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We show theoretically that photophoretic aircraft would greatly benefit from a three-dimensional (3D)
hollow geometry that pumps ambient air through sidewalls to create a high-speed jet. To identify optimal
geometries, we developed a theoretical expression for the lift force based on both Stokes (low-Re) and
momentum (high-Re) theory and validated it using finite-element fluid-dynamics simulations. We then
systematically varied geometric parameters, including Knudsen pump porosity, to minimize the operating
altitude or maximize the payload. Assuming that large vehicles can be made from nanocardboard material,
as previously demonstrated at smaller scales, the minimum altitude such vehicles can levitate at is
approximately 55 km, while the payload can reach approximately 1 kilogram at 80 km altitude for vehicles
with 10-meter diameter. In all cases, the maximum areal density of the sidewalls cannot exceed a few grams
per square meter, demonstrating the need for ultralight porous materials.

For centuries, human exploration of Earth's atmosphere and outer space has led to important advancements
in fields such as aerodynamics, astronomy, and climate modeling [1-3]. However, some atmospheric
regions remain less understood due to limitations in existing propulsion technologies. One such area is the
mesosphere, which lies between 50 to 80 kilometers above Earth. In this layer, rising levels of carbon
dioxide are paradoxically causing rapid cooling [4]. This cooling, in turn, causes the atmosphere to contract,
resulting in reduced satellite drag and increased space debris [5, 6]. The challenge of studying these effects
lies in the mesosphere's unique conditions: its air pressure is too low for planes or balloons but too high for
orbiting satellites. As a result, there are large uncertainties in our understanding of the mesosphere and
related phenomena [7].

The Martian atmosphere is another area of keen interest, as recently highlighted by the near-surface flight
of the Ingenuity helicopter [8]. However, achieving sustained flight at higher Martian altitudes (> 10 km)
remains challenging due to the extremely low atmospheric density [9,10]. Similar to the obstacles faced in
Earth's mesosphere, the study of Mars' higher elevations is limited by the lack of long-duration propulsion
systems that can operate under very low-pressure conditions (less than 1 mbar or 100 Pa). Developing an
airborne platform capable of functioning in such thin atmospheres, on both Mars and Earth, would be
invaluable for collecting essential data on wind patterns, temperature and pressure fluctuations, and
atmospheric gas concentrations.

Light-powered lightweight levitating plates developed by Cortes et al. [11] can potentially achieve
sustained flight in both Earth’s mesosphere and the Martian atmosphere. These microflyers are made from
"nanocardboard," extremely lightweight porous plates, and can levitate using photophoresis, a light-driven
propulsion method that leverages Knudsen pumping to create a jet of ambient gas. The phenomenon is
strongest when the mean free path of molecules is comparable with the characteristic dimension of the
channels the gas flows through. Knudsen pumping pushes air through elongated channels or capillaries
upon exposure to incident radiation, such as light, because the absorption of light induces a temperature
gradient along the channel’s length. Air molecules coming from the warmer side of the channel transfer
more momentum to the channel when they hit the channel sidewall (Fig. 1f). Consequently, a net shear
stress is produced on the channel sidewall towards the cooler side, generating a corresponding reaction
force on the gas directed towards the warmer side. This results in the migration of molecules from cold to
hot, even against a small opposing pressure gradient, which is the essence of pumping [12,13]. Knudsen
pumps operate without moving parts, relying on temperature gradients to drive gas flow through the porous
plates.

Photophoretic levitation typically relies on a difference in physical properties between a plate’s top and
bottom. In the research conducted by Cortes et al. [11], the bottom side of the nanocardboard was coated
with carbon nanotubes (CNTs), which absorbed the incoming light and became hotter than the top side.
The nanocardboard material consists of ultra-thin aluminum oxide face sheets, ranging from 25 to 400 nm
in thickness, connected by micro-channels. This structure gives them an extremely low areal density of
approximately 1 g/m? and a bending stiffness several orders of magnitude higher than solid plates of the
same mass [14]. Under illumination, the temperature gradient triggered Knudsen pumping, forcing air to
move from the cooler top through the nanocardboard channels to the warmer bottom. The exiting air created
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a downward jet below the nanocardboard plate, producing a reaction lift force capable of levitating
centimeter-scale sized plates and carrying tiny “smart dust” sensor payloads [11,15]. The photophoretic
propulsion mechanism is most effective in low-pressure environments (1-100 Pa) [16], making it suitable
for applications in Earth’s mesosphere and high-altitude regions on Mars, such as Olympus Mons [17].
Swarms of these microflyers could be deployed on Earth or Mars to gather important upper atmosphere
data. However, the maximum size of such levitating plates is limited to several cm because radiation starts
to dominate the heat loss at even larger sizes. If the majority of the incident radiation gets carried away by
infrared radiation rather than by collisions with ambient gas, the momentum transfer from the planar
structure to the ambient gas is reduced and the photophoretic force vanishes.

In this work, we propose large three-dimensional photophoretic vehicles with diameters of several meters
and porous sidewalls that channel air into a central chamber and expel it through a bottom nozzle (Fig. 1).
Using the nozzle increases the speed of the exiting air jet, which in turn results in a higher lift force and
widening of the range of operating pressures where flight can be achieved. As we show below, the
pressurization possible inside a 3D geometry is fundamentally different from the zero-pressure-difference
pumping used in previous experiments [11], allowing this new approach to more effectively convert
incident sunlight into the kinetic energy of the jet and achieve levitation of arbitrarily large structures as
long as their areal density does not exceed a few grams per square meter.

The use of Knudsen pumping to create high-speed jets is also a novel physics principle for propulsion.
Photophoresis has previously shown promise at the microscale and cm-scale [11,16], but has never been
considered at the meter scale like we are proposing in this work. The larger size and higher jet speeds means
that such jets can operate over a range of Reynolds numbers from deep in the Stokes regime (Re < 1) to
the momentum theory regime (Re > 1), which requires new modeling approaches. We draw on our
previous theoretical models on levitating planar nanocardboard [11] and solid mylar-CNT composite disks
[18] to analyze these 3D vehicles below.
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Figure 1: A hollow sphere with porous alumina-CNT composite walls (a). The cross-sectional view (b) illustrates air
being drawn into the sphere through its porous walls due to Knudsen pumping and then expelled as a jet through the
exit nozzle. The velocity with which the air flows through the porous walls is labeled vy, as detailed in the zoomed-in
view (c), while the exiting jet velocity is labeled Vjo;. The dimensions are defined as follows: A is the nanocardboard
channel width, L the nanocardboard channel height, and r the structure’s outlet radius, while D is the structure’s
overall size dimension. As (d) demonstrates, the alumina walls are notably thin, with 50-nm wall thickness, about one
order of magnitude smaller than the channel width and length. The final view (e) highlights a thin layer of CNT on the
sphere’s interior, which absorbs light but has minimal impact on air flow. Panel (f) shows the molecular effects
occurring within the channel to induce Knudsen pumping, alongside an example model of flight in the mesosphere.

The walls of our proposed 3D vehicles are made of porous nanocardboard, consisting of alumina and coated
with carbon nanotubes (CNTs) on the inner side. Because alumina is transparent, only the CNTs absorb
incoming light, inducing Knudsen pumping of air from the outside into the interior chamber through the
channels and out of the chamber through the exit nozzle, producing a jet as illustrated in Fig. 1. The buildup
of air inside the structure creates a small overpressure, which is accelerates the air through the exit nozzle
but does not significantly slow down the Knudsen pumping through the walls of the structure, as shown by
our numerical models detailed in the Supplemental Material [19].



Figure 2: The three representative shapes explored in this work, a cone (a), a sphere (b) and a rocket (c). Here, the
nozzle view for all three geometries is shown.

To identify the optimal 3D geometry that maximized payload, we considered three representative shapes
(a sphere, a cone, and a rocket, shown in Fig. 2), and conducted simulations to determine the parameters
that would yield the greatest lift forces. First, we needed to find an analytical expression to estimate reactive
lift forces from the jet exiting the nozzle over a broad range of Reynolds numbers. We used computational
fluid dynamics simulations in ANSY'S Fluent to model the lift produced by these 3D vehicles, considering
outlet jet velocities ranging from 10¢ m/s to ~10? m/s and at atmospheric altitudes from 0 to 80 km. This
allowed us to obtain jet reaction lift forces for Reynolds numbers across nine orders of magnitude, from
deep in the Stokes regime, at Re~10~* for the smallest structures and flow velocities, to Re ~ 10* for the
largest structures and flow velocities.

The simulations were axisymmetric, rotating a 2D model around a central axis to generate 3D results. They
were conducted in an air box 10 to 100 times larger than the vehicle itself to ensure accurate lift force
calculations without interference from the walls. Additional details can be found in the Supplemental
Material [19], but Fig. 3 provides an overview of the modeling environment and boundary conditions. The
simulation employed ANSYS Fluent’s SST k-omega solver with standard settings, except for enabling low-
Reynolds number corrections. The lift force was found by integrating the forces acting on the boundary of
the airbox, which in the steady state, were equal and opposite to the forces created by the simulated 3D
vehicle.

In the ANSY'S simulations, the inner wall (colored red in Fig. 3a) acted as the inlet of the simulated volume,
drawing air into the central chamber at a given flow-through velocity, v,. The outer wall (violet) served as
the outlet, with the air flow exiting the simulated volume at the same flow-through velocity vy,. This setup
allowed us to estimate the lift force without the computational burden of simulating the air flow through
the structure’s microchannels. Instead, we replaced the flow through the microchannels with uniform flow
at an effective flow velocity vy, through the porous wall. Effectively, in the ANSYS simulations, we treated
v as an independent variable to find the lift force as a function of v;, for different shapes of the vehicle
(the actual values of vf, for each vehicle and altitude were found later using a MATLAB model of Knudsen
pumping described below). These simulations produced a dataset of reaction forces across a wide range of
operating altitudes, flowthrough velocities v, and jet velocities V.

Next, we fitted the collected data to the following equation:

F = C,8uDvgy + CopKvje,?, (1



where p represents the fluid viscosity, p the atmospheric air density, K = mr? defines the area of a nozzle
with radius 7, D is the characteristic (i.e., largest) dimension of the geometry, vs; the flow-through velocity
through the porous walls, and vj,, is the velocity of the fluid exiting the structure through the small nozzle.
As detailed in the Supplemental Material [19], v, depends on the light intensity, /, the altitude-dependent
air pressure, P, the geometric parameters of the nanocardboard and the vehicle’s 3D shape. The upper limit
of the flow-through velocity scales as vy, = 0.031/P (see Supplemental Material [19]), resulting in
velocities of less than 1 mm/s under natural sunlight (~1000 W/m?) and standard atmospheric pressure (10°
Pa) but this speed can increase by many orders of magnitude as the pressure drops at higher altitudes. All

altitude-dependent atmospheric properties used in simulations and numerical calculations were based on
Ref. [19].
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Figure 3: (a) Boundary conditions implemented on the ANSYS simulations, using a sphere as an example. The inner
air box region (whose boundary is shown in light green) was employed for finer meshing close to the vehicle. The outer
air box, not fully shown in the figure, extended to at least 10 times the size of the sphere. This size was generally
adequate for the lift force to stabilize, providing a reliable estimate for the expected mid-air lift force. (b)-(e) show the
velocity streamlines corresponding to the cone (b, c) and rocket (d, e) geometries simulations in ANSYS, for a flow-
through velocity of 1 m/s and atmospheric conditions corresponding to 0 km in altitude. Both the cone and rocket have
a characteristic dimension (D) of 5 cm. (c) and (e) show the entire computational domain, i.e., a zoomed-out view of
plots (b) and (d), respectively.

The first term in Eqn. (1), which is dominant at low Re, is based on prior work of Cortes et al. [11] (see
also Supplementary Material [19], page 14), who showed analytically that the lift force for nanocardboard
disks that pump gas through them at low Re was equivalent to the drag experienced by a solid disk moving
through a stationary fluid at the same velocity vy,. Briefly, the argument is as follows: If we switch to the



frame of reference moving vertically down at vy, the average velocity of the gas near the surface of the
object becomes approximately zero. Therefore, the boundary conditions are the same as for a solid plate
without any channels, though the boundary is not stationary in this moving frame and instead moves upward
at the flow-through velocity. In the Stokes flow approximation, there is no explicit time dependence. Hence,
the solutions for a moving boundary condition are the same as for a stationary boundary condition and we
can use the known drag equations for a disk and other shapes in the Stokes regime [27], all of which have
the form matching the first term in Eqn. (1).

The second term in Eqn. (1), dominant at high Re, is rooted in the helicopter-momentum theory equation,
which is an application of Reynolds Transport Theorem. Since the viscosity forces become less important
at high speeds, this term simply represents the momentum transferred to the exiting jet. Summing both
terms results in a simple interpolation between the low-Re and high-Re operating regimes, providing an
estimate for the lift force at all pressures and velocities. The constants C; and C; in Eqn. (1) were fitted to
match the simulated lift forces for various shapes we studied but, as detailed in the Supplemental Material
[19], the fitted values C; and C, were always on the order of 1. Table 1 summarizes the average fitted C;
and C, parameters obtained from fitting the results for 27 ANSYS Fluent simulations using 3 different
altitudes (0 km, 40 km and 70 km), 3 geometry types (sphere, cone, and rocket), and 3 different structure
sizes (1cm, Scm and 10cm).

Fitting Parameters for Each Geometry
Geometry Cone Sphere Rocket
Ci 1.2 1.3 1.4
(@) 0.9 0.9 0.4

Table 1: Fitting parameters for the three simulated geometries.

The lift Eqn. (1) uses only continuum regime terms because, for the most promising vehicle shapes, the
mean free path of the gas molecules is orders of magnitude smaller than the dimensions of the vehicle itself.
For example, the mean free path at 80 km is on the order of 1 cm (and smaller at lower altitudes), while the
optimal structures we consider are approximately 10 meters in size. We note that we do not model the
microchannels in the ANSYS simulations. Instead, the analysis of rarified gas flow through microchannel
was completed in the MATLAB numerical analysis that is valid in both continuum and free molecular
regimes. We also find that, even at operating altitudes in the mesosphere, this pressure is small compared
to the ambient pressure (> 1 Pa), allowing us to use incompressible flow assumption for the analysis of
airflow.

After establishing that Eqn. (1) with C; = C, = 1 as a reasonable estimate of the lift force (accuracy of 20-
30%), we focused on fine-tuning various parameters of the overall vehicle shape and the porous
microstructure of the nanocardboard to enhance its payload capacity. The developed MATLAB code [28]
was based on the photophoretic levitation theory originally developed for nanocardboard [11] and adapted
to axisymmetric 3D structures, as detailed in the Supplemental Material [19]. The code also accounted for
the altitude-dependent variations in temperature and pressure based on standard atmospheric models. Our
optimization aimed to find the best set of parameters, including 4 (width of the nanocardboard channel), L
(height of the nanocardboard channel), and r (radius of the structure’s outlet or nozzle), that would either
maximize payload or enable flight at the lowest possible altitude. This maximum payload and minimum
flight altitude were evaluated as a function the overall size of the aircraft, represented by D (the diameter
for a sphere and cone, or the length for a rocket, as shown in Fig. 5). To be able to use the formulas for
rarified gas flow [11], we also enforced the constraint L > A4, i.e., nanocardboard channels need to be
longer/taller than they are wide.

Our computational analyses showed that the best values for the nanocardboard porosity parameters 4 and
L remained fairly consistent across all shapes and sizes. Specifically, when the mission goal was to achieve
flight at the lowest possible altitude (55 km without carrying any payload), the optimal values for 4 and L
were approximately 0.20 mm and 0.21 mm. When optimized for maximum payload (achieved at 80 km
altitude), 4 and L increased to 0.90 mm and 0.91 mm, or about a factor of 4.5 greater. Despite a roughly
40-fold change in ambient pressure between these two altitudes (55 km and 80 km), the optimal 4 and L
values were of the same order of magnitude (sub-millimeter). This result suggests that it is feasible to design
structures capable of levitating in the lower mesosphere while still being able to carry a significant payload
at higher altitudes.



The maximum areal densities (i.e., vehicle mass divided by total nanocardboard sidewall area) that could
be levitated were also comparable for all structures. Table 2 shows that the typical value of maximum areal
density was ~ 7.1 g/m? (grams per square meter) for smaller aircraft with a diameter of D = 10 cm and =~
5.5 g/m? for larger aircraft with a diameter of D = 10 m. Fig. 4a illustrates how these maximum areal
densities changed with the size of the aircraft (D) and the airflow’s Reynolds number (Re). The permissible
areal densities of each structure decreased with increasing size and Re and stabilized at ~5.5 g/m? for larger
aircraft capable of carrying payloads of 1 gram or more. These maximum areal densities were similar to
the order-of-magnitude estimate of 4 g/m?, which was derived in the Supplemental Material [19]. This
estimate was calculated as C31/(Vqpg9) =~ 0.004 kg/m?, where I = 1000 W/m? is the incident optical

intensity, Vqypg = +/8Rgq; T/m = 400 m/s is average speed of air molecules at 55-80 km altitudes, C; =
0.016 is a constant, and R, = Ry /Mgy;, = 287 J/(kg - K) is the gas-specific ideal constant of air, equal
to the universal gas constant R,, divided by the average molar mass of air M;,..

Areal Densities and Areas Ratio
Geomet Cone Sphere Rocket
Y D=10cm [D=10m | D=10cm | D=10m | D=10cm | D=10m
Max Areal For Max. 2 2 2 2 2 2
Density Payload 6.6 g/m 5.4 g/m 7.8 g/m 5.5 g/m 6.9 g/m 5.7 g/m
For Min.
Area Altitude I8 % 4 21 % %
Ratios For Max.
Payload J J J © © e

Table 2: Summary of the parametric studies results for the Cone, Sphere and Rocket geometries, for values of D = 10
cm and D = 10 m (full data for all values of D can be found in the Supplemental Material [19] section). Here, the area
ratio refers to the Kioraq1/Kour ratio, of the structure’s total surface area to its outlet area.
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Figure 4: (a) Maximum areal density versus characteristic size and (b) maximum payload versus surface area for the

three considered 3D geometries at 80-km altitude. Each data point corresponds to the optimized geometry at each of
the probed values of the parameter D. The overlap between the curves, in particular at surface areas larger than 0.01

m?, shows that all three geometries have similar areal densities and maximum practical payload capabilities.

Assuming practical nanocardboard has an areal density of 1 gram per square meter [11], we plotted the
maximum payload against the structure surface area in Fig. 4b. While the sphere performed best at smaller
sizes, all three shapes delivered nearly identical performance at larger sizes, which can carry the largest
payloads and have the most practical applications. While the structure could be folded to increase the total
area, parts of the structure will be shaded or experience very low sunlight intensity due to oblique incidence
of sunlight. As a result, we chose shapes that do not self-shadow, are easiest to fabricate and are most likely
to maintain their shape during the flight. For example, the sphere and cylinder, and to a smaller extent the
cone, are all robust with respect to deformations due to the overpressure from Knudsen pumping.

Fig. 5 below illustrates optimized shapes for the 10-meter cone (a), sphere (b) and rocket (c), which could
carry 780, 540, and 1020 grams of payload, respectively, sufficient for modern communication devices [29]
or even typical CubeSats [30]. As highlighted in Table 2 and the Supplemental Material [19] section, we
observed that the ratio of the total surface to the outlet area, K;y¢q;/Kour, Was also fairly consistent for the
optimal geometries. In the case of achieving flight at the minimum altitude of 55 km, this ratio varied



between 17 and 42, with an average value of about 23 across all shapes and sizes. For scenarios aiming for
maximum payload at an altitude of 80 km, the typical ratio was around 6, as depicted in Fig. 5.

D=10m
a b c
D=10m
D) =
10 m
I—— —— [———=
r=497m r=3.67m r=4.97m
Payload: 780 g Payload: 540 g Payload: 1020 g

Figure 5: (a) Cone, (b) sphere, and (c) rocket vehicles geometrically optimized for maximum payload capabilities for
a characteristic dimension of D = 10 meters. D refers to the diameter of the cone and sphere, and the length of the
rocket. To achieve a 1 kg payload, the cone and sphere required diameter D of 11.5 meters and 14 meters, respectively.
The optimal angle for the cone, as seen in panel (a), is quite small, making it appear more cylindrical in shape.

Due to the principle of mass conservation and the incompressible fluid assumption, the speed of the jet
exiting the outlet must be greater than the velocity of air flowing through the channels by the K;y¢q1/Kout
area ratio. Therefore, recalling the vf, = 0.03 I/P relationship, we can approximate Vje; = V¢t Kiorar/
K,y =~ 0.181/P =~ 0.18 x 1300 W m™2/1 Pa = 234 m/s at the maximum payload altitude of 80 km,
while at the minimum altitude of 55 km (for zero payload), Vjer = VsiKiotar/Kour = 0.70 /P =
0.70 x 1200 W m~2/10 Pa = 84 m/s. We note that for the payload altitude of 80 km, the jet speed

approaches but remains below the speed of sound, given by Vsouna = YRairTsokm =
\/1.4 X 287 J/(kg K) x 200 K = 280 m/s, where y is the adiabatic constant of air and Tggx,, = 200 K is
the air temperature at 80 km altitude.

Achieving kg-scale payloads in the mesosphere therefore requires building 10m-scale photophoretic
aircraft out of ultralight materials that simultaneously possess low areal densities (=~ 1 g/m?) and sufficient
structural integrity. Nanocardboard has areal densities of approximately 1 g/m? as well as bending stiffness
values 4 orders of magnitude higher than those of flat plates with the same mass. In fact, because its bending
stiffness improves with channel length in the same way as in sandwich composite plates, nanocardboard
can achieve bending stiffness values of up to 3x10°® N-m and, in addition, recover its shape after sharp
bending [14]. These shape recovery properties of nanocardboard can help a large photophoretic aircraft
recover from buckling and other deformations caused by winds or non-uniform radiation. In the
Supplemental Material [19], we included COMSOL simulations of a 10-meter nanocardboard sphere
slightly deforming but not buckling under its own weight for nanocardboard that is 1 mm thick (and
therefore offers bending stiffness enhancement of 107 (see the Supplementary Material [19]). The pressure
differential in Fig. 6 also will inflate the structure, leading to enhanced ability to support its own weight. In
contrast, the other geometries are predicted to buckle under their own weight, which indicates the need for
additional lightweight support structures or frames which could be made of carbon fiber or similar
lightweight, but strong materials.

These proposed aircraft structures do not necessarily have to be rigid; flexible designs using parachute or
balloon-like structures could also be effective, as illustrated by the balloon-like shapes in Fig. 5. For such
designs, porous Mylar material may be a viable option. Nanocardboard-like panels of Mylar could meet
the structure's requirements, and Mylar is already used in many NASA balloon missions [31,32]. However,
alumina is superior to Mylar in terms of resistance to UV radiation and mechanical stiffness. All
calculations in this work therefore assume the material is alumina, just like nanocardboard. In order to



maintain an upright vertical axis, the carried payload would be suspended from the bottom of the structure
with a tether, lowering the center of gravity, and maintaining orientation during flight.

We made several key assumptions about the pressure and density inside the structure. First, we neglected
the pressure buildup inside the structure, which is caused by airflow through the channels. Second, we made
the simplifying assumption that air was incompressible when calculating the jet velocity. Fig. 6 shows the
pressure differential between the inside and outside of the balloon, showing the change is minimal. Even at
operating altitudes in the mesosphere, this pressure is small compared to the ambient pressure (> 1 Pa), also
allowing us to use incompressible flow assumption for the analysis of airflow. The largest difference in air
pressures is ~20% at the highest altitudes, around 80 km. While this pressure is sufficient to drive airflow
out of the exit nozzle for different geometries, it is a small differential that does not alter the air properties
enough to impact our calculations since our lift estimate Eqn. (1) already involves errors of 20-30%.
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Figure 6: This pressure difference and pressure difference divided by external pressure represents the variance
between the pressures inside and outside of the 3D structure, which is also the pressure forcing flow out of the outlet
nozzle. The structure chosen for the above plot is the optimal spherical structure for maximum payload from earlier
in the paper.

In our calculations, we assumed a light intensity of 1000 W/m? illuminating all surfaces. For reference, the
direct sunlight intensity in the mesosphere is approximately 1360 W/m?, similar to outer space.
Additionally, Earth’s planetary albedo of ~0.3 contributes an extra ~500 W/m? of reflected sunlight from
clouds and the Earth’s surface below the aircraft. Depending on the Sun’s elevation and the surface
orientation, the aircraft could be exposed to a range of light intensities, from zero to nearly 2000 W/m?,
combining both direct and reflected sunlight. If the aircraft rotates due to atmospheric winds, as balloons
usually do, all surfaces will experience an average light flux ~1000 W/m?2. Non-uniform radiation from the
sun causes be a variation in the rate of Knudsen pumping through the walls of the 3D photophoretic vehicle,
which reduces the jet velocity and the payload compared to uniform illumination assumption but does not
disable the propulsion mechanism we propose. As a point of reference, we also conducted simulations with
areduced light intensity of 500 W/m? which approximates the effect of nonuniform radiation on a rotating
flyer. In these scenarios, the achievable payloads were about four times lower than those calculated under
the 1000 W/m? assumption.

Additionally, although higher pressures increase the density of air inside the vehicle, their effect is
counterbalanced by the air inside the vehicle being warmer, resulting in a density difference of less than
20%. At certain altitudes, the air inside the vehicle may even become less dense than the surrounding air,
creating a buoyancy effect at altitudes below 50 km, i.e., below the mesosphere. In the mesosphere, the air
density is so low that buoyancy effects have little-to-no impact on the structures we are examining. We also
note that we conservatively assumed nanocardboard thickness and channel heights that we previously
fabricated [11]. If future innovations enable the creation of even thinner, porous films, it will allow the
photophoretic 3D flyers to operate at even lower minimum altitudes than 55 km, closer to the 35-40 km
range.

An important constraint for photophoretic aircraft is that the need for continuous light exposure to generate
lift. This condition limits their operational window to approximately 12 hours a day in low and mid
latitudes, after which they begin to descend. However, near the poles, extended periods of daylight during
the polar day allow for operations lasting weeks or months. Despite these limitations, these aircraft are
valuable for gathering data in the mesosphere because current technologies, like sounding rockets, can only
remain airborne in this region for a few minutes [8,10,33]. Once the mission concludes, payloads can be



safely returned to Earth, similar to how radiosonde weather balloon payloads descend using a parachute.
Given their shape, the 3D vehicles depicted in Fig. 5 could serve as parachutes for this purpose.

For deploying our proposed photophoretic vehicles, research balloons currently offer the most practical
method. These helium balloons can ascend to roughly 40 km [33], just below the minimum altitude where
photophoretic aircraft are effective with the 50 nm alumina thickness we assumed. After reaching peak
altitude, the helium balloon can release the aircraft, at which point the photophoretic Knudsen pumping
takes over as the main lifting force, allowing the aircraft to rise to their ideal sensing altitudes. Another
potential option is to use sounding or suborbital tourism rockets, which can reach altitudes of 100 km or
more [34]. These rockets can deploy payloads at lesser altitudes, making them an apt choice for releasing
photophoretic aircraft as long as they can move sufficiently slowly to release the vehicle gently, avoiding
any damage or tears to the structure.

High-resolution measurements of winds, temperature, pressure, magnetic fields, and gas concentrations are
some of the most valuable data that could be gathered in the mesosphere [35-38]. A network of these flying
vehicles could provide unparalleled temporal and spatial resolution in monitoring these parameters, thereby
enhancing our capabilities in climate and weather modeling. The payloads we have considered could be
equipped with lightweight Iridium transmitters for communication and either batteries or photovoltaics for
power, allowing for real-time data transmission back to Earth. Alternatively, the data could be stored and
the payload retrieved once the aircraft descends. This option could be particularly useful in situations where
equipment reuse is desirable.

The main focus of this paper is on the theoretical modeling of a novel propulsion method based on Knudsen
pumping. While we are in the process of conducting experiments to validate the theoretical model
discussed, the fabrication of large structures—measuring 10 meters or more—is currently impractical given
our available resources. This is particularly challenging because the required materials would need to have
microscale features spread across a surface area of hundreds of square meters. However, we anticipate
being able to test smaller structures, on the scale of centimeters, and some initial results were presented in
Ref. [39].

In summary, we demonstrate that spherical photophoretic aircraft constructed with ultralight, ultrathin,
porous materials have the capability to carry payloads on the scale of kilograms, which is similar to the
mass of CubeSats, without the need for moving parts or fuel. Our work introduces new applications of the
photophoretic force for 3D structures to enhance propulsion and presents a mathematical model that
explores varying geometries through innovative theoretical approaches. The findings from this study can
also be extended to high-altitude operations on Mars by adapting a Martian atmospheric model [40]. This
research paves the way for the development of low-cost, sensor-equipped aircraft that can operate in
previously unreachable atmospheric layers at altitudes of 55-80 km on Earth and 20-40 km on Mars,
opening new avenues for a deeper understanding of Earth’s atmosphere as well as exploration of other
planetary atmospheres.
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Three-dimensional photophoretic aircraft made from ultralight

porous materials can carry kg-scale payloads in the mesosphere

Supplemental Material
Thomas Celenza, Andy Eskenazi and Igor Bargatin

In this document, we present and expand on the computational and theoretical framework behind our work.
The first section is devoted to the ANSYS Fluent simulations, covering the solver set-up and the theory
behind the force calculations. The second section of this document focuses on the MATLAB code,
specifically the derivation of the equations used in the optimization of the geometrical and channel
parameters of the 3D geometries, including the rocket, cone and sphere. Finally, the third section expands
on buckling simulations conducted in COMSOL.

1. ANSYS Fluent Simulations

The goal of the ANSYS Fluent simulations was to determine an analytical expression to estimate the lift
forces produced by various types of 3D structures. The specific solver implemented was the SST k-omega
solver with default settings except the low-Re number corrections option. Because we sought geometries
that operated across a wide range of velocities and altitudes (and thus air pressures, densities, temperatures
and viscosities), the expression for the lift force needed to be valid across a wide range of Reynolds (Re)
numbers as well. In particular, this equation needed to reasonably accurately model the transition between
the low-Re (Stokes) regime to the high-Re regime. As the main paper argues, an appropriate expression is

F = C18#DVft + Cszv]'etz . (Sl)

Here, u corresponds to the fluid viscosity, p to the density, K = mr? is the area of a nozzle with radius r, D
is the geometry’s characteristic (usually largest) dimension, while vy, is the flow-through velocity of the
fluid through the porous material and vj,, is the velocity of the fluid exiting the structure through the nozzle.
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Figure S1: Main geometric parameters for the cone (a), rocket (b) and sphere (c). Notice that here, the variable D
serves as an overall indicator of the size of the geometry, while the variable r controls the outlet radii of the nozzle.



The fitting parameters C; and C, depended on the geometry and were determined using ANSYS
simulations. In this work, we considered three geometries, a cone, sphere, and rocket, shown in Fig. S1.
Through the ANSYS simulations, we determined the average C; and C, coefficients for each structure and
examined how these would evolve with overall size of the structure or the altitude. We performed 9 sets of
simulations for each geometry, where we varied three different inlet/outlet area ratios at three different
altitudes, resulting in flow-through velocities as small as 10 m/s or as large as 1 m/s.

To make our simulations computationally efficient, we took advantage of the axial symmetry of our three
geometries and thus constructed our models in a 2D, axisymmetric environment, which allowed us to only
simulate fluid flow on the top half of each structure. We formed these geometries using ANSYS’ “Design
Modeler” module, and they were essentially composed of three spaces: an outer air box, and inner air box,
and the nanocardboard geometry itself (whose interior was “subtracted” from the inner air box). For the
purposes of these simulations and the limitations posed by Fluent, we assumed 100% porous walls through
which the air would flow at velocity vg (an idealization of the actual porous nanocardboard material our
geometries were made of). We believe this assumption to be valid because we were mainly investigating
overall geometric effects created by changing the shape. Furthermore, although real nanocardboard, as
demonstrated in previous work [R5], had a porosity of approximately 50%, the gas flowing through each
of its pores would do so about twice as fast than the flow-through velocity vg in our simulations. This is
because we defined the flowthrough velocity to be the volumetric flow rate of the gas through the pores
divided by the total area of nanocardboard (rather than just the area of the pores). As a result, changing the
porosity would not affect the obtained fitting coefficients C; and C, since the reaction forces acting on the
flyer are calculated from the force acting on the air box, which is not dependent on the total volume of air
flow into the flyer and out of the jet.

The next step was to specify mesh elements, shown in Fig. S2. Plot (a) shows the larger, outer air box with
coarser mesh elements, while plot (b) is a zoomed-in view into the smaller, inner air box, containing smaller
mesh elements. By dividing the air box into these two regions, we optimized the overall number of mesh
elements in the simulation by providing a higher resolution just in the area close to the geometry. We
created the mesh by selecting edges and dividing them into a discrete number of points; to enforce a uniform
grid pattern, we used the quadrilaterals face meshing command. For the sphere, this resulted in 184,180
elements (185,408 nodes); for the cone, 194,322 elements (195,865 nodes); for the rocket, 293,053
elements (294,616 nodes). These were the final numbers of mesh elements obtained as a result of
performing a convergence analysis until observing negligible changes in the computed lift forces.

Figure S2: Sample meshing of the axisymmetric sphere simulation in ANSYS Fluent. Here, plot (a) provides an
overall picture of the air box (which is more than ten times larger than the geometry in question in each dimension),
while plot (b) shows a zoomed-in image of the area immediately surrounding the sphere. The size of the outer air
box was not arbitrary, but rather resulted from a series of simulations that gradually increased its dimensions until
force values converged.

The final step was to establish Fluent’s “set-up” module parameters. For the model, we chose the viscous
k-omega, with the low-Re (viscous) corrections feature enabled. Next, we fixed the boundary conditions as
described in the main paper, and manually modified operating conditions (environment pressure, fluid
density and fluid viscosity) matching the chosen altitude. Since our fluid was air, we extracted its properties
as tabulated in altitude-dependent standard atmospheric tables, summarized in Table 1 below for 0 km, 40
km and 70 km (our probed altitudes). Last, we specified the inlet velocity as a variable parameter, since
that allowed us to sweep through values ranging from 10 m/s to 1 m/s in 7 logarithmically equally spaced
points.



Summary of Altitude-Dependent Atmospheric Properties
Altitude 0 km 40 km 70 km
Atmospheric Pressure (Pa) 101300 275.47 4.66
Atmospheric Temperature (K) 288 251 220
Air Density (kg/m3) 1.23 3.83*10 7.38%107
Air Viscosity (Pa * s) 1.796*10 1.610*10 1.447*107

Table 1: Tabulated altitude-dependent atmospheric conditions for 0 km, 40 km and 70 km. These values were manually
inputted for each simulation set into the Fluent solver.

We repeated this process 36 times, to construct 18 simulations for the cone, 9 for the sphere and 9 for the
rocket, using operating conditions corresponding to 3 different altitudes (0 km, 40 km and 70 km) and 3
different geometry sizes. In each case, we computed the reaction force in the axisymmetric direction using
a line integral along the walls of the outer air box, resulting in the force values shown in Figs. S3—S6. This
computation made use of the fact that under steady-state operation, the reaction force is equal to the lift
force. The C; and C, coefficients were then determined by fitting the data in MATLAB to equation (S1),
resulting in the values that are shown in the same figures and tabulated in Tables 2-5. In general, most
curves of Figs. S3—S6 (in the logarithmic scale) show a transition from the viscous, low-Re regime to the
high-Re regime that is manifested through a change in the slopes of the force curves. However, at 70 km
in altitude, the lift force stayed in the Stokes (low-Re) regime and the high-Re C, coefficients remained
uncertain at this particular altitude. Thus, when computing the overall average C; and C,, we did not
incorporate the C, corresponding to the 70 km altitude.

Fitting Parameters for the Rocket, Dia. =2 cm
. Length=1 cm Length =5 cm Length =10 cm

Altitude Ci G Ci G G G

0 km 2.0 1.1 1.0 1.1 0.9 1.1
(1.6-2.4) (0.9-1.3) (0.8-1.2) (0.9-1.2) (0.7-1.1) (0.9-1.2)

40 km 2.24 0.73 1.1 0.8 1.0 0.8
(2.12-2.38) (0.62-0.85) (1.0-1.3) (0.6-1.0) (0.9-1.2) (0.6-1.0)

70 km 2.361 1.20 1.08
(2.353-2.368) (1.20-1.20) (1.08-1.10)
Average 2.22 0.91 1.12 0.92 1.00 0.95

Table 2: C; and C, coefficients computed for the rocket geometry of different lengths (1 cm, 5 cm and 10 cm), alongside
the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).

Reaction forces for various flow-through velocities Reaction forces for various flow-through velocities Reaction forces for various flow-through velocities
Rocket Geometry: Dia. =2 cm, Len. = 1 cm 0 Rocket Geometry: Dia. = 2 ¢cm, Len. =5 cm 0 Rocket Geometry: Dia =2 cm, Len. = 10 cm

* ANSYS Force (Altitude: 0 km)
——Fit: C1 = 1.04,C2 = 110
S tude: 40 km)
77

¢ (Altitude: O km)
2=1.10

c2

{Altitude: 40 km)
C2=073
{Altitude: 70 km)
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ANSYS Force (Altitude: 70 km)
Fit: C1 = 1.20,C2 = 0.17
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Figure S3: Results from the altitude-dependent rocket simulations in ANSYS Fluent; each data point corresponds

to a different flow-through velocity, ranging from 10°° m/s to 1 m/s, while plots (a), (b) and (c) correspond to
different rocket lengths.




Fitting Parameters for the Sphere, Dia. =2 cm
. Fout = 0.1 cm Tout = 0.5 cm Fout =1 cm
Altitude Ci C2 Ci C2 Ci C2
0 km 1.4 0.29 1.5 1.06 0.9 1.5
(0.7-2.0) (0.21-0.37) (1.3-1.7) (0.95-1.18) (0.8-1.0) (1.4-1.7)
40 km 1.4 0.6 1.5 0.9 0.91 0.99
(1.0-1.9) (0.4-0.8) (1.3-1.6) (0.7-1.0) (0.89-0.93) (0.91-1.08)
70 km 1.65 1.58 0.95
(1.63-1.67) (1.52-1.64) (0.94-0.96)
Average 1.48 0.45 1.50 0.97 0.91 1.26

Table 3: C, and C, coefficients computed for the sphere geometry of different outlet radii (0.1 cm, 0.5 cm and 1 cm),
alongside the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).

Reaction forces for various flow-through velocities Reaction forces for various flow-through velocities

Reaction forces for various flow-through velocities

Sphere Geometry: Dia. =2 cm,r_ =0.1 cm Sphere Geometry: Dia.=2cm,r =05 cm R Sphere Geometry: Dia.=2em,r  =1cm

o out 0

Altitude: 40 km)
2=087

(Altitude: 70 km)
2=041

10°

Force (N)
Force (N)
Force (N)

107

10

0 107 10°

V” (m/s) \'“ (m/s) \-'”(m s)

Figure S4: Results from the altitude-dependent sphere simulations in ANSYS Fluent; each data point corresponds

to a different flow-through velocity, ranging from 10 m/s to 1 m/s, while plots (a), (b) and (c) correspond to
different sphere outlet radii.

Fitting Parameters for the Cone, Dia. =2 cm
. Length =2 cm Length =5 cm Length =10 cm

Altitude G C G [ G C

0 km 0.7 0.9 0.7 0.9 0.7 0.9
(0.5-1.0) (0.7-1.1) (0.5-0.9) (0.8-1.1) (0.4-1.0) (0.7-1.1)

40 km 1.0 0.6 0.9 0.6 0.8 0.7
(0.8-1.2) (0.3-0.8) (0.7-1.1) (0.4-0.8) (0.7-1.0) (0.6-0.9)

70 km 1.07 1.01 0.98
(0.98-1.16) (0.94-1.07) (0.95-1.02)
Average 0.94 0.72 0.88 0.76 0.84 0.82

Table 4: C, and C, coefficients computed for the cone geometry (2 cm diameter) of different lengths (2 cm, 5 cm and
10 cm), alongside the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).

Reaction forces for various flow-through velocities

Reaction forces for various flow-through velocities
0 Cone Geometry: Dia. =2 cm, Len.= 2 cm

Reaction forces for various flow-through velocities
" Cone Geometry: Dia. =2 ¢m, Len. =5 cm

) Cone Geometry: Dia. =2 cm, 1~/
10
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Figure S5: Results from the altitude-dependent cone (2 cm diameter) simulations in ANSYS Fluent, each data point

corresponds to a different flow-through velocity, ranging from 10 m/s to 1 m/s, while plots (a), (b) and (c)
correspond to different cone lengths.




Fitting Parameters for the Cone, Dia. =4 cm
. Length =2 cm Length =5 cm Length =10 cm
Altitude Ci Cz Ci Cz Ci Cz
0 km 0.9 1.0 1.0 1.0 1.0 1.0
(0.7-1.1) (0.8-1.2) (0.8-1.2) (0.8-1.1) (0.7-1.3) (0.8-1.1)
40 km 14 0.6 1.2 0.7 1.1 0.8
(1.1-1.7) (0.4-0.9) (1.0-1.3) (0.6-0.9) (1.0-1.2) (0.7-1.0)
70 km 1.5 1.24 1.19
(1.3-1.6) (1.22-1.25) (1.18-1.20)
Average 1.27 0.82 1.13 0.86 1.09 0.89

Table 5: C, and C, coefficients computed for the cone geometry (4 cm diameter) of different lengths (2 cm, 5 cm and
10 c¢m), alongside the 66% confidence intervals for each fitting parameter (tabulated below each coefficient entry).

Reaction forces for various flow-through velocities
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Figure S6: Results from the altitude-dependent cone (4 cm diameter) simulations in ANSYS Fluent; each data
point corresponds to a different flow-through velocity, ranging from 105 m/s to 1 m/s, while plots (a), (b) and (c)
correspond to different cone lengths.

As we increased in altitude, the value of the C; parameter increased while that of C, decreased. All in all,
Table 6 below summarizes the average C; and C, coefficients obtained for each geometry. In all cases, the
coefficients are on the order of 1.

Average Fitting Parameters for Each Geometry
e Cone Sphere Rocket
D=2cm D=4cm D=2cm D=2cm
Ci 0.9 1.2 1.3 1.4
(&) 0.8 0.9 0.9 0.9

Table 6: Fitting parameters for the analytical theory for standard atmospheric conditions on Earth, for each geometry.

The next section of this document takes the force fitting parameters found from the ANSYS Fluent
simulations and focuses on MATLAB-based parametric optimization of our three different geometries.

2. MATLAB Code and Extension of Theoretical Framework

In this section of the Supplemental Material, we present the extension to 3D structures of the original
nanocardboard fluid mechanic theory developed by [R3]. The equations derived below were implemented
ina MATLAB code to perform a series of parametric studies that seek to optimize the geometric and porous
parameters of our three study geometries, a cone, a sphere and a rocket. More information about our code
can be found in our publicly available repository [R4].

2.1. Derivation of Equations

2.1.1 General Overview
For a general 3D porous structure, conservation of mass establishes that

Ktutalvft = KoutVour (S2)


https://github.com/andyeske/MATLAB-fluidflow-parametric-studies

Here, K;,:q; represents the total surface area of the structure (as if the structure had no pores/channels) and
vy is the flow-through velocity of the fluid across this surface. Similarly, K,,,; corresponds to the area
covered by the outlet, while v, is the exit velocity of the fluid out of the structure. Adding Bernoulli’s
equation, we get the relationship that

Pin — Pour _ AP _ voutz - vftz

P p 2 ' (83)

In (S3), P, is the pressure right at the inlet of the structure, P, is the pressure right as the jet of fluid is
leaving the structure, located around the space close to K,,,;, while p is the fluid density. This equation can
be rearranged to yield an expression for the pressure difference across both ends of the structure, resulting
in

AP = p(voutz - vftz)

2 ' (S4)
Assuming that the porosity of the 3D structure originates from using the nanocardboard geometry
developed by [R3] as the wall material, then we can model the mass flow rate of the fluid across one of the
structure’s pores (or more properly said, channels) using the following equation

m = —alAP + yAT . (S5)
In (S5), a and y represent two constants, which come from curve-fitting the data obtained by [R7] and

transforming the non-dimensional mass flow rate equation into a dimensional form again, with both
pressure and temperature contributions®. These variables take the following form:

) 0.25\ A2Bp.
o= (L1) (14 22) 2L

V§/ L (S6)
and
_( 1.1 \A2BPg.
V= 15+5) L (S7)

Here, the variable P, denotes the average pressure2 between the two sides of the structure’s nanocardboard
wall, T, analogously describes the average temperature between both sides of the wall’s surface, while £,
is an inverse velocity parameter. Specifically, this last one is given by

m

b= ot

(S8)

where kg is the Boltzmann constant (equal to 1.38 * 10°2* J/K), and m is the mass of an air molecule3.
Lastly, the parameter § is the gas rarefaction coefficient, which [R7] defines as

5o YmA_ VT
T 21 2Kn’ (S9)

In this expression, 4 is the molecular mean free path, defined as the average distance traveled by a molecule
between collisions with other molecules, and Kn is the Knudsen number, which is characterized in terms
the of channel width. In essence, higher values of the § parameter designates flows in the continuum regime,
while smaller values indicate flows taking place in the free molecular regime. As for the molecular mean
free path, mathematically it is usually expressed as

t For more information, please see [R2].

2 The value of this variable may be found from performing CFD simulations but will be simply approximated as the operating pressure.
3 The molar mass of air is 0.02896 kg/mol, so then the approximated mass of an air molecule would be 0.02896/(6.022%10% )
(Avogadro’s number), or 4.8089 * 102° kg.
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where p(T) is the fluid’s viscosity and P(7) is the operating pressure, both given as a function of 7, the
operating temperature. In addition, from equation (S9), we see the Knudsen number is defined as

Additionally, as seen in Fig. S7 below, the variables 4 and B characterize the nanocardboard channel’s
width and length, respectively, yielding a cross-sectional area of 4 x B. In addition, L denotes the channel’s
height. Note that in [R3], 4 is assumed to be much smaller than B.

After defining these variables and introducing the expression for the mass flow rate, m, across one of
nanocardboard’s channels, then an equation can be derived for the average flow-through velocity across
the structure’s surface, which is simply described by

om go( alAP + yAT)
Ve = a4 = DAB (S12)

Here, m/p is no other than the volumetric flow rate V, while the term ¢ denotes the geometric fill factor,
which is defined in terms of K;,, (porous area) and K;,.4;%, or the channel parameters, and takes the form

_ Km _ ABX A
=Ky (ABX+SBX) (4+S) (S13)

The latter two equivalencies in (S13) originates from analyzing a single nanocardboard unit cell as opposed
to the full 3D structure. Indeed, as Fig. S7 shows, the total cross-sectional area of the cell (if no channels
were present) is given by

Keen = (ABX + SBX) = (A + S)BX, (S14)

where the variable X is just the number of channels in a unit cell.
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Figure S7: Main nanocardboard channel parameters.

4 This area is essentially the total 3D structure wall area if there were no channels present. This is analogous to Area.,;; in the single
nanocardboard unit cell.



However, this number (X) is not arbitrarily chosen, and is dictated by 4, B and S in the following way

=572 (S15)

This expression considers the channel width 4 and spacing S as a unit, and tries to fit as many of those 4 +
S units into the channel length B. Nonetheless, we need to consider an additional S for spacing against the
perpendicular channels. This can be seen more clearly in Fig. S8 below, where the yellow bars represent
the 4 + S units, and as drawn, five of these fit in the length of B, after subtracting one S.

View

Key

A: Channel Width
B: Channel Length

Spacin

Figure S8: Illustration of equation (S15), with the yellow bars showing the A + S units fitted into the channel length B.

Overall, the flow-through velocity expression provided in (S12) is a step closer towards calculating the lift
force that a 3D structure could generate for a given combination of geometric and channel parameters.
However, computing lift will not be possible until we solve for v,,;. Therefore, (S12) can be rearranged to
instead solve for another unknown, AP , and obtain

_YAT 3 Vs pAB

AP
a ap (S16)

Since both (S16) and (S4) from above provide two distinct expressions for the pressure difference, it is
possible to equate them, giving rise to yet another relationship between v¢, and vy, giving

P Wour® — vftz) — AP = yAT _ Ve pAB
2 a ap (S17)

Rearranging this expression further, we get

Vout

2 (yAT v pAB
2T ol

A ap (S18)

Now, recalling the conservation of mass relationship provided in (S2), it is possible to write vy, the flow-
through velocity across the channels, in terms of v,

v — Kout v — q)Koutv
T Ktotal out Kin out: (819)

Thus, (S19) can replace the v, term in (S18), leaving everything in terms of just v,y

2
2 _ E(VAT _ KoutvoutpAB) n ( Kout ) v 2
p a Ktotala(p Ktotal out

Vout

(S20)

Further manipulating (S20), we get the following quadratic

o2 1o (Kot )\ 4, (ZRowAB) _2/AT _
o Ktotal o Ktotalaq) pa ’ (SZI)




which has precisely v,,; as its only unknown. This equation will always have two distinct, real solutions,
one of which will be positive and the other of which will be negative. These are

B (ZKoutAB> N (ZKWAB)2 LBYAT (- ( Kot )2
Ktotala(p Ktotala(p pa Ktotal

2 (1_ (%)3 (S22)

Vout

as the positive solution, and
B (ZKoutAB> _ (ZKoutAB>2 LBYAT () ( Kot )2
Ktotala(p Ktotala(p pa Ktotal
211— ( Kout )2
Kiotar (S23)

In the context of our work, only v,,,* is meaningful, since it is the solution that makes physical sense as
the outflowing jet of air operates effectively with a positive v,,;. Consequently, throughout the manuscript
and the supplementary solution, it is v,,,;* the solution that is simply referred to as v,,;. A negative solution

would involve some mechanism actively pumping the air into the structure through the “nozzle”. Since no
such pump would exist in practice, we are ignoring the negative solution deeming it non-physical.

Vout =

One underlying advantage of this derivation was that it removed the need to know the pressure difference,
AP, while providing us with enough information to solve for v,,; and vy,. In the following sub-section, we
deliver more details on the heat conduction modeling across the nanocardboard’s thickness, which enabled
obtaining an expression for the temperature difference, AT, necessary to solve for v,,; in (S23).

2.1.2 Heat Conduction Modeling
2.1.2.1 Full Analytical Derivation for AT

In order to compute AT, the temperature difference between both sides of the structure’s walls, we needed
to model the heat conduction across the structure’s thickness. We performed a heat energy balance that
considered heat transfer across three distinct cross-sectional areas: the channel’s column of air, across the
alumina thickness of the channel, and across the air trapped within the structure, as shown in Fig. S9 below.
As aresult, we can let Q;, the total heat transfer, be

o, AT AT AT
""Ru R R’ (824)

where the R4, R;, and R,;; represent the thermal resistances under the three scenarios detailed above. For
the first of these areas (K;), the column of air in the channel, we define its thermal resistance as

L L
" ki Ko X ko ABX' (S25)

Rtl

where k,;, is the thermal conductivity of air, L is as usual the channel height, and ABX is the cross-sectional
area of the individual channels (4B) multiplied by the number of channels (X) in a unit cell, as shown in
Fig. S9 above. Notice that ;. is both temperature and pressure dependent, as the equation developed by
[R10] captures, specifically for the small MEMS scale:

Ko

Kair =

(S26)



In this expression, K is the air conductivity at standard atmospheric conditions, normally quoted as x, =
0.024 % Another comparable and slightly more succinct model for the conductivity of air is from [R8]:

ar = 3 TT6R
(1+>77)

(S27)

As the pressure decreases, the mean free path eventually becomes comparable to the channel length, and
the effective conductivity starts to decrease below the continuum value. Both equations (S26) and (S527)
yielded very similar values for the conductivity of air as a function of the channel thickness L, although we
used Eq. S27 in the simulations.
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Figure 89: Main nanocardboard cross-sectional areas for which thermal resistance is calculated.

Continuing with the heat conduction modeling, the corresponding expression for the thermal resistance
across the alumina thickness on the channels (area K, in Fig. S9) is given by

L L
" kuaKoX T kgql(A+2t)(B +2t) — ABIX’ (S28)

R,

where [(A + 2t)(B + 2t) — AB]X is the cross-sectional area occupied by the alumina thickness of the
channels, which is denoted as t. In (S28), k4 is the thermal conductivity of alumina, which has a constant

value of 1.8 % [R2]. Lastly, the thermal resistance of the air trapped within the structure (area K3) is

L—2t L—2t

Rt3

Tk K. AB ’
kairKs [7 —(A+20(B + 20| X (529)

where recall from (S13) that % is the full area of the cell, from which we subtract the combined cross-

sectional area of the channels with thickness ¢t of alumina. Now, performing an energy balance, the heat
flow through the structure’s walls must be equal to that from the absorbed irradiation of the sun, which in
this case is given by

& =l (“5) - ). ($30)

In equation (S30), & denotes the absorption coefficient (approximated to 0.9 based-off the measurements
from [R3]), 1 the proportion of absorbed optical flux dissipated upward through the nanocardboard (which
is assumed to be 0.5 or 50%), and I,,,, the intensity of the sun at a particular altitude. In particular, this last
term can be modeled using the following equation

Iun = 1000 + 3.8h, (831)



where the variable /4 refers to the elevation above sea level in kilometers. Notice that this expression returns
the sun’s intensity in units of Watts per meter square. Furthermore, in equation (S30),
(ABX /9)(1 — @) corresponds to the solid area of the nanocardboard, K,,;;4, where the sun’s irradiation
is absorbed. In any case, (S24) through (S31) were combined to write a general expression for AT, which
is summarized by

ABX
lun () A= 9)
AT =T,-T, = 1 1 1 =
ot
Rtl th Rt3
ABX
) el (7) (1- @)

kair 2~ (A+20) (B +20)| X

kair ABX | kaia[(A +20)(B +2t) — AB]X "L

L L

L—2t
(S32)

In (S32), T, and T, represent the average temperatures outside and inside the 3D structure, respectively.
However, these might not necessarily be known beforehand, reason why calculating AT or T,, the average
temperature between both sides of the surface, may not be as trivial. In particular, to compute T,, we make
use of the fact that we know what AT is from (S32) and take the following expression

_T1+T2_(TZ_T1)+2T1_AT+2T1
o2 2 o2 (S33)

Here, notice that T; is simply equal to the temperature corresponding to the particular operating conditions
(altitude, pressure, density) of the fluid. Overall, AT allows us to solve for T, (which is needed to compute
y and B, in (S7) and (S9), respectively) and the last part of the puzzle in (S23), the v,,; expression.

2.1.2.2 Simplified Expression for AT in the limit of zero alumina thickness

Beyond the derivation provided in 1.2.1, notice that one could potentially also approximate AT through a
more simplified expression given by

- LIsun(1 - ¢)

AT
Zkair (834)

The origin of (S34) comes from taking the limit as #, the alumina thickness, approaches zero, in equation
(S32). Indeed,
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Furthermore, letting € =1 and ¥ = 0.5, then (S37) indeed becomes equation (S34) from above. As
evidenced by its compressed form, using (S36) to approximate AT simplifies the process of solving for the
flow-through velocity, vs,. This is especially true if we were to also neglect the pressure term, assuming its
contribution is negligible. As a result, the mass flow rate from (S5) can be re-written as

m~y = AT . (S36)
This helps reduce the flow-through velocity expression to

o = pm _@yAT _ ¢y Llsm(1 — ¢)
Tt~ pAB~ pAB ~ pAB  2kgr (S37)

Even this expression can be further simplified by reducing the y term from (S7) to

1.1A%BP.B, _ 1.1A%BPg, _ 2.2ABP m

From the ideal gas law, we have that P = pR;,-T, so the pressure term can be replaced in (S38) to obtain

2.2AABpR;, T m 2.2AABpR 4, m
Y~ = :
VaTL 2kgT VL 2kpT (S39)

Combining equations (S37) and (S39), the resultant expression turns out as

@ LI(1— ¢)2.2AABpR,;, m  11el(1— @)AR;, m
v = =
T ™ pAB 2Ky, N3 2kpT K air 2kpTT (540)

Now, recall that the average molecular velocity is equal to

” _ 8RairT
wesy o (S41)

and the relationship between viscosity and velocity, as provided by [R6], is equal to

_ lp Vavg

k=3 (S42)

Hence, combining both (S41) and (S42) and solving for A, we obtain an expression which can be
incorporated in (S40) to yield

_ 119I(1 — @)Ryy kT m  11ol(1— @)Ryyrp | mukgT
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Kair P4 2Kqr P’ (S43)

. .. . . 2uC,
Now, according to [R6], the conductivity of air can be often approximated as k- = ljw", = 2uC,, where

M is the molar mass of air and C,,’ is the specific heat capacity at constant volume, in units of J/k mol. Thus,
equation (S43) can further simplify into
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where the constant C is simply given by
1.1¢(1 — ¢)Ry 1.1-0.5-(1— 0.5)-0.287
o L10A ~ @)Raur _ ( ) — 0.0275
4C, 4-0.718 (S45)

Hence, what these series of derivations shows is that it is possible to approximate and obtain order-of-
magnitude estimations of the flow-through velocity by using

I

2.2. Lift-Force Calculations and Temperature-dependencies

Once we knew how to calculate vs, and v, using the equations derived above (whether it is in the

simplified or full analytical form), we used the following equation to calculate the lift forces produced by
each geometry, as outlined in the ANSY'S simulations section at the beginning of this document:

Z F= CISMDUff + CZpKoutvOutz . (S47)

Here, D is the characteristic radius of the geometry (usually the inlet radius), while u is the viscosity and p
the fluid density. In addition, C; and C; are the geometry dependent coefficients summarized in Table 6.

As the derivation of equations above evidences, all of the geometric (K;y:q; and K,,,;) and channel (4, B,
L, S, f) variables are present in (S23), meaning that it was possible to construct parametric studies exploring
the dependency of v, and consequentially lift, on all of these. Notice, all of these variables were largely
independent of each other, making it possible to modify each separately. However, some other parameters
within (S23), such as Ig,,, density p, and air viscosity u, were actually dependent on temperature, which
in turn was also altitude dependent. As a result, in order to accurately calculate the flow-through velocities
Vs, experienced by a 3D geometry in a range of altitudes, we needed to derive expressions for
approximating the air temperature, air pressure, air viscosity and air density as a function of altitude itself.

2.2.1 Temperature-dependent Relations

We developed the relations characterizing the dependency between temperature and the fluid variable in
question by using standard atmospheric5 empirical data and fitting equations to it. This approach allowed
us to better capture the complex variations of temperature with altitude to a relatively high degree of
accuracy; in turn, this process enabled obtaining a more realistic representation of the pressure-altitude
dependency, at least compared to typically used approximations such as the barometric formulae. For
instance, for the data describing the dependency between air temperature and altitude, we fit both a 6, 10
and 15" order polynomial, as Fig. S10 to the below shows.

Overall, the 15% order polynomial provided the best empirical fit, which was why we decided to use it for
the rest of this analysis. However, one interesting aspect of this fit was that we actually fitted the inverse of
the temperature, the reason for which will become clearer in the derivation of the altitude-pressure
dependency. In any case, equation (S48) below shows this explicit relation, with 4 (the altitude) being in
kilometers, and all terms in the column added.

5 The specific standard atmospheric data was taken from the following three websites:
https://www.engineeringtoolbox.com/standard-atmosphere-d_604.html | https://www.pdas.com/atmosTable1SLhtml |
https://www.pdas.com/bigtables.html
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Having derived the empirical relation between temperature (its inverse) and altitude, it was possible to
determine a similar expression for pressure. In essence, the differential equation describing the pressure-
altitude relationship is given by

dP(h) = —gp(h) - dh, (S49)

where g is the gravitational constant on earth, and p(h) the density of air at a particular altitude 4. Using
the ideal gas law, p(h) can be substituted to yield the following expression for the above differential in
equation (549)

dP(h) = —gﬂ- dh,
RairT(h) (S50)

where now R,;, is the ideal gas constant of air and is equal to 287 J/kg * m3. Easily enough, one can
utilize the technique of separation of variables to obtain that

dP(h) -g
P(h) ~ Ry T(h) ah. (S51)

which leaves all of the pressure terms on one side, and the rest on the other. As a result, it is possible to see
with more clarity why the above polynomial fit was done for the inverse of temperature. Indeed, equation
(S51) can be equivalently written as

dP(h) _—gT™'(h)
Py - Rey (S52)

This expression can be easily integrated to obtain the following logarithm:

9 (s
o f T-1(h) - dh.

In(P) = (S53)

Letting {(h) = [ T~*(h) * dh be a placeholder for the integral of the inverse temperature polynomial and
C be simply a constant of integration, we obtain that

-9
Ry S W FC (s54)

In(P(h)) =
Now, in order to remove the logarithm from the pressure, we can raise both sides of the expression to the
Euler’s number power, and get
Limy+c
air .

P(h)=e (S55)

After applying exponent rules, (S55) decomposes into the product given by
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and can be further simplified, upon application of boundary conditions, into
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Figure S11: Modeled pressure dependency on altitude.

As Fig. S11 above shows, the agreement of this equation with the empirical data is very reasonable,
especially below 80 km altitude. Above 80 km, the atmosphere is no longer well mixed, has increasing
concentrations of atomic oxygen, and the simple ideal gas law we used above no longer applies. For this
reason, the results that will be presented below correspond to altitudes below 80 km.

The next step was modelling the air density dependency on altitude. With expressions for 7(%) and P(h)
above, we could use the ideal gas law to write

O
P =Ty (559)

Finally, the last dependency that remained to be defined was the air viscosity and altitude relation. To that
end, we could use Sutherland’s law, which relates viscosity and temperature through the following
equation:

T(h)>1'5 (Tref + 5)’

”(h) = Hrer (Tref T(h) TS

(S60)

where pi,..¢ is the reference dynamic viscosity and T, the reference temperature. In this work, for air, at
Tref = 20 C, we have that u,.; = 0.000018205 Pa - s. Finally, S is a constant, known as Sutherland’s
temperature, which is given by 110.4 K.

2.2.2 Payload Calculations

Once all of the required equations and relationships were derived, it was possible to calculate V¢, and v,y
for a specific set of geometric and channel parameters defining unique 3D structures. By calculating these
velocities, we determined the total force produced by each geometry, as outlined by equation (S47), from
which it was possible to perform some payload estimates. However, in order to obtain the payload
estimates, it was paramount to first determine the surface areas of each one of the 3D geometries in question,



the reason being that density of these structure was defined in areal terms as opposed to volumetric terms.
As was mentioned in the main paper, this work considered a truncated cone, truncated sphere, and a rocket,
and their defining equations are shown in Table 7 below.

Main Geometrical Area Definitions
Area Truncated Cone Truncated Sphere Rocket
K D\ (P (D% — 2rh) 2r(r + D)
total T (7) +m (E) h, —nr(h, — hy) s r nr(r
Koue nr?
Kin (pKtotal
Ksotia (1= ) Keora
D 2
m=|(z-r) +?
Special 2 D D\?
Variables hy = (g) +h3 h= (E) = (5) —7r2 N/A
DZ
hy =————
3" (b—2r)

Table 7: Area definitions used across this work for the cone, sphere and rocket. Notice that here, the variable hj
follows from using similar triangles analysis, and letting h3/(D/2) = D/(D/2 —r). For all three geometries, the variable
D represents the overall scale of the structure while r their outlet radius. Notice that K, is the porous area, while
Ksouia is the solid area in which the sun’s irradiance is absorbed, and it follows that Kyorq1 = Ksoria + Kin-

As a result, having defined these surface areas (using the parameters established in Fig. S1), we calculated
the mass of our three 3D structures. In particular, since the cross-sectional area of a channel is simply AB,
then one can define the number of channels as the following integer floor:

K
Nchannels = lA_gJ . (S61)

The number of channels, 1 pgnnets, 1S @an important parameter, given that now it is possible to calculate the
volume of the structure that is occupied by the deposited alumina around each channel, which has thickness
¢ and relatively high density pgq of 3950 kg/m® [R9]. Indeed, similarly to equation (S28) above, we can
define this volume as

Vald,channels = Nchannels (L - Zt) [(A + Zt) (B + Zt) - AB] . (862)

Experimentally, it has already been found that the areal density of nanocardboard, o, is about 1 g/m?
[R5], but this corresponds to a value of L (nanocardboard thickness) equal to 50 pum. However, in our
parametric studies, as we sweep through various values of L, especially those that are larger than 50 pm,
this areal density alone is not enough to estimate the weight of the structure. As a result, calculating the
volume of alumina around each of the channels is paramount, since the structure naturally becomes heavier
with increasing thickness. Hence, the overall mass of any one of these geometries will be given by

mgeometry = Ugeom (Ksolid - Ktn) + paldVald,channels ) (863)

where this expression accounts both for the areal density (0geom) and the increases in the amount of the
deposited alumina as a result of changes in the wall thickness L. Thus, the net lift produced by the geometry
is simply given by subtracting the structure’s weight from the force expression in (S47), or

Liftnet =F- IMgeometry - (S64)

While we know from simulations what gy, is, notice that it is also possible to use our equations and a
series of approximations to obtain a theoretical upper bound for this value. In essence, we can start by
letting the force be equal to the expression below
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(S65)

which incorporates mass flow rate and the ideal gas law. Now, recall that equation (S4) provides an
expression relating vy, and vy, while (S46) provides a simplified approximation for vs,. As a result,
taking a conservative approach that lets v,,,; = 0.2v,,4, a fifth of the average molecular velocity of a gas,
shown in (S41) above, and incorporating (S2) and (S46), it is possible to re-write (S68) to obtain

P 8Ry T
— K 2 air —
" R(ll?" T

’SR T
=0. 0055Km art — . 0055Km Rair T
alr al.T' (866)

Upon further simplification, equation (S69) reduces to

F = 0.0055K, —— [2RarT _ 00055 Bk 1 |-
) n RairT T ' T n RairT ' (S67)

Thus, the maximum areal density that can be entertained by these 3D structures can be approximated by

—F 0.0055 81 —1 KI —1 0.016 !
[0} = = U. —_ = = U. )
geom King Tg RairT RairT vavgg (868)

0.0055

where K =

f 0.0009 and vuyg =/8Ry;T/m ~ 400 m/s is the average velocity of air

molecules. Upon inserting the parameters, we find that gy, can have an average value of 0.004 kg/m?,
four times of what the areal density of nanocardboard typically is in experiments. The main paper provides
additional areal density calculations based off from the parametric studies (detailed below) as well as cloud
plots denoting the maximum areal density for each of the study geometries. They are generally of the same
order of magnitude as the estimate (S68).

2.2.3 Parametric Studies

In this section, we provide four tables that accompany the presentation of the results shown in the main
paper. In essence, Table 8 both summarizes the chosen optimization ranges and discretization for the
variables that were varied (4, L and r) and specifies the values that the remaining variables (B, N, X, S and
?) took. Similarly, Table 9 through Table 11 present the results for the performed parametric optimization
on the three geometries, detailing the specific combination of 4, L and r that first, yielded the maximum
payload capabilities and second, achieved flight at the lower altitude. In addition, Table 9 through Table
11 also provide the areal density of each structure for when the maximum payload was achieved. Notice
that this process was repeated for multiple values of D, as to explore the dependency of the overall
optimization results with the scale of the geometries.

Parametric Optimization Variables
Variable Range Truncated Cone | Truncated Sphere | Rocket Discretization
4 Min. 10 nm 80 equally spaced points
Max. 5 mm (log scale)
L Min. 1 pym 80 equally spaced points
Max. 1 cm (log scale)
- Min. rmin = D/20 (see Table 9 through Table 11) 80 equally spaced points
Max. rmax = D/2.01 (see Table 9 through Table 11) (log scale)
. Min. 0 km 17 equally spaced points
LD Max. 80 km ?5 kn}ll il?tervaIS)
B 104
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Table 8: Main values used across the various variables during the parametric optimization. As can be seen, the search
range for the optimal A, L and r was discretized in all three cases in 100 points, following a log scale. Changing the
granularity of the discretization or the bounds of the search range did not significantly modify the results seen in Table
9 through Table 11 below.

Parametric Optimization Results — Various Sphere Sizes

Max.
Payload

Min.
Altitude

S - D=2cm | D=01m | D=05m | D=1m | D=2m | D=5m
Fmin = D/20, rmax = D/2.01, with a discretization of 80 points (log scale)
4 Max. Payload 0.90 mm 0.90 mm 0.90 mm 0.90 mm 0.90 mm 0.90 mm
Min. Altitude 0.13 mm 0.13 mm 0.20 mm 0.20 mm 0.20 mm 0.20 mm
L Max. Payload 0.91 mm 0.91 mm 0.91 mm 0.91 mm 0.91 mm 0.91 mm
Min. Altitude 0.14 mm 0.14 mm 0.21 mm 0.21 mm 0.21 mm 0.21 mm
- Max. Payload 9.95 mm 4.07 cm 19.05cm | 36.85cm | 73.70 cm 1.84 m
Min. Altitude 4.05 mm 1.89 cm 10.82cm | 21.63cm | 43.27 cm 1.08 m

Payload (mg) 8.34 79.11 1 445 5526 21612 133 242
Altitude (km) 80 80 80 80 80 80
A. Density (g/m?) | 25.48 7.81 5.91 5.64 5.54 5.49
Sphere Area (m?) | 0.0007 0.025 0.64 2.63 10.52 65.82
Krorar/Koue ratio 2.22 477 5.68 6.17 6.17 6.17
Payload (mg) 0.24 0.58 223.94 872.33 3442 21339
Altitude (km) 55 55 60 60 60 60
Keotar/Koue ratio | 2334 26.96 20.30 20.32 2031 2038

Table 9: Combinations of A, L and r that returned the spheres capable of carrying the greatest payload and achieving
flight at the lowest altitude, for various values of D, as specified in Figure S1.

Parametric Optimization Results — Various Cone Sizes

S - D=2cm | D=01m | D=05m | D=1m | D=2m | D=5m
rmin = D/20, rmax = D/2.01, with a discretization of 80 points (log scale)
4 Max. Payload 0.90 mm 0.90 mm 0.90 mm 0.90 mm 0.90 mm 0.90 mm
Min. Altitude 0.13 mm 0.35 mm 0.35 mm 0.35 mm 0.35 mm 0.35 mm
L Max. Payload 0.91 mm 0.91 mm 0.91 mm 0.91 mm 0.91 mm 0.91 mm
Min. Altitude 0.14 mm 0.36 mm 0.36 mm 0.36 mm 0.36 mm 0.36 mm
- Max. Payload 9.95 mm 4.97 cm 2486 cm | 49.73cm | 99.45cm 2.49 m
Min. Altitude 4.05 mm 2.39 cm 11.56cm | 23.12cm | 46.25cm 1.16 m

Payload (mg) 7.96 101.26 2043 7929 31228 193 348
Max Altitude (km) 80 80 80 80 80 80
Payload |2 Density (@/m) [ 11.59 6.61 5.61 5.48 5.42 5.38
Cone Area (m?) | 0.0016 0.039 0.98 3.92 15.67 97.97
Krorar/Koueratio 5.04 5.05 5.05 5.04 5.04 5.03
Min Payload (mg) 0.18 10.12 208.65 812.97 3209 19 892
Altitoge | Altitude (km) 55 60 60 60 60 60
Krorar/Kouetatio | 23.97 17.75 18.34 18.84 18.83 18.72

Table 10: Combinations of A, L and r that returned the cones capable of carrying the greatest payload and achieving
flight at the lowest altitude, for various values of D, as specified in Figure S1.



Parametric Optimization Results — Various Rocket Sizes
S e D=2cm | D=10cm | D=05m | D=1m | D=2m | D=5m
rmin = D/20, rmax = D/2.01, with a discretization of 80 points (log scale)
4 Max. Payload 0.90 mm 0.90 mm 0.90 mm 090mm | 0.90mm | 0.90 mm
Min. Altitude 0.092 mm 0.13 mm 0.13 mm 0.13mm | 0.13mm | 0.13 mm
L Max. Payload 0.91 mm 0.91 mm 0.91 mm 091mm | 0.9l mm | 0.91 mm
Min. Altitude 0.094 mm 0.14 mm 0.14 mm 0.14mm | 0.14mm | 0.14 mm
r Max. Payload 9.95 mm 4.97 cm 2486 cm | 49.73cm | 99.45cm 249 m
Min. Altitude 1.00 mm 0.94 cm 4.12 cm 8.24 cm 15.94 cm 0.40 m
Payload (mg) 9.51 127.59 2 639 10 281 40 573 251 516
Altitude (km) 80 80 80 80 80 80
Pla:;[/?c)){éd A. Density (g/m?) 11.60 6.89 5.95 5.83 5.77 5.74
Rocket Area (m?) 0.0019 0.047 1.17 4.68 18.71 117.12
Keotar/Kous 1atio 6.02 6.02 6.02 6.02 6.02 6.02
Min Payload (mg) 0.03 1.54 8.29 18.57 45.37 175.67
Alti tu;ie Altitude (km) 45 55 55 55 55 55
Ktotar/Kousratio 42 23.28 26.27 26.27 27.09 27

Table 11: Combinations of A, L and r that returned the rockets capable of carrying the greatest payload and achieving
flight at the lowest altitude, for various values of D, as specified in Figure S1.

The results from these tables are discussed in greater detail in the main paper. However, there are four
important points to highlight. First, changing D (the scaling of the overall geometries) did not affect
significantly the optimal channel parameters 4 and L that yielded the maximum payload capabilities and
achieved flight at the lowest altitude. Secondly, the obtained maximum areal densities were similar across
the three geometries (as seen in Figure 5 (a) of the main text) and had average values of 9.31 g/m?, 6.68
g/m” and 6.96 g/m?, for the sphere, cone, and rocket, respectively. Notice that these are above the theoretical
order-of-magnitude estimation for the upper limit of 4 g/m?in (S71). Thirdly, the optimized K;y:q1/Kous
ratios (the “Areas Ratio” in the subsequent tables) for the three geometries were relatively invariant across
the various values of D and the two missions (max. payload and minimum altitude). For instance, for the
maximum payload optimization, K;,¢q:/Koy: averaged 5.20, 5.04, and 6.02 for the sphere, cone and rocket,
respectively, while for the minimum altitude case, this ratio averaged 21.94, 19.49 and 28.65, respectively.
Lastly, for a given surface area, the amount of payload that each geometry could carry was comparable (as
illustrated in Figure 5 (b) of the main text). As a result, 1 m? of a porous and geometrically optimized cone
has a similar maximum payload capability than 1 m? of an optimized rocket and sphere.

Finally, Fig. S12 through Fig. S17 present cloud plots that permit visualizing the results from the parametric
studies, in particular how different combinations of 4, L and r enabled geometries with various altitude (a),
payload (b) and areal density (c) capabilities. These plots correspond to the D =10 cm and D = 10 m cone,
sphere and rocket, and are accompanied with illustrations of the optimized geometries that achieved flight
at minimum altitude (d) and carried the most payload (e). These figures were generated by discretizing the
search ranges of 4, L and r in 500 equally spaced, and the results from the optimized geometries are shown
in Table 12 through Table 14). Despite the increase in discretization points (from 80 to 500) in each
dimension, the results were comparable.
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Figure S12: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 cm Cone
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (0.52 mg at 55 km) is shown in
(d), while that which was able to levitate the maximum payload (102.31 mg at 80 km) is shown in (e).
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~ 2 60 km 772603.92 mg | 99% max. payload
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Figure S13: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 m Cone
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (95 288 mg at 60 km) is shown
in (d), while that which was able to levitate the maximum payload (780 408 mg at 80 km) is shown in (e).

Comparison of D =10 cm and D = 10 m Cone Geometries
- A | L [ r Surface Areas | Payload | Altitude
Discretization of 500 points Area (m?) Ratio (mg) (km)
D= | Min. Altitude 0.15 mm 0.16 mm | 1.94cm 0.03 25.92 0.52 55
10 cm | Max. Payload 1.24 mm 1.25mm | 4.97 cm 0.04 5.05 102.31 80
D= | Min. Altitude 0.21 mm 0.22 mm 2.36 m 317.52 18.16 95 288 60
10 m | Max. Payload 1.24 mm 1.25 mm 497 m 391.56 5.05 780 408 80

Table 12: Combinations of A, L and r that returned the optimal cone geometries described in Figure S12 and Figure
S§13 above.
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Figure S14: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 ¢m Rocket
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (0.01 mg at 50 km) is shown in (d)
while that which was able to levitate the maximum payload (129.56 mg at 80 km) is shown in (e).
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Figure S15: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 m Rocket
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (2 132.57 mg at 55 km) is shown
in (d), while that which was able to levitate the maximum payload (1 021 162 mg at 80 km) is shown in (e).

Comparison of D =10 cm and D = 10 m Rocket Geometries
Case A | L | r Surface Areas Payload | Altitude
Discretization of 500 points Area (m?) Ratio (mg) (km)
= | Min. Altitude 0.11 mm 0.12mm | 0.50 cm 0.001 >100 0.01 50
10 cm | Max. Payload 1.24 mm 1.25mm | 4.97 cm 0.05 6.02 129.56 80
= | Min. Altitude 0.15 mm 0.16 mm 0.87 m 59.39 24.98 2132.57 55
10 m | Max. Payload 1.24 mm 1.25 mm 4.97 m 467.23 6.02 1021162 80

Table 13: Combinations of A, L and r that returned the optimal rocket geometries described in Figure S14 and Figure
S15 above.
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Maximum Payloads: Sphere Geometry
55 km 79.06 mg | 99% max. payload
60 km 71.87 mg | 90% max. payload
65 km 39.93 mg | 50% max. payload
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Figure S16: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 cm Sphere
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (1.41 mg at 55 km) is shown in
(d), while that which was able to levitate the maximum payload (79.86 mg at 80 km) is shown in (e).
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Figure S17: Minimum Altitude (a), Maximum Payload (b) and Areal Density (c) plots for the D = 10 m Sphere
Geometry. Here, the geometry that was able to levitate payload at minimum altitude (831.92 mg at 55 km) is shown
in (d), while that which was able to levitate the maximum payload (540 528 mg at 80 km) is shown in (e).
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Comparison of D =10 cm and D = 10 m Sphere Geometries

Case A | L | r Surface Areas Payload | Altitude
Discretization of 500 points Area (m?) Ratio (mg) (km)
= | Min. Altitude 0.15 mm 0.16 mm | 1.93 cm 0.03 25.81 1.41 55
10 cm | Max. Payload 1.03 mm 1.04 mm | 4.02 cm 0.03 4.93 79.86 80
= | Min. Altitude 0.15 mm 0.16 mm 1.90 m 302.22 26.66 831.92 55
10 m | Max. Payload 1.24 mm 1.25 mm 3.67m 263.63 6.23 540 528 80

Table 14: Combinations of A, L and r that returned the optimal sphere geometries described in Figure S16 and Figure

817 above.




3. Buckling Simulations in COMSOL

When creating high aspect ratio structures like the photophoretic aircraft, where the diameter-to-thickness
ratio can reach 10*, buckling or other forms of structural failure may occur. However, nanocardboard is the
best material to prevent or survive these effects because 1) Knudsen pumping action creates an outward
pressure to help maintain the shape of the hollow 3D structure and 2) nanocardboard has ultra-high bending
stiffness and can recover from sharp bending [R5].

To test the structures for buckling under their own weight, we performed COMSOL simulations for a few
example geometries. We chose a 10-meter diameter sphere with a 4-meter diameter outlet and a 1 mm
channel height, which is representative of structures optimized for maximum payloads. We also simulated
a rocket geometry with a diameter of 4 m and a length of 10 m, and a cone of 10 m diameter, length of 8 m
and outlet diameter of 6 m. An example is shown below in Fig. S18.

Figure S18: Uniform sphere geometry within COMSOL. Similar models were used for the cone and rocket.

In the simulations, we used an effective thin shell material whose weight, and bending and tensile stiffness
correspond to those of nanocardboard. According to [R5], the tensile stiffness of nanocardboard is 3 times
lower than for a uniform alumina shell of the same areal density. In contrast, the bending stiffness is
increased by a factor ranging from 100 to 10000 for nanocardboard depending on the height of the channels
and thickness of the shell in Ref. [R5]; we chose the upper bound demonstrated in experiments even though
the optimized structures are even taller than the 50 microns used in [R5] and should be even stiffer. We
then use this enhancement to calculate the effective thickness, Young’s modulus and density of the uniform
shell that has the same stiffness properties as nanocardboard with face sheet thickness of 50 nm and 1 mm
channel height, which represents the maximized payload case from the main text. However, nanocardboard
with a thickness of 1 mm has potential to reach bending stiffness enhancement of 10,000,000, and we also
included an example with the corresponding effective properties in Table 15.

Bending stiffness q q q Effective Young's q q
enhancement factor Channel height Effective Thickness Modulus Effective Density
10,000 1 mm 8.66 microns 0.58 GPa 115.5 kg/m?
10,000,000 1 mm 274 microns 0.058 GPa 3.65 kg/m?

Table 15: Corresponding effective properties due to nanocardboard TSEF and BSEF.

In the COMSOL shell simulations, we analyzed the critical buckling factor based on the specified
properties. A buckling factor greater than 1 indicates that the gravitational force alone is insufficient to
cause buckling of the shell under its own weight. The simulations used boundary conditions with a simply
supported edge for the outlet nozzle circle and applied gravity throughout the global coordinate system,
simulating the shell resting on the ground. We utilized "Extra Fine" physics-controlled meshing for all
simulations, incorporating geometric nonlinearities, and then moved to user-controlled free triangular
meshes where maximum element size was varied. A mesh convergence test was performed to confirm the
convergent results of the simulations as shown in Fig. S19. An example simulation result showing
displacement is depicted in Fig. S20.
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Figure S19: Mesh convergence test showing maximum element size vs. critical loading factor for spherical (left) and
rocket-like (right) geometry, showing convergence to the specified values in Table 16. The cone simulation failed to
converge.

Figure S$20: Uniform sphere example, with corresponding effective properties of nanocardboard from Table 15,
displacement magnitude plot. Areas of maximum displacement represent where buckling will occur if load increases.

The minimum critical buckling factor for a uniform sphere with properties equivalent to those of
nanocardboard was 0.6, indicating that the structure needs to support 40% more of its own weight to prevent
buckling under the given conditions. Alternatively, this means the structure would resist buckling until
subjected to a gravitational force or acceleration 0.6 times Earth's gravity.

The cone geometry did not converge according to mesh convergence tests, suggesting the absence of
convergent buckling modes at significant deformations. To address this, we reduced the gravitational force,
and increased the bending stiffness enhancement to 10 million. This worked for the rocket geometry, but
the conical geometry never converged, even for gravity over a million times weaker than standard Earth’s
gravity. The cylindrical geometry converged to a critical factor of 0.05 implying it could only support itself
under a gravity less than 0.05 g. Using the conservative bending stiffness enhancement factor of 10 000,
all geometries would require additional support to avoid buckling, but the sphere requires the least. A
nanocardboard sphere with a bending stiffness enhancement factor increased to 10 million, which is
possible with the nanocardboard of channel height of ~ 1 mm [R5], can withstand its own weight without
buckling with gravity or acceleration of up to 1.1 g’s.

For the idealized scenarios presented in this study, we therefore can assume the spherical structure would
maintain its shape best and support its own weight with small amounts of additional support structures.
However, the other geometries—such as the cylindrical and conical shapes—require much more additional
support to maintain structural integrity. These findings are summarized in Table 16.



Sphere, D =10 m,

Geometry Dowc=4 m
out —

Rocket D=4 m, L =
10 m

Cone D =10 m, Dout =
6,L=8m

Gravitational load 0.6g

0.05g

N/A

Table 16: Gravitation/acceleration required for buckling with nanocardboard properties corresponding to TSEF of 3
and BSEF of 10 000 which corresponds to typical nanocardboard reported in Ref. [R5]. If the channel height is
increased to 1 mm and BSEF therefore increased to 10 million, the sphere can withstand 1.1 g’s.

If buckling still occurs due to unforeseen imperfections not accounted for in the simulations, there are
alternative methods to reinforce the structures using, for instance, thin carbon fiber tubes or trusses along
the structure's axis. Carbon fiber prepregs, available in thicknesses as low as 15 microns, could be used to
fabricate tubes that weigh less than the structure itself while effectively preventing critical buckling modes.
Frame-like structures could be employed to span the vertical diameter or length of the structure, depending
on its geometry, enhancing buckling resistance in areas prone to high deformation. Furthermore, Fig. 6 in
the main paper describes the pressure differential between the ambient air and the air inside the structure.
The pressure differential shows an increased pressure inside the structure, meaning the additional pressure
inflates the structure, resulting in additional support against the weight. We did not model that pressure in
these simulations, but this additional beneficial pressure pushing outward would only increase the aircraft’s
resistance to buckling failure.
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