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We show theoretically that photophoretic aircraft would greatly benefit from a three-dimensional (3D) 
hollow geometry that pumps ambient air through sidewalls to create a high-speed jet.  To identify optimal 
geometries, we developed a theoretical expression for the lift force based on both Stokes (low-Re) and 
momentum (high-Re) theory and validated it using finite-element fluid-dynamics simulations. We then 
systematically varied geometric parameters, including Knudsen pump porosity, to minimize the operating 
altitude or maximize the payload. Assuming that large vehicles can be made from nanocardboard material, 
as previously demonstrated at smaller scales, the minimum altitude such vehicles can levitate at is 
approximately 55 km, while the payload can reach approximately 1 kilogram at 80 km altitude for vehicles 
with 10-meter diameter. In all cases, the maximum areal density of the sidewalls cannot exceed a few grams 
per square meter, demonstrating the need for ultralight porous materials. 
 
For centuries, human exploration of Earth's atmosphere and outer space has led to important advancements 
in fields such as aerodynamics, astronomy, and climate modeling [1-3]. However, some atmospheric 
regions remain less understood due to limitations in existing propulsion technologies. One such area is the 
mesosphere, which lies between 50 to 80 kilometers above Earth. In this layer, rising levels of carbon 
dioxide are paradoxically causing rapid cooling [4]. This cooling, in turn, causes the atmosphere to contract, 
resulting in reduced satellite drag and increased space debris [5, 6]. The challenge of studying these effects 
lies in the mesosphere's unique conditions: its air pressure is too low for planes or balloons but too high for 
orbiting satellites. As a result, there are large uncertainties in our understanding of the mesosphere and 
related phenomena [7]. 
 
The Martian atmosphere is another area of keen interest, as recently highlighted by the near-surface flight 
of the Ingenuity helicopter [8]. However, achieving sustained flight at higher Martian altitudes (> 10 km) 
remains challenging due to the extremely low atmospheric density [9,10]. Similar to the obstacles faced in 
Earth's mesosphere, the study of Mars' higher elevations is limited by the lack of long-duration propulsion 
systems that can operate under very low-pressure conditions (less than 1 mbar or 100 Pa). Developing an 
airborne platform capable of functioning in such thin atmospheres, on both Mars and Earth, would be 
invaluable for collecting essential data on wind patterns, temperature and pressure fluctuations, and 
atmospheric gas concentrations. 

 
Light-powered lightweight levitating plates developed by Cortes et al. [11] can potentially achieve 
sustained flight in both Earth’s mesosphere and the Martian atmosphere. These microflyers are made from 
"nanocardboard," extremely lightweight porous plates, and can levitate using photophoresis, a light-driven 
propulsion method that leverages Knudsen pumping to create a jet of ambient gas. The phenomenon is 
strongest when the mean free path of molecules is comparable with the characteristic dimension of the 
channels the gas flows through. Knudsen pumping pushes air through elongated channels or capillaries 
upon exposure to incident radiation, such as light, because the absorption of light induces a temperature 
gradient along the channel’s length. Air molecules coming from the warmer side of the channel transfer 
more momentum to the channel when they hit the channel sidewall (Fig. 1f). Consequently, a net shear 
stress is produced on the channel sidewall towards the cooler side, generating a corresponding reaction 
force on the gas directed towards the warmer side. This results in the migration of molecules from cold to 
hot, even against a small opposing pressure gradient, which is the essence of pumping [12,13]. Knudsen 
pumps operate without moving parts, relying on temperature gradients to drive gas flow through the porous 
plates.  
 
Photophoretic levitation typically relies on a difference in physical properties between a plate’s top and 
bottom. In the research conducted by Cortes et al. [11], the bottom side of the nanocardboard was coated 
with carbon nanotubes (CNTs), which absorbed the incoming light and became hotter than the top side. 
The nanocardboard material consists of ultra-thin aluminum oxide face sheets, ranging from 25 to 400 nm 
in thickness, connected by micro-channels. This structure gives them an extremely low areal density of 
approximately 1 g/m2 and a bending stiffness several orders of magnitude higher than solid plates of the 
same mass [14]. Under illumination, the temperature gradient triggered Knudsen pumping, forcing air to 
move from the cooler top through the nanocardboard channels to the warmer bottom. The exiting air created 
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a downward jet below the nanocardboard plate, producing a reaction lift force capable of levitating 
centimeter-scale sized plates and carrying tiny “smart dust” sensor payloads [11,15]. The photophoretic 
propulsion mechanism is most effective in low-pressure environments (1-100 Pa) [16], making it suitable 
for applications in Earth’s mesosphere and high-altitude regions on Mars, such as Olympus Mons [17]. 
Swarms of these microflyers could be deployed on Earth or Mars to gather important upper atmosphere 
data. However, the maximum size of such levitating plates is limited to several cm because radiation starts 
to dominate the heat loss at even larger sizes. If the majority of the incident radiation gets carried away by 
infrared radiation rather than by collisions with ambient gas, the momentum transfer from the planar 
structure to the ambient gas is reduced and the photophoretic force vanishes.  
 
In this work, we propose large three-dimensional photophoretic vehicles with diameters of several meters 
and porous sidewalls that channel air into a central chamber and expel it through a bottom nozzle (Fig. 1). 
Using the nozzle increases the speed of the exiting air jet, which in turn results in a higher lift force and 
widening of the range of operating pressures where flight can be achieved. As we show below, the 
pressurization possible inside a 3D geometry is fundamentally different from the zero-pressure-difference 
pumping used in previous experiments [11], allowing this new approach to more effectively convert 
incident sunlight into the kinetic energy of the jet and achieve levitation of arbitrarily large structures as 
long as their areal density does not exceed a few grams per square meter.  

 
The use of Knudsen pumping to create high-speed jets is also a novel physics principle for propulsion. 
Photophoresis has previously shown promise at the microscale and cm-scale [11,16], but has never been 
considered at the meter scale like we are proposing in this work. The larger size and higher jet speeds means 
that such jets can operate over a range of Reynolds numbers from deep in the Stokes regime (𝑅𝑅𝑅𝑅 ≪ 1) to 
the momentum theory regime (𝑅𝑅𝑅𝑅 ≫ 1), which requires new modeling approaches. We draw on our 
previous theoretical models on levitating planar nanocardboard [11] and solid mylar-CNT composite disks 
[18] to analyze these 3D vehicles below.  

 



 

 

Figure 1: A hollow sphere with porous alumina-CNT composite walls (a). The cross-sectional view (b) illustrates air 
being drawn into the sphere through its porous walls due to Knudsen pumping and then expelled as a jet through the 
exit nozzle. The velocity with which the air flows through the porous walls is labeled 𝑣𝑣𝑓𝑓𝑓𝑓 , as detailed in the zoomed-in 
view (c), while the exiting jet velocity is labeled 𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗. The dimensions are defined as follows: A is the nanocardboard 
channel width, L the nanocardboard channel height, and r the structure’s outlet radius, while D is the structure’s 
overall size dimension. As (d) demonstrates, the alumina walls are notably thin, with 50-nm wall thickness, about one 
order of magnitude smaller than the channel width and length. The final view (e) highlights a thin layer of CNT on the 
sphere’s interior, which absorbs light but has minimal impact on air flow. Panel (f) shows the molecular effects 
occurring within the channel to induce Knudsen pumping, alongside an example model of flight in the mesosphere. 

 
The walls of our proposed 3D vehicles are made of porous nanocardboard, consisting of alumina and coated 
with carbon nanotubes (CNTs) on the inner side. Because alumina is transparent, only the CNTs absorb 
incoming light, inducing Knudsen pumping of air from the outside into the interior chamber through the 
channels and out of the chamber through the exit nozzle, producing a jet as illustrated in Fig. 1. The buildup 
of air inside the structure creates a small overpressure, which is accelerates the air through the exit nozzle 
but does not significantly slow down the Knudsen pumping through the walls of the structure, as shown by 
our numerical models detailed in the Supplemental Material [19].  
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Figure 2: The three representative shapes explored in this work, a cone (a), a sphere (b) and a rocket (c). Here, the 
nozzle view for all three geometries is shown. 

 
To identify the optimal 3D geometry that maximized payload, we considered three representative shapes 
(a sphere, a cone, and a rocket, shown in Fig. 2), and conducted simulations to determine the parameters 
that would yield the greatest lift forces. First, we needed to find an analytical expression to estimate reactive 
lift forces from the jet exiting the nozzle over a broad range of Reynolds numbers. We used computational 
fluid dynamics simulations in ANSYS Fluent to model the lift produced by these 3D vehicles, considering 
outlet jet velocities ranging from 10-6 m/s to ~102 m/s and at atmospheric altitudes from 0 to 80 km. This 
allowed us to obtain jet reaction lift forces for Reynolds numbers across nine orders of magnitude, from 
deep in the Stokes regime, at 𝑅𝑅𝑅𝑅~10−4  for the smallest structures and flow velocities, to 𝑅𝑅𝑅𝑅 ~ 104 for the 
largest structures and flow velocities. 
 
The simulations were axisymmetric, rotating a 2D model around a central axis to generate 3D results. They 
were conducted in an air box 10 to 100 times larger than the vehicle itself to ensure accurate lift force 
calculations without interference from the walls. Additional details can be found in the Supplemental 
Material [19], but Fig. 3 provides an overview of the modeling environment and boundary conditions. The 
simulation employed ANSYS Fluent’s SST k-omega solver with standard settings, except for enabling low-
Reynolds number corrections. The lift force was found by integrating the forces acting on the boundary of 
the airbox, which in the steady state, were equal and opposite to the forces created by the simulated 3D 
vehicle. 
 
In the ANSYS simulations, the inner wall (colored red in Fig. 3a) acted as the inlet of the simulated volume, 
drawing air into the central chamber at a given flow-through velocity, 𝑣𝑣𝑓𝑓𝑓𝑓. The outer wall (violet) served as 
the outlet, with the air flow exiting the simulated volume at the same flow-through velocity 𝑣𝑣𝑓𝑓𝑓𝑓. This setup 
allowed us to estimate the lift force without the computational burden of simulating the air flow through 
the structure’s microchannels. Instead, we replaced the flow through the microchannels with uniform flow 
at an effective flow velocity 𝑣𝑣𝑓𝑓𝑓𝑓 through the porous wall. Effectively, in the ANSYS simulations, we treated 
𝑣𝑣𝑓𝑓𝑓𝑓 as an independent variable to find the lift force as a function of 𝑣𝑣𝑓𝑓𝑓𝑓  for different shapes of the vehicle 
(the actual values of  𝑣𝑣𝑓𝑓𝑓𝑓  for each vehicle and altitude were found later using a MATLAB model of Knudsen 
pumping described below). These simulations produced a dataset of reaction forces across a wide range of 
operating altitudes, flowthrough velocities 𝑣𝑣𝑓𝑓𝑓𝑓, and jet velocities 𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗 .  

 
Next, we fitted the collected data to the following equation: 
 

 𝐹𝐹 = 𝐶𝐶18𝜇𝜇𝜇𝜇𝑣𝑣𝑓𝑓𝑓𝑓 + 𝐶𝐶2𝜌𝜌𝜌𝜌𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗2, (1) 
 



 

where 𝜇𝜇 represents the fluid viscosity, 𝜌𝜌 the atmospheric air density, 𝛫𝛫 = 𝜋𝜋𝑟𝑟2 defines the area of a nozzle 
with radius r, D is the characteristic (i.e., largest) dimension of the geometry, 𝑣𝑣𝑓𝑓𝑓𝑓 the flow-through velocity 
through the porous walls, and 𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗 is the velocity of the fluid exiting the structure through the small nozzle. 
As detailed in the Supplemental Material [19], 𝑣𝑣𝑓𝑓𝑓𝑓 depends on the light intensity, I, the altitude-dependent 
air pressure, P, the geometric parameters of the nanocardboard and the vehicle’s 3D shape. The upper limit 
of the flow-through velocity scales as 𝑣𝑣𝑓𝑓𝑓𝑓 ≈ 0.03 𝐼𝐼/𝑃𝑃 (see Supplemental Material [19]), resulting in 
velocities of less than 1 mm/s under natural sunlight (~1000 W/m2) and standard atmospheric pressure (105 
Pa) but this speed can increase by many orders of magnitude as the pressure drops at higher altitudes. All 
altitude-dependent atmospheric properties used in simulations and numerical calculations were based on 
Ref. [19]. 

Figure 3: (a) Boundary conditions implemented on the ANSYS simulations, using a sphere as an example. The inner 
air box region (whose boundary is shown in light green) was employed for finer meshing close to the vehicle. The outer 
air box, not fully shown in the figure, extended to at least 10 times the size of the sphere. This size was generally 
adequate for the lift force to stabilize, providing a reliable estimate for the expected mid-air lift force. (b)-(e) show the 
velocity streamlines corresponding to the cone (b, c) and rocket (d, e) geometries simulations in ANSYS, for a flow-
through velocity of 1 m/s and atmospheric conditions corresponding to 0 km in altitude. Both the cone and rocket have 
a characteristic dimension (D) of 5 cm. (c) and (e) show the entire computational domain, i.e., a zoomed-out view of 
plots (b) and (d), respectively. 
 
The first term in Eqn. (1), which is dominant at low Re, is based on prior work of Cortes et al. [11] (see 
also Supplementary Material [19], page 14), who showed analytically that the lift force for nanocardboard 
disks that pump gas through them at low Re was equivalent to the drag experienced by a solid disk moving 
through a stationary fluid at the same velocity 𝑣𝑣𝑓𝑓𝑓𝑓. Briefly, the argument is as follows: If we switch to the 



 

frame of reference moving vertically down at 𝑣𝑣𝑓𝑓𝑓𝑓, the average velocity of the gas near the surface of the 
object becomes approximately zero. Therefore, the boundary conditions are the same as for a solid plate 
without any channels, though the boundary is not stationary in this moving frame and instead moves upward 
at the flow-through velocity. In the Stokes flow approximation, there is no explicit time dependence. Hence, 
the solutions for a moving boundary condition are the same as for a stationary boundary condition and we 
can use the known drag equations for a disk and other shapes in the Stokes regime [27], all of which have 
the form matching the first term in Eqn. (1). 
 
The second term in Eqn. (1), dominant at high Re, is rooted in the helicopter-momentum theory equation, 
which is an application of Reynolds Transport Theorem. Since the viscosity forces become less important 
at high speeds, this term simply represents the momentum transferred to the exiting jet. Summing both 
terms results in a simple interpolation between the low-Re and high-Re operating regimes, providing an 
estimate for the lift force at all pressures and velocities. The constants C1 and C2 in Eqn. (1) were fitted to 
match the simulated lift forces for various shapes we studied but, as detailed in the Supplemental Material 
[19], the fitted values C1 and C2 were always on the order of 1. Table 1 summarizes the average fitted C1 
and C2 parameters obtained from fitting the results for 27 ANSYS Fluent simulations using 3 different 
altitudes (0 km, 40 km and 70 km), 3 geometry types (sphere, cone, and rocket), and 3 different structure 
sizes (1cm, 5cm and 10cm).  
 

Fitting Parameters for Each Geometry 
Geometry Cone Sphere Rocket 

C1 1.2 1.3 1.4 
C2 0.9 0.9 0.4 

 

Table 1: Fitting parameters for the three simulated geometries.  
 

The lift Eqn. (1) uses only continuum regime terms because, for the most promising vehicle shapes, the 
mean free path of the gas molecules is orders of magnitude smaller than the dimensions of the vehicle itself.  
For example, the mean free path at 80 km is on the order of 1 cm (and smaller at lower altitudes), while the 
optimal structures we consider are approximately 10 meters in size. We note that we do not model the 
microchannels in the ANSYS simulations. Instead, the analysis of rarified gas flow through microchannel 
was completed in the MATLAB numerical analysis that is valid in both continuum and free molecular 
regimes. We also find that, even at operating altitudes in the mesosphere, this pressure is small compared 
to the ambient pressure (> 1 Pa), allowing us to use incompressible flow assumption for the analysis of 
airflow. 
 
After establishing that Eqn. (1) with 𝐶𝐶1 = 𝐶𝐶2 = 1 as a reasonable estimate of the lift force (accuracy of 20-
30%), we focused on fine-tuning various parameters of the overall vehicle shape and the porous 
microstructure of the nanocardboard to enhance its payload capacity. The developed MATLAB code [28] 
was based on the photophoretic levitation theory originally developed for nanocardboard [11] and adapted 
to axisymmetric 3D structures, as detailed in the Supplemental Material [19]. The code also accounted for 
the altitude-dependent variations in temperature and pressure based on standard atmospheric models. Our 
optimization aimed to find the best set of parameters, including A (width of the nanocardboard channel), L 
(height of the nanocardboard channel), and r (radius of the structure’s outlet or nozzle), that would either 
maximize payload or enable flight at the lowest possible altitude. This maximum payload and minimum 
flight altitude were evaluated as a function the overall size of the aircraft, represented by D (the diameter 
for a sphere and cone, or the length for a rocket, as shown in Fig. 5). To be able to use the formulas for 
rarified gas flow [11], we also enforced the constraint L > A, i.e., nanocardboard channels need to be 
longer/taller than they are wide. 
 
Our computational analyses showed that the best values for the nanocardboard porosity parameters A and 
L remained fairly consistent across all shapes and sizes. Specifically, when the mission goal was to achieve 
flight at the lowest possible altitude (55 km without carrying any payload), the optimal values for A and L 
were approximately 0.20 mm and 0.21 mm. When optimized for maximum payload (achieved at 80 km 
altitude), A and L increased to 0.90 mm and 0.91 mm, or about a factor of 4.5 greater. Despite a roughly 
40-fold change in ambient pressure between these two altitudes (55 km and 80 km), the optimal A and L 
values were of the same order of magnitude (sub-millimeter). This result suggests that it is feasible to design 
structures capable of levitating in the lower mesosphere while still being able to carry a significant payload 
at higher altitudes. 

 



 

The maximum areal densities (i.e., vehicle mass divided by total nanocardboard sidewall area) that could 
be levitated were also comparable for all structures. Table 2 shows that the typical value of maximum areal 
density was ≈ 7.1 g/m2 (grams per square meter) for smaller aircraft with a diameter of D = 10 cm and ≈
 5.5 g/m2 for larger aircraft with a diameter of D = 10 m. Fig. 4a illustrates how these maximum areal 
densities changed with the size of the aircraft (D) and the airflow’s Reynolds number (Re). The permissible 
areal densities of each structure decreased with increasing size and Re and stabilized at ~5.5 g/m2 for larger 
aircraft capable of carrying payloads of 1 gram or more. These maximum areal densities were similar to 
the order-of-magnitude estimate of 4 g/m2, which was derived in the Supplemental Material [19]. This 
estimate was calculated as 𝐶𝐶3𝐼𝐼/(𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔)  ≈  0.004  kg/m2, where I = 1000 W/m2 is the incident optical 
intensity, 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 = �8𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇/𝜋𝜋  ≈ 400 m/s is average speed of air molecules at 55-80 km altitudes,  𝐶𝐶3 ≈
 0.016 is a constant, and 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑢𝑢/𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 = 287 𝐽𝐽/(𝑘𝑘𝑘𝑘 ∙ 𝐾𝐾) is the gas-specific ideal constant of air, equal 
to the universal gas constant 𝑅𝑅𝑢𝑢 divided by the average molar mass of air 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 . 
 

Areal Densities and Areas Ratio 

Geometry Cone Sphere Rocket 
D = 10 cm D = 10 m D = 10 cm D = 10 m D = 10 cm D = 10 m 

Max Areal 
Density 

For Max. 
Payload 6.6 g/m2 5.4 g/m2 7.8 g/m2 5.5 g/m2 6.9 g/m2 5.7 g/m2 

Area 
Ratios 

For Min. 
Altitude 18 26 26 27 23 25 

For Max. 
Payload 5 5 5 6 6 6 

 

Table 2: Summary of the parametric studies results for the Cone, Sphere and Rocket geometries, for values of D = 10 
cm and D = 10 m (full data for all values of D can be found in the Supplemental Material [19] section). Here, the area 
ratio refers to the 𝛫𝛫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝛫𝛫𝑜𝑜𝑜𝑜𝑜𝑜 ratio, of the structure’s total surface area to its outlet area.  
 

Figure 4: (a) Maximum areal density versus characteristic size and (b) maximum payload versus surface area for the 
three considered 3D geometries at 80-km altitude. Each data point corresponds to the optimized geometry at each of 
the probed values of the parameter D. The overlap between the curves, in particular at surface areas larger than 0.01 
m2, shows that all three geometries have similar areal densities and maximum practical payload capabilities. 
  
Assuming practical nanocardboard has an areal density of 1 gram per square meter [11], we plotted the 
maximum payload against the structure surface area in Fig. 4b. While the sphere performed best at smaller 
sizes, all three shapes delivered nearly identical performance at larger sizes, which can carry the largest 
payloads and have the most practical applications. While the structure could be folded to increase the total 
area, parts of the structure will be shaded or experience very low sunlight intensity due to oblique incidence 
of sunlight. As a result, we chose shapes that do not self-shadow, are easiest to fabricate and are most likely 
to maintain their shape during the flight. For example, the sphere and cylinder, and to a smaller extent the 
cone, are all robust with respect to deformations due to the overpressure from Knudsen pumping.  
 
Fig. 5 below illustrates optimized shapes for the 10-meter cone (a), sphere (b) and rocket (c), which could 
carry 780, 540, and 1020 grams of payload, respectively, sufficient for modern communication devices [29] 
or even typical CubeSats [30]. As highlighted in Table 2 and the Supplemental Material [19] section, we 
observed that the ratio of the total surface to the outlet area, 𝛫𝛫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝛫𝛫𝑜𝑜𝑜𝑜𝑜𝑜, was also fairly consistent for the 
optimal geometries. In the case of achieving flight at the minimum altitude of 55 km, this ratio varied 



 

between 17 and 42, with an average value of about 23 across all shapes and sizes. For scenarios aiming for 
maximum payload at an altitude of 80 km, the typical ratio was around 6, as depicted in Fig. 5.  
 

 
 

Figure 5: (a) Cone, (b) sphere, and (c) rocket vehicles geometrically optimized for maximum payload capabilities for 
a characteristic dimension of D = 10 meters. D refers to the diameter of the cone and sphere, and the length of the 
rocket. To achieve a 1 kg payload, the cone and sphere required diameter D of 11.5 meters and 14 meters, respectively. 
The optimal angle for the cone, as seen in panel (a), is quite small, making it appear more cylindrical in shape. 
 
Due to the principle of mass conservation and the incompressible fluid assumption, the speed of the jet 
exiting the outlet must be greater than the velocity of air flowing through the channels by the 𝛫𝛫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝛫𝛫𝑜𝑜𝑜𝑜𝑜𝑜 
area ratio. Therefore, recalling the 𝑣𝑣𝑓𝑓𝑓𝑓 ≈ 0.03 𝐼𝐼/𝑃𝑃 relationship, we can approximate 𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓𝑓𝛫𝛫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/
𝛫𝛫𝑜𝑜𝑜𝑜𝑜𝑜 ≈ 0.18 𝐼𝐼/𝑃𝑃 ≈ 0.18 × 1300 𝑊𝑊 𝑚𝑚−2/1 𝑃𝑃𝑃𝑃 = 234 𝑚𝑚/𝑠𝑠 at the maximum payload altitude of 80 km, 
while at the minimum altitude of 55 km (for zero payload),  𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓𝑓𝛫𝛫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝛫𝛫𝑜𝑜𝑜𝑜𝑜𝑜 ≈ 0.70 𝐼𝐼/𝑃𝑃 ≈
0.70 × 1200 𝑊𝑊 𝑚𝑚−2/10 𝑃𝑃𝑃𝑃 =  84 𝑚𝑚/𝑠𝑠. We note that for the payload altitude of 80 km, the jet speed 
approaches but remains below the speed of sound, given by 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝛾𝛾𝛾𝛾𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇80𝑘𝑘𝑘𝑘 ≈
�1.4 × 287 𝐽𝐽/(𝑘𝑘𝑘𝑘 𝐾𝐾)  × 200 𝐾𝐾 ≈ 280 m/s, where 𝛾𝛾 is the adiabatic constant of air and 𝑇𝑇80𝑘𝑘𝑘𝑘 ≈ 200 𝐾𝐾 is 
the air temperature at 80 km altitude.  
 
Achieving kg-scale payloads in the mesosphere therefore requires building 10m-scale photophoretic 
aircraft out of ultralight materials that simultaneously possess low areal densities (≈ 1 g/m2) and sufficient 
structural integrity. Nanocardboard has areal densities of approximately 1 g/m2  as well as bending stiffness 
values 4 orders of magnitude higher than those of flat plates with the same mass. In fact, because its bending 
stiffness improves with channel length in the same way as in sandwich composite plates, nanocardboard 
can achieve bending stiffness values of up to 3×10-6 N·m and, in addition, recover its shape after sharp 
bending [14]. These shape recovery properties of nanocardboard can help a large photophoretic aircraft 
recover from buckling and other deformations caused by winds or non-uniform radiation. In the 
Supplemental Material [19], we included COMSOL simulations of a 10-meter nanocardboard sphere 
slightly deforming but not buckling under its own weight for nanocardboard that is 1 mm thick (and 
therefore offers bending stiffness enhancement of 107 (see the Supplementary Material [19]). The pressure 
differential in Fig. 6 also will inflate the structure, leading to enhanced ability to support its own weight. In 
contrast, the other geometries are predicted to buckle under their own weight, which indicates the need for 
additional lightweight support structures or frames which could be made of carbon fiber or similar 
lightweight, but strong materials. 

 
These proposed aircraft structures do not necessarily have to be rigid; flexible designs using parachute or 
balloon-like structures could also be effective, as illustrated by the balloon-like shapes in Fig. 5. For such 
designs, porous Mylar material may be a viable option. Nanocardboard-like panels of Mylar could meet 
the structure's requirements, and Mylar is already used in many NASA balloon missions [31,32]. However, 
alumina is superior to Mylar in terms of resistance to UV radiation and mechanical stiffness. All 
calculations in this work therefore assume the material is alumina, just like nanocardboard. In order to 



 

maintain an upright vertical axis, the carried payload would be suspended from the bottom of the structure 
with a tether, lowering the center of gravity, and maintaining orientation during flight. 
 
We made several key assumptions about the pressure and density inside the structure. First, we neglected 
the pressure buildup inside the structure, which is caused by airflow through the channels. Second, we made 
the simplifying assumption that air was incompressible when calculating the jet velocity. Fig. 6 shows the 
pressure differential between the inside and outside of the balloon, showing the change is minimal. Even at 
operating altitudes in the mesosphere, this pressure is small compared to the ambient pressure (> 1 Pa), also 
allowing us to use incompressible flow assumption for the analysis of airflow. The largest difference in air 
pressures is ~20% at the highest altitudes, around 80 km. While this pressure is sufficient to drive airflow 
out of the exit nozzle for different geometries, it is a small differential that does not alter the air properties 
enough to impact our calculations since our lift estimate Eqn. (1) already involves errors of 20-30%.  

 
Figure 6: This pressure difference and pressure difference divided by external pressure represents the variance 
between the pressures inside and outside of the 3D structure, which is also the pressure forcing flow out of the outlet 
nozzle.  The structure chosen for the above plot is the optimal spherical structure for maximum payload from earlier 
in the paper. 
 
In our calculations, we assumed a light intensity of 1000 W/m2 illuminating all surfaces. For reference, the 
direct sunlight intensity in the mesosphere is approximately 1360 W/m2, similar to outer space. 
Additionally, Earth’s planetary albedo of ~0.3 contributes an extra ~500 W/m2 of reflected sunlight from 
clouds and the Earth’s surface below the aircraft. Depending on the Sun’s elevation and the surface 
orientation, the aircraft could be exposed to a range of light intensities, from zero to nearly 2000 W/m2, 
combining both direct and reflected sunlight. If the aircraft rotates due to atmospheric winds, as balloons 
usually do, all surfaces will experience an average light flux ~1000 W/m2. Non-uniform radiation from the 
sun causes be a variation in the rate of Knudsen pumping through the walls of the 3D photophoretic vehicle, 
which reduces the jet velocity and the payload compared to uniform illumination assumption but does not 
disable the propulsion mechanism we propose. As a point of reference, we also conducted simulations with 
a reduced light intensity of 500 W/m2

, which approximates the effect of nonuniform radiation on a rotating 
flyer. In these scenarios, the achievable payloads were about four times lower than those calculated under 
the 1000 W/m2 assumption. 
 
Additionally, although higher pressures increase the density of air inside the vehicle, their effect is 
counterbalanced by the air inside the vehicle being warmer, resulting in a density difference of less than 
20%. At certain altitudes, the air inside the vehicle may even become less dense than the surrounding air, 
creating a buoyancy effect at altitudes below 50 km, i.e., below the mesosphere. In the mesosphere, the air 
density is so low that buoyancy effects have little-to-no impact on the structures we are examining. We also 
note that we conservatively assumed nanocardboard thickness and channel heights that we previously 
fabricated [11]. If future innovations enable the creation of even thinner, porous films, it will allow the 
photophoretic 3D flyers to operate at even lower minimum altitudes than 55 km, closer to the 35-40 km 
range.  
 
An important constraint for photophoretic aircraft is that the need for continuous light exposure to generate 
lift. This condition limits their operational window to approximately 12 hours a day in low and mid 
latitudes, after which they begin to descend. However, near the poles, extended periods of daylight during 
the polar day allow for operations lasting weeks or months. Despite these limitations, these aircraft are 
valuable for gathering data in the mesosphere because current technologies, like sounding rockets, can only 
remain airborne in this region for a few minutes [8,10,33]. Once the mission concludes, payloads can be 

a b 



 

safely returned to Earth, similar to how radiosonde weather balloon payloads descend using a parachute. 
Given their shape, the 3D vehicles depicted in Fig. 5 could serve as parachutes for this purpose. 

 
For deploying our proposed photophoretic vehicles, research balloons currently offer the most practical 
method. These helium balloons can ascend to roughly 40 km [33], just below the minimum altitude where 
photophoretic aircraft are effective with the 50 nm alumina thickness we assumed. After reaching peak 
altitude, the helium balloon can release the aircraft, at which point the photophoretic Knudsen pumping 
takes over as the main lifting force, allowing the aircraft to rise to their ideal sensing altitudes. Another 
potential option is to use sounding or suborbital tourism rockets, which can reach altitudes of 100 km or 
more [34]. These rockets can deploy payloads at lesser altitudes, making them an apt choice for releasing 
photophoretic aircraft as long as they can move sufficiently slowly to release the vehicle gently, avoiding 
any damage or tears to the structure. 

 
High-resolution measurements of winds, temperature, pressure, magnetic fields, and gas concentrations are 
some of the most valuable data that could be gathered in the mesosphere [35-38]. A network of these flying 
vehicles could provide unparalleled temporal and spatial resolution in monitoring these parameters, thereby 
enhancing our capabilities in climate and weather modeling. The payloads we have considered could be 
equipped with lightweight Iridium transmitters for communication and either batteries or photovoltaics for 
power, allowing for real-time data transmission back to Earth. Alternatively, the data could be stored and 
the payload retrieved once the aircraft descends. This option could be particularly useful in situations where 
equipment reuse is desirable. 
 
The main focus of this paper is on the theoretical modeling of a novel propulsion method based on Knudsen 
pumping. While we are in the process of conducting experiments to validate the theoretical model 
discussed, the fabrication of large structures—measuring 10 meters or more—is currently impractical given 
our available resources. This is particularly challenging because the required materials would need to have 
microscale features spread across a surface area of hundreds of square meters. However, we anticipate 
being able to test smaller structures, on the scale of centimeters, and some initial results were presented in 
Ref. [39]. 

 
In summary, we demonstrate that spherical photophoretic aircraft constructed with ultralight, ultrathin, 
porous materials have the capability to carry payloads on the scale of kilograms, which is similar to the 
mass of CubeSats, without the need for moving parts or fuel. Our work introduces new applications of the 
photophoretic force for 3D structures to enhance propulsion and presents a mathematical model that 
explores varying geometries through innovative theoretical approaches. The findings from this study can 
also be extended to high-altitude operations on Mars by adapting a Martian atmospheric model [40]. This 
research paves the way for the development of low-cost, sensor-equipped aircraft that can operate in 
previously unreachable atmospheric layers at altitudes of 55-80 km on Earth and 20-40 km on Mars, 
opening new avenues for a deeper understanding of Earth’s atmosphere as well as exploration of other 
planetary atmospheres. 
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Three-dimensional photophoretic aircraft made from ultralight 
porous materials can carry kg-scale payloads in the mesosphere 
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Thomas Celenza, Andy Eskenazi and Igor Bargatin 

 
In this document, we present and expand on the computational and theoretical framework behind our work. 
The first section is devoted to the ANSYS Fluent simulations, covering the solver set-up and the theory 
behind the force calculations. The second section of this document focuses on the MATLAB code, 
specifically the derivation of the equations used in the optimization of the geometrical and channel 
parameters of the 3D geometries, including the rocket, cone and sphere. Finally, the third section expands 
on buckling simulations conducted in COMSOL. 
 

1. ANSYS Fluent Simulations 
 
The goal of the ANSYS Fluent simulations was to determine an analytical expression to estimate the lift 
forces produced by various types of 3D structures. The specific solver implemented was the SST k-omega 
solver with default settings except the low-Re number corrections option. Because we sought geometries 
that operated across a wide range of velocities and altitudes (and thus air pressures, densities, temperatures 
and viscosities), the expression for the lift force needed to be valid across a wide range of Reynolds (Re) 
numbers as well. In particular, this equation needed to reasonably accurately model the transition between 
the low-Re (Stokes) regime to the high-Re regime. As the main paper argues, an appropriate expression is 

  
𝐹𝐹 = 𝐶𝐶18𝜇𝜇𝜇𝜇𝑣𝑣𝑓𝑓𝑓𝑓 + 𝐶𝐶2𝜌𝜌Κ𝑣𝑣jet2 . (S1) 

 
Here, 𝜇𝜇 corresponds to the fluid viscosity, 𝜌𝜌 to the density, Κ = 𝜋𝜋𝑟𝑟2 is the area of a nozzle with radius r, D 
is the geometry’s characteristic (usually largest) dimension, while 𝑣𝑣𝑓𝑓𝑓𝑓 is the flow-through velocity of the 
fluid through the porous material and 𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗  is the velocity of the fluid exiting the structure through the nozzle. 

Figure S1: Main geometric parameters for the cone (a), rocket (b) and sphere (c). Notice that here, the variable D 
serves as an overall indicator of the size of the geometry, while the variable r controls the outlet radii of the nozzle. 



 

The fitting parameters 𝐶𝐶1 and 𝐶𝐶2 depended on the geometry and were determined using ANSYS 
simulations. In this work, we considered three geometries, a cone, sphere, and rocket, shown in Fig. S1. 
Through the ANSYS simulations, we determined the average 𝐶𝐶1 and 𝐶𝐶2 coefficients for each structure and 
examined how these would evolve with overall size of the structure or the altitude. We performed 9 sets of 
simulations for each geometry, where we varied three different inlet/outlet area ratios at three different 
altitudes, resulting in flow-through velocities as small as 10-6 m/s or as large as 1 m/s.  
 
To make our simulations computationally efficient, we took advantage of the axial symmetry of our three 
geometries and thus constructed our models in a 2D, axisymmetric environment, which allowed us to only 
simulate fluid flow on the top half of each structure. We formed these geometries using ANSYS’ “Design 
Modeler” module, and they were essentially composed of three spaces: an outer air box, and inner air box, 
and the nanocardboard geometry itself (whose interior was “subtracted” from the inner air box). For the 
purposes of these simulations and the limitations posed by Fluent, we assumed 100% porous walls through 
which the air would flow at velocity 𝑣𝑣ft (an idealization of the actual porous nanocardboard material our 
geometries were made of). We believe this assumption to be valid because we were mainly investigating 
overall geometric effects created by changing the shape. Furthermore, although real nanocardboard, as 
demonstrated in previous work [R5], had a porosity of approximately 50%, the gas flowing through each 
of its pores would do so about twice as fast than the flow-through velocity 𝑣𝑣ft in our simulations. This is 
because we defined the flowthrough velocity to be the volumetric flow rate of the gas through the pores 
divided by the total area of nanocardboard (rather than just the area of the pores). As a result, changing the 
porosity would not affect the obtained fitting coefficients  𝐶𝐶1 and 𝐶𝐶2 since the reaction forces acting on the 
flyer are calculated from the force acting on the air box, which is not dependent on the total volume of air 
flow into the flyer and out of the jet.  
 
The next step was to specify mesh elements, shown in Fig. S2. Plot (a) shows the larger, outer air box with 
coarser mesh elements, while plot (b) is a zoomed-in view into the smaller, inner air box, containing smaller 
mesh elements. By dividing the air box into these two regions, we optimized the overall number of mesh 
elements in the simulation by providing a higher resolution just in the area close to the geometry. We 
created the mesh by selecting edges and dividing them into a discrete number of points; to enforce a uniform 
grid pattern, we used the quadrilaterals face meshing command. For the sphere, this resulted in 184,180 
elements (185,408 nodes); for the cone, 194,322 elements (195,865 nodes); for the rocket, 293,053 
elements (294,616 nodes). These were the final numbers of mesh elements obtained as a result of 
performing a convergence analysis until observing negligible changes in the computed lift forces.  
 

The final step was to establish Fluent’s “set-up” module parameters. For the model, we chose the viscous 
k-omega, with the low-Re (viscous) corrections feature enabled. Next, we fixed the boundary conditions as 
described in the main paper, and manually modified operating conditions (environment pressure, fluid 
density and fluid viscosity) matching the chosen altitude. Since our fluid was air, we extracted its properties 
as tabulated in altitude-dependent standard atmospheric tables, summarized in Table 1 below for 0 km, 40 
km and 70 km (our probed altitudes). Last, we specified the inlet velocity as a variable parameter, since 
that allowed us to sweep through values ranging from 10-6 m/s to 1 m/s in 7 logarithmically equally spaced 
points.  
 

b a 

Figure S2: Sample meshing of the axisymmetric sphere simulation in ANSYS Fluent. Here, plot (a) provides an 
overall picture of the air box (which is more than ten times larger than the geometry in question in each dimension), 
while plot (b) shows a zoomed-in image of the area immediately surrounding the sphere. The size of the outer air 
box was not arbitrary, but rather resulted from a series of simulations that gradually increased its dimensions until 
force values converged.  
  



 

 
 
 
 
 

Summary of Altitude-Dependent Atmospheric Properties 
Altitude 0 km 40 km 70 km 

Atmospheric Pressure (Pa) 101300 275.47 4.66 
Atmospheric Temperature (K) 288 251 220 
Air Density (kg/m3) 1.23 3.83*10-3 7.38*10-5 
Air Viscosity (Pa * s) 1.796*10-5 1.610*10-5 1.447*10-5 

 

Table 1: Tabulated altitude-dependent atmospheric conditions for 0 km, 40 km and 70 km. These values were manually 
inputted for each simulation set into the Fluent solver. 
 
We repeated this process 36 times, to construct 18 simulations for the cone, 9 for the sphere and 9 for the 
rocket, using operating conditions corresponding to 3 different altitudes (0 km, 40 km and 70 km) and 3 
different geometry sizes. In each case, we computed the reaction force in the axisymmetric direction using 
a line integral along the walls of the outer air box, resulting in the force values shown in Figs. S3–S6. This 
computation made use of the fact that under steady-state operation, the reaction force is equal to the lift 
force. The 𝐶𝐶1 and 𝐶𝐶2 coefficients were then determined by fitting the data in MATLAB to equation (S1), 
resulting in the values that are shown in the same figures and tabulated in Tables 2-5. In general, most 
curves of Figs. S3–S6 (in the logarithmic scale) show a transition from the viscous, low-Re regime to the 
high-Re regime that is manifested through a change in the slopes of the force curves. However, at 70 km 
in altitude, the lift force stayed in the Stokes (low-Re) regime and the high-Re 𝐶𝐶2 coefficients remained 
uncertain at this particular altitude. Thus, when computing the overall average 𝐶𝐶1 and 𝐶𝐶2, we did not 
incorporate the 𝐶𝐶2 corresponding to the 70 km altitude.  
 

Fitting Parameters for the Rocket, Dia. = 2 cm 

Altitude 
Length = 1 cm Length = 5 cm Length = 10 cm 

C1 C2 C1 C2 C1 C2 

0 km 2.0 
(1.6–2.4) 

1.1 
(0.9–1.3) 

1.0 
(0.8–1.2) 

1.1 
(0.9–1.2) 

0.9 
(0.7–1.1) 

1.1 
(0.9–1.2) 

40 km 2.24 
(2.12–2.38) 

0.73 
(0.62–0.85) 

1.1 
(1.0–1.3) 

0.8 
(0.6–1.0) 

1.0 
(0.9–1.2) 

0.8 
(0.6–1.0) 

70 km 2.361 
(2.353–2.368)  

1.20 
(1.20–1.20)  

1.08 
(1.08–1.10)  

Average 2.22 0.91 1.12 0.92 1.00 0.95 
 

Table 2: 𝐶𝐶1 and 𝐶𝐶2 coefficients computed for the rocket geometry of different lengths (1 cm, 5 cm and 10 cm), alongside 
the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).  
 

 
 
 
 
 

a b c 

Figure S3: Results from the altitude-dependent rocket simulations in ANSYS Fluent; each data point corresponds 
to a different flow-through velocity, ranging from 10-6 m/s to 1 m/s, while plots (a), (b) and (c) correspond to 
different rocket lengths. 



 

 
Fitting Parameters for the Sphere, Dia. = 2 cm 

Altitude 
rout = 0.1 cm rout = 0.5 cm rout = 1 cm 

C1 C2 C1 C2 C1 C2 

0 km 1.4 
(0.7–2.0) 

0.29 
(0.21–0.37) 

1.5 
(1.3–1.7) 

1.06 
(0.95–1.18) 

0.9 
(0.8–1.0) 

1.5 
(1.4–1.7) 

40 km 1.4 
(1.0–1.9) 

0.6 
(0.4–0.8) 

1.5 
(1.3–1.6) 

0.9 
(0.7–1.0) 

0.91 
(0.89–0.93) 

0.99 
(0.91–1.08) 

70 km 1.65 
(1.63–1.67)  

1.58 
(1.52–1.64)  

0.95 
(0.94–0.96)  

Average 1.48 0.45 1.50 0.97 0.91 1.26 
 

Table 3: 𝐶𝐶1 and 𝐶𝐶2 coefficients computed for the sphere geometry of different outlet radii (0.1 cm, 0.5 cm and 1 cm), 
alongside the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).  
 

Fitting Parameters for the Cone, Dia. = 2 cm 

Altitude 
Length = 2 cm Length = 5 cm Length = 10 cm 

C1 C2 C1 C2 C1 C2 

0 km 0.7 
(0.5–1.0) 

0.9 
(0.7–1.1) 

0.7 
(0.5–0.9) 

0.9 
(0.8–1.1) 

0.7 
(0.4–1.0) 

0.9 
(0.7–1.1) 

40 km 1.0 
(0.8–1.2) 

0.6 
(0.3–0.8) 

0.9 
(0.7–1.1) 

0.6 
(0.4–0.8) 

0.8 
(0.7–1.0) 

0.7 
(0.6–0.9) 

70 km 1.07 
(0.98–1.16)  

1.01 
(0.94–1.07)  

0.98 
(0.95–1.02)  

Average 0.94 0.72 0.88 0.76 0.84 0.82 
 

Table 4: 𝐶𝐶1 and 𝐶𝐶2 coefficients computed for the cone geometry (2 cm diameter) of different lengths (2 cm, 5 cm and 
10 cm), alongside the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).  
 

 
 
 
 

a b c 

Figure S4: Results from the altitude-dependent sphere simulations in ANSYS Fluent; each data point corresponds 
to a different flow-through velocity, ranging from 10-6 m/s to 1 m/s, while plots (a), (b) and (c) correspond to 
different sphere outlet radii. 

a b c 

Figure S5: Results from the altitude-dependent cone (2 cm diameter) simulations in ANSYS Fluent; each data point 
corresponds to a different flow-through velocity, ranging from 10-6 m/s to 1 m/s, while plots (a), (b) and (c) 
correspond to different cone lengths. 



 

Fitting Parameters for the Cone, Dia. = 4 cm 

Altitude 
Length = 2 cm Length = 5 cm Length = 10 cm 

C1 C2 C1 C2 C1 C2 

0 km 0.9 
(0.7–1.1) 

1.0 
(0.8–1.2) 

1.0 
(0.8–1.2) 

1.0 
(0.8–1.1) 

1.0 
(0.7–1.3) 

1.0 
(0.8–1.1) 

40 km 1.4 
(1.1–1.7) 

0.6 
(0.4–0.9) 

1.2 
(1.0–1.3) 

0.7 
(0.6–0.9) 

1.1 
(1.0–1.2) 

0.8 
(0.7–1.0) 

70 km 1.5 
(1.3–1.6)  

1.24 
(1.22–1.25)  

1.19 
(1.18–1.20)  

Average 1.27 0.82 1.13 0.86 1.09 0.89 
 

Table 5: 𝐶𝐶1 and 𝐶𝐶2 coefficients computed for the cone geometry (4 cm diameter) of different lengths (2 cm, 5 cm and 
10 cm), alongside the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).  
 

 
As we increased in altitude, the value of the 𝐶𝐶1 parameter increased while that of 𝐶𝐶2 decreased. All in all, 
Table 6 below summarizes the average 𝐶𝐶1 and 𝐶𝐶2 coefficients obtained for each geometry. In all cases, the 
coefficients are on the order of 1. 
 

Average Fitting Parameters for Each Geometry 

Geometry Cone Sphere Rocket 
D = 2 cm D = 4 cm D = 2 cm D = 2 cm 

C1 0.9 1.2 1.3 1.4 
C2 0.8 0.9 0.9 0.9 

 

Table 6: Fitting parameters for the analytical theory for standard atmospheric conditions on Earth, for each geometry. 
 
The next section of this document takes the force fitting parameters found from the ANSYS Fluent 
simulations and focuses on MATLAB-based parametric optimization of our three different geometries. 
 
 

2. MATLAB Code and Extension of Theoretical Framework 
 
In this section of the Supplemental Material, we present the extension to 3D structures of the original 
nanocardboard fluid mechanic theory developed by [R3]. The equations derived below were implemented 
in a MATLAB code to perform a series of parametric studies that seek to optimize the geometric and porous 
parameters of our three study geometries, a cone, a sphere and a rocket. More information about our code 
can be found in our publicly available repository [R4].   
 
2.1. Derivation of Equations 
 
2.1.1 General Overview 
 
For a general 3D porous structure, conservation of mass establishes that   
 

 Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑓𝑓𝑓𝑓 = Κ𝑜𝑜𝑜𝑜𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜  . (S2) 
 

a b c 

Figure S6: Results from the altitude-dependent cone (4 cm diameter) simulations in ANSYS Fluent; each data 
point corresponds to a different flow-through velocity, ranging from 10-6 m/s to 1 m/s, while plots (a), (b) and (c) 
correspond to different cone lengths. 

https://github.com/andyeske/MATLAB-fluidflow-parametric-studies


 

Here, Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the total surface area of the structure (as if the structure had no pores/channels) and 
𝑣𝑣𝑓𝑓𝑓𝑓 is the flow-through velocity of the fluid across this surface. Similarly, Κ𝑜𝑜𝑜𝑜𝑜𝑜 corresponds to the area 
covered by the outlet, while 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 is the exit velocity of the fluid out of the structure. Adding Bernoulli’s 
equation, we get the relationship that 
 

 𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝜌𝜌

=
∆𝑃𝑃
𝜌𝜌

=
𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜2 − 𝑣𝑣𝑓𝑓𝑓𝑓2

2
 . 

(S3) 
 
In (S3), 𝑃𝑃𝑖𝑖𝑖𝑖 is the pressure right at the inlet of the structure, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜  is the pressure right as the jet of fluid is 
leaving the structure, located around the space close to Κ𝑜𝑜𝑜𝑜𝑜𝑜, while 𝜌𝜌 is the fluid density. This equation can 
be rearranged to yield an expression for the pressure difference across both ends of the structure, resulting 
in  
 

 
∆𝑃𝑃 =

𝜌𝜌(𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜2  − 𝑣𝑣𝑓𝑓𝑓𝑓2)
2

 . (S4) 
 
Assuming that the porosity of the 3D structure originates from using the nanocardboard geometry 
developed by [R3] as the wall material, then we can model the mass flow rate of the fluid across one of the 
structure’s pores (or more properly said, channels) using the following equation 
 

 𝑚̇𝑚 = −𝛼𝛼∆𝑃𝑃 +  𝛾𝛾∆𝑇𝑇 . (S5) 
 
In (S5), 𝛼𝛼 and 𝛾𝛾 represent two constants, which come from curve-fitting the data obtained by [R7] and 
transforming the non-dimensional mass flow rate equation into a dimensional form again, with both 
pressure and temperature contributions1. These variables take the following form: 
 

 
𝛼𝛼 = �

𝛿𝛿
6

+ 1� �1 +
0.25
√𝛿𝛿

�
𝐴𝐴2𝐵𝐵𝛽𝛽∗
𝐿𝐿

 , 
(S6) 

 
and 

 
𝛾𝛾 = �

1.1
1.5 + 𝛿𝛿

�
𝐴𝐴2𝐵𝐵𝑃𝑃∗𝛽𝛽∗
𝑇𝑇∗𝐿𝐿

 . 
(S7) 

 
Here, the variable 𝑃𝑃∗ denotes the average pressure2 between the two sides of the structure’s nanocardboard 
wall,  𝑇𝑇∗ analogously describes the average temperature between both sides of the wall’s surface, while 𝛽𝛽∗ 
is an inverse velocity parameter. Specifically, this last one is given by  
 

 
𝛽𝛽∗ = �

  𝑚𝑚
2𝑘𝑘𝐵𝐵𝑇𝑇∗

 , 
(S8) 

 
where 𝑘𝑘𝐵𝐵 is the Boltzmann constant (equal to 1.38 * 10-23 J/K), and m is the mass of an air molecule3. 
Lastly, the parameter 𝛿𝛿 is the gas rarefaction coefficient, which [R7] defines as   
 

 
𝛿𝛿 =

√𝜋𝜋𝐴𝐴
2𝜆𝜆

=
√𝜋𝜋

2𝐾𝐾𝐾𝐾
 . (S9) 

 
In this expression, 𝜆𝜆 is the molecular mean free path, defined as the average distance traveled by a molecule 
between collisions with other molecules, and Kn is the Knudsen number, which is characterized in terms 
the of channel width. In essence, higher values of the 𝛿𝛿 parameter designates flows in the continuum regime, 
while smaller values indicate flows taking place in the free molecular regime. As for the molecular mean 
free path, mathematically it is usually expressed as 
 

 
1 For more information, please see [R2]. 
2 The value of this variable may be found from performing CFD simulations but will be simply approximated as the operating pressure. 
3 The molar mass of air is 0.02896 kg/mol, so then the approximated mass of an air molecule would be 0.02896/(6.022*1023 ) 
(Avogadro’s number), or 4.8089 * 10-26 kg.  



 

 
𝜆𝜆 =

𝜇𝜇(𝑇𝑇)
𝑃𝑃(𝑇𝑇)

�𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
2𝑚𝑚

=
𝜇𝜇(𝑇𝑇)
𝑃𝑃(𝑇𝑇)

�𝜋𝜋𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇
2

 , 
(S10) 

 
where 𝜇𝜇(𝑇𝑇) is the fluid’s viscosity and P(T) is the operating pressure, both given as a function of T, the 
operating temperature. In addition, from equation (S9), we see the Knudsen number is defined as 
 

 𝐾𝐾𝐾𝐾 =
𝜆𝜆
𝐴𝐴

 . (S11) 
 
Additionally, as seen in Fig. S7 below, the variables A and B characterize the nanocardboard channel’s 
width and length, respectively, yielding a cross-sectional area of A x B. In addition, L denotes the channel’s 
height. Note that in [R3], A is assumed to be much smaller than B. 
 
After defining these variables and introducing the expression for the mass flow rate, 𝑚̇𝑚, across one of 
nanocardboard’s channels, then an equation can be derived for the average flow-through velocity across 
the structure’s surface, which is simply described by 
 

 
𝑣𝑣𝑓𝑓𝑓𝑓 =

𝜑𝜑𝑚̇𝑚
𝜌𝜌𝜌𝜌𝜌𝜌

=
𝜑𝜑(−𝛼𝛼∆𝑃𝑃 +  𝛾𝛾∆𝑇𝑇)

𝜌𝜌𝜌𝜌𝜌𝜌
 . 

(S12) 
 
Here, 𝑚̇𝑚/𝜌𝜌 is no other than the volumetric flow rate 𝑉̇𝑉, while the term 𝜑𝜑 denotes the geometric fill factor, 
which is defined in terms of Κ𝑖𝑖𝑖𝑖 (porous area) and Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡4, or the channel parameters, and takes the form 
 

 
𝜑𝜑 =

Κ𝑖𝑖𝑖𝑖
Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

=
𝐴𝐴𝐴𝐴𝐴𝐴

(𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑆𝑆𝑆𝑆)
=

𝐴𝐴
(𝐴𝐴 + 𝑆𝑆)

 . 
(S13) 

 
The latter two equivalencies in (S13) originates from analyzing a single nanocardboard unit cell as opposed 
to the full 3D structure. Indeed, as Fig. S7 shows, the total cross-sectional area of the cell (if no channels 
were present) is given by 
 

 Κ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑆𝑆𝑆𝑆) = (𝐴𝐴 + 𝑆𝑆)𝐵𝐵𝐵𝐵 , (S14) 
 
where the variable X is just the number of channels in a unit cell. 
 
 

 
4 This area is essentially the total 3D structure wall area if there were no channels present. This is analogous to 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in the single 
nanocardboard unit cell. 

Figure S7: Main nanocardboard channel parameters. 



 

However, this number (X) is not arbitrarily chosen, and is dictated by A, B and S in the following way 
 

 𝑋𝑋 =
𝐵𝐵 − 𝑆𝑆
𝑆𝑆 + 𝐴𝐴

 . (S15) 
 
This expression considers the channel width A and spacing S as a unit, and tries to fit as many of those A + 
S units into the channel length B. Nonetheless, we need to consider an additional S for spacing against the 
perpendicular channels. This can be seen more clearly in Fig. S8 below, where the yellow bars represent 
the A + S units, and as drawn, five of these fit in the length of B, after subtracting one S. 
 

Overall, the flow-through velocity expression provided in (S12) is a step closer towards calculating the lift 
force that a 3D structure could generate for a given combination of geometric and channel parameters. 
However, computing lift will not be possible until we solve for 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜. Therefore, (S12) can be rearranged to 
instead solve for another unknown, ∆𝑃𝑃 , and obtain  
 

 
∆𝑃𝑃 =

𝛾𝛾∆𝑇𝑇
𝛼𝛼

−
𝑣𝑣𝑓𝑓𝑓𝑓𝜌𝜌𝜌𝜌𝜌𝜌
𝛼𝛼𝛼𝛼

 . 
(S16) 

 
Since both (S16) and (S4) from above provide two distinct expressions for the pressure difference, it is 
possible to equate them, giving rise to yet another relationship between 𝑣𝑣𝑓𝑓𝑓𝑓 and 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜, giving 
 

 𝜌𝜌(𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜2  − 𝑣𝑣𝑓𝑓𝑓𝑓2)
2

 = ∆𝑃𝑃 =
𝛾𝛾∆𝑇𝑇
𝛼𝛼

−
𝑣𝑣𝑓𝑓𝑓𝑓𝜌𝜌𝜌𝜌𝜌𝜌
𝛼𝛼𝛼𝛼

 . 
(S17) 

 
Rearranging this expression further, we get  
 

 
𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜2 =

2
𝜌𝜌
�
𝛾𝛾∆𝑇𝑇
𝛼𝛼

−
𝑣𝑣𝑓𝑓𝑓𝑓𝜌𝜌𝜌𝜌𝜌𝜌
𝛼𝛼𝛼𝛼

� + 𝑣𝑣𝑓𝑓𝑓𝑓2 . 
(S18) 

 
Now, recalling the conservation of mass relationship provided in (S2), it is possible to write 𝑣𝑣𝑓𝑓𝑓𝑓, the flow-
through velocity across the channels, in terms of 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 
 

 
𝑣𝑣𝑓𝑓𝑓𝑓 =

Κ𝑜𝑜𝑜𝑜𝑜𝑜
Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 =  
𝜑𝜑Κ𝑜𝑜𝑜𝑜𝑜𝑜
Κ𝑖𝑖𝑖𝑖

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 . (S19) 
 
Thus, (S19) can replace the 𝑣𝑣𝑓𝑓𝑓𝑓 term in (S18), leaving everything in terms of just 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 
 

 
𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜2 =

2
𝜌𝜌
�
𝛾𝛾∆𝑇𝑇
𝛼𝛼

−
Κ𝑜𝑜𝑜𝑜𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝜌𝜌𝜌𝜌𝜌𝜌
Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝛼𝛼𝛼𝛼

�  + �
Κ𝑜𝑜𝑜𝑜𝑜𝑜
Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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(S20) 

 
Further manipulating (S20), we get the following quadratic  
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(S21) 

Figure S8: Illustration of equation (S15), with the yellow bars showing the A + S units fitted into the channel length B. 



 

 
which has precisely 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 as its only unknown. This equation will always have two distinct, real solutions, 
one of which will be positive and the other of which will be negative. These are  
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(S22) 
 
as the positive solution, and  
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(S23) 
 
In the context of our work, only 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜+ is meaningful, since it is the solution that makes physical sense as 
the outflowing jet of air operates effectively with a positive 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜. Consequently, throughout the manuscript 
and the supplementary solution, it is 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜+ the solution that is simply referred to as 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜. A negative solution 
would involve some mechanism actively pumping the air into the structure through the “nozzle”. Since no 
such pump would exist in practice, we are ignoring the negative solution deeming it non-physical.  
 
One underlying advantage of this derivation was that it removed the need to know the pressure difference, 
∆𝑃𝑃, while providing us with enough information to solve for 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑣𝑣𝑓𝑓𝑓𝑓. In the following sub-section, we 
deliver more details on the heat conduction modeling across the nanocardboard’s thickness, which enabled 
obtaining an expression for the temperature difference, ∆𝑇𝑇, necessary to solve for 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 in (S23). 
 
2.1.2 Heat Conduction Modeling 
 
2.1.2.1 Full Analytical Derivation for ∆𝑻𝑻 
 
In order to compute ∆𝑇𝑇, the temperature difference between both sides of the structure’s walls, we needed 
to model the heat conduction across the structure’s thickness. We performed a heat energy balance that 
considered heat transfer across three distinct cross-sectional areas: the channel’s column of air, across the 
alumina thickness of the channel, and across the air trapped within the structure, as shown in Fig. S9 below. 
As a result, we can let 𝑄𝑄𝑡𝑡, the total heat transfer, be 
 

 𝑄𝑄𝑡𝑡 =
∆𝑇𝑇
𝑅𝑅𝑡𝑡1

+
∆𝑇𝑇
𝑅𝑅𝑡𝑡2

+
∆𝑇𝑇
𝑅𝑅𝑡𝑡3

 , 
(S24) 

 
where the 𝑅𝑅𝑡𝑡1, 𝑅𝑅𝑡𝑡2 and 𝑅𝑅𝑡𝑡3 represent the thermal resistances under the three scenarios detailed above. For 
the first of these areas (Κ1), the column of air in the channel, we define its thermal resistance as 
 

 𝑅𝑅𝑡𝑡1 =
𝐿𝐿

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎Κ1𝑋𝑋
=

𝐿𝐿
𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴

 , 
(S25) 

 
where 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎  is the thermal conductivity of air, L is as usual the channel height, and 𝐴𝐴𝐴𝐴𝐴𝐴 is the cross-sectional 
area of the individual channels (AB) multiplied by the number of channels (X) in a unit cell, as shown in 
Fig. S9 above. Notice that  𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎  is both temperature and pressure dependent, as the equation developed by 
[R10] captures, specifically for the small MEMS scale: 
 

 𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎 =
𝜅𝜅0

�1 + 0.00076𝑇𝑇
𝑃𝑃𝑃𝑃 �

 . 
(S26) 

 



 

In this expression, 𝜅𝜅0 is the air conductivity at standard atmospheric conditions, normally quoted as 𝜅𝜅0 =
0.024 𝑊𝑊

𝑚𝑚 𝐾𝐾
. Another comparable and slightly more succinct model for the conductivity of air is from [R8]:  

 
 𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎 =

𝜅𝜅0

�1 + 3.116𝜆𝜆
𝐿𝐿 �

 
(S27) 

 
As the pressure decreases, the mean free path eventually becomes comparable to the channel length, and 
the effective conductivity starts to decrease below the continuum value. Both equations (S26) and (S27) 
yielded very similar values for the conductivity of air as a function of the channel thickness L, although we 
used Eq. S27 in the simulations.  

 
Continuing with the heat conduction modeling, the corresponding expression for the thermal resistance 
across the alumina thickness on the channels (area Κ2 in Fig. S9) is given by 
 

 𝑅𝑅𝑡𝑡2 =
𝐿𝐿

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎Κ2𝑋𝑋
 =

𝐿𝐿
𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎[(𝐴𝐴 + 2𝑡𝑡)(𝐵𝐵 + 2𝑡𝑡) − 𝐴𝐴𝐴𝐴]𝑋𝑋

 , 
(S28) 

 
where [(𝐴𝐴 + 2𝑡𝑡)(𝐵𝐵 + 2𝑡𝑡) − 𝐴𝐴𝐴𝐴]𝑋𝑋 is the cross-sectional area occupied by the alumina thickness of the 
channels, which is denoted as 𝑡𝑡. In (S28), 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎  is the thermal conductivity of alumina, which has a constant 
value of 1.8 𝑊𝑊

𝑚𝑚 𝐾𝐾
 [R2]. Lastly, the thermal resistance of the air trapped within the structure (area Κ3) is  

 
 𝑅𝑅𝑡𝑡3 =

𝐿𝐿 − 2𝑡𝑡
𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎Κ3

=
𝐿𝐿 − 2𝑡𝑡

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 �
𝐴𝐴𝐴𝐴
𝜑𝜑 − (𝐴𝐴 + 2𝑡𝑡)(𝐵𝐵 + 2𝑡𝑡)� 𝑋𝑋

 , 
(S29) 

 
where recall from (S13) that  𝐴𝐴𝐴𝐴𝐴𝐴

𝜑𝜑
 is the full area of the cell, from which we subtract the combined cross-

sectional area of the channels with thickness 𝑡𝑡 of alumina. Now, performing an energy balance, the heat 
flow through the structure’s walls must be equal to that from the absorbed irradiation of the sun, which in 
this case is given by 

 𝑄𝑄𝑡𝑡  = 𝜀𝜀𝜀𝜀𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �
𝐴𝐴𝐴𝐴𝐴𝐴
𝜑𝜑

� (1 −  𝜑𝜑) . 
(S30) 

 
In equation (S30), 𝜀𝜀 denotes the absorption coefficient (approximated to 0.9 based-off the measurements 
from [R3]), 𝜓𝜓 the proportion of absorbed optical flux dissipated upward through the nanocardboard (which 
is assumed to be 0.5 or 50%), and 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠  the intensity of the sun at a particular altitude. In particular, this last 
term can be modeled using the following equation 
 

 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠   = 1000 +  3.8ℎ , (S31) 
 

Figure S9: Main nanocardboard cross-sectional areas for which thermal resistance is calculated. 



 

where the variable h refers to the elevation above sea level in kilometers. Notice that this expression returns 
the sun’s intensity in units of Watts per meter square. Furthermore, in equation (S30),  
(𝐴𝐴𝐴𝐴𝐴𝐴/𝜑𝜑)(1 −  𝜑𝜑) corresponds to the solid area of the nanocardboard, Κ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, where the sun’s irradiation 
is absorbed. In any case, (S24) through (S31) were combined to write a general expression for ∆𝑇𝑇, which 
is summarized by 
 

 
∆𝑇𝑇 = 𝑇𝑇2 − 𝑇𝑇1 =

𝜀𝜀𝜀𝜀𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �
𝐴𝐴𝐴𝐴𝐴𝐴
𝜑𝜑 � (1 −  𝜑𝜑)

1
𝑅𝑅𝑡𝑡1

+ 1
𝑅𝑅𝑡𝑡2

+ 1
𝑅𝑅𝑡𝑡3

= 

 

=
𝜀𝜀𝜀𝜀𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �

𝐴𝐴𝐴𝐴𝐴𝐴
𝜑𝜑 � (1 −  𝜑𝜑)

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝐿𝐿 + 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎[(𝐴𝐴 + 2𝑡𝑡)(𝐵𝐵 + 2𝑡𝑡) − 𝐴𝐴𝐴𝐴]𝑋𝑋

𝐿𝐿 +
𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 �

𝐴𝐴𝐴𝐴
𝜑𝜑 − (𝐴𝐴 + 2𝑡𝑡)(𝐵𝐵 + 2𝑡𝑡)� 𝑋𝑋

𝐿𝐿 − 2𝑡𝑡

 . 

 (S32) 
 
In (S32), 𝑇𝑇1 and 𝑇𝑇2 represent the average temperatures outside and inside the 3D structure, respectively. 
However, these might not necessarily be known beforehand, reason why calculating ∆𝑇𝑇 or  𝑇𝑇∗, the average 
temperature between both sides of the surface, may not be as trivial. In particular, to compute  𝑇𝑇∗, we make 
use of the fact that we know what ∆𝑇𝑇 is from (S32) and take the following expression  
 

 
𝑇𝑇∗ =

𝑇𝑇1 + 𝑇𝑇2
2

=
(𝑇𝑇2 − 𝑇𝑇1) + 2𝑇𝑇1

2
=
∆𝑇𝑇 + 2𝑇𝑇1

2
 . (S33) 

 
Here, notice that 𝑇𝑇1 is simply equal to the temperature corresponding to the particular operating conditions 
(altitude, pressure, density) of the fluid. Overall, ∆𝑇𝑇 allows us to solve for 𝑇𝑇∗ (which is needed to compute 
𝛾𝛾 and 𝛽𝛽∗ in (S7) and (S9), respectively) and the last part of the puzzle in (S23), the 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 expression. 

  
2.1.2.2 Simplified Expression for ∆𝑻𝑻 in the limit of zero alumina thickness 
 
Beyond the derivation provided in 1.2.1, notice that one could potentially also approximate ∆𝑇𝑇 through a 
more simplified expression given by 
 

 
∆𝑇𝑇~

𝐿𝐿𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠(1 −  𝜑𝜑)
2𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎

 . 
(S34) 

 
The origin of (S34) comes from taking the limit as t, the alumina thickness, approaches zero, in equation 
(S32). Indeed,  
 

 
lim
𝑡𝑡→0

𝜀𝜀𝜀𝜀𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �
𝐴𝐴𝐴𝐴𝐴𝐴
𝜑𝜑 � (1 −  𝜑𝜑)

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴
𝐿𝐿 + 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎[(𝐴𝐴 + 2𝑡𝑡)(𝐵𝐵 + 2𝑡𝑡) − 𝐴𝐴𝐴𝐴]𝑋𝑋

𝐿𝐿 +
𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 �

𝐴𝐴𝐴𝐴
𝜑𝜑 − (𝐴𝐴 + 2𝑡𝑡)(𝐵𝐵 + 2𝑡𝑡)� 𝑋𝑋

𝐿𝐿 − 2𝑡𝑡

 

 

= lim
𝑡𝑡→0

𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �
𝐴𝐴𝐴𝐴𝐴𝐴
𝜑𝜑 � (1 −  𝜑𝜑)

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎[(𝐴𝐴 + 2𝑡𝑡)(𝐵𝐵 + 2𝑡𝑡) − 𝐴𝐴𝐴𝐴]𝑋𝑋 + 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 �
𝐴𝐴𝐴𝐴
𝜑𝜑 − (𝐴𝐴 + 2𝑡𝑡)(𝐵𝐵 + 2𝑡𝑡)� 𝑋𝑋

 

 

= lim
𝑡𝑡→0

𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �
𝐴𝐴𝐴𝐴𝐴𝐴
𝜑𝜑 � (1 −  𝜑𝜑)

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎[𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴]𝑋𝑋 + 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 �
𝐴𝐴𝐴𝐴
𝜑𝜑 − 𝐴𝐴𝐴𝐴� 𝑋𝑋

 

 

= lim
𝑡𝑡→0

𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �
𝐴𝐴𝐴𝐴𝐴𝐴
𝜑𝜑 � (1 −  𝜑𝜑)

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎
𝐴𝐴𝐴𝐴𝐴𝐴
𝜑𝜑 − 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴

=
𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 �

𝐴𝐴𝐴𝐴𝐴𝐴
𝜑𝜑 � (1 −  𝜑𝜑)

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎
𝐴𝐴𝐴𝐴𝐴𝐴
𝜑𝜑

 

 (S35) 



 

=
𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠(1 −  𝜑𝜑)

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎
 . 

 
 
Furthermore, letting 𝜀𝜀 = 1 and 𝜓𝜓 = 0.5, then (S37) indeed becomes equation (S34) from above. As 
evidenced by its compressed form, using (S36) to approximate ∆𝑇𝑇 simplifies the process of solving for the 
flow-through velocity, 𝑣𝑣𝑓𝑓𝑓𝑓. This is especially true if we were to also neglect the pressure term, assuming its 
contribution is negligible. As a result, the mass flow rate from (S5) can be re-written as 
 

 𝑚̇𝑚~𝛾𝛾 ∗ ∆𝑇𝑇 . (S36) 
 
This helps reduce the flow-through velocity expression to 
 

 
𝑣𝑣𝑓𝑓𝑓𝑓 =

𝜑𝜑𝑚̇𝑚
𝜌𝜌𝜌𝜌𝜌𝜌

=
𝜑𝜑 𝛾𝛾∆𝑇𝑇
𝜌𝜌𝜌𝜌𝜌𝜌

=
𝜑𝜑 𝛾𝛾
𝜌𝜌𝜌𝜌𝜌𝜌

𝐿𝐿𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠(1 −  𝜑𝜑)
2𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎

 . 
(S37) 

 
Even this expression can be further simplified by reducing the 𝛾𝛾 term from (S7) to  
 

 
𝛾𝛾~

1.1𝐴𝐴2𝐵𝐵𝑃𝑃∗𝛽𝛽∗
𝛿𝛿𝑇𝑇∗𝐿𝐿

=
1.1𝐴𝐴2𝐵𝐵𝐵𝐵𝛽𝛽∗
𝑇𝑇𝑇𝑇𝑇𝑇√𝜋𝜋/(2𝜆𝜆)

=
2.2𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆
√𝜋𝜋𝑇𝑇𝑇𝑇

�
  𝑚𝑚

2𝑘𝑘𝐵𝐵𝑇𝑇
 . 

(S38) 
 
From the ideal gas law, we have that 𝑃𝑃 = 𝜌𝜌𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇, so the pressure term can be replaced in (S38) to obtain 
 

 
𝛾𝛾~

2.2𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇
√𝜋𝜋𝑇𝑇𝑇𝑇

�
  𝑚𝑚

2𝑘𝑘𝐵𝐵𝑇𝑇
=

2.2𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
√𝜋𝜋𝐿𝐿

�
  𝑚𝑚

2𝑘𝑘𝐵𝐵𝑇𝑇
 . 

(S39) 
 
Combining equations (S37) and (S39), the resultant expression turns out as 
 

 
𝑣𝑣𝑓𝑓𝑓𝑓 =

𝜑𝜑 
𝜌𝜌𝜌𝜌𝜌𝜌

𝐿𝐿𝐿𝐿(1 −  𝜑𝜑)
2𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎

2.2𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
√𝜋𝜋𝐿𝐿

�
  𝑚𝑚

2𝑘𝑘𝐵𝐵𝑇𝑇
=

1.1𝜑𝜑𝜑𝜑(1 −  𝜑𝜑)𝜆𝜆𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎

�
  𝑚𝑚

2𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇
 

(S40) 
 
Now, recall that the average molecular velocity is equal to 
 

 
𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 = �8𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇

𝜋𝜋
 , 

(S41) 
 
and the relationship between viscosity and velocity, as provided by [R6], is equal to  
 

 
𝜇𝜇 =

𝜆𝜆𝜆𝜆𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎
2

 . (S42) 
 
Hence, combining both (S41) and (S42) and solving for 𝜆𝜆, we obtain an expression which can be 
incorporated in (S40) to yield 
 

 
𝑣𝑣𝑓𝑓𝑓𝑓 =

1.1𝜑𝜑𝜑𝜑(1 −  𝜑𝜑)𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎

𝜇𝜇
𝑃𝑃
�𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

2𝑚𝑚 �
  𝑚𝑚

2𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇
=

1.1𝜑𝜑𝜑𝜑(1 −  𝜑𝜑)𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎

𝜇𝜇
𝑃𝑃
�

  𝑚𝑚𝑚𝑚𝑘𝑘𝐵𝐵𝑇𝑇
4𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇

 

 

=
1.1𝜑𝜑𝜑𝜑(1 −  𝜑𝜑)𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎

𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎
𝜇𝜇
𝑃𝑃
� 1

4
=

1.1𝜑𝜑𝜑𝜑(1 −  𝜑𝜑)𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
2𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎

𝜇𝜇
𝑃𝑃

 . 
(S43) 

 
Now, according to [R6], the conductivity of air can be often approximated as 𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎 = 2𝜇𝜇𝐶𝐶𝑣𝑣′

𝑀𝑀
= 2𝜇𝜇𝐶𝐶𝑣𝑣, where 

M is the molar mass of air and 𝐶𝐶𝑣𝑣′ is the specific heat capacity at constant volume, in units of J/k mol. Thus, 
equation (S43) can further simplify into  



 

  
 

𝑣𝑣𝑓𝑓𝑓𝑓 =
1.1𝜑𝜑𝜑𝜑(1 −  𝜑𝜑)𝑀𝑀𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎

4𝜇𝜇𝐶𝐶𝑣𝑣′
𝜇𝜇
𝑃𝑃

=
1.1𝜑𝜑𝜑𝜑(1 −  𝜑𝜑)𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎

4𝑃𝑃𝐶𝐶𝑣𝑣
=

1.1𝜑𝜑(1 −  𝜑𝜑)𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
4𝐶𝐶𝑣𝑣

𝐼𝐼
𝑃𝑃

= 𝐶𝐶
𝐼𝐼
𝑃𝑃

 . 
(S44) 

 
where the constant C is simply given by 
 

 
𝐶𝐶 =

1.1𝜑𝜑(1 −  𝜑𝜑)𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
4𝐶𝐶𝑣𝑣

=
1.1 ∙ 0.5 ∙ (1 −  0.5) ∙ 0.287

4 ∙ 0.718
= 0.0275 . 

(S45) 
 
Hence, what these series of derivations shows is that it is possible to approximate and obtain order-of-
magnitude estimations of the flow-through velocity by using 
 

 𝑣𝑣𝑓𝑓𝑓𝑓 = 0.0275
𝐼𝐼
𝑃𝑃

 . (S46) 
 
2.2. Lift-Force Calculations and Temperature-dependencies 
 
Once we knew how to calculate 𝑣𝑣𝑓𝑓𝑓𝑓 and 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 using the equations derived above (whether it is in the 
simplified or full analytical form), we used the following equation to calculate the lift forces produced by 
each geometry, as outlined in the ANSYS simulations section at the beginning of this document: 
 

 �𝐹𝐹 = 𝐶𝐶18𝜇𝜇𝜇𝜇𝑣𝑣𝑓𝑓𝑓𝑓 + 𝐶𝐶2𝜌𝜌Κ𝑜𝑜𝑜𝑜𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜
2 . (S47) 

 
Here, D is the characteristic radius of the geometry (usually the inlet radius), while 𝜇𝜇 is the viscosity and 𝜌𝜌 
the fluid density. In addition, C1 and C2 are the geometry dependent coefficients summarized in Table 6. 
 
As the derivation of equations above evidences, all of the geometric (Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and Κ𝑜𝑜𝑜𝑜𝑜𝑜) and channel (A, B, 
L, S, t) variables are present in (S23), meaning that it was possible to construct parametric studies exploring 
the dependency of 𝑣𝑣𝑓𝑓𝑓𝑓, and consequentially lift, on all of these. Notice, all of these variables were largely 
independent of each other, making it possible to modify each separately. However, some other parameters 
within (S23), such as 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠,  density 𝜌𝜌, and air viscosity 𝜇𝜇, were actually dependent on temperature, which 
in turn was also altitude dependent. As a result, in order to accurately calculate the flow-through velocities 
𝑣𝑣𝑓𝑓𝑓𝑓 experienced by a 3D geometry in a range of altitudes, we needed to derive expressions for 
approximating the air temperature, air pressure, air viscosity and air density as a function of altitude itself.  
 
2.2.1 Temperature-dependent Relations 
 
We developed the relations characterizing the dependency between temperature and the fluid variable in 
question by using standard atmospheric5 empirical data and fitting equations to it. This approach allowed 
us to better capture the complex variations of temperature with altitude to a relatively high degree of 
accuracy; in turn, this process enabled obtaining a more realistic representation of the pressure-altitude 
dependency, at least compared to typically used approximations such as the barometric formulae. For 
instance, for the data describing the dependency between air temperature and altitude, we fit both a 6th, 10th 
and 15th order polynomial, as Fig. S10 to the below shows.  
 
Overall, the 15th order polynomial provided the best empirical fit, which was why we decided to use it for 
the rest of this analysis. However, one interesting aspect of this fit was that we actually fitted the inverse of 
the temperature, the reason for which will become clearer in the derivation of the altitude-pressure 
dependency. In any case, equation (S48) below shows this explicit relation, with h (the altitude) being in 
kilometers, and all terms in the column added.  
 

 
5 The specific standard atmospheric data was taken from the following three websites: 
https://www.engineeringtoolbox.com/standard-atmosphere-d_604.html | https://www.pdas.com/atmosTable1SI.html | 
https://www.pdas.com/bigtables.html 



 

 

𝑇𝑇−1(ℎ) =

−4.592 ∙ 10−29
4.023 ∙ 10−27
1.491 ∙ 10−23
−7.942 ∙ 10−21
2.021 ∙ 10−18
−3.152 ∙ 10−16
3.271 ∙ 10−14
−2.332 ∙ 10−12
1.150 ∙ 10−10
−3.862 ∙ 10−09
8.525 ∙ 10−08
−1.150 ∙ 10−06
8.154 ∙ 10−06
−2.283 ∙ 10−05
9.912 ∙ 10−05
3.473 ∙ 10−03

∙

ℎ15
ℎ14
ℎ13
ℎ12
ℎ11
ℎ10
ℎ9
ℎ8
ℎ7
ℎ6
ℎ5
ℎ4
ℎ3
ℎ2
ℎ1
1 .

 

(S48) 
 
Having derived the empirical relation between temperature (its inverse) and altitude, it was possible to 
determine a similar expression for pressure. In essence, the differential equation describing the pressure-
altitude relationship is given by 
 

 𝑑𝑑𝑑𝑑(ℎ) = −𝑔𝑔𝑔𝑔(ℎ) ∙ 𝑑𝑑ℎ , (S49) 
 
where 𝑔𝑔 is the gravitational constant on earth, and 𝜌𝜌(ℎ) the density of air at a particular altitude h. Using 
the ideal gas law, 𝜌𝜌(ℎ) can be substituted to yield the following expression for the above differential in 
equation (S49) 

 
 

𝑑𝑑𝑑𝑑(ℎ) = −𝑔𝑔
𝑃𝑃(ℎ)

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇(ℎ)
∙ 𝑑𝑑ℎ , 

(S50) 
 

where now 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎  is the ideal gas constant of air and is equal to 287 𝐽𝐽/𝑘𝑘𝑘𝑘 ∗ 𝑚𝑚3.  Easily enough, one can 
utilize the technique of separation of variables to obtain that 

 
 𝑑𝑑𝑑𝑑(ℎ)

𝑃𝑃(ℎ)
=

−𝑔𝑔
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇(ℎ)

∙ 𝑑𝑑ℎ , 
(S51) 

 
which leaves all of the pressure terms on one side, and the rest on the other. As a result, it is possible to see 
with more clarity why the above polynomial fit was done for the inverse of temperature. Indeed, equation 
(S51) can be equivalently written as 

 
 𝑑𝑑𝑑𝑑(ℎ)

𝑃𝑃(ℎ)
=
−𝑔𝑔𝑇𝑇−1(ℎ)

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
∙ 𝑑𝑑ℎ . 

(S52) 
 
This expression can be easily integrated to obtain the following logarithm: 

 
 ln(𝑃𝑃) =

−𝑔𝑔
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎

�𝑇𝑇−1(ℎ) ∙ 𝑑𝑑ℎ . 
(S53) 

 
Letting 𝜁𝜁(ℎ) = ∫𝑇𝑇−1(ℎ) ∗ 𝑑𝑑ℎ be a placeholder for the integral of the inverse temperature polynomial and 
C be simply a constant of integration, we obtain that 

 
 ln(𝑃𝑃(ℎ)) =

−𝑔𝑔
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎

𝜁𝜁(ℎ) + 𝐶𝐶 . 
(S54) 

 
Now, in order to remove the logarithm from the pressure, we can raise both sides of the expression to the 
Euler’s number power, and get 

 𝑃𝑃(ℎ) = 𝑒𝑒
−𝑔𝑔
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎

𝜁𝜁(ℎ)+𝐶𝐶  . (S55) 
 
After applying exponent rules, (S55) decomposes into the product given by 

Figure S10: Modeled temperature dependency on altitude. 



 

Figure S11: Modeled pressure dependency on altitude. 

 
 𝑃𝑃(ℎ) = 𝑒𝑒𝐶𝐶𝑒𝑒

−𝑔𝑔
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎

𝜁𝜁(ℎ)
 , (S56) 

 
and can be further simplified, upon application of boundary conditions, into  
 

 𝑃𝑃(ℎ) = 101300 ∙ 𝑒𝑒
−𝑔𝑔
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎

∗𝜁𝜁(ℎ)
 ,    

(S57) 
 

which takes the following full form: 
 

𝑃𝑃(ℎ) = 101300 ∙ exp 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑔𝑔
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎

∙

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

−2.870 ∗ 10−30
2.682 ∗ 10−28
1.064 ∗ 10−24
−6.109 ∗ 10−22
1.684 ∗ 10−19
−2.865 ∗ 10−17
3.271 ∗ 10−15
−2.591 ∗ 10−13
1.437 ∗ 10−11
−5.518 ∗ 10−10
1.421 ∗ 10−08
−2.299 ∗ 10−07
2.0385 ∗ 10−06
−7.608 ∗ 10−06
4.955 ∗ 10−05
3.473 ∗ 10−03

∙

ℎ16
ℎ15
ℎ14
ℎ13
ℎ12
ℎ11
ℎ10
ℎ9
ℎ8
ℎ7
ℎ6
ℎ5
ℎ4
ℎ3
ℎ2
ℎ1 ⎠

⎟
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⎟
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⎟
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⎟
⎟
⎟
⎟
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⎦
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⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎤

 . 

(S58) 
 
 
 
As Fig. S11 above shows, the agreement of this equation with the empirical data is very reasonable, 
especially below 80 km altitude. Above 80 km, the atmosphere is no longer well mixed, has increasing 
concentrations of atomic oxygen, and the simple ideal gas law we used above no longer applies. For this 
reason, the results that will be presented below correspond to altitudes below 80 km. 
  
The next step was modelling the air density dependency on altitude. With expressions for T(h) and P(h) 
above, we could use the ideal gas law to write 
 

 
Finally, the last dependency that remained to be defined was the air viscosity and altitude relation. To that 
end, we could use Sutherland’s law, which relates viscosity and temperature through the following 
equation: 
 
 

𝜇𝜇(ℎ) = 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑇𝑇(ℎ)
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

�
1.5

�
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑆𝑆
𝑇𝑇(ℎ) + 𝑆𝑆

� , 
(S60) 

 
where 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟 is the reference dynamic viscosity and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟  the reference temperature. In this work, for air, at 
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = 20 𝐶𝐶, we have that 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟 = 0.000018205 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠. Finally, S is a constant, known as Sutherland’s 
temperature, which is given by 110.4 K. 
 
 
2.2.2 Payload Calculations 
 
Once all of the required equations and relationships were derived, it was possible to calculate 𝑣𝑣𝑓𝑓𝑓𝑓 and 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 
for a specific set of geometric and channel parameters defining unique 3D structures. By calculating these 
velocities, we determined the total force produced by each geometry, as outlined by equation (S47), from 
which it was possible to perform some payload estimates. However, in order to obtain the payload 
estimates, it was paramount to first determine the surface areas of each one of the 3D geometries in question, 

 
𝜌𝜌(ℎ) =

𝑃𝑃(ℎ)
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇(ℎ)

 . 
(S59) 



 

the reason being that density of these structure was defined in areal terms as opposed to volumetric terms. 
As was mentioned in the main paper, this work considered a truncated cone, truncated sphere, and a rocket, 
and their defining equations are shown in Table 7 below.  
 

Main Geometrical Area Definitions 
Area Truncated Cone Truncated Sphere Rocket 

Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜋𝜋 �
𝐷𝐷
2�

2
+ 𝜋𝜋 �

𝐷𝐷
2� ℎ2 − 𝜋𝜋𝜋𝜋(ℎ2 − ℎ1) 𝜋𝜋(𝐷𝐷2 − 2𝑟𝑟ℎ) 2𝜋𝜋𝜋𝜋(𝑟𝑟 + 𝐷𝐷) 

Κ𝑜𝑜𝑜𝑜𝑜𝑜 𝜋𝜋𝑟𝑟2 
Κ𝑖𝑖𝑖𝑖 𝜑𝜑Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
Κ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (1 −𝜑𝜑)Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Special 
Variables 

ℎ1 = ��
𝐷𝐷
2 − 𝑟𝑟�

2
+ 𝐷𝐷2 

ℎ2 = ��
𝐷𝐷
2�

2
+ ℎ3 

ℎ3 =
𝐷𝐷2

(𝐷𝐷 − 2𝑟𝑟) 

ℎ = �
𝐷𝐷
2� −

��
𝐷𝐷
2�

2
− 𝑟𝑟2 N/A 

 

Table 7: Area definitions used across this work for the cone, sphere and rocket. Notice that here, the variable ℎ3 
follows from using similar triangles analysis, and letting ℎ3/(D/2) = D/(D/2 – r). For all three geometries, the variable 
D represents the overall scale of the structure while r their outlet radius. Notice that Κ𝑖𝑖𝑖𝑖 is the porous area, while 
Κ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the solid area in which the sun’s irradiance is absorbed, and it follows that Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = Κ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + Κ𝑖𝑖𝑖𝑖. 
 
As a result, having defined these surface areas (using the parameters established in Fig. S1), we calculated 
the mass of our three 3D structures. In particular, since the cross-sectional area of a channel is simply 𝐴𝐴𝐴𝐴, 
then one can define the number of channels as the following integer floor: 
 
 

𝑛𝑛𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �
Κ𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴

� . 
(S61) 

 
The number of channels, 𝑛𝑛𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, is an important parameter, given that now it is possible to calculate the 
volume of the structure that is occupied by the deposited alumina around each channel, which has thickness 
t and relatively high density 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 of 3950 kg/m3 [R9]. Indeed, similarly to equation (S28) above, we can 
define this volume as 
 
 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑛𝑛𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐿𝐿 − 2𝑡𝑡)[(𝐴𝐴 + 2𝑡𝑡)(𝐵𝐵 + 2𝑡𝑡) − 𝐴𝐴𝐴𝐴] . (S62) 

 
Experimentally, it has already been found that the areal density of nanocardboard, 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛 , is about 1 g/m2 
[R5], but this corresponds to a value of L (nanocardboard thickness) equal to 50 μm.  However, in our 
parametric studies, as we sweep through various values of L, especially those that are larger than 50 μm, 
this areal density alone is not enough to estimate the weight of the structure. As a result, calculating the 
volume of alumina around each of the channels is paramount, since the structure naturally becomes heavier 
with increasing thickness. Hence, the overall mass of any one of these geometries will be given by 
 
 𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(Κ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − Κ𝑖𝑖𝑖𝑖)  + 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  , (S63) 

 
where this expression accounts both for the areal density (𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) and the increases in the amount of the 
deposited alumina as a result of changes in the wall thickness L. Thus, the net lift produced by the geometry 
is simply given by subtracting the structure’s weight from the force expression in (S47), or  
 
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐹𝐹 − 𝑔𝑔𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . (S64) 

 
While we know from simulations what 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  is, notice that it is also possible to use our equations and a 
series of approximations to obtain a theoretical upper bound for this value. In essence, we can start by 
letting the force be equal to the expression below 
 



 

 𝐹𝐹 = 𝑚̇𝑚𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = (Κ𝑖𝑖𝑖𝑖𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣𝑓𝑓𝑓𝑓)𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = (Κ𝑖𝑖𝑖𝑖
𝑃𝑃

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇
𝑣𝑣𝑓𝑓𝑓𝑓)𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜  , (S65) 

 
which incorporates mass flow rate and the ideal gas law. Now, recall that equation (S4) provides an 
expression relating 𝑣𝑣𝑓𝑓𝑓𝑓 and 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜, while (S46) provides a simplified approximation for 𝑣𝑣𝑓𝑓𝑓𝑓. As a result, 
taking a conservative approach that lets 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = 0.2𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎, a fifth of the average molecular velocity of a gas, 
shown in (S41) above, and incorporating (S2) and (S46), it is possible to re-write (S68) to obtain  
 
 

𝐹𝐹 = Κ𝑖𝑖𝑖𝑖
𝑃𝑃

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇
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Upon further simplification, equation (S69) reduces to  
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Thus, the maximum areal density that can be entertained by these 3D structures can be approximated by 
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where 𝐾𝐾 = 0.0055
𝑔𝑔

�8
𝜋𝜋

= 0.0009 and 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 = �8𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇/𝜋𝜋  ≈ 400 m/s is the average velocity of air 

molecules. Upon inserting the parameters, we find that 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 can have an average value of 0.004 kg/m2, 
four times of what the areal density of nanocardboard typically is in experiments. The main paper provides 
additional areal density calculations based off from the parametric studies (detailed below) as well as cloud 
plots denoting the maximum areal density for each of the study geometries. They are generally of the same 
order of magnitude as the estimate (S68). 
 
2.2.3 Parametric Studies 
 
In this section, we provide four tables that accompany the presentation of the results shown in the main 
paper. In essence, Table 8 both summarizes the chosen optimization ranges and discretization for the 
variables that were varied (A, L and r) and specifies the values that the remaining variables (B, N, X, S and 
t) took. Similarly, Table 9 through Table 11 present the results for the performed parametric optimization 
on the three geometries, detailing the specific combination of A, L and r that first, yielded the maximum 
payload capabilities and second, achieved flight at the lower altitude. In addition, Table 9 through Table 
11 also provide the areal density of each structure for when the maximum payload was achieved. Notice 
that this process was repeated for multiple values of D, as to explore the dependency of the overall 
optimization results with the scale of the geometries. 
 

Parametric Optimization Variables 
Variable Range Truncated Cone Truncated Sphere Rocket Discretization 

𝐴𝐴 Min. 10 nm 80 equally spaced points  
(log scale) Max. 5 mm 

𝐿𝐿 Min. 1  μm 80 equally spaced points  
(log scale) Max. 1 cm 

𝑟𝑟 Min. rmin =  D/20 (see Table 9 through Table 11) 80 equally spaced points  
(log scale) Max. rmax = D/2.01 (see Table 9 through Table 11) 

Altitude Min. 0 km 17 equally spaced points  
(5 km intervals) Max. 80 km 

 
𝐵𝐵 10𝐴𝐴 



 

 

Table 8: Main values used across the various variables during the parametric optimization. As can be seen, the search 
range for the optimal A, L and r was discretized in all three cases in 100 points, following a log scale. Changing the 
granularity of the discretization or the bounds of the search range did not significantly modify the results seen in Table 
9 through Table 11 below. 
 

 

Table 9: Combinations of A, L and r that returned the spheres capable of carrying the greatest payload and achieving 
flight at the lowest altitude, for various values of D, as specified in Figure S1. 
 

 

Table 10: Combinations of A, L and r that returned the cones capable of carrying the greatest payload and achieving 
flight at the lowest altitude, for various values of D, as specified in Figure S1. 
 
 
 
 
 
 
 
 
 

𝑁𝑁 1 sun 

𝑋𝑋 
𝐵𝐵 − 𝑆𝑆
𝑆𝑆 + 𝐴𝐴  

𝑆𝑆 𝐴𝐴 
𝑡𝑡 50 nm  

Parametric Optimization Results – Various Sphere Sizes 

Variable Case D = 2 cm D = 0.1 m D = 0.5 m D = 1 m D = 2 m D = 5 m 
rmin =  D/20, rmax = D/2.01, with a discretization of 80 points (log scale) 

𝐴𝐴 Max. Payload 0.90 mm 0.90 mm 0.90 mm 0.90 mm 0.90 mm 0.90 mm 
Min. Altitude 0.13 mm 0.13 mm 0.20 mm 0.20 mm 0.20 mm 0.20 mm 

𝐿𝐿 Max. Payload 0.91 mm 0.91 mm 0.91 mm 0.91 mm 0.91 mm 0.91 mm 
Min. Altitude 0.14 mm 0.14 mm 0.21 mm 0.21 mm 0.21 mm 0.21 mm 

𝑟𝑟 Max. Payload 9.95 mm 4.07 cm 19.05 cm 36.85 cm 73.70 cm 1.84 m 
Min. Altitude 4.05 mm 1.89 cm 10.82 cm 21.63 cm 43.27 cm 1.08 m 

 

Max.  
Payload 

Payload (mg) 8.34 79.11  1 445 5 526 21 612  133 242 
Altitude (km) 80  80  80  80  80 80  

A. Density (g/m2) 25.48 7.81  5.91 5.64  5.54 5.49 
Sphere Area (m2) 0.0007  0.025 0.64 2.63 10.52 65.82  
K𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/K𝑜𝑜𝑜𝑜𝑜𝑜 ratio 2.22 4.77 5.68 6.17 6.17 6.17 

 

Min. 
Altitude 

Payload (mg) 0.24 0.58  223.94 872.33 3 442  21 339  
Altitude (km) 55 55  60 60 60 60 

K𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/K𝑜𝑜𝑜𝑜𝑜𝑜 ratio 23.34 26.96 20.30 20.32 20.31 20.38 

Parametric Optimization Results – Various Cone Sizes 

Variable Case D = 2 cm D = 0.1 m D = 0.5 m D = 1 m D = 2 m D = 5 m 
rmin =  D/20, rmax = D/2.01, with a discretization of 80 points (log scale) 

𝐴𝐴 Max. Payload 0.90 mm 0.90 mm 0.90 mm 0.90 mm 0.90 mm 0.90 mm 
Min. Altitude 0.13 mm 0.35 mm 0.35 mm 0.35 mm 0.35 mm 0.35 mm 

𝐿𝐿 Max. Payload 0.91 mm 0.91 mm 0.91 mm 0.91 mm 0.91 mm 0.91 mm 
Min. Altitude 0.14 mm 0.36 mm 0.36 mm 0.36 mm 0.36 mm 0.36 mm 

𝑟𝑟 Max. Payload 9.95 mm 4.97 cm 24.86 cm 49.73 cm 99.45 cm 2.49 m 
Min. Altitude 4.05 mm 2.39 cm 11.56 cm 23.12 cm 46.25 cm 1.16 m 

 

Max.  
Payload 

Payload (mg) 7.96 101.26 2 043 7 929 31 228 193 348 
Altitude (km) 80  80  80  80  80 80  

A. Density (g/m2) 11.59 6.61 5.61  5.48 5.42  5.38 
Cone Area (m2) 0.0016  0.039 0.98 3.92 15.67  97.97 
K𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/K𝑜𝑜𝑜𝑜𝑜𝑜ratio 5.04 5.05 5.05 5.04 5.04 5.03 

 

Min. 
Altitude 

Payload (mg) 0.18 10.12  208.65  812.97  3 209   19 892 
Altitude (km) 55 60 60 60 60 60 

K𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/K𝑜𝑜𝑜𝑜𝑜𝑜ratio 23.97 17.75 18.84 18.84 18.83 18.72 



 

 

Table 11: Combinations of A, L and r that returned the rockets capable of carrying the greatest payload and achieving 
flight at the lowest altitude, for various values of D, as specified in Figure S1. 
 
The results from these tables are discussed in greater detail in the main paper. However, there are four 
important points to highlight. First, changing D (the scaling of the overall geometries) did not affect 
significantly the optimal channel parameters A and L that yielded the maximum payload capabilities and 
achieved flight at the lowest altitude. Secondly, the obtained maximum areal densities were similar across 
the three geometries (as seen in Figure 5 (a) of the main text) and had average values of 9.31 g/m2, 6.68 
g/m2 and 6.96 g/m2, for the sphere, cone, and rocket, respectively. Notice that these are above the theoretical 
order-of-magnitude estimation for the upper limit of 4 g/m2 in (S71). Thirdly, the optimized Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/Κ𝑜𝑜𝑜𝑜𝑜𝑜 
ratios (the “Areas Ratio” in the subsequent tables) for the three geometries were relatively invariant across 
the various values of D and the two missions (max. payload and minimum altitude). For instance, for the 
maximum payload optimization, Κ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/Κ𝑜𝑜𝑜𝑜𝑜𝑜 averaged 5.20, 5.04, and 6.02 for the sphere, cone and rocket, 
respectively, while for the minimum altitude case, this ratio averaged 21.94, 19.49 and 28.65, respectively. 
Lastly, for a given surface area, the amount of payload that each geometry could carry was comparable (as 
illustrated in Figure 5 (b) of the main text). As a result, 1 m2 of a porous and geometrically optimized cone 
has a similar maximum payload capability than 1 m2 of an optimized rocket and sphere.  
 
Finally, Fig. S12 through Fig. S17 present cloud plots that permit visualizing the results from the parametric 
studies, in particular how different combinations of A, L and r enabled geometries with various altitude (a), 
payload (b) and areal density (c) capabilities. These plots correspond to the D = 10 cm and D = 10 m cone, 
sphere and rocket, and are accompanied with illustrations of the optimized geometries that achieved flight 
at minimum altitude (d) and carried the most payload (e). These figures were generated by discretizing the 
search ranges of A, L and r in 500 equally spaced, and the results from the optimized geometries are shown 
in Table 12 through Table 14). Despite the increase in discretization points (from 80 to 500) in each 
dimension, the results were comparable. 

Parametric Optimization Results – Various Rocket Sizes 

Variable Case D = 2 cm D = 10 cm D = 0.5 m D = 1 m D = 2 m D = 5 m 
rmin =  D/20, rmax = D/2.01, with a discretization of 80 points (log scale) 

𝐴𝐴 Max. Payload 0.90 mm 0.90 mm 0.90 mm 0.90 mm 0.90 mm 0.90 mm 
Min. Altitude 0.092 mm 0.13 mm 0.13 mm 0.13 mm 0.13 mm 0.13 mm 

𝐿𝐿 Max. Payload 0.91 mm 0.91 mm 0.91 mm 0.91 mm 0.91 mm 0.91 mm 
Min. Altitude 0.094 mm 0.14 mm 0.14 mm 0.14 mm 0.14 mm 0.14 mm 

𝑟𝑟 Max. Payload 9.95 mm 4.97 cm 24.86 cm 49.73 cm 99.45 cm 2.49 m 
Min. Altitude 1.00 mm 0.94 cm 4.12 cm 8.24 cm 15.94 cm 0.40 m 

 

Max.  
Payload 

Payload (mg) 9.51 127.59  2 639 10 281  40 573 251 516  
Altitude (km) 80  80  80  80  80  80  

A. Density (g/m2) 11.60 6.89  5.95 5.83 5.77 5.74 
Rocket Area (m2) 0.0019 0.047 1.17  4.68  18.71  117.12 
K𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/K𝑜𝑜𝑜𝑜𝑜𝑜 ratio 6.02 6.02 6.02 6.02 6.02 6.02 

 

Min. 
Altitude 

Payload (mg) 0.03 1.54 8.29 18.57  45.37  175.67  
Altitude (km) 45 55  55  55 55  55  

K𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/K𝑜𝑜𝑜𝑜𝑜𝑜ratio 42 23.28 26.27 26.27 27.09 27 



 

 
 

Comparison of D = 10 cm and D = 10 m Cone Geometries 

Case A L r Surface 
Area (m2) 

Areas 
Ratio 

Payload 
(mg) 

Altitude 
(km) Discretization of 500 points  

D = 
10 cm 

Min. Altitude 0.15 mm 0.16 mm 1.94 cm 0.03 25.92 0.52 55 
Max. Payload 1.24 mm 1.25 mm 4.97 cm 0.04 5.05 102.31 80 

D = 
10 m 

Min. Altitude 0.21 mm 0.22 mm 2.36 m 317.52 18.16 95 288 60 
Max. Payload 1.24 mm 1.25 mm 4.97 m 391.56 5.05 780 408 80 

 

Table 12: Combinations of A, L and r that returned the optimal cone geometries described in Figure S12 and Figure 
S13 above. 
 

Figure S12: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 cm Cone 
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (0.52 mg at 55 km) is shown in 
(d), while that which was able to levitate the maximum payload (102.31 mg at 80 km) is shown in (e). 
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Figure S13: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 m Cone 
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (95 288 mg at 60 km) is shown 
in (d), while that which was able to levitate the maximum payload (780 408 mg at 80 km) is shown in (e). 
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Comparison of D = 10 cm and D = 10 m Rocket Geometries 

Case A L r Surface 
Area (m2) 

Areas 
Ratio 

Payload 
(mg) 

Altitude 
(km) Discretization of 500 points  

D = 
10 cm 

Min. Altitude 0.11 mm 0.12 mm 0.50 cm 0.001 >100 0.01 50 
Max. Payload 1.24 mm 1.25 mm 4.97 cm 0.05 6.02 129.56 80 

D = 
10 m 

Min. Altitude 0.15 mm 0.16 mm 0.87 m 59.39 24.98 2132.57 55 
Max. Payload 1.24 mm 1.25 mm 4.97 m 467.23 6.02 1021162 80 

 

Table 13: Combinations of A, L and r that returned the optimal rocket geometries described in Figure S14 and Figure 
S15 above. 

Figure S14: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 cm Rocket 
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (0.01 mg at 50 km) is shown in (d), 
while that which was able to levitate the maximum payload (129.56 mg at 80 km) is shown in (e). 
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Figure S15: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 m Rocket 
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (2 132.57 mg at 55 km) is shown 
in (d), while that which was able to levitate the maximum payload (1 021 162 mg at 80 km) is shown in (e). 
 

a 

c 

b 

r = 0.87 m 

r = 4.97 m 

d 

e 



 

 
Comparison of D = 10 cm and D = 10 m Sphere Geometries 

Case A L r Surface 
Area (m2) 

Areas 
Ratio 

Payload 
(mg) 

Altitude 
(km) Discretization of 500 points  

D = 
10 cm 

Min. Altitude 0.15 mm 0.16 mm 1.93 cm 0.03 25.81 1.41 55 
Max. Payload 1.03 mm 1.04 mm 4.02 cm 0.03 4.93 79.86 80 

D = 
10 m 

Min. Altitude 0.15 mm 0.16 mm 1.90 m 302.22 26.66 831.92 55 
Max. Payload 1.24 mm 1.25 mm 3.67 m 263.63 6.23 540 528 80 

 

Table 14: Combinations of A, L and r that returned the optimal sphere geometries described in Figure S16 and Figure 
S17 above. 
 

Figure S16: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 cm Sphere 
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (1.41 mg at 55 km) is shown in 
(d), while that which was able to levitate the maximum payload (79.86 mg at 80 km) is shown in (e). 
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Figure S17: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 m Sphere 
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (831.92 mg at 55 km) is shown 
in (d), while that which was able to levitate the maximum payload (540 528 mg at 80 km) is shown in (e). 
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3. Buckling Simulations in COMSOL 
 
When creating high aspect ratio structures like the photophoretic aircraft, where the diameter-to-thickness 
ratio can reach 104, buckling or other forms of structural failure may occur. However, nanocardboard is the 
best material to prevent or survive these effects because 1) Knudsen pumping action creates an outward 
pressure to help maintain the shape of the hollow 3D structure and 2) nanocardboard has ultra-high bending 
stiffness and can recover from sharp bending [R5].  

 
To test the structures for buckling under their own weight, we performed COMSOL simulations for a few 
example geometries. We chose a 10-meter diameter sphere with a 4-meter diameter outlet and a 1 mm 
channel height, which is representative of structures optimized for maximum payloads. We also simulated 
a rocket geometry with a diameter of 4 m and a length of 10 m, and a cone of 10 m diameter, length of 8 m 
and outlet diameter of 6 m. An example is shown below in Fig. S18. 

Figure S18: Uniform sphere geometry within COMSOL. Similar models were used for the cone and rocket. 
 
In the simulations, we used an effective thin shell material whose weight, and bending and tensile stiffness 
correspond to those of nanocardboard. According to [R5], the tensile stiffness of nanocardboard is 3 times 
lower than for a uniform alumina shell of the same areal density. In contrast, the bending stiffness is 
increased by a factor ranging from 100 to 10000 for nanocardboard depending on the height of the channels 
and thickness of the shell in Ref. [R5]; we chose the upper bound demonstrated in experiments even though 
the optimized structures are even taller than the 50 microns used in [R5] and should be even stiffer. We 
then use this enhancement to calculate the effective thickness, Young’s modulus and density of the uniform 
shell that has the same stiffness properties as nanocardboard with face sheet thickness of 50 nm and 1 mm 
channel height, which represents the maximized payload case from the main text. However, nanocardboard 
with a thickness of 1 mm has potential to reach bending stiffness enhancement of 10,000,000, and we also 
included an example with the corresponding effective properties in Table 15. 
 

Bending stiffness 
enhancement factor Channel height Effective Thickness Effective Young's 

Modulus Effective Density 

10,000 1 mm 8.66 microns 0.58 GPa 115.5 kg/m3 

10,000,000 1 mm 274 microns 0.058 GPa 3.65 kg/m3 
Table 15: Corresponding effective properties due to nanocardboard TSEF and BSEF. 

 
In the COMSOL shell simulations, we analyzed the critical buckling factor based on the specified 
properties. A buckling factor greater than 1 indicates that the gravitational force alone is insufficient to 
cause buckling of the shell under its own weight. The simulations used boundary conditions with a simply 
supported edge for the outlet nozzle circle and applied gravity throughout the global coordinate system, 
simulating the shell resting on the ground. We utilized "Extra Fine" physics-controlled meshing for all 
simulations, incorporating geometric nonlinearities, and then moved to user-controlled free triangular 
meshes where maximum element size was varied.  A mesh convergence test was performed to confirm the 
convergent results of the simulations as shown in Fig. S19. An example simulation result showing 
displacement is depicted in Fig. S20.  



 

 
Figure S19: Mesh convergence test showing maximum element size vs. critical loading factor for spherical (left) and 
rocket-like (right) geometry, showing convergence to the specified values in Table 16. The cone simulation failed to 
converge. 
 
 

 
 

Figure S20: Uniform sphere example, with corresponding effective properties of nanocardboard from Table 15, 
displacement magnitude plot. Areas of maximum displacement represent where buckling will occur if load increases. 
 
The minimum critical buckling factor for a uniform sphere with properties equivalent to those of 
nanocardboard was 0.6, indicating that the structure needs to support 40% more of its own weight to prevent 
buckling under the given conditions. Alternatively, this means the structure would resist buckling until 
subjected to a gravitational force or acceleration 0.6 times Earth's gravity. 
 
The cone geometry did not converge according to mesh convergence tests, suggesting the absence of 
convergent buckling modes at significant deformations. To address this, we reduced the gravitational force, 
and increased the bending stiffness enhancement to 10 million. This worked for the rocket geometry, but 
the conical geometry never converged, even for gravity over a million times weaker than standard Earth’s 
gravity. The cylindrical geometry converged to a critical factor of 0.05 implying it could only support itself 
under a gravity less than 0.05 g.  Using the conservative bending stiffness enhancement factor of 10 000, 
all geometries would require additional support to avoid buckling, but the sphere requires the least. A 
nanocardboard sphere with a bending stiffness enhancement factor increased to 10 million, which is 
possible with the nanocardboard of channel height of ~ 1 mm [R5], can withstand its own weight without 
buckling with gravity or acceleration of up to 1.1 g’s. 
 
For the idealized scenarios presented in this study, we therefore can assume the spherical structure would 
maintain its shape best and support its own weight with small amounts of additional support structures. 
However, the other geometries—such as the cylindrical and conical shapes—require much more additional 
support to maintain structural integrity. These findings are summarized in Table 16. 
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Geometry Sphere, D = 10 m, 
Dout = 4 m 

Rocket D = 4 m, L = 
10 m 

Cone D = 10 m, Dout = 
6, L = 8 m 

Gravitational load 0.6 g 0.05 g N/A 

Table 16: Gravitation/acceleration required for buckling with nanocardboard properties corresponding to TSEF of 3 
and BSEF of 10 000 which corresponds to typical nanocardboard reported in Ref. [R5]. If the channel height is 
increased to 1 mm and BSEF therefore increased to 10 million, the sphere can withstand 1.1 g’s. 
 
If buckling still occurs due to unforeseen imperfections not accounted for in the simulations, there are 
alternative methods to reinforce the structures using, for instance, thin carbon fiber tubes or trusses along 
the structure's axis. Carbon fiber prepregs, available in thicknesses as low as 15 microns, could be used to 
fabricate tubes that weigh less than the structure itself while effectively preventing critical buckling modes. 
Frame-like structures could be employed to span the vertical diameter or length of the structure, depending 
on its geometry, enhancing buckling resistance in areas prone to high deformation. Furthermore, Fig. 6 in 
the main paper describes the pressure differential between the ambient air and the air inside the structure. 
The pressure differential shows an increased pressure inside the structure, meaning the additional pressure 
inflates the structure, resulting in additional support against the weight. We did not model that pressure in 
these simulations, but this additional beneficial pressure pushing outward would only increase the aircraft’s 
resistance to buckling failure. 
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