®

Check for
updates

Autonomous Multi-Robot Action Planning
Through Controlled Robot Language

Dang Tran'@®, Minhazul Arefin'@®, Zhengchen Zhang?,
and Hongsheng He!(®)

! The University of Alabama, Tuscaloosa, AL 35487, USA
hongsheng.he@ua.edu
2 Infocomm Technology Cluster, Singapore Institute of Technology, Singapore,
Singapore

Abstract. Interacting with multiple robots presents significant chal-
lenges for non-experts, especially in systems requiring concurrent behav-
iors. This paper introduces a plan generation method for multi-robot sys-
tems using Controlled Robot Language. The framework generates planning
scripts with temporal constraints from large complex instructions, incorpo-
rating contextual awareness and resolving conflicts through mutual exclu-
sivity expressions. Subjects, objects, and action parameters are extracted
from the instructions and are grounded into robotic actions. Through
linguistic evaluations and real-time experiments, the framework demon-
strates its robustness in language comprehension and the ability to cap-
ture and provide temporal solutions for multi-robot planning. This work
contributes to the accessibility and usability of multi-robot communication
for non-experts using natural language.

Keywords: Planning - Natural Language Processing - Human Robot
Interaction - Multiple Robot System

1 Introduction

Multiple robot planning, inspired by biological systems, addresses complex tasks
beyond individual robot capabilities. However, interacting with these systems
often requires expertise, limiting accessibility for non-experts. In this paper, we
propose a communication framework using natural language commands to enable
effective interaction with a multi-robot team. This approach aims to enhance
accessibility for non-experts in multi-robot controls, bridging the gap between
robotic teams and human operators.

Communicating with multi-robot teams using natural language presents chal-
lenges beyond typical linguistic platforms. Besides addressing language ambigu-
ities, expressivity, and domain generality, multi-robot planning interfaces must

This work was supported by NSF 2327313 and Alabama EPSCoR Graduate Research
Scholars Program Fellowship.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

H. Li et al. (Eds.): ICSR + InnoBiz 2024, LNAI 15170, pp. 323-333, 2025.
https://doi.org/10.1007/978-981-96-1151-5_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-1151-5_33&domain=pdf
http://orcid.org/0000-0001-6394-1500
http://orcid.org/0000-0003-4330-8745
http://orcid.org/0000-0002-2810-865X
https://doi.org/10.1007/978-981-96-1151-5_33

324 D. Tran et al.

accommodate concurrency and mutual awareness. Concurrency allows simulta-
neous actions for complex operations, which enables multiple robots to collab-
orate. Mutual awareness, on the other hand, allows robots to understand the
environment of itself and other robots, to avoid conflicts during planning and
execution. These requirements significantly increase the complexity of multi-
robot planning compared to single-robot domains.

While linguistic communication for individual robots has been explored
[1,4], multi-robot communication remains a challenge. As the number of agents
increases, the existing methods struggle to interpret instructions. This highlights
the need for new approaches for multi-robot communication. Multi-robot com-
munication was first addressed using the Generalized Grounding Graph app-
roach, which can directly convert linguistic symbols into robotic actions [7].
However, the method primarily recognizes symbolic tokens, and overlooks syn-
tactic and semantic structures, limiting its use in complex planning. To address
this issue, a temporal logic framework for complex planning problems was pro-
posed [6]. However, the method requires formal syntax inputs and a deep under-
standing of temporal logic. Additionally, temporal constraints are described in
these methods using programming syntax, which is not intuitive for non-expert
operators.

In this paper, we proposed a linguistic-based plan generation framework for
multi-robot teams, using Controlled Robot Language (CRL). Extending from our
prior work for individual robot platforms [8,9], this approach generates determin-
istic planning scripts from complex large-scale commands. The framework incor-
porates sophisticated capabilities to describe temporal constraints and mutual
exclusivity (mutex) expressions. The generated plan is complete and comprehen-
sible by temporal solvers, which eliminates the need for extensive postprocessing
or human intervention. The contributions of this paper are:

1. We developed a CRL-based plan generation framework for multi-robot teams,
which can comprehend complex, large-scale linguistic instructions. The pro-
posed framework addresses critical requirements of concurrency and contex-
tual awareness in multi-agent planning.

2. We demonstrated the robustness and applicability of the framework on real-
time multi-robot simulation, emphasizing the need of context-aware commu-
nication methods for effective multi-robot navigation.

2 Plan-Generation for Multi-Robot Team

The general workflow of CRL-based framework for plan generation is visualized
in Fig. 1. Given large contextual instructions in natural language, the framework
returns deterministic semantics in the form of discourse representation structure
(DRS). Information blocks are extracted from semantics, including temporal
constraints and mutex expressions. The extract semantics are used to construct a
complete Planning Domain Definition Language (PDDL) planning script, which
is directly interpretable by the temporal solvers, and triggers the corresponding
controls on each robot.

Autonomous Multi-Robot Action Planning Through CRL

Input

Discourse Representation Structure

PDDL-Plan

8
Environ (Optional)

—
[There is arock on
the ground. Leol is
at POS1. Leol is at
POS2. Leo3 is at
POSO.

Goal Temporal expr

command(

command(

A
predicate(A,move,named(‘'Leol’))|)
modifier_adv(A,slow,pos)
imodifier pp! A,to,namedg'POSl‘n
BCD
lobject(B,direction,countable,eq,1)
property(D,first,pos)

(define (problem pro)

(:domain dom)

(:objects pos1, pos2
pos3 - object; leol
leo2 leo3 - robot
pO pl p2 p3 p4 -
process_id)

(:init

(is_robot leol)

325

Perception

Action
Grounding

v

(is_robot leo2)

Leol, move to Xis_robot leo3)
)

lobject(D,action,countable,eq,1]
POSL slowly. Leo2, || 2 ject(D action,cou a3

Execution

=

move leftward - led predicate(C,mcve,named(-Leoz,)g’_

ontrolle i 2l 3 -
direction before the Robot [nodifier_pp(C,before,D) - oo Lk {490? * "
first action. Leo3, Language |medifier_pp(Cleftward,B) (alnftw "
move rightward 45 Parsing (leftward leo2 p0)
degrees. Leo3, A (move leol p1 pos1)
move forward command([predicate(E,move,named('Leo3"))|))gglghtward leo3 p3) £ h"f L 1
direction. .. modifier_pp(E, right,int(45,deg)) - -

).

Fig. 1. CRL-based plan generation framework for multi-robot control.

2.1 Controlled Robot Language Parsing

A multi-layer CRL pipeline [8] is applied to construct semantics from the large-
scale linguistic inputs. CRL can provide both syntactic and semantic analysis of
the natural language. Developed using over 300 Context Free Grammar rules,
CRL syntax covers lots of natural language expressions used in human-robot
interaction. The CRL contains multiple preprocessing layers to analyze syntax,
detect typographical errors, and automatically translate original instructions
into a more suitable format that CRL semantic parser can understand. Given
valid CRL-syntax instructions, CRL semantic parser generates a deterministic
formal logic in linear DRS. Figure 2 illustrates the details of CRL, which contains
seven layers: a tokenizer, lemmatizer, POS tagger, phrase chunker, syntactical
parser, translator, and semantic parser.

Given the semantics in linear DRS, we extract core information using the
Bottom-Up traversal algorithm. The linear DRS (Fig. 3a) is first translated into
tree-like semantic structure (Fig. 3b) using a DRS parser. The Bottom-Up algo-
rithm initiates at the root nonterminal and proceeds in a depth-first manner.
During the iteration, symbolic tokens at specific nodes are captured locally and

Leol s move | slowly to POS1 !

Leol, move slowly to POS1! NNP [COMMA| VB RB TO NNP [EXCLAM

NL input Tokenizer Lemmatizer |—'| POS Tagger |—'| Chunker |
Semantics
A
predicate(A,move,named('Leol’)) Semantic Syntactic
command(lo, o gifier_pp(A,to,named(POS1Y))|) Parser Translator Parser

modifier_adv(A,slowly,pos)

Fig. 2. Multi-layer CRL transformation: From natural language to formal semantic
representation.

326 D. Tran et al.

propagated back to their parents. The captured tokens are encapsulated with
variable IDs and organized into information plates, representing partial data.
Each information plate captures a specific property of an event. To capture the
full context semantics, these plates are merged using ID cross-referencing.

nformation plate

. verb: move
i subject: Leol
predicate(A,move,named(’'Leol")) object: POS1

command(n o ifier_pp(A,to,named(POS1Y)))'g adverb: slowly
modifier_adv(A,slowly,pos id: A

a. Linear Representation of DRS

Fig. 3. Demonstration of semantics extraction from core statements.

2.2 Problem Formulation for Multi-Robot Planning

While single-agent planning problem can be described as classical planning,
multi-robot planning requires a temporal model for concurrency and collabo-
ration. Following the temporal reasoning framework [3], our framework accepts
temporal constraints in the form of durative actions. Temporal constraints pro-
vide the requisite expressiveness to precisely model time, which enables concur-
rent activities and resource optimization in a multi-robot team.

Multi-agent temporal planning imposes unique challenges compared to single-
agent planning, primarily due to resource conflicts. These conflicts, which can
occur during planning or execution, arise from limited environmental perception
and resource access among multiple robots. To prevent conflicts during planning,
mutual awareness among robots is developed, to recognize each other’s intentions
and resource usage. We introduce the concept of mutual exclusivity (mutex) to
describe mutual aware constraints. Events are considered mutually exclusive if
they affect or rely on the same state variable assignment. More specifically, two
events are considered to be mutex if they satisfy the following constraint

mutex(ey, e3) = (1 — —ea) A (ea — —ep) (1)

where ey, es are propositional events. The mutual exclusive concept is extendable
for actions.
A planning problem for multi-robot team can be defined formally as follows

T=(8,¢,89,4,0,P,T,7) 2)

Autonomous Multi-Robot Action Planning Through CRL 327

where S is a discrete set of problem states, s* € S is the initial state, S¢ C S
is a set of final states. Each action symbol a € A corresponds to a primitive
robotic motion. The terms O, P are sets of object and predicate symbols. Each
transition ¢, € 7 defines a transition from s; € S to state s;11 € S by applying
an action a € A. The term .7 is a set of temporal interval constraints where each
rq € 7 is attached to an action transition ¢, describing the duration constraints
of the action.

Multi-robot planning problem (2) can be described in PDDL [3] using two
files: domain file (S, 4,0,P, T, .7) and problem file (s*,89). The domain file is
typically predefined by the knowledge experts, which is based on planning sce-
nario and the robots’ capability. Additionally, the domain file contains temporal
constraints and mutex expressions, enabling concurrent collaborating and task
distribution for multi-agent planning. The problem file (si, S9) defines the initial
state and goal states of the planning problem. CRL-based plan generation algo-
rithm provides a way to automatically construct (si,S-‘],’T, T) from complex
linguistic instructions and temporal specifications.

2.3 Plan Generation Algorithm for Multi-robot Planning

To generate initial and goal states (si, S9), the algorithm searches for command-
type conditions within tree-DRS. Given a command-type DRS statement

drs(a) = drs([], command ([X1, Xo, ..., X, Y],
predicate(Y, a, X1,X3)))) (3)

the generation algorithm constructs a corresponding goal statement (a X; X5),
indicating an event a with two parameters X;,Xs. For action signatures con-
taining more than two parameters, additional information plates are extracted
from other DRS conditions such as “object” and “adverbs”. These plates are uni-
fied with the base goal statement and construct a complete action statement.
The constructed action statements are aggregated and propagated back to the
(: goal) section.

Linear DRS Information Plates PDDL Action signature
A id: A id:A
g predicate(A,move,named('Leol’)) Z> action: rotate | |direction: left Z> (rotate Leol left slowly)
comman (modifier_pp(A,to,named('POSl‘))) subject: Leol | [ig: A
modifier_adv(A,slowly,pos) direction: ??? | |adverb: slowly

Fig. 4. Multi-parameter action statement construction from command-type DRS con-
dition.

Figure 4 illustrates how an action signature with three arguments (rotate) is
constructed. From command-type condition, only the action symbol and subject
are obtainable. To identify the rotation direction and velocity, the framework

328 D. Tran et al.

searches all DRS adverbial-conditions matching the rotate verb ID. Partial
information plates are extracted from these conditions, encapsulated by the same
ID, and merged with the command-type plate through ID referencing. This pro-
cess extends to additional arguments, ensuring the complete action statement.

Imperative sentences are commonly preferred for human instructions, but
they often lack clarity about the actor in multi-robot team. For instance, the
command “Please follow the first robot!” is valid in CRL [8] but not applicable
in a multi-agent context. To address this issue, we designate one robot as the
default actor to execute target actions when the subject is unspecified.

2.4 Temporal Constructions from Linguistic Descriptions

To generate temporal constraints from linguistic description, the framework
focuses on preposition-condition DRS

drspp(q) = drs([X, Y], modifier_ pp(Y, ¢, X)) (4)

Using Bottom-Up traversal algorithm, we can extract a corresponding temporal
information plate (id : Y, duration : X;), where Y is the verb ID. Only preposi-
tion DRS statements with temporal lexicon — g € {during, within, in} — are iter-
ated. From temporal information plate, we construct the corresponding temporal
constraint ry € 7 in PDDL syntax, using (: duration) section. The temporal
constraint ry is updated directly into the domain file. The extracted duration
X is converted into seconds. Figure5 illustrates an example of how a temporal
constraint is constructed from linguistic specifications. Due to the limitation of
temporal model supported by PDDL, constraints in linear-time temporal logic
(LTL) syntax are currently not feasible.

Linear DRS Information Plates Temporal constraint PDDL

(:durative-action move
:parameters (?sub - robot ?
obj - pos)

:duration (= ?duration 5)
:condition (and ...)

:effect (and ...)

id: B id: A
AB action: move ||type: second

subject: Leol|[quant: 5
command(pbject(A,second,countable,na,eq,5) T

predicate(B,move,named("Leol")) id:
tnodifier_pp(B,within,A) hl;r‘zﬁon, A
mmodifier_pp(B,to,named("POS1")))

Input: Leol, move to POS1 within 5 seconds.

Fig. 5. Temporal constraint construction from linguistic inputs.

2.5 Mutex Synthesis Algorithm

To manage concurrency, mutual exclusive operators are defined. There are two
types of mutual exclusive expressions: property mutex and action mutex. Prop-
erty mutex prevents simultaneous events during the planning phase. Meanwhile,

Autonomous Multi-Robot Action Planning Through CRL 329

action mutex prohibits incompatible actions during the execution phase, e.g.,
moving left and right at the same time. Describing mutex expression using CRL is
challenging, due to its syntax limitation. Additionally, mutex expressions should
be generalized as rules in the domain file, instead of being specified in the prob-
lem script. Therefore, instead of converting linguistic descriptions into mutex
in PDDL, we developed a synthesis algorithm that automatically generates an
updated domain file with mutex constraints. The algorithm handles property
and action mutex separately.

To generate property mutex, the algorithm searches for all properties avail-
able in the (: predicates) section of the domain file. For each predicate p € P,
we construct a new predicate negation p,o; € P. A mutual exclusive relation
between p and ppot is defined within (: derived) section, following (1). An
example of property mutex generation is visualized in Fig. 6a. To handle action
mutex, the logical relation (1) is defined within (: precondition) and (: effect)
sections (Fig. 6b).

Domain with Property Mutex

FDDL Domain (define (domain domain_file)
(define (domain domain_file) Property Mutex |~ N
(:requirements :typing) Generation (:predicates
A) (:types object) (not_on ?x - object ?y - object)
(:predicates
(on ?x - object ?y - object) (:derived (not_on ?x ?y)
) (and (on ?x ?y)))
(:derived (on ?x ?y)
(and (not_on ?x ?y))))
Domain with Action Mutex
PDDL Domain (define (domain domain_file)
(define (domain domain_file) Action Mutex | ...
B) (:requirements :typing) Generation (:action moveleft
(:action moveleft ...) :precondition (ismoveright_not ?x)
(:action moveright ...) :effect (ismoveleft ?x))
(:action moveright
:precondition (ismoveleft_not ?x)
:effect (ismoveright ?x)))

Fig. 6. Property mutex and Action mutex synthesis on the predefined PDDL domain.

After integrating temporal constraints and mutex expressions into the PDDL
script, a temporal solver is applied to find suitable temporal plans [5]. In this
paper, we utilize Partial Order Planning Forwards (POPF) [2] to find a concur-
rent solution for multi-robot team. Combining forward state-space search with
partial-order planning techniques, POPF can effectively find temporal planning
solutions by introducing minimal ordering constraints. POPF uses a Simple Tem-
poral Network (STN) to represent durative action and temporal constraints. As
actions are added to the plan, their start and end time points are incorporated
into the STN with relevant ordering constraints. The final STN output provides
a valid temporal solution that satisfies all temporal constraints. This solution is
then dispatched to the multi-robot team, triggering appropriate actions on each
robot. Each primitive action is associated with a Behavior Tree, allowing fur-

330 D. Tran et al.

ther decomposition into smaller modular actions, which enhances the system’s
flexibility and adaptability

3 Experiments

We evaluated the proposed method through two main experiments. The first
experiment assessed the linguistic characteristics of the framework, aiming to
demonstrate that key properties are preserved such as determinism, general
domain applicability, and expressiveness from classical CRL [8]. The second
experiment evaluated the method’s stability of the method on a real-time multi-
robot team in navigation missions.

3.1 Linguistic Model Evaluation

To compare this approach with classical CRL, we conducted an evaluation using
the natural language instruction dataset [8]. This dataset was specifically devel-
oped for robotics and task-planning, comprising 335 planning scenarios and
approximately 4,000 tokens. Each entry in the dataset represents a distinct
planning scenario, and consists sequence of instructions, queries, and percep-
tion descriptions. The linguistic properties of the framework are evaluated on
four core tasks: POS tagging, syntactic parsing, semantic parsing, and plan-
generation. For POS tagging, we used multi-label accuracy. For syntactic parsing,
semantic parsing, and plan-generation, we measured the framework’ s feasibility
in generating meaningful output, as used in [§].

Among 335 planning scenes, the proposed framework achieves 100% accuracy
in POS tagging and syntax success rate, demonstrating the exceptional linguis-
tic robustness and reliability of CRL-based method. Compared to the individual
robot framework [9], we observe modest yet significant improvements: seman-
tic parsing accuracy increased from 78% to 81%, while plan-generation success
rate rose from 75% to 78%. These improvements can be attributed to the CRL’s
refined focus on subject identification and resource management in the multi-
robot domain, highlighting the framework’s adaptability to more complex sce-
narios.

3.2 Performance Evaluation

We integrated the framework into a real-time multi-robot system of three Leo
Rovers. The linguistic framework was incorporated into the robot system via
WebSocket communication. For each robot, we implemented five primitive exe-
cutable actions: moveto, moveforward, moveback, moveleft, moveright. The
moveto action requires two arguments (subject, object), while the other only
requires one argument (subject). Temporal constraints were explicitly described
by participants, while mutex expressions were carefully defined by knowledge
experts. To find temporal solutions for the generated plans, we employed the

Autonomous Multi-Robot Action Planning Through CRL 331

POPF planner, which efficiently dispatches concurrent actions to the robotic
system when a viable solution is identified.

We conducted a study with five participants to evaluate the natural lan-
guage control of our multi-robot team. Each participant was tasked with describ-
ing their desired goals using natural language given the available actions and
robot identities within the system. The descriptions are requested to be com-
plex, containing multiple actions, and involving all the robots. The participants
were allowed to include temporal constraints. For each set of instructions, we
performed 10 trials with varying initial robot states. After each execution, we
observed the final state and verified the satisfaction of all the requirements in
(:goal) section.

Input: There are 3 robots on the environment.
Leo3, move to POS2 slowly. Leol, move to

Output: define (problem demo_problem) (:domain demo_domain)
(:objects pos1 pos2 pos3 - object; Idirect rdirect - direction; leol

POS1. Leo2, move to POS3 carefully. Leo3,
rotate right after Leol's first execution. Leo2,
rotate left during Leo3's second action.

leo2 leo3 - robot; pl p2 p3 p4 p5 p6 - pid; ¢ - environment; g -
execution; i - action; a - robot)

(zinit (after leo3 g) (during leo2 i) (on a c) (first g) (second

i) (is_robot leol) (is_robot leo2) (is_robot leo3))

(:goal (and (move leo3 p1 pos2) (move leol p2 posl) (move leo2
p3 pos3) (rotate leo3 p4 rdirect) (rotate leo2 p5 Idirect))))

Input: There are 3 robots on the environment.
Leo3, move to POS2 firstly. Leol, move to POS1
afterward. Leo2, move to POS3 at the same time.
Leo3, rotate right after Leol's first execution.
Leo2, rotate left during Leo3's second action.
Leo3, move to POS4 after Leo2's second
execution. Leol, move to POS1 before Leo3's
last execution.

Output: define (problem demo_problem) (:domain demo_domain)
(:objects pos2 posl pos3 pos4 posl - object; Idirect rdirect -
direction; leol leo2 leo3 - robot; p1 p2 p3 p4 p5 p6 p7 p8 - pid; ¢ -
environment; g - time; h | n - execution; a - robot; j - action)

(:init (at leo2 g) (after leo3 h) (during leo2 j) (after leo3) (before
leol n) (onac) (same g) (first h) (second j) (second) (last n)
(is_robot leol) (is_robot leo2) (is_robot leo3))

(:goal (and (move leo3 p1 pos2) (move leol p2 posl) (move leo2
p3 pos3) (rotate leo3 p4 rdirect) (rotate leo2 p5 Idirect) (move leo3
p6 pos4) (move leol p7 posl))))

Input: There are 3 robots on the environment.
Leol, move to POS2. Leo2, move to POS1 at the
same time. Leo3, move to POS3 concurrently.
Leol, rotate left while Leo2's first exectution.

Output: define (problem demo_problem) (:domain demo_domain)
(:objects pos2 posl pos3 - object; Idirect rdirect - direction; leol
leo2 leo3 - robot; p1 p2 p3 p4 p5 - pid; f - time; h - execution; ¢ -
environment; a - robot)

(:init (at leo2 f) (while leol h) (on a c) (same f) (first h) (is_robot
leol) (is_robot leo2) (is_robot leo3))

(:goal (and (move leol pl pos2) (move leo2 p2 posl) (move leo3
p3 pos3) (rotate leol p4 Idirect))))

Fig. 7. Generated plans with temporal constraints from complex instructions for multi-
robot team.

We evaluated the performance of the method on the real-time multi-robot
system across various initial states. Each linguistic description contains both sub-
ject, object, and temporal expressions indicating the order of executions. Figure 7
showcases examples of these complex linguistic instructions alongside their cor-
responding generated plans. The outputs are complete and deterministic, and
ready for direct interpretation by the POPF solver. These generated plans seam-
lessly integrate temporal conditions (e.g., after,during, before,while), pre-
cisely specifying the sequence of actions defined in the original inputs. This
demonstrates the method’s capability to handle sophisticated, time-sensitive
multi-robot coordination tasks.

332 D. Tran et al.

3 r 3
Input: There are 3 robots on the \5 M \P‘ ;’

environment. Leo3, move to POS2
slowly. Leol, move to POSL1. Leo2, t"’f
move to POS3 carefully. Leo3, rotate
right after Leo1l's first execution.

= =S \ :
Leol, move to POS4 at the same - A 37 =
time of Leo3. Leo2, move to POS1
after Leo3's second execution. Leo3, f? Q M ﬁfl
rotate right at the same time. Leo1l,
rotate left twice at the same v\
time. Leo3, move to POSO0, then

move to POS3. Leo2, move to POS2 “s’ -(:5 L!
while Leol move to POS4. ! 3

Input: There are 3 robots on the /:,- - i
environment. Leol, move to POS3.
5| 5y

Leo2, move to POS1 concurrently.
Leo3, move to POS4 afterward. ‘g.

Leol, rotate left after the first e {},
execution. Leo2 and Leo3, rotate left <

g
~«
concurrently. Leo2, move to POS2. ot ! 23 w
“

Leol, move to POS4 concurrently.
Leo3, move to POS1 at the same
time. Leo2, move to POSO g
afterward. Leo3, move to POS2 A -
concurrently. Leol, move to POS1 w z"f "'}I

concurrently.

124

=
ad

Fig. 8. Plan executions of multi-robot team using the generated temporal plan. The
order of executions (left-right, top-down) is consistent with temporal constraints
defined in commands.

The experiment demonstrated that multi-robot team consistently interpreted
and executed temporal linguistic instructions across all trials, regardless of the
initial states. Figure 8 illustrates different executions of the multi-robot at differ-
ent time steps. The order of robot executions is defined by the temporal solver
POPF, after considering all the temporal constraints declared in the generated
plans.

4 Conclusion

This paper presents an enhanced Controlled Robot Language (CRL) based com-
munication channel for multi-robot systems. Performance evaluations demon-
strate improvements in semantic parsing and plan generation, which confirm the
linguistic robustness of the CRL-based approach. Real-world experiments with
Leo Rovers in complex planning scenarios further validated the reliability of
the communication channel. In conclusion, this research underscores the poten-
tial of the CRL-based approach as an effective and user-friendly communication
solution for multi-robot domains.

References

1. Beetz, M., et al.: Robosherlock: unstructured information processing for robot per-
ception. In: 2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1549-1556 (2015)

Autonomous Multi-Robot Action Planning Through CRL 333

. Coles, A., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning. In:
Proceedings of the International Conference on Automated Planning and Schedul-
ing, vol. 20, pp. 42-49 (2010)

. Fox, M., Long, D.: Pddl2. 1: an extension to pddl for expressing temporal planning
domains. J. Artif. Intell. Res. 61-124 (2003)

. Liu, R., Guo, Y., Jin, R., Zhang, X.: A review of natural-language-instructed robot
execution systems. Al 5, 3, 948-989 (2024)

. Mudrova, L., Lacerda, B., Hawes, N.: Partial order temporal plan merging for mobile
robot tasks. In: European Conference on Artificial Intelligence (ECAI), pp. 1537—
1545. 10S Press (2016)

. Spencer, D.A., Wang, Y., Humphrey, L.R.: Trust-based human-robot interaction for
multi-robot symbolic motion planning. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1443-1449. IEEE (2016)

. Tellex, S., Knepper, R., Li, A.; Rus, D., Roy, N.: Science and systems, asking for
help using inverse semantics. In: Robotics: Science and Systems Foundation (2014)
. Tran, D., Li, H., He, H.: Ai planning from natural-language instructions for trustwor-
thy human-robot communication. In: International Conference on Social Robotics,
pp. 254-265. Springer (2023)

. Tran, D., Yan, F., Yihun, Y., Tan, J., He, H.: A framework of controlled robot
language for reliable human-robot collaboration. In: International Conference on
Social Robotics, pp. 339-349. Springer (2021)

