vY(τ )
}
τ∈Z ∈ �∞(Z). Then we have

(i) vY(τ ) = vVY(τ );
(ii) Y is a uniformly almost periodic family if and only if VY ∈ �ap(Z).

Proof (i) For any y ∈ Y,vy(τ ) satisfies (ii) and (iii) inLemma2.7.Taking the supoperation,
we obtain that vY(τ ) satisfies (ii) and (iii) in Lemma 2.7 as well. Then (i) is deduced by

Remark 2.8. (ii) We first show the implication�⇒. Let τ ∈ P(Y, ε/2). By Definition 2.6
and Lemma 2.7 (i), we have vy(τ ) < ε/2 for all y ∈ Y. It follows that vY(τ ) ≤ ε/2 < ε.
From (i) and Lemma 2.7 (i), one has

P(Y, ε/2) ⊂ P(VY, ε).

Since P(Y, ε/2) is relatively dense, then VY ∈ �ap(Z).
Next we show the implication ⇐�. Let τ ∈ P(VY, ε). Again by (i) and Lemma 2.7 (i),

we have vY(τ ) < ε. This implies that vy(τ ) < ε for all y ∈ Y. Due to Lemma 2.7 (i), one
has that τ ∈ P(y, ε), for all y ∈ Y. Thus we have

P(VY, ε) ⊂
⋂
y∈Y

P(y, ε) = P(Y, ε),

finishing the proof by the relative denseness of P(VY, ε). ��
In particular, we may consider a family consisting of a finite number of elements, which

will be useful in the following section.

Lemma 2.10 Suppose that yk ∈ Yap, and Vyk ∈ �∞(Z), k ∈ [1, k0] ∩ N. Then Y := {yk :
1 ≤ k ≤ k0} ⊂ Y is a uniformly almost periodic family.

Proof Since Vyk ∈ �∞(Z), then we have

VY = max
1≤k≤k0

{
Vyk

} ∈ �∞(Z).

ByLemma 2.7 (v), we know that Vyk ∈ �ap(Z). It follows fromLemma 2.5 that VY ∈ �ap(Z).
Thus the desired result is deduced by Lemma 2.9 (ii). ��
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3 ˛-Norm almost periodic measure

There are different hierarchies of almost periodic measures under different topologies, such
as weak almost periodicity, strong almost periodicity, and norm almost periodicity, where
the topology is stronger in order; see [39, p. 273 and Proposition 5.3.3] and [15, 22, 27, 38].
However, when we consider the Schrödinger operator with measure-valued potentials, all
topologies above are not strong enough to introduce the so-called rotation number of (1.1).
In this section, to overcome this difficulty, we will use the argument in Sect. 2 to introduce a
new class of almost periodic measures on R which is the so-called α-norm almost periodic
measure; see Definition 3.5. This new class is included in that of norm almost periodic
measures, but includes some interesting cases. For example, when the measure is absolutely
continuouswith respect to the Lebesguemeasure, the α-norm almost periodicmeasure can be
exactly regarded as the Stepanov almost periodic function; see Lemma 3.6 and Example 3.11.

3.1 Definition

We collect some facts about Radon measures here, which are standard and can be found
in [18, 33, 36, 40]. For any μ ∈ M(R), there is a unique closed subset A ⊂ R such that
μ(Ac) = 0 and μ(A ∩ U ) > 0 if U ⊂ R is open and A ∩ U 
= ∅. The set A is called the
support ofμ, denoted by supp(μ). An element x ∈ R is said to be an atom ofμ ifμ({x}) 
= 0.
The set of all atoms of μ is denoted by atom(μ). With λ the Lebesgue measure on R, write

Mac(R) := {μ ∈ M(R) : μ � λ},
Msc(R) := {μ ∈ M(R) : μ ⊥ λ and μ is continuous},
Mpp(R) := {μ ∈ M(R) : μ is pure point}.

It is well known that μ ∈ M(R) has a unique Lebesgue decomposition

μ = μac + μsc + μpp,

where μ• ∈ M•(R), • ∈ {ac, sc, pp}; see [33, Theorem 6.14].

Lemma 3.1 For any μ ∈ M(R), atom(μ) ⊂ R is at most countable.

Let K ⊂ R be any bounded subset with a non-empty interior. We define

‖μ‖K := sup
x∈R

|μ|(x + K ), (3.1)

where |μ| := μ+ +μ− is the total variation of μ ∈ M(R). Due to [18, Theorem 14.11], we
obtain

|μ1 + μ2| ≤ |μ1| + |μ2|, μi ∈ M(R), i = 1, 2. (3.2)

Denote I := (− 1
2 ,

1
2 ). Then there exist two constants 0 < c1 ≤ c2 < ∞ such that

c1‖μ‖K ≤ ‖μ‖I ≤ c2‖μ‖K .

This implies that ‖μ‖K and ‖μ‖I are equivalent [39, Remark 5.3.2]. The reason why we
make use of the special interval I is given in [38, Remark 4.3].

Definition 3.2 [37, p. 6] [36, Definition 4.9.17.] [27, Definition 1.1.] A measure μ ∈ M(R)

is said to be translation bounded if ‖μ‖I < +∞.

123



The rotation number for the Schrödinger operator... Page 9 of 27    71 

Denote by M∞(R) the space of all translation bounded signed Radon measures on R.
For any t ∈ R, we define the shift action Tt on R by Tt x := x − t, x ∈ R. For any function
f on R, the shift Tt f of f is defined by

(Tt f )(x) := f (T−t x) = f (x + t).

For any μ ∈ M∞(R), the shift Ttμ of μ is defined by

(Ttμ)( f ) := μ(T−t f ) =
∫
R

f (x − t) dμ(x), f ∈ Cc(R). (3.3)

Lemma 3.3 [38] Let μ ∈ M∞(R), t ∈ R and • ∈ {ac, sc, pp}.
(i) ‖Ttμ‖I = ‖μ‖I .
(ii) (M∞(R), ‖ · ‖I ) is a Banach space.
(iii) (Ttμ)• = Tt (μ•).
(iv) Ttδ� = δ�−t .
(v) Ttμ(S) = μ(T−t S) = μ(S + t), where S ∈ B(R).
(vi) supp(Ttμ) = Tt supp(μ).
(vii) ‖μ•‖I ≤ ‖μ‖I ≤ ‖μac‖I + ‖μsc‖I + ‖μpp‖I .
(viii) M∞(R) = M∞

ac (R) ⊕M∞
sc (R) ⊕M∞

pp(R), where M∞• (R) = M•(R) ∩M∞(R).
(ix) M∞• (R) ⊂ M∞(R) is closed, and hence (M∞• (R), ‖ · ‖I ) is a Banach space.

For f ∈ C(R), we can use an R translation action or a Z translation action on C(R) to
define the so-called Bohr almost periodic function. Both approaches are equivalent because
of uniform continuity of f . However this is different from the case μ ∈ M∞(R). When
considering an R translation action on M∞(R), we have the following known concept.

Definition 3.4 [38,Definition 2.4]Ameasureμ ∈ M∞(R) is said to be norm almost periodic
if, for any ε > 0,

PR(μ, ε) := {t ∈ R : ‖Ttμ − μ‖I < ε} (3.4)

is relatively dense in R. The space of all norm almost periodic measures is denoted by
M∞

nap(R).

Let α > 0 be a fixed step length. Now we consider a Z action on M∞(R) by shifts and
denote for μ ∈ M∞(R) and τ ∈ Z the corresponding shifted element in M∞(R) by

μ · τ := Tατμ. (3.5)

By Lemma 3.3 (i) and (ii), we know that the shift action (3.5) satisfies the isometry condition
(2.2), and (M∞(R), ‖ · ‖I ) is a complete space. Then we are able to apply the argument on
almost periodicity in Sect. 2 to introduce a new concept of almost periodic measures.

Definition 3.5 The elements of
(M∞(R)

)
ap under the shift action (3.5) are called α-norm

almost periodic measures.

We replace the notation
(M∞(R)

)
ap byM∞

α-nap(R). The relation and difference between
M∞

nap(R) and M∞
α-nap(R) are shown in the following lemmas.

Lemma 3.6 For any α > 0, one has M∞
α-nap(R) ⊂ M∞

nap(R).
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Proof Assume that μ ∈ M∞
α-nap(R). Due to Definition 2.1, we know that for any ε > 0,

there exists � := �ε ∈ N such that

P(μ, ε) ∩ [n, n + �] 
= ∅, ∀ n ∈ Z.

By construction (3.5), we have

PR(μ, ε) ∩ [αn, αn + α�] 
= ∅, ∀ n ∈ Z. (3.6)

Denote �̃ := α(� + 1). We assert that

PR(μ, ε) ∩ [a, a + �̃] 
= ∅, ∀ a ∈ R.

Indeed, we see that [
α
(⌊ a

α

⌋
+ 1
)

, α
(⌊ a

α

⌋
+ � + 1

)]
⊂ [a, a + �̃].

Then (3.6) yields the assertion. This implies that μ ∈ M∞
nap(R). ��

Lemma 3.7 M∞
α-nap(R) is closed under the operation of addition.

Proof Assume that μi ∈ M∞
α-nap(R), i = 1, 2. For any ε > 0, both P(μ1, ε/2) and

P(μ2, ε/2) are relatively dense in Z. Due to Lemma 2.10, we know that

P(μ1, ε/2) ∩ P(μ2, ε/2) is relatively dense in Z. (3.7)

For any τ ∈ Z, it follows from (3.2) that

‖(μ1 + μ2) · τ − (μ1 + μ2)‖I = ‖(μ1 · τ − μ1) + (μ2 · τ − μ2)‖I
≤ ‖μ1 · τ − μ1‖I + ‖μ2 · τ − μ2‖I .

Combining this with (3.7), we have that P(μ1 + μ2, ε) is relatively dense in Z. ��
Remark 3.8 M∞

nap(R) is not closed under the operation of addition. For instance, δZ ∈
M∞

nap(R), and δ√2Z ∈ M∞
nap(R), but δZ + δ√2Z /∈ M∞

nap(R). This is one of differences
between M∞

α-nap(R) and M∞
nap(R).

By Lemma 2.2 and Lemma 3.7, we have

Lemma 3.9 M∞
α-nap(R) ⊂ M∞(R) is closed. Thus, (M∞

α-nap(R), ‖ · ‖I ) is a Banach space.
Another difference between M∞

α-nap(R) and M∞
nap(R) is stated as follows.

Lemma 3.10 μ ∈ M∞
α-nap(R) if and only if μ• ∈ M∞

α-nap(R), where • ∈ {ac, sc, pp}.
Proof The implication �⇒ is obvious by Lemma 3.3 (iii) and (vii). Now we prove the
implication ⇐�. For any ε > 0, due to Lemma 2.10, we know that

P(μac, ε/3) ∩ P(μsc, ε/3) ∩ P(μpp, ε/3) is relatively dense in Z. (3.8)

For any τ ∈ Z, by Lemma 3.3 (iii) and (vii) again, we have

‖μ · τ − μ‖I
≤ ‖(μ · τ − μ)ac‖I + ‖(μ · τ − μ)sc‖I + ‖(μ · τ − μ)pp‖I
= ‖μac · τ − μac‖I + ‖μsc · τ − μsc‖I + ‖μpp · τ − μpp‖I .

Combining this with (3.8), we conclude that P(μ, ε) is relatively dense in Z. ��
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Example 3.11 Let q ∈ L1,loc(R) be a Stepanov almost periodic function, and fα : R → R

is a non-decreasing and continuous function such that for any n ∈ Z, fα|[αn,αn+α] − fα(αn)

is the Devil’s staircase. Then μ fα ∈ M∞
sc (R), where fα is the distribution function of μ fα .

Due to Lemma 3.10, we have

μ := q·λ + μ fα + δαZ ∈ M∞
α-nap(R).

Indeed, it is obvious that μ fα ∈ M∞
sc (R) ∩ M∞

α-nap(R) and δαZ ∈ M∞
pp(R) ∩ M∞

α-nap(R).
By the definition of Stepanov almost periodic functions, for any ε > 0, PR(q, ε) is relatively
dense in R. Along with the idea of Lemma 2.10, {ατ : τ ∈ Z} ∩ PR(q, ε) is relatively dense
in R. This implies that q·λ ∈ M∞

ac (R) ∩ M∞
α-nap(R). Note that the Stepanov norm ‖ · ‖S1

possesses uniform continuity, but ‖ · ‖I does not. For more details, see [7, 43].

3.2 The pure point case

Forμ ∈ M∞
pp(R), we assume by Lemma 3.1 that atom(μ) := {xi }i∈Z. Thenμ can be written

as

μ :=
∑

x∈atom(μ)

μ({x})δx =
∑
i∈Z

μ({xi })δxi . (3.9)

We introduce a new norm on the space M∞
pp(R) by

‖μ‖∞ := sup
x∈R

{|μ({x})|}, for μ ∈ M∞
pp(R). (3.10)

Obviously we have

‖μ‖∞ ≤ ‖μ‖I , for μ ∈ M∞
pp(R); (3.11)

see [39, Lemma 5.3.5].
A subset � ⊂ R is called uniformly discrete if there exists an open neighborhood U of

0 ∈ R such that (x + U ) ∩ (y + U ) = ∅ for all x, y ∈ � with x 
= y. A subset � ⊂ R is
called weakly uniformly discrete if for any compact subset K ⊂ R and any x ∈ R, one has

#(� ∩ (x + K )) ≤ cK ,

where #(·) is the function counting the number of elements in a set and cK is a constant that
depends on K . Obviously, � = Z ∪ {n + 1

n : n ∈ Z} is weakly uniformly discrete but not
uniformly discrete. We say that μ ∈ M∞

pp(R) is uniformly away from the 0-measure if

inf
i∈Z
{|μ({xi })|

}
> 0. (3.12)

The space of all above measures is denoted byM∞
upp(R). Note thatM∞

upp(R) is not a closed

subset in (M∞
pp(R), ‖ · ‖I ), because 1

n δZ converges to the 0-measure.

Lemma 3.12 Let μ ∈ M∞
upp(R) ∩M∞

α-nap(R) be fixed.

(i) supp(μ) is weakly uniformly discrete, and thus totally ordered.
(ii) There exist a finite set Fμ := {xi : 1 ≤ i ≤ kμ} and tμ ∈ N such that supp(μ) =

αtμZ+ Fμ.
(iii)

{
μ({xi })

}
i∈Z ∈ �ap(Z).
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Proof (i) By (3.2) and (3.12), we see that atom(μ) is weakly uniformly discrete. It follows

from the definition of the support ofmeasures that supp(μ) = atom(μ). (ii) Let supp(μ) :=
{xi }i∈Z and ε0 := 1

2 inf i∈Z
{|μ({xi })|

}
> 0. Since μ ∈ M∞

α-nap(R), P(μ, ε0) is relatively
dense in Z. By Lemma 3.3 (iv), (3.9), (3.10), and (3.11), for any y ∈ R and τ ∈ P(μ, ε0),
we have ∣∣∣∣∣

∑
i∈Z

μ({xi })δxi−ατ ({y}) −
∑
i∈Z

μ({xi })δxi ({y})
∣∣∣∣∣ ≤ ‖Tατμ − μ‖∞ < ε0. (3.13)

Let y ∈ supp(μ). Then there exists iy ∈ Z such that xiy = y. It follows from (3.13) that
∣∣∣∣∣
∑
i∈Z

μ({xi })δxi−ατ ({y}) − μ({xiy })
∣∣∣∣∣ < ε0.

This implies that y ∈ supp(μ) − ατ , and therefore supp(μ) ⊂ supp(μ) − ατ . Conversely,
using a similar argument, we have supp(μ) − ατ ⊂ supp(μ). Denote tμ := min

P(μ,ε0)∩N
τ .

Hence

supp(μ) − αtμ = supp(μ). (3.14)

Due to (i), we may assume that xi < xi+1, for all i ∈ Z. By (3.14), there exists kμ ∈ N such
that

xi+kμ − αtμ = xi . (3.15)

Denote Fμ = {x1, x2, · · · , xkμ}. The desired result is obtained.

(iii) For any ε > 0 and tμ ∈ N in (ii), due to Lemma 2.10, �ε := P(μ, ε) ∩ tμZ is
relatively dense in Z. By (3.10) and (3.11), we have

sup
x∈R

{|(Tαtμτμ − μ)({x})|} < ε, for all τ ∈ t−1
μ �ε ⊂ Z. (3.16)

Note that

Tαtμτμ =
∑
i∈Z

μ({xi })Tαtμτ δxi =
∑
i∈Z

μ({xi })δxi−αtμτ

=
∑
i∈Z

μ({xi })δxi−kμτ
=
∑
i∈Z

μ({xi+kμτ })δxi ,

where (3.9) and (3.15) are used. Then we have

sup
x∈R

{|(Tαtμτμ − μ)({x})|}

= sup
x∈R

{∣∣∣∣∣
(∑

i∈Z
(μ({xi+kμτ }) − μ({xi }))δxi

)
({x})

∣∣∣∣∣
}

= sup
i∈Z
{|μ({xi+kμτ }) − μ({xi })|

}
.

Denote Vμ := {μ({xi })
}
i∈Z ∈ �∞(Z). It follows from (3.16) that

‖Vμ · kμτ − Vμ‖∞ = sup
i∈Z
{|μ({xi+kμτ }) − μ({xi })|

}
< ε, for all τ ∈ t−1

μ �ε.
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This implies that kμ

tμ
�ε ⊂ P(Vμ, ε). Since �ε is relatively dense, we have the desired result.

��
Remark 3.13 Conversely, letμ ∈ M∞

pp(R)with the expression (3.9), andα > 0. Suppose that
there exist a finite set F := {x1, x2, · · · , xk0} ⊂ R and t0 ∈ N such that {xi }i∈Z = αt0Z+ F ,
and Vμ = {

μ({xi })
}
i∈Z ∈ �ap(Z). We claim that μ ∈ M∞

α-nap(R); see Appendix C. Note
that in the proof of this implication, we do not require condition (3.12). A natural question
is whether we can remove condition (3.12) in the proof of Lemma 3.12. We leave it to the
reader.

3.3 The sub-hull

Applying the argument in Sect. 2 to μ ∈ M∞
α-nap(R) under the shift action (3.5), we see that

H(μ) = {μ · τ : τ ∈ Z}(M∞(R),‖·‖I )

is compact in (M∞(R), ‖ · ‖I ), where μ ∈ M∞
α-nap(R). Then H(μ) can be equipped with

a group operation. The result in this subsection plays a fundamental role in the proof of our
main theorem. We use the following notation,

M∗
α-nap(R) := {μ ∈ M∞

α-nap(R) : the pure point part of μ belongs to M∞
upp(R)}.

Due to Lemma 3.10, we know that μpp ∈ M∞
α-nap(R) if μ ∈ M∗

α-nap(R). Thus the following
notation is well defined.

Definition 3.14 For μ ∈ M∗
α-nap(R), the sub-hull of μ is defined by

Hs(μ) := {μ · tμτ : τ ∈ Z}(M∞(R),‖·‖I ) ⊂ H(μ),

where tμ ∈ N is introduced in Lemma 3.12 (ii).

Lemma 3.15 Let μ ∈ M∗
α-nap(R) and μ̃ ∈ Hs(μ). Then we have

(i) Hs(μ) is closed, and hence compact in (M∞(R), ‖ · ‖I );
(ii) Hs(μ̃) = Hs(μ);
(iii) ‖μ̃‖I = ‖μ‖I ;
(iv) supp(μ̃pp) = supp(μpp);
(v) μ̃ ∈ M∗

α-nap(R).

Proof (i) This is obvious by Definition 2.1 (ii) and Definition 3.14. (ii) This is obvious

by Lemma 2.3 (i). (iii) For μ̃ ∈ Hs(μ), there exists a sequence {τk}k∈Z ⊂ Z such that
lim

k→+∞‖μ · tμτk − μ̃‖I = 0. Due to (3.1) and (3.5), we have ‖μ · tμτk‖I = ‖μ‖I and∣∣‖μ̃‖I − ‖μ · tμτk‖I
∣∣ ≤ ‖μ̃ − μ · tμτk‖I for all k ∈ Z. Then we have the desired result.

(iv) Using the notation in (iii), we have

lim
k→+∞‖Tαtμτkμpp − μ̃pp‖I = 0,

where Lemma 3.3 (iii) and (vii) are used. Combing this with (3.11), we obtain

lim
k→+∞‖Tαtμτkμpp − μ̃pp‖∞ = 0. (3.17)
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Note that

supp(Tαtμτkμpp) = Tαtμτk supp(μpp) = supp(μpp), for all k ∈ Z, (3.18)

where Lemma 3.12 (ii) is used. By (3.18), we have

inf
x∈supp(μpp)

{|Tαtμτkμpp({x})|
} = inf

x∈supp(Tαtμτk μpp)

{|Tαtμτkμpp({x})|
}

= inf
x∈supp(μpp)

{|μpp({x})|
}

> 0.

It follows from (3.17) that supp(μ̃pp) = supp(μpp). (v) Due to Lemma 3.9, we obtain that
μ̃ ∈ M∞

α-nap(R). Denote � := supp(μ̃pp). It follows from (3.17) that

lim
k→+∞ Tαtμτkμpp({x}) = μ̃pp({x}), uniformly for all x ∈ �.

This implies that inf x∈�

{|μ̃pp({x})|
}

> 1
2 inf x∈�

{|μpp({x})|
}

> 0, where (iii) and (3.12)
are used. Thus μ̃pp ∈ M∞

upp(R). ��
Similarly as for H(μ), we equip Hs(μ) with a group operation as follows. Let

μi = lim
k→+∞μ · tμτ ik ∈ Hs(μ), i = 1, 2. (3.19)

We define the group operation by

μ1 × μ2 := lim
k→+∞μ · tμ(τ 1k + τ 2k ), (3.20)

and the inverse of μ1 is given by

(μ1)
−1 := lim

k→+∞μ · (−tμτ 1k ). (3.21)

All the limits above are taken in the sense of ‖·‖I . It is not difficult to check that bothμ1×μ2

and (μ1)
−1 are well defined and independent of the choice of the sequences {τ ik }k∈N. Then

due to Lemma 2.3, we have

Lemma 3.16 Let μ ∈ M∗
α-nap(R). Then (Hs(μ),×,−1 ) is a compact abelian group with the

Haar measure, denoted by ν = νHs(μ), being the unique invariant measure of Hs(μ) under
the shift μ �→ μ · tμ.
Remark 3.17 Recall the corresponding part in [20], Johnson and Moser used a continuous-
time action f (x) → f (x + t) to equip the hull of Bohr almost periodic functions with the
structure of a compact Abelian group. For our situation, we use a discrete-time action to
do this. In fact, the existence of rotation numbers in [20] may be also established via the
discrete-time approach, because the unique ergodicity of the Haar measure is preserved. For
more details, see [43].

4 Argument

Denote by M(2, 2) the space of all 2 × 2 real matrices. Let J2 be the standard symplectic
matrix

J2 :=
(
0 −1
1 0

)
.
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Amatrix D ∈ M(2, 2) is called to be symplectic, if DT J2D = J2, where DT is the transpose
matrix of D. It is easy to see that the collection of all 2× 2 real symplectic matrices forms a
group with respect to the matrix multiplication. Denote this group by Sp(2,R). We have

Sp(2,R) = SL2(R) = {D ∈ M(2, 2) : det(D) = 1} .
From now on, let μ ∈ M∗

α-nap(R) be fixed. By Lemma 3.12 (ii), we denote supp(μpp) :=
{xi }i∈Z. Without loss of generality, we assume that 0 is one of the atoms of μpp and

x0 := 0. (4.1)

Recall the discussion in Appendix A. It follows from Lemma A.4 (iii) and Lemma A.3 (iv)
that the planar system (A.4) is equivalent to⎧⎪⎪⎨

⎪⎪⎩
d

(
ψ ′(x)
ψ(x)

)
=
(

0 dμ(x) − Edx
dx 0

)(
ψ ′(x)
ψ(x)

)
, x ∈ R \ {xi }i∈Z,(

ψ ′(x+)

ψ(x+)

)
=
(
1 μ({x})
0 1

)(
ψ ′(x−)

ψ(x−)

)
, x ∈ {xi }i∈Z.

(4.2)

For definiteness, the solution of (4.2) is understood to be right-continuous with respect to
x ∈ R, that is, (ψ ′(x), ψ(x))T ≡ (ψ ′(x+), ψ(x+))T . Due to Lemma A.3 and Lemma A.4,
ψ ′(x) and ψ(x) are well defined on R. By Lemma A.5, we have

Lemma 4.1 For any (a, b)T ∈ R
2, there exists a unique global solution (ψ ′(x), ψ(x))T of

(4.2) with the initial value (ψ ′(0), ψ(0))T = (a, b)T .

Let �(x) := �E (x;μ) be the fundamental matrix solution of (4.2) with the initial value
�(0) = I2. Then we have the following result.

Lemma 4.2 For any x ∈ R, �(x) ∈ Sp(2,R).

Proof We only check the case x ∈ (x0, x1]. For the general case, we may obtain the result
by induction. Consider the system (4.2) on (x0, x1). We have

d�(x) =
(

0 dμ(x) − Edx
dx 0

)
�(x), x ∈ (x0, x1).

It follows that

d
(
�(x)T J2�(x)

)
(
d�(x)

)T
J2�(x) + �(x)T J2d�(x)

�(x)T
(

0 dx
dμ(x) − Edx 0

)
J2�(x) + �(x)T J2

(
0 dμ(x) − Edx
dx 0

)
�(x)

≡ 0.

Due to (4.1), we have �(x0)T J2�(x0) = J2. Since �(x) is right-continuous, we find that

�(x)T J2�(x) ≡ J2, x ∈ [x0, x1).
By the group property of Sp(2,R), we obtain that �(x1) ∈ Sp(2,R). ��

If (ψ ′(x), ψ(x))T has the initial value (ψ ′(0), ψ(0))T = (a, b)T ,wehave (ψ ′(x), ψ(x))T =
�(x)(a, b)T . Introduce the so-called Prüfer transformation as

ψ ′ + iψ = r ei θ . (4.3)
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Then the argument θ = θ(x) may be denoted by

θ(x) := arg
(
ψ ′(x) + iψ(x)

)
,

where (ψ ′(x), ψ(x))T is any non-trivial solution of (4.2). When the system (4.2) is
restricted to R \ {xi }i∈Z, we understand arg(·) as a continuous branch on (xi , xi+1), because
(ψ ′(x), ψ(x))T is continuous on this interval. It is easy to obtain that the equation for θ is

dθ(x) = ( cos2 θ(x) + E sin2 θ(x)
)
dx − sin2 θ(x)dμ(x), x ∈ R \ {xi }i∈Z.

As in [12], we use the homology class [Pc] that is induced by (B.2) to deal with the jump of
θ(x) at the atoms of μpp. Thus via the Prüfer transformation (4.3), the evolution of θ(x) is
found to be{

dθ(x) = ( cos2 θ(x) + E sin2 θ(x)
)
dx − sin2 θ(x)dμ(x), x ∈ R \ {xi }i∈Z,

θ(x+) − θ(x−) = J
(
μ({x}), θ(x−)

)
, x ∈ {xi }i∈Z,

(4.4)

where J (·, ·) is defined by (B.3). Similarly as for (ψ ′(x), ψ(x))T , we understand that θ(x)
is right-continuous with respect to x ∈ R as well. It follows from Lemma 4.1 that

Lemma 4.3 For any � ∈ R, there exists a unique solution of (4.4) defined for all x ∈ R

passing through (0,�). Moreover, the solution is continuous at x ∈ R\{xi }i∈Z. We denote it
by θ(x) := θE (x+;μ,�).

Remark 4.4 The initial value problem of (4.4) is equivalent to the existence of the solution
of an integral equation. Because μ is involved, (4.4) is not a classical ODE. Fortunately, the
Lebesgue dominated convergence theorem is valid for anymeasure.We can prove Lemma 4.3
with the aid of the Lebesgue dominated convergence theorem and the fixed point theorem.
When μ ∈ M∞

ac (R), the proof can be founded in [43, Lemma 3.1].

5 Reduction to skew-products

Let μ ∈ M∗
α-nap(R) and supp(μpp) = αtμZ + Fμ = {xi }i∈Z where (4.1) is satisfied. We

need to embed (4.4) in a family of systems as follows{
dθ(x) = ( cos2 θ(x) + E sin2 θ(x)

)
dx − sin2 θ(x)dμ̃(x), x ∈ R \ αtμZ+ Fμ,

θ(x+) − θ(x−) = J
(
μ̃({x}), θ(x−)

)
, x ∈ αtμZ+ Fμ,

(5.1)

where μ̃ ∈ Hs(μ) and Lemma 3.15 (iv) are used. In the following we state some results about
θE (x; μ̃,�) that we need, which are not surprising. We nevertheless decide to sketch their
proofs, because (5.1) is not a classical ODE. One should be careful of the difference caused
by μ̃.

Lemma 5.1 Let μ̃ ∈ Hs(μ) and E ∈ R be fixed.

(i) For any x ∈ R, � ∈ R and k ∈ Z, we have

θE (x; μ̃,� + 2kπ) − (� + 2kπ) = θE (x; μ̃,�) − �.

(ii) For � ∈ R and τ1, τ2 ∈ Z, we have

θE (αtμτ1 + αtμτ2; μ̃,�) = θE (αtμτ1; μ̃ · tμτ2, θE (αtμτ2; μ̃,�)),

where tμ is introduced in Lemma 3.12 (ii), and μ̃ · tμτ2 is defined by (3.5).
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(iii) We have the following relation

lim
x→+∞

θE (x; μ̃,�) − �

x
= lim

n→+∞
θE (αtμn; μ̃,�) − �

αtμn
, (5.2)

that is, if one of limits exists, then the other one exists as well and they are equal.

Proof (i) By Lemma B.2, we know that the vector field of (5.1) is 2π-periodic with respect

to θ . Then both θ̌1(x) := θE (x; μ̃,� + 2kπ) and θ̌2(x) := θE (x; μ̃,�) + 2kπ satisfy (5.1)
with the same initial value θ̌i (0) = � + 2kπ, i = 1, 2. By Lemma 4.3, we have

θE (x; μ̃,� + 2kπ) = θE (x; μ̃,�) + 2kπ,

finishing the proof of (i). (ii) Due to (3.5), Lemma 3.3 (iii), (v) and Lemma 3.12 (ii), we
have

supp((μ̃ · tμτ2)pp) = αtμZ+ Fμ.

Denote θ̄1(x) := θE (x; μ̃ · tμτ2, θE (αtμτ2; μ̃,�)). Then θ̄1(x) satisfies the following equa-
tion,

{
dθ(x) = ( cos2 θ(x) + E sin2 θ(x)

)
dx − sin2 θ(x)dμ̃ · tμτ2(x), x ∈ R \ αtμZ+ Fμ,

θ(x+) − θ(x−) = J
(
μ̃ · tμτ2({x}), θ(x−)

)
, x ∈ αtμZ+ Fμ,

(5.3)

with the initial value θ̄1(0) = θE (αtμτ2; μ̃,�). Denote θ̄2(x) := θE (x+αtμτ2; μ̃,�). Then
θ̄2(x) satisfies the following equation,

{
dθ(x) = ( cos2 θ(x) + E sin2 θ(x)

)
dx − sin2 θ(x)dμ̃(x + αtμτ2), x ∈ R \ αtμZ+ Fμ,

θ(x+) − θ(x−) = J
(
μ̃({x + αtμτ2}), θ(x−)

)
, x ∈ αtμZ+ Fμ,

(5.4)

with the initial value θ̄2(0) = θE (αtμτ2; μ̃,�). It follows from (3.3), (3.5) and Lemma 3.3
(v) that

dμ̃ · tμτ2(x) = dμ̃(x + αtμτ2), x ∈ R \ αtμZ+ Fμ,

and

μ̃ · tμτ2({x}) = μ̃({x + αtμτ2}), x ∈ R.

Then (5.3) coincides with (5.4). Since θ̄1(0) = θ̄2(0), we conclude from Lemma 4.3 that
θ̄1(x) = θ̄2(x) for all x ∈ R. Taking x = αtμτ1, we have the desired result. (iii) Due

to (4.1), we know that xkμτ = αtμτ, τ ∈ Z. For any x ∈ R, there exists τx ∈ Z such that
x ∈ (αtμτx , αtμτx + αtμ]. For any 0 ≤ i ≤ kμ − 1, consider the following case,

x ∈ (xkμτx+i , xkμτx+i+1] = (αtμτx + xi , αtμτx + xi+1].
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By (5.1) and Lemma B.2, we have

|θE (x; μ̃,�) − θE (αtμτx + xi ; μ̃,�)|
≤
∫

(αtμτx+xi ,αtμτx+xi+1)

∣∣ cos2 θ(x) + E sin2 θ(x)
∣∣ dx

+
∫

(αtμτx+xi ,αtμτx+xi+1)

sin2 θ(x) d|μ̃|(x)

+∣∣J(μ({xkμτx+i+1}), θ(xkμτx+i+1−)
)∣∣

≤ (xi+1 − xi )(1+ |E |) + (xi+1 − xi + 1)‖μ̃‖I + π.

This implies that

|θE (x; μ̃,�) − θE (αtμτx ; μ̃,�)|

≤
kμ−1∑
i=0

(
(xi+1 − xi )(1+ |E |) + (xi+1 − xi + 1)‖μ̃‖I + π

)

= αtμ(1+ |E |) + (kμ + αtμ)‖μ̃‖I + kμπ < +∞, for all x ∈ (αtμτx , αtμτx + αtμ].
Thus the relation (5.2) follows readily by theboundedness of |θE (x; μ̃,�)−θE (αtμτx ; μ̃,�)|.

��
Lemma 5.2 Let τ ∈ Z be fixed. Then, θE (αtμτ ; μ̃,�) : Hs(μ) × R → R is continuous.

Proof It suffices to show that θE (x1; μ̃,�) : Hs(μ) × R → R is continuous. Let θi (x) :=
θE (x; μ̃i ,�i ), i = 1, 2. Then for any x ∈ (0, x1), we have

θi (x) = �i +
∫

(0,x)

(
cos2 θi (s) + E sin2 θi (s)

)
ds −

∫
(0,x)

sin2 θi (s) dμ̃i (s), i = 1, 2.

Denote D(x) := θ2(x) − θ1(x), x ∈ (0, x1). It follows that

D(x) = (�2 − �1) +
∫

(0,x)

(
cos2 θ2(s) + E sin2 θ2(s) − cos2 θ1(s) − E sin2 θ1(s)

)
ds

+
∫

(0,x)

(
sin2 θ2(s) − sin2 θ1(s)

)
dμ̃2(s) +

∫
(0,x)

sin2 θ1(s) d(μ̃2 − μ̃1)(s).

This implies that

|D(x)| ≤ |�2 − �1| +
∫

(0,x)
(2+ 2|E |)|D(s)| ds

+
∫

(0,x)
2|D(s)| d|μ̃2|(s) +

∫
(0,x)

d|μ̃2 − μ̃1|(s)

≤ |�2 − �1| + (αtμ + 1)‖μ̃2 − μ̃1‖I +
∫

(0,x)
|D(s)| dμ̂(s),

where μ̂ := (2+ 2|E |)λ + 2|μ̃2|. By Lemma A.6, we have

|D(x)| ≤ |�2 − �1| + (αtμ + 1)‖μ̃2 − μ̃1‖I
+
∫

(0,x)

(|�2 − �1| + (αtμ + 1)‖μ̃2 − μ̃1‖I
)
eμ̂((s,x)) dμ̂(s)

≤ (|�2 − �1| + (αtμ + 1)‖μ̃2 − μ̃1‖I )(1+ eCC),
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where C := (2+ 2|E |)αtμ + 2(αtμ + 1)‖μ‖I and Lemma 3.15 (iii) is used. It follows that
θ(x1−; μ̃,�) : Hs(μ) × R → R is Lipschitz continuous. Furthermore, we have

θ(x1) = θ(x1−) + J
(
μ̃({x1}), θ(x1−)

)
.

Since
∣∣μ̃2({x1})− μ̃1({x1})

∣∣ ≤ ‖μ̃2 − μ̃1‖I , the desired result is deduced from Lemma B.2.
��

Lemma 5.3 Let μ̃ ∈ Hs(μ) and τ ∈ Z be fixed. Then, θE (αtμτ ; μ̃,�) : R → R is a strictly
increasing self-homeomorphism.

Proof Due to Lemma 4.3 and Lemma B.3, we know that θE (αtμτ ; μ̃,�) : R → R is strictly
increasing. By Lemma 5.1 (ii), we have

θE (αtμτ ; μ̃, θE (−αtμτ ; μ̃ · tμτ,�)) = � = θE (−αtμτ ; μ̃ · tμτ, θE (αtμτ ; μ̃,�)).

This implies that the inverse of θE (αtμτ ; μ̃,�) is given by θE (−αtμτ ; μ̃·tμτ,�). ByLemma
5.2, we obtain the desired result. ��

Let S2π := R/2πZ. We introduce the following product space

Z := Hs(μ) × S2π ,

which will play a central role in Sect. 6. The distance on Z is defined by

dist
(
(μ̃1, ϑ1), (μ̃1, ϑ1)

) := max
{‖μ̃1 − μ̃2‖I , |ϑ1 − ϑ2|S2π

}
(5.5)

where (μ̃i , ϑi ) ∈ Z, i = 1, 2. We know that (Z, dist) is a compact metric space. For any
τ ∈ Z, the skew-product transformation �k on Z is defined by

�τ
E (μ̃, ϑ) := (μ̃ · tμτ, θE (αtμτ ; μ̃,�) mod 2π), (5.6)

where (μ̃, ϑ) ∈ Z and � ∈ R satisfies ϑ = � mod 2π . By Lemma 5.1 (i), �τ
E is well

defined for any τ ∈ Z. Moreover we have

Lemma 5.4
{
�τ

E

}
τ∈Z is a discrete-time and skew-product continuous dynamical system on

the compact space Z.

Proof Due to Lemma 3.3 (i) and Lemma 5.2, we know that �τ
E is continuous on Z for any

τ ∈ Z. Now we aim to prove that

�
τ1+τ2
E = �

τ1
E ◦ �

τ2
E for all τ1, τ2 ∈ Z.

In fact, assume that (μ̃, ϑ) ∈ Z and there exists � ∈ R satisfying ϑ = � mod 2π . By (5.6)
and Lemma 5.1 (ii), we have

�
τ1
E ◦ �

τ2
E (μ̃, ϑ)

= �
τ1
E

(
μ̃ · tμτ2, θE (αtμτ2; μ̃,�) mod 2π

)
=
(
μ̃ · (tμτ2 + tμτ1), θE

(
αtμτ1; μ̃ · tμτ2, θE (αtμτ2; μ̃,�)

)
mod 2π

)

= �
τ1+τ2
E (μ̃, ϑ).

The proof is completed. ��
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Introduce the observable FE : Z → R by

FE (μ̃, ϑ) := θE (αtμ; μ̃,�) − �, (5.7)

where � ∈ R satisfies ϑ = � mod 2π . By Lemma 5.1 (i), FE (μ̃, ϑ) is well defined on Z.
Furthermore, by Lemma 5.2, we know that FE (μ̃, ϑ) is continuous on Z. By the construction
above, we reduce the existence of (5.2) to that of the following ergodic limit with respect to
the skew-product dynamical system {�τ

E }τ∈Z.
Lemma 5.5 Assume that (μ̃, ϑ) ∈ Z and � ∈ R satisfies ϑ = � mod 2π . Then, the
following relation holds,

lim
x→+∞

θE (x+; μ̃,�) − �

x
= lim

n→+∞
1

αtμn

n−1∑
τ=0

FE
(
�τ

E (μ̃, ϑ)
)
. (5.8)

That is, if one of the limits exists, then the other one exists as well and they are equal.

Proof By Lemma 5.1 (ii) and (5.7), we have

θE (αtμn; μ̃,�) − �

=
n−1∑
τ=0

(
θE (αtμ(τ + 1); μ̃,�) − θE (αtμτ ; μ̃,�)

)

=
n−1∑
τ=0

(
θE
(
αtμ; μ̃ · tμτ, θE (αtμτ ; μ̃,�)

)− θE (αtμτ ; μ̃,�)
)

=
n−1∑
τ=0

FE
(
μ̃ · tμτ, θE (αtμτ ; μ̃,�) mod 2π

)

=
n−1∑
τ=0

FE
(
�τ

E (μ̃, ϑ)
)
.

Then the desired result is deduced via Lemma 5.1 (iii), provided one of the limits exists. ��

6 Rotation number

To show the existence of rotation numbers, inspired byLemma5.5,we introduce the following
notation

F∗
E (μ̃, ϑ) := lim

n→+∞
1

n

n−1∑
τ=0

FE
(
�τ

E (μ̃, ϑ)
)
, (μ̃, ϑ) ∈ Z,

provided the limit exists. For μ̃ ∈ Hs(μ) and � ∈ R, denote

F!
E (μ̃,�) := lim

n→+∞
θE (αtμn; μ̃,�) − �

αtμn
, (6.1)

provided the limit exists.

Lemma 6.1 If F!
E (μ̃,�0) exists for �0 ∈ R, then F!

E (μ̃,�) exists for all � ∈ R and is
independent of the choice of � ∈ R.
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Proof By Lemma 5.1 (i), we know that F!
E (μ̃,�0 + 2kπ) exists for all k ∈ Z. Then for any

� ∈ R, there exists k� ∈ Z such that � ∈ [�0 + 2k�π,�0 + 2(k� + 1)π). By Lemma 5.3,
for all n ∈ N, we have

θE (αtμn; μ̃,�0 + 2k�π) ≤ θE (αtμn; μ̃,�) < θE (αtμn; μ̃,�0 + 2k�π) + 2π.

This implies that F!
E (μ̃,�) ≡ F!

E (μ̃,�0), for all � ∈ R. ��

The following uniform ergodic theorem due to Johnson and Moser plays a fundamental
role in the proof of the main result.

Lemma 6.2 [20] Let {ϕτ }τ∈Z be a continuous discrete-time dynamical system on a compact
metric space X. Then, for any continuous function f on X satisfying

∫
X
f dω = 0

for all invariant Borel probability measures ω under {ϕτ }τ∈Z, one has

lim
n→+∞

1

n

n−1∑
τ=0

f
(
ϕk(x)

) = 0

uniformly for all x ∈ X.

Proof of Theorem 1.1 By the Krylov–Bogoliubov theorem and Lemma 5.4, there exists an
invariant Borel probability measure under

{
�τ

E

}
τ∈Z, denoted by ω. Then by the Birkhoff

ergodic theorem, there exists a Borel set Zω ⊂ Z, which depends on the measure ω, such
that ω(Zω) = 1 and F∗

E (μ̃, ϑ) exists for all (μ̃, ϑ) ∈ Zω. Furthermore, F∗
E is integrable and

satisfies
∫
Z
F∗
E dω =

∫
Z
FE dω =: ρE,ω. (6.2)

Due to Lemma 6.1, Zω can be written in the form Zω = Eω × S2π , where Eω is a Borel
set in Hs(μ). Due to Lemma 3.16, let ν be the Haar measure on Hs(μ). Then we have
ν(Eω) = 1. By the unique ergodicity of the Haar measure, there exists a set Êω ⊂ Eω such
that ν(Êω) = ω(Êω ×S2π ) = 1 and F∗

E (μ̃, ϑ) is a constant function on Êω ×S2π . It follows
from (6.2) that the constant must be ρE,ω.

By (6.1), we know that ρE,ω in (6.2) is independent of the choice of the measure ω. Set
F̂E := FE−ρE . By Lemma 5.2, F̂E is continuous on Z. By (6.2), F̂E satisfies the requirement
of Lemma 6.2. Thus,

lim
n→+∞

1

n

n−1∑
τ=0

F̂E
(
�τ

E (μ̃, ϑ)
) = lim

n→+∞
1

n

n−1∑
τ=0

FE
(
�τ

E (μ̃, ϑ)
)− ρE = 0, (6.3)

uniformly for all (μ̃, ϑ) ∈ Z.
At last, taking μ̃ = μ in (6.3), then by Lemma 5.2 and Lemma 5.5, we obtain the existence

of the desired limit. ��
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Appendix A. Solutions

The way to understand the solutions of Hμψ = Eψ is twofold, where μ ∈ M∞(R). One
is to use the concept of weak derivatives from the point of view of PDEs, and the other is to
extend the theory of ODEs to the so-calledmeasure differential equations (MDEs). First, we
recall from [6, 13, 37] some basic facts on solutions of (1.2) in the weak sense. For k ∈ N,
denote the Sobolev space Wk

1,loc(R) by

Wk
1,loc(R) := {ψ ∈ L1,loc(R) : ψ(i) ∈ L1,loc(R), for i = 1, 2, . . . , k},

where ψ(i) is the i th-weak/distributional derivative of ψ . Due to the regularity, we know that
every ψ ∈ Wk

1,loc(R) has a locally absolutely continuous representative.

Definition A.1 [37, p. 8] For ψ ∈ W 1
1,loc(R), the quasi-derivative Aμψ of ψ is defined by

Aμψ(x) := ψ(1)(x) −
∫ x

0
ψ(s) dμ(s) ∈ L1,loc(R), λ-a.e. x ∈ R,

where
∫ x
0 stands for

∫ x

0
=
{∫

[0,x] x ≥ 0,
− ∫

(x,0) x < 0,

and is understood as a Lebesgue-Stieltjes integral.

Definition A.2 A function ψ ∈ L1,loc(R) is called a solution of (1.2) if ψ ∈ W 1
1,loc(R)

satisfies

− (Aμψ)(1) = Eψ (A.1)

in the sense of distributions.

This implies that Aμψ ∈ W 2
1,loc(R), and then Aμψ can be understood as a continuous

representative. Since
∫ x
0 is right-continuous,wemay choose a right-continuous representative

of ψ(1). Further properties of ψ(1) are listed in the following lemma.

Lemma A.3 Let ψ be a solution of (1.2). Then with x ∈ R arbitrary, we have

(i) ψ ∈ C(R);
(ii) ψ(1)(x+) and ψ(1)(x−) exist, ψ(1)(x) = ψ(1)(x+);
(iii) ψ(1)(x+) is right-continuous, while ψ(1)(x−) is left-continuous;
(iv) ψ(1)(x+) − ψ(1)(x−) = ψ(x)μ({x}).
Define the one-sided derivative of ψ by

D±ψ(x) := lim
h→0±

ψ(x + h) − ψ(x)

h
. (A.2)

Note that ψ(1) is the derivative in the weak sense, whereas D±ψ are the derivatives in the
classical sense. The relationship betweenψ(1) and D±ψ is described in the following lemma.

Lemma A.4 Let ψ be a solution of (1.2). Then we have:

(i) for all x ∈ R, D+ψ(x) exists, D+ψ(x) = ψ(1)(x+), and x �→ D+ψ(x) is right-
continuous;
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(ii) for all x ∈ R, D−ψ(x) exists, D−ψ(x) = ψ(1)(x−), and x �→ D−ψ(x) is left-
continuous;

(iii) for all x ∈ R \ atom(μ), ψ ′(x) exists, and ψ ′(x) = D±ψ(x) = ψ(1)(x).

Remark A.5 The property of ψ(1)(x+) and D+ψ(x) has been proved in [37]. By a similar
way, we state the corresponding property of ψ(1)(x−) and D−ψ(x) in Lemma A.3 and
Lemma A.4. A crucial point in the proof is that the Newton-Leibniz formula holds as well
when ψ ′ is replaced by D±ψ . At last, Lemma A.4 (iii) is deduced via Lemma A.3 (iv).

Due to μ ∈ M∞(R) and the contraction mapping principle, we have

Lemma A.5 Let a, b ∈ R be arbitrary. Then there exists a unique solution ψE (x;μ) of (1.2)
defined for all x ∈ R such that ψ(1)

E (0+;μ) = a and ψE (0;μ) = b.

The second way to understand the solutions of (1.2) is from the point of view of MDEs.
Using the argument in [34, 41], we write (1.2) as the following second-order scalar linear
MDE,

dD+ψ(x) − ψ(x) dμ(x) + Eψ(x) dx = 0, x ∈ R, (A.3)

where D+ψ is the same as ψ• in [34, 41]. The solution (ψ(x), D+ψ(x)) of (A.3) possesses
the same properties as those in Lemma A.3, Lemma A.4 and Lemma A.5. For our purpose,
(A.3) can be written as the following planar system,

d

(
D+ψ(x)

ψ(x)

)
=
(

0 dμ(x) − E dx
dx 0

)(
D+ψ(x)

ψ(x)

)
, x ∈ R. (A.4)

A measure version of Gronwall’s inequality is stated as follows.

Lemma A.6 [37, Lemma A.1] Let x ≥ 0 and let μ ∈ M(R) be fixed. Assume that u :
[0, x] → R is continuous, a : [0, x] → R

+
0 is measurable with respect to μ, and

u(x) ≤ a(x) +
∫

(0,x)
u(s) dμ(s).

Then we have

u(x) ≤ a(x) +
∫

(0,x)
a(s) eμ((s,x)) dμ(s).

Appendix B. Homotopy

The following result can be found in [29, Lemma 3, p. 5].

Lemma B.1 For any D ∈ Sp(2,R), there exists a unique decomposition such that D = AU,
where A ∈ Sp(2,R) is a symmetric and positive-definite matrix, and U ∈ Sp(2,R) is an
orthogonal matrix. Explicitly, we have:

D =
(
r z

z 1+z2
r

)(
cosϑ − sin ϑ

sin ϑ cosϑ

)
, (B.1)

where (r , ϑ, z) ∈ R
+ × R/(2πZ− π) × R is uniquely determined by D.
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Due to the expression of (4.2), we consider the following sub-group

Trig(2,R) :=
{
Rc :=

(
1 c
0 1

)
: c ∈ R

}
⊂ Sp(2,R).

The unique decomposition of Rc can be calculated as

Rc =
(

c2+2√
c2+4

c√
c2+4

c√
c2+4

2√
c2+4

)(
2√
c2+4

c√
c2+4

− c√
c2+4

2√
c2+4

)
.

Construct a continuous path Pc(·) : [0, 1] → Sp(2,R) as

Pc(τ ) =
⎛
⎝

(τc)2+2√
(τc)2+4

τc√
(τc)2+4

τc√
(τc)2+4

2√
(τc)2+4

⎞
⎠
⎛
⎝

2√
(τc)2+4

τc√
(τc)2+4

− τc√
(τc)2+4

2√
(τc)2+4

⎞
⎠ =

(
1 τc
0 1

)
. (B.2)

Pc(·) connects I2 and Rc. The path is shown in [12, Figure 1]. The homotopy class of Pc(·)
is denoted by [Pc]. Let V(R2) be the set of all vectors starting from the origin in R

2. The
equivalence ∼ on V(R2) is defined by

#v1 ∼ #v2 ⇐⇒ #v1 = k#v2, for some k ∈ R
+.

Then L(R) := V(R2)/ ∼ is an orientable compact manifold of dimension one, and may be
regarded as a two-covering of the real projective line RP1.

Let � ∈ R. By (B.2), we have

Pc(τ )(cos�, sin�)T = (cos� + τc sin�, sin�)T .

Since the homotopy class [Pc] is fixed and arg(·) is understood as a continuous branch, the
argument function

F(c, τ,�) = arg(cos� + τc sin� + i sin�)

is continuous with respect to (c, τ,�) ∈ R × [0, 1] × R. In particular, we may choose one
continuous branch of F(c, τ,�) such that when τ = 0, we have

arg(cos� + i sin�) = �.

Then [Pc] yields the difference of arguments by

J (c,�) := F(c, 1,�) − F(c, 0,�). (B.3)

Lemma B.2 [12] J : R2 → (−π, π) is continuous with respect to (c,�) ∈ R
2. Moreover,

one has

J (c,� + 2π) = J (c,�).

Lemma B.3 Let c ∈ R be fixed. Then, J (c,�) + � is strictly increasing with respect to
� ∈ R.
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Appendix C. Proof of Remark 3.13

For any ε > 0, due to Lemma 2.10, �ε = P(Vμ, ε) ∩ k0Z is relatively dense in Z. This
implies that

‖Vμ · k0τ − Vμ‖∞ = ‖Tαt0τμ − μ‖∞ = ‖μ · t0τ − μ‖∞ < ε, for τ ∈ k−1
0 �ε.

Since supp(μ) is uniformly discrete, there exists c0 > 0 such that

‖Ttμ − μ‖I ≤ c0‖Ttμ − μ‖∞, for all t ∈ R.

By the equivalence of the properties listed in Definition 2.1, we know that

{μ · t0τ : τ ∈ Z}(M∞(R),‖·‖I ) is compact. This implies that

{μ · (t0τ + i) : τ ∈ Z}(M∞(R),‖·‖I ) is compact, for all i ∈ [0, t0 − 1] ∩ N.

Note that

H(μ) = {μ · τ : τ ∈ Z}(M∞(R),‖·‖I ) =
⋃

0≤i≤t0−1

{μ · (t0τ + i) : τ ∈ Z}(M∞(R),‖·‖I )

It follows that H(μ) is compact. By the equivalence of the properties listed in Definition 2.1
again, we obtain that μ ∈ M∞

α-nap(R). ��
Acknowledgements We would like to thank Professors Zhao Dong and Yanqi Qiu for helpful discussions,
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