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ABSTRACT
In this work, we introduce SEESys, the first system to provide on-
line pose error estimation for Simultaneous Localization and Map-
ping (SLAM). Unlike prior offline error estimation approaches, the
SEESys framework efficiently collects real-time system features
and delivers accurate pose error magnitude estimates with low
latency. This enables real-time quality-of-service information for
downstream applications. To achieve this goal, we develop a SLAM
system run-time status monitor (RTS monitor) that performs fea-
ture collection with minimal overhead, along with a multi-modality
attention-based Deep SLAM Error Estimator (DeepSEE) for error
estimation. We train and evaluate SEESys using both public SLAM
benchmarks and a diverse set of synthetic datasets, achieving an
RMSE of 0.235 cm of pose error estimation, which is 15.8% lower
than the baseline. Additionally, we conduct a case study showcasing
SEESys in a real-world scenario, where it is applied to a real-time au-
dio error advisory system for human operators of a SLAM-enabled
device. The results demonstrate that SEESys provides error esti-
mates with an average end-to-end latency of 37.3 ms, and the audio
error advisory reduces pose tracking error by 25%.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile comput-
ing systems and tools.
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Figure 1: Overview of the SEESys system, including an RTS
monitor for feature collection on a mobile device and the
DeepSEE model for pose error estimation on an edge server.
Additionally, we showcase a mobile audio error advisory as
a potential application of our system.

1 INTRODUCTION
Simultaneous localization and mapping (SLAM) has become an es-
sential component in various mobile systems, including augmented
reality (AR) devices, mobile robots, and autonomous vehicles. These
systems rely on the ability to quickly process data from onboard
sensors to simultaneously map the environment and estimate their
pose within it [8, 33]. However, even state-of-the-art solutions, such
as ORBSLAM3 [10] and VINS-Mono [47], frequently encounter
pose estimation errors, which represent the discrepancies between
estimated poses and ground truth poses. These errors are often
caused by challenging environmental conditions or rapid device
motion [30, 45]. The magnitude of these errors can vary signifi-
cantly, ranging from a few millimeters to over one meter within
a short period [6, 10, 30, 47]. Consequently, the quality of down-
stream applications, such as virtual object positioning in AR [30, 55]
and robot navigation [15], can degrade suddenly and unexpectedly.

Real-time awareness of pose error is therefore crucial for mon-
itoring and maintaining the quality of service and has numerous
potential applications. For example, it could alert applications or
users when the current pose data or any outputs derived from it
are unreliable. Additionally, knowing the error could guide SLAM
systems or human operators to take corrective actions, such as re-
ducing movement speed or repositioning to more visually favorable
environments [30]. Ultimately, this information could enable adap-
tive SLAM systems, which adjust SLAM parameters based on the
estimated error to reduce errors or optimize resource consumption,
thereby enhancing the performance of downstream applications.
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However, priorwork relies on external systems to provide ground
truth trajectories as references for error calculation [30, 58, 80].
These systems, such as motion capture systems, require signifi-
cant time and effort for setup and calibration in new environments,
making them impractical for out-of-the-box use.

While recent advances have made progress in estimating pose
error [2, 54], they do not provide this information in real time, which
limits their ability to support timely interventions required by many
applications. Therefore, there is a need for an online method for
real-time pose error estimation.

The primary challenges in online pose error estimation are two-
fold. First, pose error arises from the complex interaction between
visual environment properties and device motions, which together
affect the magnitude of the error. These errors can stem from var-
ious sources and manifest at different stages within the SLAM
pipeline. Second, extracting features from the SLAM pipeline and
performing error estimation introduces computations overhead.
Deploying such a system on resource-constrained mobile devices
while achieving real-time estimation requires a customized pipeline
to minimize the costs associated with feature collection, model
inference, and data transmission. Additionally, a robust estimation
model is needed to handle multi-modal inputs and be trained on
a broader range of environments than those available in existing
visual SLAM datasets.

To address these challenges, we present SEESys (SLAM Error
Estimation System), the first system designed for online SLAM pose
error estimation. To achieve better error estimation accuracy over
existing offline methods (e.g., [2]) while minimizing overhead on
mobile devices, SEESys leverages a tailor-made edge computing
architecture. This architecture incorporates several key strategies:
a lightweight on-device feature collection method utilizing multi-
threading and data compression, and offloading the multi-modal
deep learning model for error estimation to the edge server. These
choices optimize performance while reducing latency. This work
focuses on developing SEESys for visual SLAM, but it can easily
be extended to other variants, such as visual-inertial SLAM. The
real-time error estimates provided by our solution offer an invalu-
able quality-of-service metric applicable to multiple application
use cases without the need for external systems to obtain ground
truth trajectories. We demonstrate one use case with a practical
case study: implementing an audio error advisory via the sonifi-
cation [26] of pose error estimates, which alerts human operators
when a reduction in mobile device speed is needed to improve pose
tracking. An annotated demo video showcasing this use case is
available online1.

Our main contributions are as follows:
• We design SEESys, the first system for estimating SLAM pose
error in real time without access to ground truth pose; our sys-
tem collects features from both sensor input and the internal
SLAM pipeline at runtime, using a multi-modality attention-
based model to estimate pose error.

• We implement SEESys on real mobile devices and evaluate its
pose error estimation accuracy compared to the state-of-the-
art offline method (which does not provide error estimates in
real time); we achieve an RMSE of 0.235 cm, outperforming

1https://tinyurl.com/SEESysVideo

this baseline by 15.8%. Additionally, SEESys delivers pose error
estimates with an average end-to-end latency of 37.3 ms in real-
world scenarios.

• We present a case study demonstrating the use of SEESys for an
audio error advisory; we are the first to propose and implement
the sonification of SLAM pose error. Through an IRB-approved
user study with 30 participants, we show that using SEESys
to generate audio advisories helps guide human operators of
SLAM-enabled devices, reducing pose tracking errors by 25%.
The remainder of the paper is organized as follows: Section 2 cov-

ers related work, while Section 3 presents relevant background on
visual SLAM. Section 4 discusses system design of SEESys, and Sec-
tion 5 details its implementation. In Section 6, we evaluate SEESys,
followed by a case study in Section 7 demonstrating a practical use
case. We discuss the limitations and future directions in Section 8,
and conclude in Section 9. The code for SEESys, along with datasets
we create for our implementation (Section 5.3) is publicly available
on GitHub2.

2 RELATEDWORK
SLAM evaluation and benchmarks. Traditional SLAM evalua-
tions (e.g., [6, 30, 58, 62]) rely on ground truth pose measurements
obtained from motion capture systems (e.g., [46, 68]). However, the
laborious setup and calibration required by these systems make
this approach impractical for scaling to the diverse environments
in which SLAM is deployed. To address this limitation, we develop
a deep learning model to estimate pose error from input sensor
data and the internal SLAM pipeline. Public SLAM benchmarks
(e.g., [6, 13, 22, 30, 32, 58, 65, 81]) provide labeled data that could
be used to train the estimation model; we select the SenseTime
dataset [30] because it is representative of various motion types
with handheld devices. Due to the limited range of visual conditions
covered in real-world datasets like SenseTime, we augment our
training data with synthetic data generated in diverse virtual envi-
ronments. While conceptually similar to the TartanAir dataset [70],
our synthetic datasets are generated using real handheld device
trajectories rather than simulated aerial trajectories. This diversity
in training data allows us to build a more robust deep learning
model for pose error estimation.
SLAMpose error estimation. Several studies have proposedmeth-
ods for estimating pose error without access to ground truth poses.
For visual localization (rather than visual SLAM), Ferranti et al. [21]
estimate pose confidence using a logistic regression model with
features such as the number and distribution of inliers. Scargill et
al. [54] estimate SLAM pose error through uncertainty in estimated
poses, calculated via running repeated trials with the same input
data on an edge server. While this replay-based method allows for
pose error estimation without ground truth poses, the need for re-
peated trials prevents online error estimations. Although it is offline,
it allows users to inspect which part of their trajectory has high
pose error so that later they can adjust the environment settings ac-
cordingly for better QoS, for example, adding more light and visual
features at the place where the estimated pose error is high. Other
works [11, 12, 50] have explored SLAM uncertainty quantification
of pose estimates (rather than pose tracking error magnitude) using

2https://github.com/Duke-I3T-Lab/SEESys
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Figure 2: Pose error distribution with respect to factors af-
fecting SLAM tracking performance and their Pearson corre-
lation coefficients on the SenseTime [30] dataset.

the maximum likelihood estimator covariance matrix, extracting
information from the SLAM pipeline’s optimization of the environ-
ment map. The work closest to ours, Ali et al. [2], demonstrated
that a random forest regression model based on input sensor data
characteristics can be used to estimate the average pose error over
an entire trajectory. However, this is an offline method that begins
with a pre-collected dataset, lacking the ability to integrate with a
SLAM system for real-time error estimation. Building on these stud-
ies and other literature that explores the factors influencing SLAM
performance (e.g., [37, 42, 43, 55, 57, 62]), we develop an estimation
model that accounts for both sensor inputs and internal SLAM status.
Unlike the aforementioned offline methods, our system, SEESys, is
the first solution for obtaining pose error estimates at run-time.
Auditory displays and sonification. Auditory displays [14] com-
municate information and provide feedback to users through sound,
while sonification [26] refers to the process of rendering data as
sound. This use of sound within a tightly closed human-computer
interface has been termed interactive sonification [25]. Previous
works have successfully employed interactive sonification to guide
human behavior. For example, in [20], sonification helped runners
to improve their running mechanics, and Matinfar et al. [40] demon-
strated that sonification is a reliable alternative to conventional
visual displays for surgical task guidance. In our case, we demon-
strate the sonification of pose error magnitude as a use case for
online pose error estimation. The auditory feedback provided to
SLAM system operators helps them adjust their movements to
reduce tracking error by 25%.

3 BACKGROUND
In this section, we provide an overview of how visual SLAM systems
operate (Section 3.1), followed by a discussion of factors influencing
pose tracking errors (Section 3.2).

3.1 A Primer on Visual SLAM
A visual SLAM system is deployed on a mobile device to concur-
rently map an environment and track the pose of the device within
that environment. The system takes in one or more camera im-
ages from onboard sensors as inputs and outputs the latest map
and pose estimate at a predefined frequency. Visual SLAM algo-
rithms can broadly be divided into feature-based methods (e.g.,
ORB-SLAM3 [10], VINS-Mono [47]), which extract, match, and
track recognizable features from input camera images, and direct
methods (e.g., LSD-SLAM [19], DSO [69]), which track by mini-
mizing photometric error between camera images. Feature-based
methods are generally more popular due to better robustness to
lighting changes and greater efficiency [34, 75]; therefore, in this
work, we focus on feature-based visual SLAM. SLAM algorithms
can also be divided into filter-based and optimization-based solu-
tions; here we focus on optimization-based solutions, which have
also gained popularity due to their ability to maintain better global
consistency [8, 39, 66]. Feature-based, optimization-based SLAM
typically consists of three main modules [10]: tracking, local map-
ping, and loop closing. We describe the functions of each module
below.
Tracking: The tracking module extracts keypoints from the sen-
sor input—grayscale camera frames—using a keypoint detector
(e.g., [51, 52]). Each detected keypoint is associated with a descrip-
tor (e.g., [9, 35]), which includes information about surrounding
pixels so that the keypoint can be matched across frames. Keypoints
are matched in subsequent frames to estimate the camera pose, and
keypoints tracked in this process are then matched with those in
previously identified keyframes (reference frames). A transforma-
tion is identified based on the number of good keypoint matches,
inliers, and from these correspondences, new 3D map points can be
established via triangulation. The tracking module also determines
whether the current frame is added as a keyframe, based on how
distinct the camera view is from previous frames.
Local mapping: The local mapping module inserts new keyframes
and 3D map points identified by the tracking module into the
map [8, 10, 66]. It then optimizes keyframe poses and map points in
a local window around the current camera frame using bundle ad-
justment [7]. Bundle adjustment works by minimizing visual error,
the discrepancy between keypoints originally detected in camera
frames and their positions as determined by keyframe poses and
map points. Greater visual error indicates greater noise in the cam-
era images and errors in keypoint detection and matching.
Loop closure: The loop closure module is responsible for recog-
nizing places previously visited in an environment and adjusting
the estimated poses and map accordingly [8, 10, 66]. Potential loops
are detected by matching the keypoints in the current frame with
previous keyframes. If a potential loop is identified, it is then vali-
dated using the geometric properties of keypoints, the quality of
keypoint matches, and the consistency of the loop with the overall
trajectory [38]. Validated loops are corrected by optimizing the
essential pose graph (keyframes and associated map points). Full
bundle adjustment is then performed to refine all keyframes and
map points subject to the loop closure constraints.



SenSys ’24, November 4–7, 2024, Hangzhou, China Hu, Scargill, and Yang, et al.

Figure 3: Overview of the SEESys architecture. Feature col-
lection is accomplished on the mobile device, while model
inference is performed on the edge server.

3.2 Factors Affecting Visual SLAM Pose
Tracking Performance

The magnitude of pose tracking error in visual SLAM is influenced
by the complex interaction between environmental characteristics
and the device’s movement within that environment. Here, we
highlight three key factors that affect visual SLAM accuracy.
Visual texture: The detection of keypoints required for tracking re-
lies on recognizable visual textures (variation in pixel intensities) in
the camera image. As such, the surrounding environment must con-
tain sufficient visual texture, and the texture in a camera imagemust
be distinguishable by a corner detection algorithm at the current
ambient light level. Textureless environment regions such as blank
walls are frequently a problem for feature-based visual SLAM and
result in greater pose error or even tracking losses [5, 8, 10, 30, 54–
56]. Low ambient light levels introduce noise into camera images,
whichmay corrupt the detection of visual features. Additionally, the
quantity and spatial distribution of keypoints in a camera frame are
essential to the robustness of pose estimation, where a large quan-
tity of keypoint pairs can provide more redundancy while a uniform
spatial distribution enables reliable pose estimation [57, 63].
Device motion: Rapid movement reduces similarity between sub-
sequent camera frames, decreasing potential keypoint matches and
increasing the likelihood of error [44]. Rapid rotation often causes a
greater change in camera views than rapid translation. Additionally,
rapid movement causes motion blur, hindering accurate feature
detection and increasing error [5, 37, 43, 55]. Fine, low-contrast tex-
tures are particularly susceptible to blur [55]; environments with
highly distinctive elements are relatively robust to rapid motion,
but the same motion in an area with more subtle visual textures
may make feature matching challenging or impossible.
Environment depth: The environment depth, the distance from
the camera to surrounding surfaces, also plays an important role in
determining how conducive a trajectory is to accurate pose track-
ing. On one hand, our experience with visual SLAM indicates that
features detected on distant surfaces may be less reliable due to
their decreased resolution, increased susceptibility to noise (includ-
ing motion blur), and greater potential for occlusions. However,
when a device camera is close to a surface, its field of view only
covers a small environment region, which increases the potential
for the camera view to contain limited visual texture [56].

3.3 SLAM Pose Error Reasoning
We conduct experiments to evaluate the abovementioned factors
that potentially contribute to pose error, including the contrast

in camera frames (representing the visual texture factor), the an-
gular speed (derived from estimated device motion), the average
map point depth (measuring the average depth of the surrounding
environment), and the number of matched inliers (obtained from
the SLAM tracking module). Figure 2 visualizes the distribution of
pose errors across these factors using the SenseTime dataset [30],
and we calculate the Pearson correlation coefficients between each
factor and the pose error. The contrast in camera frames, average
map point depth, and number of matched inliers (as shown in Fig-
ure 2.(a), 2.(c), 2.(d)) all exhibit a negative correlation with pose
error, indicating that higher values of these factors tend to result
in lower pose errors. On the contrary, angular speed (Figure 2.(b))
shows a positive correlation, suggesting that rapid rotations are as-
sociated with greater pose error. However, the correlations of these
factors are weak (all ≤ 0.399), implying that pose error estimation
is a complex problem that cannot be solved by a simple model. This
highlights the need for more advanced machine learning models
that can capture the underlying patterns among these factors.

Additionally, Figure 2.(d) demonstrates a clear correlation be-
tween the number of matched inliers, an internal factor of the SLAM
system, and the pose error. Compared to previous work [2], which
focused solely on sensor data characteristics, we argue that incor-
porating internal SLAM system status can lead to more accurate
pose error estimation.

4 SYSTEM DESIGN
We present the architecture of our pose error estimation system,
SEESys, in Figure 3. Since running visual SLAM alone would ex-
haust computational resources on a resource-constrained mobile
device [17], SEESys leverages edge computing, where the computa-
tion for model inference is offloaded to a nearby server (e.g., [24,
36, 73, 77, 79]). This approach reduces the computational burden
on the mobile device and ensures low-latency data transmission
for real-time pose error estimation. SEESys consists of two pri-
mary modules: the RTS monitor (Section 4.1) for feature collection
and preprocessing on the mobile device, and the DeepSEE model
(Section 4.2) for pose error estimation on the edge server.
4.1 RTS Monitor
The lightweight RTS monitor operates concurrently with a SLAM
system, on a mobile device. It collects and preprocesses features
from various points in the SLAM pipeline, as illustrated in Fig-
ure 4. These features capture both the extent and distribution of
visual information (i.e., recognizable texture) in the surrounding
environment that facilitates pose tracking, as well as the current
state of the SLAM algorithm. We tailor-design the RTS monitor
to capture features that are commonly accessible in feature-based
SLAM systems (see Section 3.1). We have carefully optimized the
system to minimize resource consumption during runtime. Below
we detail the two categories of our selected set of features: the Run-
time Status (RTS) and the Point Spatial Distribution (PSD). Features
are preprocessed, formulated as multivariate time series and 3D
matrices, and subsequently transmitted to the edge server via a
wireless network for model inference.

4.1.1 Runtime Status (RTS). It comprises features collected from
the tracking, local mapping, and loop closure modules (see Sec-
tion 3.1) during runtime to characterize SLAM performance. These
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Table 1: Runtime status features captured by the RTS monitor for each camera frame. Sensor input characteristics are computed
directly from camera images, while other features are extracted from the internal SLAM pipeline.

RTS feature
category Feature name Description

Sensor
input
characteristics

Brightness Mean normalized pixel intensity
Contrast RMS contrast (standard deviation of normalized pixel intensities)
Entropy Shannon entropy [61] of pixel intensities, image complexity
Laplacian Variance of the Laplacian, image edge strength (low values indicate blur)

SLAM
tracking
characteristics

MatchedInliers Number of keypoints (features) matched in camera pose estimation
Outliers Number of keypoints (features) not matched in camera pose estimation

RelativeTranslation Relative camera translation (on x,y,z axes) in camera coordinates
between consecutive camera frames

RelativeRotation Relative camera rotation (in roll, pitch, and yaw)
between consecutive camera frames

SLAM
mapping
characteristics

AvgMPDepth The mean of the depth of matched map points in a camera frame
VarMPDepth The variance of the depth of matched map points in a camera frame
LocalMappingVisualError Maps point reprojection error in local mapping optimization

Figure 4: Workflow of the Runtime Status (RTS) monitor,
which collects features from the SLAMpipeline, preprocesses
the features as RTS time series and PSD matrices, and then
sends them to the edge server.

features are detailed in Table 1. We categorize them into sensor
input characteristics, SLAM tracking characteristics, and SLAM
mapping characteristics.

• Sensor input characteristics capture properties of the visual
input to the SLAM pipeline, grayscale camera frames. The Bright-
ness of a frame indicates environment illumination, which de-
termines how visible textures are as well as the likelihood of
noise [18]. Contrast measures how distinguishable environment
textures are; this is critical because the corner detection algo-
rithms central to keypoint detection rely on sufficient pixel in-
tensity differences [51]. Entropy measures image complexity and
the amount of information available. Laplacian measures the
edge strength of each camera frame, with lower values indicating
blur, which can reduce tracking performance [37, 43].

• SLAM tracking characteristics are extracted from the SLAM
tracking module. Motivated by the visual SLAM tracking opti-
mization process (see Section 3), we collect MatchedInliers and
Outliers. MatchedInliers captures the number of matched inlier
points after pose estimation, while Outliers captures the number
of outliers. Inspired by related works in visual odometry [43],
image deblurring [37], and AR environment design [55] that

point out the impacts of motion blur, we collect the Relative-
Translation, which represents the translation change along each
axis to the previous camera pose (in camera coordinates), while
RelativeRotation represents the estimated rotation change in the
roll, pitch, and yaw.

• SLAM mapping characteristics are data related to the gen-
erated SLAM map. In Section 3.2, we note how environment
depth impacts tracking performance. Consequently, we measure
AvgMPDepth and VarMPDepth, the average and variance of map
point depths within the camera frustum respectively. The AvgM-
PDepth and VarMPDepth features are extracted from the tracking
module. Additionally, we capture LocalMappingVisualError from
the local mapping module, which is the reprojection error of
map points in the local map following local bundle adjustments
by the SLAM system. As we covered in Section 3.1, this metric
reflects the extent of noise in camera images and errors in feature
matching.

4.1.2 Point Spatial Distribution (PSD). While the number of in-
lier points in each frame is a useful feature, it is known that the
distribution of these inlier points significantly impacts the structure-
from-motion and image localization tasks: a clustered distribution
is generally detrimental while an even distribution is robust [21, 57].
Drawing inspiration from these findings and recognizing that an
inlier point is a keypoint that can be associated with a 3D map
point (see Section 3.1), we have designed and implemented a novel
data structure: the PSD matrix, that records the spatial distribution
for the keypoints, map points, and inlier points. This matrix fur-
ther characterizes tracking states beyond the original RTS features.
To our knowledge, no previous work has explicitly explored this
feature for modeling SLAM tracking performance. As illustrated in
Figure 5, the PSD matrix is concatenated from three 2D matrices,
each shown in a different color, red for map points, green for inlier
points, and blue for keypoints. These 2D matrices represent the
spatial distribution and properties of their respective points, as
detailed below.

• Keypoints spatial distribution is extracted in each camera
frame by feature-based SLAM algorithms (e.g., ORB extraction
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Figure 5: PSD matrix generation (best viewed in color). For each camera frame, we record the spatial distribution of keypoints,
inlier points, and map points from the visual SLAM tracking module.

in the tracking module of ORB-SLAM3 [10]). To reduce memory
usage, model dimensions, and offloading bandwidth, we reduce
our PSD resolution by dividing the camera frame space, into
small patches of size 𝐾𝑐 × 𝐾𝑐 . This effectively reduces our PSD
resolution to 1

𝐾𝑐
𝐻 × 1

𝐾𝑐
𝑊 , where 𝐾𝑐 represents the size of the

patch. We first initialize the matrix as a zero matrix, where all
the elements are zero. Then, for each small patch in a camera
frame, we count the keypoints extracted in the SLAM tracking
module that fall into the region of that small patch. If there are
keypoints in the small patch region, we set the corresponding
matrix element to the mean response value of those keypoints.
The response is a keypoint property, where a higher value in-
dicates greater distinctiveness and robustness to noise [3, 52].
Thus, the 2D matrix of keypoints captures the quality of key-
points through their response values, as well as their spatial
distribution.

• Inlier points spatial distribution is captured in a similar way
to the keypoints in a 2D matrix of size 1

𝐾𝑐
𝐻 × 1

𝐾𝑐
𝑊 , where each

matrix entry corresponds to a small patch with shape 𝐾𝑐 × 𝐾𝑐
in the camera frame. For each small patch, if there are no inlier
points found in the pose estimation process in the SLAM tracking
module, we set the corresponding matrix entry to 0, otherwise,
we set it to 255.

• Map points spatial distribution considers map points that are
located not only within the current camera field of view (FoV)
but also surrounding the camera FoV in the SLAM local map.
This design is motivated by our observation that tracking per-
formance is more robust in environments with rich map points
than in new environments with fewer map points. Includingmap
points outside of the camera FoV captures surrounding informa-
tion about the current camera pose, which helps in estimating
the pose error when we jointly consider the surrounding map
point distribution with the camera movement reflected in the
relative pose. To achieve this, we create an expanded frustum
that is larger than the camera frustum by a frustum expansion
factor 𝐾𝑝 and set the matrix shape to 𝐾𝑝

𝐾𝑐
𝐻 × 𝐾𝑝

𝐾𝑐
𝑊 . Here we

follow our compression design in the keypoint and matched
inliers spatial distribution that divides camera frame space into
small 𝐾𝑐 ×𝐾𝑐 patches to reduce resource consumption. We then
extract map points from the tracking module of visual SLAM,
reproject the 3D coordinates of map points on the local map

Figure 6: DeepSEE model architecture. The PSD and RTS
encoders extract latent representations from their respective
data, which are then fused using Multi-head Cross-attention
(MCA) layers. The fused representations are processed by
fully connected layers to estimate pose error.

onto the 2D camera plane, and convert their 3D world coordi-
nates to 2D coordinates of the camera frame. If a map point is
found within the expanded frustum, we record its depth value
in the corresponding matrix entry, thereby providing the depth
information of map points over a larger FoV than the original
camera frame.

We then concatenate the keypoint, inlier point, and map point
spatial distribution together and form the PSD matrix, a 3D matrix
with shape 𝐾𝑝

𝐾𝑐
𝐻 × 𝐾𝑝

𝐾𝑐
𝑊 × 3.

4.2 DeepSEE Model
The Deep SLAM Error Estimator (DeepSEE) model is an attention-
based, multi-modality regression model we designed to take the
multi-modality features collected by the RTS Monitor for pose
error estimation. We design its architecture and training procedure
to capture spatiotemporal patterns from both the PSD and RTS
modalities.

4.2.1 Problem Statement. Given a SLAM benchmark with sensor
data and ground-truth trajectories 𝑇 , we first run a visual SLAM
system on the sensor data to obtain its estimated trajectory 𝑇 and
runtime statusX and point spatial distribution P. We then derive the
ground-truth pose error y𝑡 by comparing the estimated trajectory
𝑇 from the visual SLAM system with the ground-truth trajectory 𝑇
using the Relative Pose Error (RPE) metric [80].

With ground truth pose error y𝑡 and corresponding RTSmodality
input X𝑡 and PSD modality input P𝑡 at each camera frame’s time
stamp 𝑡 , our goal is to train a neural network model, DeepSEE,
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𝑓DeepSEE, to minimize the MSE Loss between the estimated pose
error 𝑦𝑡 and the ground truth error 𝑦𝑡 , as denoted below:

min
Θ

LMSE (ŷ, y) ≔
1
𝑛

∑︁
𝑡

(ŷ𝑡 − y𝑡 )2

where ŷ𝑡 = 𝑓DeepSEE (Θ,X𝑡 , P𝑡 )
(1)

Here, ŷ𝑡 is the estimated pose error from our DeepSEE model, with
Θ representing its parameters. The term 𝑛 denotes the total number
of samples in the dataset,X𝑡 the RTSmodality input, and P𝑡 the PSD
modality input. By optimizing this towards a lower loss value, the
DeepSEE model can learn from the input modalities and estimate
pose errors accurately.

The RTS modality input 𝑋𝑡 is a sliding window of the runtime
status features from timestamp 𝑡 −𝑇 + 1 to timestamp 𝑡 . It can be
formulated as a multivariable time series as 𝑋𝑡 ∈ R𝑇×𝐶 , where
𝐶 represents the number of features as outlined in Table 1 and 𝑇
specifies the length of the sliding window, thereby setting a fixed
length for the RTS modality input.

Similarly, the PSD modality input 𝑃𝑡 is a sliding window for the
PSD matrices. Since adjacent camera frames have similar PSD, the
slidingwindow only contains samples at timestamps 𝑡−(𝐾𝐿−1)𝜏, 𝑡−
(𝐾𝐿 − 2)𝜏, · · · , 𝑡 − 𝜏, 𝑡 instead of taking all the PSD matrices within
a time slot to reduce the redundancy in the PSD modality input
and minimize the system resource overhead. The 𝐾𝐿 denotes the
number of PSD samples within the sliding window, and 𝜏 represents
the interval between adjacent samples. The input 𝑃𝑡 can then be

presented as 𝑃𝑡 ∈ R𝐾𝐿×
𝐾𝑝

𝐾𝑐
𝐻× 𝐾𝑝

𝐾𝑐
𝑊 ×3, where 𝐻 and 𝑊 are the

height and width of the camera frame, 𝐾𝑝 is the frustum expansion
factor, 𝐾𝑐 is the compression ratio, and the 3 corresponds to the
number of layers for keypoints, map points, and inlier points as we
specified in Section 4.1.2.

4.2.2 Model Architecture and Training Strategy. TheDeepSEEmodel
incorporates four main modules: a PSD encoder, an RTS encoder, a
multi-modality cross-attention fusion module, and an output layer
module. The model architecture is shown in Figure 6.

PSD Encoder 𝑓𝑃𝑆𝐷 : We employ an attention-based video en-
coder, TimeSformer [4], to encode our PSD modality input to latent
space. We choose an encoder originally designed for video inputs
as we observed that the PSD modality input is a sliding window
of PSD matrices sampled over a time period with a data structure

{𝑃𝑖 } ∈ R𝐾𝐿×
𝐾𝑝

𝐾𝑐
𝐻× 𝐾𝑝

𝐾𝑐
𝑊 ×3, which is similar to a video clip with

𝐾𝐿 as the video length and 𝐾𝑝
𝐾𝑐
𝐻 × 𝐾𝑝

𝐾𝑐
𝑊 as the video resolution.

Like other attention-based video encoders, the first layer of our
PSD encoder is an embedded layer, which divides the input into
non-overlapping patches with shape𝐻𝑝 ×𝑊𝑝 ×3, where the𝐻𝑝 and
𝑊𝑝 are the height and width of the small patches. It then extracts
hidden representations across patches in both spatial and temporal
dimensions, meaning for each patch in a PSD matrix, the model
not only considers patches located at different spatial positions in
the same PSD matrix but also patches at the same spatial position
at different timestamp over the sliding window.

To ensure our PSD encoder can capture the representation of a
sliding window of the PSD matrices, we design a self-supervised
learning task to pre-train it. We attach two fully connected layers
followed by the PSD encoder as the decoder, and ask the model to

recover the original sliding window of a masked sliding window,
where we randomly mask 50% of patches. The loss is the MSE
between the original sliding window and the reconstructed sliding
window. The design of the self-supervised learning task encourages
the PSD encoder to learn latent space representations from each
patch so they can be used to reconstruct the masked neighboring
patches (in both time and space) in the decoder. We then store
the learned weights of the PSD encoder to initialize the DeepSEE
model.

RTS Encoder 𝑓𝑅𝑇𝑆 : For encoding the RTS in the form of multi-
variate time series, we employ the TS2Vec encoder [76], which can
learn latent space representations of time series data at multiple
semantic levels. This is achieved through contrastive learning, ap-
plied hierarchically across augmented contextual views, enabling
the encoder to capture complex, time-dependent patterns in the
multivariate time series data.

Cross-attention Multi-modality Fusion Module: Upon ob-
taining the hidden representations of the SLAM runtime status and
point distributions from their respective encoders, the integration of
these multimodal insights is achieved through a bi-directional multi-
modality cross-attention fusion module. This module facilitates a
mutually informative interaction between the twomodalities, allow-
ing each to effectively utilize information from the other [16, 67, 71].

In the Multi-head Cross-attention (MCA) layers, attention com-
putations occur bidirectionally between the RTS and PSD modali-
ties. For the RTS modality, we denote the queries, keys, and values
as 𝑄𝑅𝑇𝑆 , 𝐾𝑅𝑇𝑆 , and 𝑉𝑅𝑇𝑆 respectively; and for the PSD modality,
these are denoted as 𝑄𝑃𝑆𝐷 , 𝐾𝑃𝑆𝐷 , and 𝑉𝑃𝑆𝐷 . The attention scores
are calculated by setting the queries from one modality against the
keys and values from the opposite modality:

Att𝑅𝑇𝑆→𝑃𝑇 (𝑄𝑅𝑇𝑆 , 𝐾𝑃𝑆𝐷 ,𝑉𝑃𝑆𝐷 ) = softmax

(
𝑄𝑅𝑇𝑆𝐾

𝑇
𝑃𝑆𝐷√︁

𝑑𝑘

)
𝑉𝑃𝑆𝐷

And similarly, for the reverse direction:

Att𝑃𝑆𝐷→𝑅𝑇𝑆 (𝑄𝑃𝑆𝐷 , 𝐾𝑅𝑇𝑆 ,𝑉𝑅𝑇𝑆 ) = softmax

(
𝑄𝑃𝑆𝐷𝐾

𝑇
𝑅𝑇𝑆√︁

𝑑𝑘

)
𝑉𝑅𝑇𝑆

This bi-directional approach not only enhances the depth of feature
extraction from each modality but also ensures that each modality
effectively queries the most relevant features in the data stream of
the other, thereby enhancing model performance.

Output Layer Module: In this module, we begin by concatenat-
ing the hidden states derived from the bidirectional cross-attention
module. This operation combines the hidden representation ex-
tracted from both the RTS and PSD modalities. Following this, we
employ a series of fully connected layers. These layers transform
the concatenated hidden states into a continuous numerical output.
The final output of this module is the pose error estimate.

5 SYSTEM IMPLEMENTATION
In this section, we detail the implementation of our online pose error
estimation system SEESys. In Section 5.1, we provide an overview
of our implementation. In Section 5.2, we describe how we obtain
annotated labels for our error estimation model. In Section 5.3, we
present the synthetic datasets we created to train our model, and
in Section 5.4, we detail our model training procedure.
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Figure 7: Unity virtual environments created to generate our
synthetic visual SLAM datasets.

5.1 Implementation Overview
5.1.1 Hardware. Following recent works in visual SLAM on mo-
bile devices [1, 74, 78], we selected the Nvidia Jetson Xavier NX as
the mobile system platform for our prototype. The Nvidia Jetson
Xavier NX features a 6-core ARMv8 CPU, operating at a maximum
frequency of 1.9GHz, and includes 8GB of RAM. Its CPU perfor-
mance is comparable to that of the Google Pixel 2, which is powered
by a Snapdragon 835 CPU with 4 cores at 1.9 GHz and 4 cores at
2.45 GHz. Additionally, the Nvidia Jetson runs on an Ubuntu op-
erating system, which simplifies the fulfillment of ORB-SLAM3
dependencies.

For the edge server that hosts our DeepSEE model, we use a
laptop running on Ubuntu 22.04 with an Intel Core i7-12800H CPU,
an Nvidia RTX3080 GPU, and 64GB RAM.

5.1.2 Software. We implemented the RTS monitor on the mobile
device in C++. To address the overhead associated with data col-
lection from the SLAM system, we integrated the RTS monitor
as an additional thread within the existing visual SLAM system,
ORB-SLAM3 [10]. This integration aligns with the conventional
multi-threaded design of visual SLAM systems and offers advan-
tages in shared memory access (allowing the RTS monitor to easily
access necessary parameters from the SLAM pipeline) as well as
concurrency and resource management (ensuring that interactions
with shared variables are safely managed). We implemented the
DeepSEE model on the edge server in Python with PyTorch.

5.1.3 Networking. The mobile device and the edge server are con-
nected to the same Wi-Fi router operating on a 5.0 GHz frequency
band. We use the iftop command on the edge server to track the
uplink and downlink bandwidth filtered by the edge and mobile de-
vice’s IP addresses. The average upstream bandwidth of the mobile
device at runtime for sending the features is 663 Kb/s.

5.2 Label Transformation
After generating the ground truth labels, we found that the dis-
tribution of RPE is positively skewed with a long right tail. Due
to this severely unbalanced distribution, the model is likely to ig-
nore those rare but critical large pose errors. In practice, we care
more about large pose errors than small pose errors. To address

Figure 8: Sensor input characteristics for each of our syn-
thetic visual SLAM datasets. We designed our set of virtual
environments (Figure 7) to produce diverse levels of input
image brightness, contrast, entropy (complexity) and Lapla-
cian (edge strength).

this, we apply a log transformation that uses log(1 + 𝐾𝐿 × 𝑅𝑃𝐸)
as the new label, where 𝐾𝐿 is a shifting parameter. After applying
the log transformation with 𝐾𝐿 = 10, 000, the label distribution is
similar to a Gaussian distribution, thereby addressing the imbalance
issue. After model inference, we apply the inverse transformation,
𝑒𝑥𝑝 (𝑅𝑃𝐸transformed )−1

𝐾𝐿
, to recover the estimated pose error.

5.3 Training Data
There is a scarcity of large-scale visual SLAM datasets (with accu-
rate ground truth pose data) that cover a diverse range of realistic,
commonly encountered visual environments, as opposed to lab envi-
ronments (e.g., [30, 58]) or environments designed specifically to be
challenging (e.g., [70]). To address this, we use game engine-based
synthetic data generation [23, 55, 59, 70], in which ground-truth
trajectories from existing SLAM datasets are used to generate new
visual input data (camera frames) in easily-modified virtual envi-
ronments. As shown in Figure 7, we use this technique to create
a diverse set of synthetic visual SLAM datasets that substantially
augment our training data and improve the model generalization
in new environments.

To produce realistic virtual environments for our synthetic datasets,
we used the Unity game engine’s High Definition Render Pipeline.
We created nine diverse environments (Figure 7), that vary in mul-
tiple aspects, including illumination, scale and texture. To generate
visual input data from each environment, we produced a new cam-
era frame for each pose in the ground truth trajectories in the Sense-
Time [30] dataset. In total, we generated 221,195 camera frames in
virtual environments (compared to 32,056 frames in the original
SenseTime dataset) to use as visual SLAM inputs and collect labeled
training data. To validate the diversity of these data, we calculated
the sensor input characteristics (see Section 4.1) for each frame, and
the results are shown in Figure 8. The median Brightness for each of
our nine datasets ranges from 0.22 to 0.67, the median Contrast from
0.06 to 0.23, the median Entropy from 3.5 to 7.0, and the median
Laplacian from 54 to 516. This diversity facilitates the training of
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Table 2: Cross-validation evaluation rounds on the SenseTime
dataset, with trajectories grouped by their motion types.

Group Motion types Trajectories
1 Patrol and inspection A0, A1, A2, A4, A7

2 Aiming and inspection A3, A6, B3, B4, B5,
B6, B7

3 Rapid waving, shaking,
rotation, and translation A5, B0, B1, B2

an error estimation model that is robust to the different types of
environments in which mobile devices run SLAM.

5.4 Training Procedure
Our training procedure consists of three stages: self-supervised
pretraining, supervised pretraining, and supervised fine-tuning, as
described below. This methodology enables our model to learn uni-
versal representations from input features and effectively address
the synthetic-to-real problem arising from training on synthetic
datasets.
Self-supervised pretraining: We use self-supervised pretraining
methods to train the PSD and RTS encoders. For the PSD encoder,
we follow the self-supervised learning procedure in Section 4.2. For
the RTS encoder, we follow the procedures in TS2Vec [76]. This
stage employs contrastive learning to encode universal representa-
tions of RTS features.
Supervised pretraining: In this stage, we freeze the PSD and RTS
encoders with the weights obtained from the self-supervised pre-
training, then train the rest of the model, including the multi-modal
cross-attention module and output layers, using our synthetic data.
The goal is to leverage our diverse synthetic dataset to develop a
robust initial model.
Supervised fine-tuning: The final stage involves fine-tuning the
model with real-world data. By doing so, we adapt the model, ini-
tially trained on synthetic data, to perform effectively in real-world
scenarios.

6 EVALUATIONS
Next, we evaluate several aspects of our SEESys system. In Sec-
tion 6.1, we evaluate the error estimation performance of our DeepSEE
model. In Section 6.2, we measure the overhead of our RTS monitor
on the mobile device, and in Section 6.3, we characterize the latency
of the overall SEESys system.

6.1 Evaluation of Pose Error Estimation
We evaluate our DeepSEE on a real-world handheld SLAM bench-
mark, SenseTime [30]. We compare the performance of DeepSEE
against a baseline that employs random forest regression for offline
pose error estimation [2].

6.1.1 Evaluation Dataset. The SenseTime benchmark [30] com-
prises 16 trajectories, labeled A0–A7 and B0–B7, representing vari-
ous indoor environments and user movement patterns in mobile
AR scenarios. Some of these environments and movements are in-
tentionally designed to be challenging for SLAM systems, making
this benchmark ideal for investigating SLAM pose errors and evalu-
ating our proposed online error estimation system. The SenseTime
benchmark provides camera frames at a frame rate of 30𝐻𝑧 with

Table 3: Pose error estimation evaluation results using RMSE
and MAPE metrics.

Category Method RMSE (cm)↓ MAPE↓

Baseline Random Forest 0.279 0.549
LSTM 0.273 0.708

Model
Ablation
Study

DeepSEE-w/o-PSD 0.261 0.510
DeepSEE-w/o-SSL 0.236 0.526
DeepSEE-w/o-CA 0.255 0.511

RTS
Ablation
Study

DeepSEE-w/o-Sensor 0.238 0.515
DeepSEE-w/o-Tracking 0.244 0.569
DeepSEE-w/o-Mapping 0.237 0.517

PSD
Ablation
Study

DeepSEE-w/o-Keypoint 0.238 0.514
DeepSEE-w/o-Inlier 0.241 0.515

DeepSEE-w/o-Mappoint 0.239 0.522

DeepSEE 0.235 0.507

a resolution of 640 × 480, along with 6-DoF ground truth poses at
400𝐻𝑧 for pose error evaluation.

We employ cross-validation to maximize the use of available
trajectories. In this process, trajectories alternately serve as training,
validation, and test sets during the final fine-tuning stage. Our cross-
validation data splitting is detailed in Table 2, where we categorize
the SenseTime trajectories into three groups based on their motion
types. In each round of cross-validation, we randomly sample two
trajectories from each group. We put one of the sampled trajectories
from each group into the validation set, the other into the test set,
and the rest into the training set. No trajectories are shared among
the training, validation or test set, ensuring that the evaluation is
conducted on an unseen environment.

6.1.2 Evaluation Results. We assess the pose error estimation per-
formance of DeepSEE and two baselines, random forest regression
and LSTM, using two common metrics, Root Mean Squared Error
(RMSE) and Mean Absolute Percentage Error (MAPE). The random
forest regression model is an ensemble learning method used by
the state-of-the-art offline pose error estimation method [2], while
the LSTM model is a recurrent neural network designed to han-
dle time-series data [27]. Our LSTM architecture for multivariate
time series regression includes two LSTM layers, which capture the
temporal dependencies and interactions between different input
features in RTS, followed by fully connected layers to project the
latent representations to the estimated pose error. Our evaluation
results in Table 3 show that DeepSEE and its variants outperform
both baselines. The full version of DeepSEE achieves an RMSE of
0.235 cm, an improvement of 15.8% over random forest regression
and 13.9% over LSTM.

To evaluate the impact of the PSD modality, we compare system
performance using only the RTS modality versus using both RTS
and PSD modalities. Table 3 shows the results, where the setting
without the PSD modality is denoted as DeepSEE-w/o-PSD. The
results demonstrate that incorporating the PSD modality improves
estimation accuracy, as the DeepSEE model reduces RMSE by 9.9%
compared to DeepSEE-w/o-PSD.

We further assess the effect of self-supervised learning (SSL)
on the PSD encoder by testing performance without initializing
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the PSD encoder weights with SSL, denoted as DeepSEE-w/o-SSL.
While DeepSEE-w/o-SSL achieves a similar RMSE to DeepSEE, it
exhibits a 3.8% increase in MAPE, indicating that self-supervised
learning enhances performance.

To verify the effectiveness of the Cross-attention Multi-modality
Fusion Module, we evaluate a variant, DeepSEE-w/o-CA, where
the cross-attention fusion module is replaced with fully connected
layers that directly process RTS and PSD modality representations.
The results show an 8.5% increase in RMSE without the cross-
attention module, highlighting its importance.

We conduct an ablation study to investigate the contribution of
features obtained from the SLAM pipeline focusing on both RTS
and PSD features. For RTS, we remove each category individually
and find that sensor input and SLAM mapping characteristics con-
tribute less than 2% improvement in RMSE and MAPE. However,
SLAM tracking characteristics yield a 3.8% improvement in RMSE
and a 12.2% improvement in MAPE, indicating that all features are
valuable for pose error estimation, with tracking characteristics
having the most significant impact. For PSD features, we evaluate
model performance by masking the keypoint, inlier point, and map
point spatial distribution matrices individually. The results show
that map point and inlier point features contribute the most, im-
proving MAPE by 3.0% and RMSE by 2.6%, respectively. Keypoints
contribute less, with improvements of less than 1.4% in both metrics.
We hypothesize that the extended frustum in the map point spatial
distribution design provides a broader environmental perception
beyond the camera’s field of view, thereby enhancing the model’s
performance. Inliers contribute more than keypoints because they
represent a subset of keypoints directly involved in pose prediction,
making them more relevant to tracking accuracy.

6.2 RTS Monitor Overhead
To evaluate the overhead introduced by the RTS monitor, we mea-
sured resource usage and tracking latency on the mobile device
when running ORB-SLAM3 with and without our RTS monitor,
for the A0-A7 trajectories in the SenseTime dataset, with a Nvidia
Jetson Xavier NX as the mobile device. For resource usage, we mea-
sured the CPU usage and memory usage using psutil [49], a Python
library for system utilization. For tracking latency, we measured the
time elapsed for the mobile device to process each camera frame.

The results of our RTS monitor overhead evaluation are shown
in Table 4. The addition of the RTS monitor increases average CPU
usage on the mobile device from 40.7% to 45.3%, a relative increase
of 11.3%. The respective values for average memory usage are
466.3MB and 506.9MB, a relative increase of 8.7%, and the respective
values for tracking latency are 34.8ms and 37.3ms, reflecting a 7.2%
relative increase. Overall, this relative increase of less than 12%
across multiple metrics illustrates the lightweight nature of our
RTS monitor, showing that it can be run on a mobile device with a
small overhead.

6.3 System Latency Characterization
Next, we evaluate the end-to-end latency of SEESys to demonstrate
its suitability for real-time applications. We recorded system latency
during the user study for our case study (Section 7), involving 30 par-
ticipants, with each participant’s trajectory lasting approximately
two minutes. The average round-trip latency for data collection

Table 4: Mobile device resource consumption and tracking
latency when running an ORB-SLAM3 alone (SLAM) and
with the RTS monitor (SLAM+RTS).

Metric SLAM SLAM+RTS

Average CPU usage (%) 40.7 45.3
Median CPU usage (%) 45.0 51.7

Average memory usage (MB) 466.3 506.9
Median memory usage (MB) 515.0 560.9
Average tracking latency (ms) 34.8 37.3
Median tracking latency (ms) 35.6 37.6

and preprocessing on the mobile device was 1.9 ms. The average
latency between transmitting the collected features and receiving
the corresponding estimated pose error from the edge server was
35.4 ms. These results together demonstrate that SEESys provides
pose error estimates in real time with an end-to-end latency of
37.3ms, which is negligible in our following case study.

7 CASE STUDY: AUDIO ERROR ADVISORY
In this section, we conduct a case study on one possible use case for
online pose error estimation, an audio error advisory. In Section 7.1,
we cover the motivation for this advisory, and in Section 7.2 we
detail its implementation. In Section 7.3, we present the design of
a user study to demonstrate our advisory, and in Section 7.4, we
provide our user study results.

7.1 Motivation
As the use of mobile devices running SLAM becomes more wide-
spread, these devices are more frequently controlled by human
operators who are often unaware to the effects of motion on pose
error. For example, someone scanning a room using a handheld
device may change direction rapidly, not realizing that this may
result in greater pose tracking error and in turn lower the accuracy
of the environment map they create. Thus, a solution is needed to
advise users when their motions cause high pose errors, allowing
them to slow down and improve tracking quality.

One option would be to generate this error advisory based on
the estimated device motion alone. However, this ignores the effect
of the visual environment; as we noted in Section 3, SLAM is more
robust to rapid motion in certain visual environments compared to
others. As such, an advisory based on motion alone would likely
produce unnecessary warnings in some environments or too few
warnings in others. Instead, our SEESys system provides a timely
pose error indicator that takes into account both visual and motion
characteristics.

A SLAM pose error advisory could take various forms, such as
visual, auditory, or haptic feedback. In this work, we focus on an
audio error advisory, because it can be easily integrated with a wide
range of mobile devices (i.e., minimal hardware requirements), and
does not interfere with a human operator’s vision-based navigation
of an environment. The effectiveness and usability of different forms
of error advisory is an important topic for future work.

7.2 Audio Advisory Implementation
We propose the sonification [26] of pose error magnitude, such that
an audio signal conveys how pressing the need is for a human oper-
ator to reduce the speed of device motion. While we experimented
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Figure 9: Top view of target object placement and a mobile
device trajectory in our user study, where participants are
instructed to scan the objects from 1 to 10.

with modulating the amplitude or frequency of a tone based on
error magnitude, we ultimately chose to modulate the frequency of
audio pulses, similar to a Geiger counter [53], as the most familiar
and intuitive type of audio feedback. The Geiger counter metaphor
has previously been used to encode distance in auditory displays
for navigation [28, 41] and peripersonal reaching [72], but we are
the first to propose it for encoding SLAM pose error.

Given the latency associated with generating audio signals from
a pose error estimate (e.g., using a Python library such as soundde-
vice [64]), especially on mobile devices with fewer resources, we
opt to generate audio feedback at 3 Hz. To this end, we calculate
the moving average of the pose error estimates 𝑒 using overlapping
sliding windows of 0.33s, and set the maximum duration of the
generated audio signal to 0.33s. The number of audio pulses 𝑁 in
the audio signal is calculated according to the estimated pose error
𝑒 as follows:

𝑁 =


0 if 𝑒 < 𝛼
⌊250𝑒⌋ if 𝛼 ≤ 𝑒 < 𝛽

⌊0.33/(𝑝 + 𝑖)⌋ if 𝑒 ≥ 𝛽

(2)

where 𝛼 is a pose error threshold below which audio is not gener-
ated, 𝛽 is a pose error threshold above which the audio pulses 𝑁
would not increase. 𝑝 and 𝑖 are the audio pulse length and inter-
pulse interval, respectively. In our user study, we set 𝛼 = 0.4𝑐𝑚,
𝛽 = 1.2𝑐𝑚, 𝑝 = 0.001𝑠 and 𝑖 = 0.099𝑠 . We implement our audio
advisory on the same mobile device as in Section 5.1, the Nvidia
Jetson Xavier NX. Once the edge server completes model inference,
it transmits the estimated pose error to the mobile device using
a UDP socket via a wireless network. There are two concurrent
processes in our audio advisory system: one receives the UDP pack-
ets and generates the audio signal based on the estimated pose
error using Equation 2, while the other plays the latest audio sig-
nal on a speaker. This multi-processing setup allows low-latency
communication and real-time audio feedback, enhancing system
responsiveness and reliability.

7.3 User Study Design
We conducted an IRB-approved user study, in which we compared
three possible conditions for an audio error advisory: (1) no audio
advisory, (2) an audio advisory based on estimated device rotation
speed, and (3) an audio advisory based on our SEESys error estimate.
We estimated device rotation speed as the moving average of the
RMS of relative rotation in yaw, pitch, and roll (see Table 1), over the

(a) (b)
Figure 10: Setup of the user study used to test the effective-
ness of our audio error advisory: (a) the study environment,
including objects used for the task; (b) the study apparatus
used by participants.

same sliding window as the SEESys-based advisory. We then used
this rotation value 𝜃 (in degrees) to generate 𝑁 audio pulses, where
𝑁 = max{⌊ 𝜃

50◦ ⌋ − 1, 0}. Our hypotheses were that the presence of
an audio advisory would result in lower pose tracking error and
fewer tracking losses and that the SEESys-based advisory would be
a more effective method than the device rotation-based advisory.

To test our hypotheses, we designed a task simulating a room
scanning or inspection scenario. In this scenario, a user moves
around a room while holding a mobile device running SLAM (e.g., a
smartphone). This device is either used to map the space and objects
within it (e.g., to create a digital twin) or to inspect virtual content
attached to physical objects (e.g., a persistent AR experience).

Participants:We recruited 30 participants (9 female, 21 male; aged
18 to 28 years) from our personal and professional networks. All
participants had normal or corrected to normal eyesight and hear-
ing. Participants were split into three groups of 10, corresponding
to each of the audio advisory conditions.
Experiment setup and apparatus:The experiment setup is shown
in Figure 10. The study was performed under controlled conditions
in an 8.8𝑚 × 6.2𝑚 × 3.8𝑚 (length × width × height) lab space
with no exterior windows and fixed overhead lighting. We used
a Vicon motion capture system [68] to obtain ground truth pose.
We placed 10 objects in random positions throughout the space
and labeled them with the numbers 1–10 as shown in Figure 9.
Participants held a smartphone to simulate the use of a mobile de-
vice. Optical tracking markers were attached to the smartphone to
facilitate ground truth pose measurements, and the Intel RealSense
D435i was used to capture SLAM sensor inputs (camera frames).
To implement SEESys we used the setup detailed in Section 5.1,
and implemented our audio advisory as described in Section 7.2.
Participants carried the NVIDIA Jetson Xavier NX mobile device,
with an attached speaker that played the audio output.
Task: Participants started at a fixed position, with the smartphone
facing object 1. Participants were instructed to move the smart-
phone slowly while remaining in this position until tracking ini-
tialization was verbally confirmed by the experiment administrator.
Participants then navigated from objects 1 to 10 in order; at each
object, they scanned all visible parts of the object from a distance
of approximately 0.5m.
Performance metrics: For each participant’s device trajectory we
measured tracking error using RPE, and tracking completeness using
the percentage of camera frames tracked.
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Table 5: Results of our user study for each dependent variable.
The SEESys-based audio advisory resulted in lower tracking
error and greater tracking completeness than both the no
audio condition and the device rotation-based audio advisory.

Performance
metric

No
audio

Audio
(Rotation)

Audio
(SEESys)

Tracking
Error (cm) 1.2 1.0 0.9

Tracking
Completeness (%) 70.6% 87.3% 88.7%

Procedure: After participants signed a consent form, they an-
swered a pre-experiment questionnaire via Qualtrics [48]. Partici-
pants assigned to an audio advisory condition then completed sys-
tem training, in which they were instructed how to use the audio
advisory, and practiced responding to it in a separate environment
to the study area. All participants then completed task training, in
which the experiment administrator explained the task, modeled
it, and watched the participant do it. Once it was clear they under-
stood, participants completed the main task. Finally, participants
completed a post-experiment questionnaire via Qualtrics.

7.4 User Study Results
Our study results are shown in Table 5 (averages across all par-
ticipants). Without any advisory (no audio), user motion led to
frequent and prolonged tracking losses, and as a result a tracking
completeness of just 70.6%. During these losses, the areas and ob-
jects a mobile device faces are not scanned successfully. This no
audio condition also resulted in the greatest tracking error, 1.2 𝑐𝑚.
The addition of a device rotation-based audio advisory improved
tracking performance, with a tracking error of 1.0 𝑐𝑚 and tracking
completeness of 87.3%. The SEESys-based audio advisory resulted
in the best tracking performance, with a tracking error of 0.9cm and
tracking completeness of 88.7%. The benefit of using SEESys was
particularly marked for tracking error; the SEESys-based advisory
achieved 10% lower error than using device rotation for the audio
advisory, and 25% lower error compared to no audio advisory.

The tracking performance improvements achieved via our SEESys-
based audio error advisory are just one example of how SEESys can
enhance SLAM performance. In some scenarios, an audio advisory
may be undesirable because it impinges on user experience; in oth-
ers, adjusting mobile device motion may not be appropriate for the
intended application. In addition to user-centered adjustments, our
system could also support automated optimizations. The pose error
estimates provided by SEESys could enable automatic adjustment
of internal SLAM parameters and resource allocation to optimize
both tracking performance and resource consumption. Specifically,
we envision the use of reinforcement learning algorithms that use
the SEESys pose error estimates as inputs, to intelligently control
various aspects of the SLAM pipeline.

8 LIMITATION AND FUTURE WORK
8.1 Limitations
While we enhance the model’s robustness by augmenting the train-
ing set with synthetic data from diverse environments, several

limitations still persist. Notably, the current model does not ac-
count for varying camera specifications, such as resolution, aspect
ratio, and field of view. These differences in camera specifications
can impact SLAM tracking performance, yet the current DeepSEE
model design does not incorporate this variation. Consequently, a
model trained on one camera type may underperform on another
when significant differences in camera specifications exist. Addi-
tionally, although 30 individuals participated in our user study, it
was conducted in an indoor facility (as shown in Figure 10a), where
we rely on a motion capture system to provide ground truth trajec-
tories for evaluation. This constraint limits the applicability of our
user study to outdoor scenarios. However, we can explore more
varied indoor experiments in future work.

8.2 Future Work
While this work focuses on pose error estimation for visual SLAM,
SEESys can be extended to other SLAM variants, such as visual-
inertial SLAM, by adapting the model’s input features. For instance,
the RTS could incorporate IMU readings and inertial residuals as
part of its sensor input and SLAM mapping characteristics. Ex-
panding to other SLAM variants will introduce a broader range of
downstream applications. Furthermore, we plan to investigate other
factors in SLAM error reasoning and perform a more comprehen-
sive evaluation of the SEESys in various scenarios. To begin with,
we can follow established methodologies in mobile SLAM tracking
evaluation [29, 30] to vary experimental conditions, such as motion
types, lighting conditions, and environmental feature levels. We
also aim to deploy SEESys on a wider range of mobile devices and
conduct comparative studies across different hardware platforms
to assess the system’s adaptability. Additionally, leveraging an edge
server enables further optimization of mobile-edge orchestration,
enabling collaboration between mobile devices and the edge server
through an adaptive offloading strategy [31, 60]. Overall, we believe
that the current design of SEESys provides a solid foundation for
developing a more comprehensive system for online SLAM pose
error estimation.

9 CONCLUSIONS
This paper presented SEESys, the first system for online, deep
learning-based SLAM pose error estimation. SEESys consists of
two primary modules: the lightweight RTS monitor for feature
collection, and the multi-modal DeepSEE model for deep learning-
based SLAM error estimation. Our evaluations demonstrate the
improved error estimation accuracy of DeepSEE over the existing
offline baseline, that the RTSmonitor can be implemented onmobile
devices with only a small overhead, and that SEESys delivers error
estimates in real time in a practical scenario. Additionally, our case
study on one use case for online error estimation, an audio error
advisory, shows that this guidance can help human operators of
mobile devices improve tracking performance.
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