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Abstract. Effective human-robot collaboration requires social robots
to adapt to individual human grasping habits to ensure smooth and safe
object handovers. However, current robotic systems struggle to inter-
pret diverse grasping behaviors, as individual habits can introduce vari-
ations even within the same grasp topology. This limitation affects the
effectiveness of robotic systems in social contexts. This paper presents a
grasp adaptation algorithm that enables robots to recognize and adjust
to human grasping habits. The system identifies human grasping poses
from RGB images and maps them to abstract representations consisting
of 21 3D points each. These representations are then classified into one
of six standard grasp topologies. Based on the identified topology, key
points are selected from the abstract grasp to estimate the object’s pose.
A reinforcement learning model is subsequently employed to optimize
the object handover process. Experimental results demonstrate that this
approach significantly enhances both the fluidity and safety of human-
robot object handovers.
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1 Introduction

Human-robot collaboration, particularly in the context of object handovers, is
essential for ensuring smooth and effective interactions in both structured and
unstructured environments, such as healthcare and industrial settings [1,2,18].
For example, a robot delivering tools to a nurse or handing parts to a fac-
tory worker must adapt to the human’s grasping preferences and workspace
constraints to enhance both safety and efficiency. Extensive research has been
conducted to address the handover task in human-robot collaboration. Stud-
ies have analyzed the trajectory and velocity of approach movements to ensure
smooth transitions [9,13]. Additionally, object orientation and affordances have
been optimized to make it easier for the receiver to grasp the object [4,15]. Some
approaches also involve learning from human behavior to improve the natural-
ness and effectiveness of handovers [4]. However, less work has been done to
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adapt to the habits of the receiver, particularly the variability in human grasp-
ing behaviors, which are influenced by individual preferences and situational
factors. Developing systems that can accurately recognize and adapt to these
diverse human behaviors is crucial for making robots more intuitive and practi-
cal in real-world applications.

Grasp topology and taxonomy are key to understanding human grasping
behaviors and robotic adaptation. Grasp topology describes the geometric con-
figuration of the fingers or contact points with an object, such as pinching or
cupping. Grasp taxonomy categorizes these topologies into structured classes
based on factors like contact points and object shape. This classification aids
in designing robots that can effectively recognize and adapt to human grasp-
ing behaviors in various tasks and environments. Previous research has shown
that human grasp choices tend to cluster over a large set of objects, leading to
the development of grasp taxonomies to simplify grasping choices. For example,
Cutkosky’s taxonomy identified 16 grasp types used by machinists [6], and Feix’s
taxonomy expanded this to 33 different grasp types [3,7].
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Fig. 1. Structure of the grasp adaptation system.

The FreiHAND dataset provides a large collection of annotated 3D hand
poses, high-resolution RGB images, and key point annotations, which make it an
invaluable resource for advancing research in hand tracking and grasp recognition
[20]. In this paper, we extend the FreiHAND dataset to map individual grasping
habits to a standard set of grasp topologies.

Reinforcement learning (RL) is a powerful approach for robot control, where
robots learn to perform tasks through trial and error [8,16,19]. By receiving
feedback in the form of rewards or penalties based on their actions, robots
improve their behavior over time [17]. This method enables robots to develop
adaptive and optimized control strategies for complex and dynamic environ-
ments. It enhances their ability to perform a wide range of tasks autonomously.
In this paper, an RL model is designed to conduct the object handover task in
a simulation environment, identical to the MagicHand system [10,11].

We propose a grasp adaptation algorithm, as illustrated in Fig. 1, that pro-
cesses an RGB image of a human grasping pose, converts it into an abstract
grasp representation, and classifies it into one of six standard grasp topologies.
Key points are then selected from the abstract grasp, based on the identified
grasp topology, to estimate the appropriate object pose. A reinforcement learn-
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ing model is subsequently employed to optimize the object handover process.
The contributions of this research include:

— We developed a grasp adaptation system that adjusts the robot’s grasping
strategy based on individual human grasping habits, enhancing the fluidity
and safety of object handovers.

— We proposed a method for accurately estimating the appropriate object pose
based on the identified grasp topology.

— We designed a reinforcement learning model to optimize the object handover
process by learning adaptive strategies that align the object’s position and
orientation with the receiver’s grasp pose while minimizing interaction errors

2 Human Grasping Habit Adaptation

To adapt to human grasping habits, three key challenges must be addressed:
recognizing the human grasp, determining the object pose based on the grasp,
and moving the object to the desired pose. The proposed system tackles these
challenges through three integrated models: a grasp recognition model, an object
pose estimation model, and a reinforcement learning model.

2.1 Recognition of Human Grasp Topology

Standard Grasp Topology. We classify grasp poses into six distinct grasp
topologies [14], as illustrated in Fig.2. The figure categorizes grasps into two
main types: power grasps and precision grasps, based on object shapes and the
involvement of virtual fingers (VF). Power grasps (e.g., circular or prismatic
objects) prioritize security and stability, utilizing more virtual fingers and 3D
wrapping. In contrast, precision grasps focus on dexterity and sensitivity, typi-
cally involving fewer virtual fingers and 2D wrapping.

hensile Grasps
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Fig. 2. The predefined grasp topology.

After establishing the grasp taxonomy, a standard grasp pose was selected for
each topology by evaluating poses from the FreiHAND dataset. The evaluation
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was based on how well each pose matched the defined topologies. The pose that
best fit each topology was chosen as the standard grasp pose. Figure 3 displays
both the RGB image of the standard grasp pose and the corresponding grasp
information, which includes abstract grasp key points (highlighted in green).
The orange dotted axis represents the estimated object pose derived from the
key points.

Grasp Pose Grasp Information Grasp Pose Grasp Information

Fig. 3. Standard grasp topology: This figure displays images of the grasp topology,
including the skeletons of each standard grasp topology and their corresponding key
points, highlighted in green.

Grasp Topology Recognition. A multi-layer perceptron (MLP) deep neural
network was developed to map abstract grasps to standard grasp topologies.
Rectified Linear Units (ReLU) were used as activation functions in the input
and hidden layers. The input layer comprises 63 neurons, corresponding to the
21 3D points in each abstract grasp. The network features three hidden layers
with 1,024, 256, and 32 nodes, respectively. The output layer consists of six
neurons with Softmax activation functions to classify the grasps. The model was
trained using a refined FreiHAND dataset.

2.2 Object Pose Estimation

The pose of the object, including both position and orientation, is determined
based on the key points associated with the standard grasp topology. For grasp
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topologies such as “wc”, “wh”, “wp”, “rc”, and “rp”, the object should be posi-
tioned within the grasp’s aperture, which is the space between the fingertips of
the thumb and the fingers. The object position is defined as the midpoint between
P, the point representing the tip of the thumb, and p., the closest fingertip to p;.
The object position is expressed as p,, = 0.5[x¢ + Z¢, Yt + Ye, 2t + zC]T. Since the
orientation is typically aligned with the palm or fingers, two key points, ps and
De, are pre-selected from the abstract grasp to define the object’s orientation.
These points are usually located on the palm. The orientation of the object is
expressed as

l(t) = [l’m,ym, Zm]T +t- [xe —Tsy,Ye — Ysy Re — ZS}T (1)

where x, y, and z are coordinates of the point and ¢ is a scalar parameter. The
points ps, pe, De, and py, are specific to each grasp topology and serve as key
points provided for analysis.

For the grasp topology “wt” the object should be positioned between the
fingertip of the thumb and the side of the index finger, specifically at the key
point ppip, which corresponds to the PIP joint (Proximal Interphalangeal Joint)
of the index finger. The object’s position for this grasp topology is expressed as
Pm = 0524 + Tpip, Yt + Ypips 2t + 2pip] - - The orientation of the object should be
roughly parallel to the index finger. In this case, the key points ps; and p, in (1)
represent the PIP and MCP (Metacarpophalangeal) joints of the index finger,
respectively.

2.3 Object Handover Using Reinforcement Learning

Once the object’s pose is determined, the robot must adjust the object to the
specified position and orientation. We designed and developed a reinforcement
learning model to achieve this goal. A simulation environment mirroring the
MagicHand platform, which supports a variety of manipulation tasks, has been
established [10,12].

The task is to handover the object to a human hand, simulated by a Schunk
anthropomorphic robotic hand in a simulation environment, and positioning it at
the target pose, represented by a green area. The action space of the proposed
model is a six-dimensional vector, including movements and rotations of the
robotic hand along the x, y, and z axes. The observation space consists of seven
dimensions: the relative position and orientation between the object and the
target, as well as the distance between them.

In this task, our goal is to position the object as close as possible to the target,
defined as the center point of the green area, rewarding smaller distances between
the object and the target. Additionally, we aim to align the object’s orientation
with the target’s orientation, rewarding smaller differences in orientation along
the x, y, and z axes. To ensure safe interaction, we impose penalties for collisions
with the human hand. The reward function is expressed as

r=eldl 4 omlhl L o=l 4 o= IRl _ ang (2)
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where d is the distance between the object and the target location, and h, I,
and k represent the differences in orientation between the object and the target
along the z, y, and z axes, respectively. The coefficient « is a constant, and
n. represents the number of contact points with the human hand. We chose an
exponential function because its value changes more rapidly when the exponent is
large and more slowly when the exponent is small. This approach encourages the
robot to make larger adjustments when the current pose is far from the target,
while allowing for more precise, gradual adjustments as the pose approaches the
target.

The proximal policy optimization (PPO) algorithm is employed to train the
model. PPO is a reinforcement learning algorithm designed to improve policy
stability by limiting the size of policy updates. It uses a clipped objective function
to ensure that the new policy does not deviate excessively from the old policy.
The objective function is given by

J(O)=E {min (We(als)/l(s,a), clip (W7 1—¢1+ 6) A(s,a))]
TOo1a (a|5) T0o1a (a|5)

where 7y (a|s) and my,_,,(a|s) are the probabilities of taking action a in state s

under the new and old policies, respectively, and /1(3, a) is the advantage func-

tion. The clipping function clip restricts the ratio of the new to old policy prob-

abilities, with e controlling the extent of the allowed change, thereby balancing

exploration with stability.

3 Experiments

The proposed system was evaluated under different thresholds. The simulation
environment was set up using PyBullet and Gym, and task simulations were
conducted to test the final performance of the system.

3.1 Data Preparation

The FreiHAND dataset, comprising RGB images with 3D annotations, was
refined by labeling each grasp pose with one of six predefined topologies. This
updated dataset contains 600 annotated poses (100 per topology). Figure 4 illus-
trates sample images of these labeled poses alongside their abstract grasp rep-
resentations.

3.2 Grasp Recognition

The revised dataset is divided into two parts: 540 grasp poses for training and
validation, and 60 new grasp poses for testing. The proposed algorithm was
evaluated using 4-fold cross-validation with hyperparameters of a batch size of
64, 500 epochs, and the Adam optimizer with a learning rate of 0.001. The
training accuracy achieved 93.3% while the accuracy on testing set achieved
87.2%. The testing accuracy is relatively low because some of the grasp topologies
are difficult to distinguish. For example, the “wh” and “rc¢” grasps have similar
configurations, making them harder to recognize accurately.
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Fig. 4. The revised dataset consists of 600 grasp poses. Each pose is paired with a
corresponding abstract grasp representation for each grasp topology.

Estimated Object Pose Object Positioning Estimated Object Pose Object Positioning

Fig. 5. Handover task for each grasp topology: In each task, the system first estimates
the object pose based on the grasp pose of the simulated human hand. The model then
attempts to place the object at the target pose.

3.3 Object Pose Estimation and Handover

The effectiveness and accuracy of an estimated object pose are evaluated through
object-handover tasks in a simulation environment. An object pose is considered
effective if the robot can successfully pass the object to the human hand, which
should then be able to securely grasp it. For this evaluation, we used PyBullet
[5] to simulate an AR10 robotic hand mounted on a Sawyer robot holding the
object. The human hand, simulated by a Schunk robotic hand, positioned in front
of the robot, performs a variant of one of the six grasp topologies. The system
estimates the object pose based on the grasp pose of the simulated human hand
and highlights the estimated pose as a green area. The handover task for each
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grasp topology is illustrated in Fig. 5, where the robot’s goal is to position the
object to align with the green area while avoiding collisions with the human
hand.

The model was trained for 20,000 episodes with a learning rate of 1.6 x 106
and a batch size of 32, with varying target positions and orientations in each
episode. Each grasp topology was tested 100 times achieving an overall success
rate of 83%.

4 Conclusions

In conclusion, this paper presents a robust approach to enhancing human-robot
cooperation through the development of a grasp adaptation system. By accu-
rately recognizing diverse human grasping habits and classifying them into stan-
dard grasp topologies, the system can determine optimal object handover strate-
gies for smooth handovers. The use of deep learning for grasp pose recognition
and reinforcement learning for strategy optimization demonstrated strong per-
formance in experimental settings. Although challenges remain in distinguishing
similar grasp configurations, the results underscore the potential of the proposed
system to improve human-robot interaction by making robots more adaptable.
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