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Abstract—Recent work highlights how gradient-level access can
lead to successful inference and reconstruction attacks against
federated learning (FL). In such settings, differentially private (DP)
learning is known to provide resilience. However, approaches used
in the status quo (i.e., central and local DP) introduce disparate
utility vs. privacy trade-offs. In this work, we mitigate such
trade-offs through hierarchical FL (HFL). For the first time, we
demonstrate that by the introduction of a new intermediary level
where calibrated noise can be added, better trade-offs can be
obtained; we term this hierarchical DP (HDP). Our experiments
with 3 different datasets (commonly used as benchmarks for FL
in prior works) suggest that HDP produces models as accurate
as those obtained using central DP, where noise is added at a
central aggregator at a lower privacy budget.

I. INTRODUCTION

In federated learning (FL), clients share the gradient updates
associated with local learning with a central aggregator (CA)
which uses them to obtain a global model update. FL is assumed
to provide privacy [1]: the data never leaves the federated
clients. However, recent work [2], [3], [4] has shown that FL
is susceptible to attacks where the private training data can be
reconstructed by observing the shared gradients. Differential
privacy [5] (DP) provides guarantees on privacy leakage of
various mechanisms, including those used by FL [6], [7], [8].
It has been shown that DP learning algorithms alleviate the
aforementioned attacks [9], [10]. However, they introduce a
trade-off between protecting data privacy, and utility of the
model learned.

Thus far, DP guarantees in FL have been investigated at
two levels: at the CA [11] (i.e., central DP or CDP), or at
the client level (i.e., local DP or LDP) [12], [13], [14]. The
former assumes that the clients trust the CA, while the latter
does not, and both approaches introduce disparate privacy
vs. utility trade-offs. In this work, we aim to understand
if a compromise can be reached through an intermediary
approach, by introducing hierarchies in the FL pipeline. We
call this hierarchical DP (or HDP). Clients form, or belong
to zomes; updates from clients within a zone are aggregated
by a super-node (an elected/chosen client), and the updates
from zones (i.e., super-nodes) are aggregated at the CA.
Such hierarchies are omnipresent in daily computing systems
(e.g., telecommunication networks, the internet infrastructure,
etc.) [15]. These “naturally occurring” clusters of clients have
embedded trust in their formation [16].

In this paper, we take the first step in analyzing how
hierarchies are beneficial with respect to privacy, and what are
the key technical challenges to be solved. In fact, this paper is
the first to address the following challenges in this space. The
first challenge is in constructing such a hierarchy. We analyze
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different approaches that reflect the aforementioned scenarios
and discuss the trade-offs in § IV-A. The second challenge
involves making modifications to the standard approaches to
FL to ensure that the newly proposed HFL approach learns the
same model as in the status quo. We discuss this in § IV-B. The
third challenge involves formalizing an algorithm (to provide
DP) to be used in an HFL ecosystem. Determining the exact
mechanism has direct implications on the privacy vs. utility
trade-off, and provides avenues for privacy amplification, which
we discuss in § IV-C with our novel algorithm. We are also the
first to generalize the approach by considering 7 different
case scenarios of simultaneous needs for employing LDP,
HDP and CDP in the same FL setting, in § V. Our final
challenge is understanding the various threats faced by our
new constructions (§ VII) in an experimental manner.

We first validate that HDP is robust to reconstruction
adversaries. We also analyze faulty behavior at an intra- and
inter-zonal granularity, and describe the information leakage
by adversaries in such settings, even when an adversarial client
is elected as a super-node. We also analyze prior attacks in
the FL setting, and comment on the applicability of the same
in the context of hierarchical FL. In particular, we look into
adversaries in super-node level and discuss potential adversarial
inferences they may perform. We show that HDP can thwart
such attacks. Finally, we experimentally study the privacy vs.
utility trade-off on different datasets (which are used in prior
work related to this topic) and setups. We demonstrate that
the (privacy and utility) performance of hierarchical FL sits
between local and CDP. Surprisingly, we observe that the utility
benefits obtained through our proposal are very close to that
obtained by learning a model with CDP.

II. BACKGROUND & RELATED WORK

Federated Learning (FL) involves learning with many feder-
ated clients in a decentralized manner [11]. At each round, the
central aggregator (CA) shares its weights with all federated
clients. At any given point in time, only k£ < n clients
may be online. Each client performs training (on its private
dataset) for multiple epochs (FedAvg [1]) or a single epoch
(FedSGD [17]) and shares the update with the CA. Once
aggregated, the CA updates its weights and shares it to all
clients to be used as the starting point for the next round. FL is
assumed to provide privacy by design. However, recent work
invalidates this assumption [4], [3].

Differential Privacy (DP) was proposed by Dwork et al. [5].
Let £ be a positive real number, and A be a randomized
algorithm that takes a dataset as input. The algorithm A is
said to provide e-DP if, for all datasets D1 and D- that differ
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on a single element, and all subsets O of the outcomes of
running A: Pr[A(D;) € O] < e - Pr[A(D;2) € O] where
the probability is over the randomness of the algorithm A.
Parameter ¢ is also known as the privacy budget.

Central & Local DP: The traditional model defined earlier,
also known as the central DP (CDP) model, implicitly
assumes the existence of a trusted entity that does not deviate
from protocol specification. However, such an assumption may
not always hold. Local DP (LD P) [12] assumes that each data
contributor adds the noise in-situ. Naturally, such a mechanism
has limited knowledge of the overall function being computed
on all the data, and overestimates the amount of noise required.
The relationship between LDP and CDP is dependent on the
mechanism used to achieve DP. For example, the Laplacian
mechanism [5] ensures that e-LDP also provides e-CDP.

FL with DP: [18] propose the first approach where DP can
be combined with FL to provide formal privacy guarantees.
Similar ideas are proposed in the work of [10]. In both settings,
however, CA is able to observe either noise-free gradients
or noisy gradients from corresponding clients. To break this
connection, [19], [20] propose the notion of secure aggregation,
a variant of MPC, which provides the CA an aggregated view
of all gradients (noisy/non-noisy) from the clients.
Hierarchical FL. (HFL): [21] propose a mechanism to ensure
communication-efficient and coordinated learning in the context
of HFL. Here, the notion of hierarchies stems from the presence
of clients communicating with small base stations (or cellular
towers) which act as intermediaries, who further communicate
with macro base stations (or the CA). Similar claims are made
in the work of [22]. It is important to note that prior work
focuses on improving the scalability/communication-efficiency
of FL through the introduction of hierarchies, whilst ours is
studying the implications on privacy.

Hierarchical DP (HDP): Prior work by Shi et al. [23]
considers noise addition in a hierarchical manner. However,
their proposal does not consider noise addition at every round
but at specific rounds; this is a deviation from traditional
approaches with serious consequences. Particularly, we remark
that the privacy analysis is flawed as the authors consider
situations where the gradient is clipped at only specific
iterations and not all; convergence analysis of private learning
mechanisms requires that the gradients be clipped and noise at
all iterations. They also do not evaluate the resilience of their
proposal to practical privacy attackers (such as reconstruction
adversaries as we do). Finally, they do not consider the
ramifications of their work in settings where DP noise is not
added at specific iterations but the gradients are shared with
edge-server, providing the edge-server access to unmodified
data, whereas our proposal circumvents this by requiring secure
aggregation to ensure that the edge-server never sees gradients
from clients, but only sees an aggregate view.

III. ARCHITECTURAL OVERVIEW
A. Approach & Hierarchical DP

Typically in FL, there is a total of two actors at two
conceptual levels of a hierarchy i.e., client(s) at level 0 and
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Fig. 1: Architectural overview of our approach (§ III).

the server at level 1. In our proposal, we assume the existence
of three main actors at three different (conceptual) levels of
the hierarchy (as noted in Figure 1). At level 0, we have the
clients who hold private data. At level 2, we have the CA.
The key difference lies in the middle: at level 1 (i.e., the
intermediate level), we introduce a new entity called the super-
node, responsible for processing requests from the online clients
in a particular region (i.e.,zone i € [s]; s is the total number
of zones). The presence of level 1 introduces a hierarchical
approach for FL. An added feature in our proposal revolves
around the selection of the super-node: they can either (a) be
elected by a pool of their peers and thus are within the same
trust boundary/region as their peers, or (b) be chosen as an
entity in a different trust region (to both the clients and the
CA). Note: in practice, there can be many intermediary layers;
we stick to one for the paper’s remainder.

In the status quo, DP guarantees are obtained through two
mechanisms: noise addition at the CA (i.e., CDP), or noise
addition locally at each federated client (i.e., LDP). Empirical
evidence suggests that the CDP mechanism will result in a
final model with higher accuracy at the expense of trusting the
CA. The LDP mechanism removes this trust assumption, but
requires greater noise addition at each client. To provide the
best of both worlds, we propose hierarchical DP (or HDP).

From Figure 1, note that the functionality of the super-nodes
is similar to that of the CA. Consequently, the formal definition
of Hierarchical DP (HDP) is the same as that of CDP, adjusted
for the participation of intra-zonal clients.

Definition III.1 (Hierarchical DP). A ey pp-hierarchical
randomizer R : D — O is a differentially private algorithm
that takes a database of arbitrary sizes (from the same zone
i). That is Pr[R(D;) = o] < e®#PP . Pr[R(D)) = o] for all
D;,D; € D (Vi € [s]) such that they differ by a single row,
and all o € O. The probability is taken over the randomness
of the procedure R. Note, that the elements of the database
may already be noisy due to effects of local randomizers.

Prior Work: [23] also considers noise addition in a hierarchical
manner. However, they do not consider noise addition at every
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round; this is a deviation from traditional approaches and results
in flawed privacy analysis. Additionally, the authors consider
situations where the gradient is clipped at only specific rounds;
convergence analysis of private learning mechanisms requires
that the gradients be clipped and noised at all rounds.

B. Threat Model

We assume a minority of ( (1 < ( < %)1 online clients
are adversarial. These are honest-but-curious i.e., they can not
deviate from protocol specifications, but can collude. This is
the commonly followed threat model in most prior works [2],
[4]. Their sole goal is to infer information about the training
data of a target client (or group of clients). The only knowledge
these adversaries are privy to are the gradient updates shared
during training. In particular, the adversaries we consider are
able to view: (1) any updates they generate; (2) the joint update
shared from the CA; and (3) the update generated at the the
super-node, iff the adversary is located at said level.
Adversarial Goals. The adversary aims to: (a) identify if a
particular data-point (or a particular attribute within a data-
point) was used during training?, or (b) reconstruct the data
used for training by another client by observing the gradients
shared. These adversaries can utilize: (a) data inference [2], or
(b) data reconstruction [4], [24] to achieve their goals. Note that
the reconstruction attack can capture all effects of the inference
attack; once the adversary has access to the exact data used for
training, it can also infer if the data-point possesses specific
attributes (or not). While such an attack is computationally
more expensive than inference attacks, they are more realistic.
Note: Recent work [3], [25] formalize active adversaries whose
aim is to subvert different parts of the protocol. The setting they
assume is one where a CA is able to maliciously modify the
states shared to (different) participants so as to ensure efficient
input reconstruction. We stress that such an attack deviates
from our honest-but-curious adversarial model. Additionally,
and more importantly, the authors of both these works note that
obfuscating the gradient using DP (as we propose) extensively
minimizes attack efficacy.

IV. DESIGNING HIERARCHIES
A. Choosing Super-Nodes

1. Exploiting Inherent Hierarchies: Hierarchies exist in
communication networks [26]: this information can be used
to select super-nodes. For example, hierarchies are introduced
by edge computing, where the edge-based base-stations [15]
serve as an intermediary between the clients and the CA.
Traditionally, the manufacturer of various hardware components
are manufactured by different vendors [27]; we can assume
that the clients, super-nodes, and CA belong to different trust
regions, minimizing collusion between them.

2. Elections: Another approach is to elect the super-node in
a fully decentralized manner, i.e., the super-node is one of
the clients. This too, ensures that the super-node is from a

INeeded for fault tolerance, as we will explain later.

2A dataset comprises of many data-points, each of which comprises of
numerous attributes.
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different trust region in comparison to the CA. First, clients are
grouped into zones; the grouping can be based on (a) geography,
(b) compute capabilities, or (c) some form of structured or
unstructured P2P overlay organization [28]. Then, a distributed
election protocol is run within a zone. Leader election protocols
can be drawn from past literature that studied it under the
context of super-node selection in P2P networks using different
assumptions, metrics, etc. [29], [30]. In our setting, such a
process assumes that the clients are aware of others who are
active in that particular zone for the particular round, a common
assumption [31], [19]. Another assumption made is that these
participants can communicate the outcome of the election
between each other. We do note that such assumptions induce
additional communication overheads, but they do not add to the
overall complexity of our proposal (as we see in Appendix V).
We request the curious reader to refer to these works (and this
survey [32]) for more details.
Election Integrity: One key requirement in our setting is that
the election of the super-nodes is randomized, i.e., a particular
client in a zone has bounded probability of being elected as the
super-node®. Once the super-node is down, then a new one is
elected to replace it. However, recall that a small fraction ¢ of
online clients are adversarial, and can subvert the election
protocol through collusion. To this end, different election
protocols and assumptions provide different guarantees [33].
For example, to obtain conventional fault tolerance at zone
i, a majority of the k; clients must be honest [33] (i.e,
G < k"z_ L < ¢). Similarly, to obtain byzantine fault tolerance,
G < k‘; L < ¢ [33]. While there exists no formal/principled
way to practically enforce such constraints, these limits serve
as bounds to understand the limitations of election integrity.
Note, however, that the elected super-node has complete
purview to the gradients from clients; these gradients may not
be masked through the addition of noise needed for DP. To this
end, we advocate for the usage of secure aggregation (SA) [20]
protocols (within zones) to ensure that the super-node gets an
aggregate view of the gradients from individual clients. In
our setting, SA needs to be applied in all zones, and prior
work suggests that SA protocols are practical (i.e., introduces
a tolerable time delay) for only a small number of clients [20].
Care must be taken in ensuring that the number of (online)
clients per zone is also small. How this is achieved can be
determined by future research. But we would like to stress that
the time taken for SA within the zone in the HFL setting will
be notably lower than in the status quo (without hierarchies)
since the number of online clients per zone (for HFL) will be
lower than the number of online clients overall (as needed by
the status quo).

B. Proposed Algorithm and Correctness

Algorithm for Hierarchical FL with DP: Algorithm 1 is based
on the approach taken by [18], with some key modifications to
incorporate hierarchical FL for s zones. From line 6, observe

3 Assuming each client has a probability p of being randomly elected (where
p= i), the probability that the client is elected in all 7" rounds is p” which
is very low.
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1: Parameters
a. user selection probability ¢ € (0, 1]
b. per-user example cap @ € R
c. noise scale z € R
d. UserUpdate (for FedAvg or FedSGD)
e. ClipFn (FlatClip or PerLayerClip)
f. Parameter W,in

2: Procedure:
3: Initialize model 6°
4: wg = min(%&, 1) for all users k
5. for each round ¢t = 0,1,2,... do
6: for each zone i =1,2,...,s do
7: C! < (sample users with probability ¢)
8: W = ZkGCf Wi
9: for each user k € C! in parallel do
10: AT! + UserUpdate(k, 6%, ClipFn)
11: end for
Ypect kachrl .
—w for FlatClip
12: A(i)t+1 = t4+1
Ziecy Uik for PerLayerCli
max(q Wnin 2pect W) or rerL.ayertiip
13: Si + (bound on ||ALT!||5 for ClipFn)
14: O ;f/{/ for FlatClip or % for PerLayerClip}
15: O 0"+ 23 (AT N(0, I07))
16:  end for
17: end for

Algorithm 1: Modified FL. mechanism with zonal privacy.

that gradient aggregation first occurs at a zonal level. This
in turn leads to re-calibration of various parameters (lines 7-
14) required to provide the DP guarantee*. Finally, the noised
zonal gradients are averaged and aggregated in line 15. Note
that in scenarios where uniform weighting is applied (i.e., the
contribution of each client is the same), w; % Additionally,
the variance of the noise to be added (o; in line 14) is calculated
as a function of the online clients per zone (as noted by he
denominator term: ¢-W or ¢- W,,;,), and not the total fraction
of clients across all zones, as W is re-calibrated based on the
selected clients per round per zone.

The proposed approach calculates the sensitivity based on
the clipping bound S; that is calculated across all clients across
all zones; obtaining this information in practice will require
additional communication between the super-nodes. Thus, this
is approximated through the existence of a global clipping
bound C such that C' > max;c[q S;-

To ensure algorithmic correctness, we first generalize the
construction described earlier as follows: there are k£ online
clients, and a total of s zones (each with its own super-node).
Let us assume that each zone has an equal number of clients
m such that m - s = k. The clients within each zone clip their
gradients (as is commonly done [18]), and set the clipping norm
to a global constant. Recall that nodes in the zone utilize SA to
share an aggregated view of the gradients with the super-node.
Thus, each of the s super-nodes has received an update from
the corresponding online clients in their zone. These s super-
nodes will forward these updates to the CA, where another

4For more details on the various forms of clipping that can be employed,
refer the original work [18].
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round of re-scaled averaging occurs’. In the baseline case,
this intermediary-level does not exist (and consequently, such
intermediary-level forwarding does not exist); noise addition
(should the approach utilize CDP) occurs at the CA. The super-
node can (a) apply noise required for DP as is to the aggregated
gradients from each zone (and averaging by the total number
of online clients for that round will occur at the CA), or (b)
average the gradients first (by the number of online clients in
the zone)® before adding noise. Observe that the sensitivity of
case (b) will be lower than that of case (a); we advocate for
averaging at the super-node before noise addition.

C. Privacy Benefits

We begin by introducing preliminaries of the Gaussian
mechanism. Note that the formalism below is borrowed from
the work of [5].

1. (5-sensitivity: The (y-sensitivity of ¢ : NIXI — RF is
Aog = max, yenixt ll9(x) — g(y)ls where [z — ylli = 1,
||.||, denotes the p-norm, and X denotes some universe (such
as the universe of all databases).

2. Gaussian Mechanism (GM): Let the privacy budget
e € (0,1). For some constant ¢? > 2log(122), the GM with
parameter o > CAng is (¢,0) DP.

Based on these fundamentals, next, we proceed to define and
prove our novel lemma on privacy amplification that involves
the connection between LDP and CDP, when k clients are
involved.

Lemma (Privacy Amplification): If all k£ (online)
clients obtains (¢;,pp,d) LDP using the GM, the CA

obtains (ecpp,d) DP, where ecpp = Ef/DEP'

Proof: Assume the existence of a global sensitivity bound
C, and k online clients each of which utilize the GM to
independently add noise to the gradients (denoted g; for j € [k])
being computed to achieve (¢;,pp,d) LDP guarantees. Thus,
each client utilizes constants ¢; for j € [k| which satisfy the
above condition (in the definition of the GM), and samples
noise from distributions with standard deviation o for j € [k],
i.e., each client returns the following value: g; + n;,Vj €
[k] where n; ~ N(0,07),Vj € [k]. The CA computes j =
1578 [ (gj +n;) (eg., as required by FedAvg [11]). Note
that g; is the gradient calculated by client j multiplied by
the size of client j’s dataset, and then divided by the total
dataset size of all online clients. We know that the sum of
two Gaussian variables is Gaussian. Extending this, we know
that Zzzl 7n; = 1 since Z§=1 N(0,0%) = NY(0, Zle 03) =
N(0,62) (where n ~ N(0,62)). We also know that 62 =

SIn the case with no intermediaries, the aggregator will average the gradient
based on the number of online parties k. To preserve correctness in the setting
with intermediaries, the aggregator first re-scales the gradient by the number
of online clients per zone, and then performs averaging based on the total
number of online clients. This preserves algorithmic correctness.

®We assume that the SA protocol returns just the sum, and not the average.
The protocol can easily be modified to return the average as well.
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C1 X X v %

C2 X v X NG

C3 X v v —_—
V/Bsmt(1-B)s

C4 v X X €

Cs v X v ﬁ

Co6 v v X W

¢ d d d VEemrastl

TABLE I: Different configurations that are possible with our
proposed hierarchical scheme. The 7 indicates no noise addition,
and the 3 indicates noise addition. The privacy budget presented
in the last column is (a) devoid of any amplification induced
due to shuffling (through the presence of SA), and (b) what
is viewed at the CA. We will explain when these cases are
realizable in § V.

Z§:1 o} > Aezzg 2
j € [k], we see that the CA is (
(5Ll)I’>6) LDP.

Amplification from Shuffling [34], [35]: Amplification allows
for stronger privacy (measured at the CA) when noise is added
at a lower level of the hierarchy (be it clients, super-nodes, or
both). Note that the stage where the noise is added dictates the
denominator term in the privacy budget (assuming amplification
induced only due to the sum of GMs): v/k if noise is added
at each of the clients, and +/s if noise is added at each of
the super-nodes. Since s < k, the privacy budget when the
noise is added at the super-nodes is more than when added at
the client-level. Intuitively, this suggests that a classifier learnt
using HDP is going to be more utilitarian than one learnt with
LDP. In § VII, we empirically validate this claim.

Why Use Super-Nodes? Because of the aforementioned
amplification result, one might wonder why we need to utilize
super-nodes to begin with: the clients themselves should be
able to re-calibrate the amount of noise they have to add locally
to achieve the desired privacy level at the center. However,
as discussed earlier in § IV-A, super-nodes who may (or not)
reside in a different trust boundary than the client or the CA,
are naturally existing in several settings (e.g., home or office
router, telco antenna, etc.) and would be only consequential
to examine their participation in an FL process such as HFL.
Additionally, the utility benefits are better than that of the re-
calibrated LDP (as we will see in § VII-A). Finally, the use of
super-nodes provides better scalability of the aforementioned
secured aggregation step due to the small number of clients
within a zone.

Zle c5. Setting ¢; = C and ¢ = o for all

Ef/DEP ,0) DP, if each client is

V. GENERALIZATION

In this section, we provide a generalization of the technique
discussed in this paper, with the corresponding privacy budgets
(using the basic composition theorem [5]). Assume a total of
k online clients per round, there are k; clients per zone such
that 3, ki = k. To ease discussion, let us assume k; = m
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(for all 7). Several cases are possible, and analyzed next, for
the first time in the HFL with HDP setting:

Case 1 corresponds to pure LDP when all clients add the
required noise to obtain € LDP. From the CA’s perspective, the
overall privacy is Lk This is visualized in Figure 1, towards
the far right (in the absence of SA).

Case 2 corresponds to pure HDP when all super-nodes add the
required noise to obtain ¢ HDP. From the CA’s perspective, the
overall privacy is —~. This is visualized in Figure 1 in zone 2
(in the absence of { by the super-nodes). The privacy budget
calculated here is in an ideal setting, where the different clients
trust their corresponding super-node with de-noised gradients.

Case 3 is realizable when a fraction of all online clients choose
to add the required noise for LDP, but the remainder do not. To
ensure that the remaining clients receive privacy, the super-node
corresponding to these clients needs to add noise to ensure DP.
To simplify the math, let us assume that clients corresponding
to 5 - s super-nodes choose to utilize LDP and the remaining
(1—2)- s super-nodes provide HDP. If each zone has m clients,
then at each of the .s super-nodes, we observe ﬁ DP. From

the CA’s perspective, the total privacy is ————=——— where
the second term in the sum is the contribution of the (1 — 3).s
super-nodes that provide ¢ HDP, and the first term is due to
the 5 - s-m clients that provide ¢ LDP, and the sum itself is
due to basic composition.

Note: For the setup described in § III, all clients want ¢
LDP guarantees (i.e., 5 = 1) and the super-nodes provide &
HDP guarantees (i.e., two layers of noise addition), the overall

. . -
privacy at the center is Jms

Case 4 corresponds to the setting of pure CDP when only the
CA adds noise to obtain ¢ CDP. This is visualized in Figure 1,
towards the far left.

Case 5 corresponds to the setting where a fraction « of clients
do not trust the CA and consequently wish to achieve ¢ LDP.
To provide privacy to the remainder, the CA also adds noise.
Thus, the total privacy budget from the CA’s perspective is
\/ﬁ, where the first term is due to the « fraction which
achieves LDP.

Case 6 is similar to Case 5, in that only a fraction 3 of super-
nodes add noise to achieve ¢ HDP. To provide privacy to the
remainder, the CA also adds noise. Thus, the total privacy
budget from the CA’s perspective is ﬁ, where the first

term is due to the 3 fraction which achieves HDP.

Case 7 corresponds to the scenario where (a) clients in (.s
zones do not trust any entity and wish to achieve ¢ LDP, (b)
clients in «.s zones trust the super-nodes, and thus the super-
nodes achieves ¢ HDP, and (c) for the clients in the remaining
(I —a—p) - s zones, the CA is responsible for providing
privacy. Thus, from the CA’s perspective, the total privacy
1s m where the first term is due to (a), and the
second term is due to (b).

Note: All the calculations above are in the absence of the
amplification due to SA. Should it be considered, the only
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change would be a removal of the square root over all terms.

VI. IMPLEMENTATION

We implement our proposed approach using a combina-
tion of tensorflow-federated’ to provide the com-
ponents required for FL, and tensorflow-privacy® to
provide the machinery required for private learning. To en-
sure correct accounting, we modify the accounting libraries
in tensorflow-privacy to accurately reflect sampling
probability and number of iterations (in this case, rounds).
To evaluate the efficacy of our approach, we consider the
three datasets listed in Table II; only the EMNIST dataset is
modified to exhibit the non-i.i.d property that is commonly
associated with FL. Note that the objective of our evaluation
is to understand the advantageous utility vs. privacy trade-offs
introduced by our scheme (relative to other privacy schemes).
To this end, how non-i.i.d the data is distributed between the
clients is not an important compounding factor. The evaluation
we will discuss can be considered as an average-case evaluation
of the proposed HDP approach.

Dataset Size # Samples  # Classes n

EMNIST [36] 28 x 28 x 1 382705 10 3383
CIFAR-10 [37] 32 x32x3 60000 10 500
CIFAR-100 [38] 32x32x3 60000 100 500

TABLE II: Dataset characteristics.

The datasets follow a standard 80:20 split. All our ex-
periments were executed on a server with 2 NVIDIA Titan
XP with 128 GB RAM and 48 CPU cores running Ubuntu
20.04.2. Due to computational constraints, and issues in
tensorflow-federated related to GPU execution’, our
experimental setup is conservative; we only perform a single run
of each configuration. We choose representative architectures
from prior work for the datasets we consider [1], [18]. In
particular, we consider (a) a shallow 1 hidden layer DNN for
EMNIST, and (b) 2 convolution layers followed by 2 fully
connected layers for both CIFAR-10 and CIFAR-100. We will
release all code used for our experiments on request.

For all experiments (unless explicitly specified otherwise),
we choose a setup where k 100 users are randomly
sampled per federated round (this amounts to different values of
the sampling/user-selection probability for different datasets).
FedAvg [1] is used as the algorithm of choice, and each
client performs local training for 5 epochs. FL is performed for
200 rounds. All participating clients use SGD as the learning
algorithm, with a learning rate of 0.02 (this includes clients that
are super-nodes). The server’s learning rate is set to 1. These
parameters were chosen based on the prescribed guidelines
from the authors of tensorflow-federated and from
prior work [1], [18].

"https://github.com/tensorflow/federated/tree/v0.16.1
8https://github.com/tensorflow/privacy
9https://github.com/tensorflow/federated/issues/832
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VII. EXPERIMENTAL EVALUATION

Through our experimental evaluation, we wish to answer
the following questions:

1) Does HDP provide advantageous privacy vs. utility trade-
offs in comparison to the baseline scenarios of using
(a) LDP and/or (b) CDP? Note that for this evaluation,
we assume that the clients trust the corresponding super-
nodes (i.e., it is a best-case evaluation of the efficacy of
the approach)

Does HFL create a new attack surface for an adversary
wishing to perform data (or membership) inference?

Recall from § IV-C, that HFL (with the GM for DP) leads to
privacy amplification. Thus, to ensure a fair comparison, we
only report the privacy budget (¢) calculated at the CA level
in our results.

Our results suggest that:

2)

1) The theoretical intuition is corroborated in empirical
measurements of utility. As expected, HDP provides an
advantageous trade-off between utility and privacy, and
outperforms the LDP baseline.

HFL is also more resilient to data reconstruction at-
tacks [39]. In the scenario where the super-node is
adversarial, then it is able to perform perfect reconstruction
(under some assumptions about the batch-size of data
used for client-side learning, and/or in the absence of
SA). However, if the client is adversarial, we observe
that reconstruction efforts are less successful than in the
scenario with CDP.

2)

Incorrect Baselines: One might consider an approach that
utilizes only SA as a baseline. However, such an approach
results in privacy leakage in active adversarial models [25], [3].
Thus, while such approaches do not result in utility degradation
(i.e., the models learnt in the presence of the cryptographic
aggregation protocols are the same without it), they are not
(differentially) private.

A. Privacy vs. Utility Trade-Off

We first train without DP to get an estimate of the 2-norm
of the gradients. This helps us estimate the clipping norm (C)
to be used during DP training. We also observe the training
duration (i.e., exact epoch number) at which the validation
accuracy saturates. Once this is obtained, we configure the
noise multiplier (z) so as to enable DP training and log the
privacy expenditure (measured by ecpp).

LDP, HDP and CDP Privacy vs. Utility: To ensure a fair
comparison of privacy vs. utility, we convert the privacy ex-
penditure in all settings to that of the CDP privacy expenditure
(using the formulation presented in § IV-C)'°. As an example,
recall that if we wish to achieve e;,pp = 2 for £ = 10
clients, the corresponding privacy budget (from the perspective
of the CA is égpp = \/% (when the clients do not utilize

10Note that the privacy budget values we report are the ones obtained
without the amplification due to shuffling; SA is known to be communication
inefficient [19], [20] and we wish to provide insight on the privacy vs. utility
trade-offs in its absence as an average case estimate.
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Fig. 2: We plot validation accuracy of training with differential privacy for 3 scenarios: (i) CDP (in orange), (ii) LDP (in green),
and (iii) HDP (in red), in comparison to training without privacy (in blue). This is done across three datasets: (a) EMNIST, (b)
CIFAR-10 and (c) CIFAR-100. Observe that HDP achieves better utility than LDP, and often close to CDP across datasets.

SA); the hat is used to denote that the privacy is calculated
from a particular vantage point. Training was performed for
each configuration (i.e., LDP, HDP, and CDP) such that the
privacy budget we were willing to expend was the same (i.e.,
eLpp = €gpp = €cpp = €). In Figure 2, the privacy is
aligned i.e., all three schemes aim to achieve the same privacy
expenditure (i.e., e.pp = egpp = €cpp) = 3.06 for EMNIST,
and (e.pp = egpp = ecpp) = 24.80 for CIFAR-10. Thus,
Table III contains corresponding values of the privacy budget
achieved at the end of training (measured through £-pp). Our
baseline is one without DP training.

We consider a scenario where there are s = 10 super-nodes.
Observe that learning simple tasks such as EMNIST (refer
Figure 2a) with DP is achievable in all three settings; prior work
has demonstrated that learning with privacy for EMNIST can be
as performant as learning without privacy [18] i.e., the accuracy
degradation induced by LDP in comparison to CDP is minimal.
However, as expected, HDP provides advantageous trade-offs
(i.e., the privacy budget is lower than CDP for comparable
accuracy). The results are more interesting for complex datasets
such as CIFAR-10 and CIFAR-100. First, observe that for the
particular configuration we choose (i.e., n = 500, k£ = 100),
baseline accuracy is ~ 63% and ~ 28% for the two CIFAR
versions, respectively. Note that these values are comparable
to those achieved by [18] (refer Fig. 4). Training with CDP
degrades this accuracy further. However, as expected, HDP
is able to provide advantageous trade-offs. Note that CIFAR-
100 is a more complex learning task than CIFAR-10, and
yet (a) HDP achieves similar utility to CDP, and (b) much
higher utility than LDP; e.g., egpp = 3.06 produces a more
utilitarian model than 7, pp = 3.06 for EMNIST.

The Influence of s: From our analysis, we can see that
increasing the number of super-nodes (s) makes the scheme
more private (the privacy budget is inversely proportional to
the value of the number of parties where the noise is being
added; in the case of HDP, this is s). To better understand this
hyperparameter, we consider an experimental setting where we
vary the value of k to 100, 200, and 300. Across these 3 settings,
we vary the value of s to one of {10, 20,30, 40,50} across all
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Dataset LDP HDP CDP
EMNIST 0.30 0.96 3.06
CIFAR-10 248 748 2480
CIFAR-100 248 7.48 24.80

TABLE III: Privacy expenditure (measured by écpp) across
datasets and DP methods, at the end of 200 rounds. Note: the
values for CIFAR-10 and CIFAR-100 are the same as the values
of n and k are the same in both settings, and both datasets
have the same size and are trained for the same duration.

datasets. All other hyperaprameters were kept the same as in
the earlier experiment. We then measure the validation accuracy
and vary the configurations of C' and z to obtain the privacy
expenditure. We plot the relationship between the fully trained
model’s validation accuracy and the privacy budget expended
to achieve it in Figure 3. Across all datasets we observe a
common trend: the validation accuracy calculated increases as
the privacy expenditure (€cpp) does (as s decreases). For the
datasets we consider, increasing the value of £ does not increase
the validation accuracy substantially. This is not indicative of
a more general trend; one would assume that increasing the
number of participants would result in a more accurate model.
Take-away: HDP provides advantageous privacy vs. utility
trade-offs in comparison to both CDP and LDP. Additionally,
increasing the value of s provides better privacy, which in-turn
leads to lower utility.

B. Attacks on Federated Learning

We wish to understand if HFL introduces a new attack
surface: through the introduction of adversarial entities at the
super-node level. In this subsection, we will discuss (a) the
capability of attackers in the status quo, (b) if the success
of attacks in the status quo increases in the new hierarchical
scheme, and (c) if any new attacks are possible due to the
introduction of hierarchies.

Level 0 Adversaries: Here, we consider scenarios where
the adversaries are at level 0, and aim to perform data
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Dataset LDP HDP CDP No DP
EMNIST 0.571 0.599 0.62 0.68
CIFAR-10 0.423 0452 0494  0.596
CIFAR-100 0.447 046 0474 0.564

TABLE 1V: Efficacy of data reconstruction: reconstruction,
measured by LPIPS (higher is better), is least effective when
LDP is used for DP training; HDP provides next best resilience.

reconstruction (of a particular client). Recall that in FL, the CA
adds the aggregated (client or super-node calculated) gradients
to its own weights before propagating new updates for the
next round. Based on the generalization proposed in § V, one
can observe that the noise addition required to provide DP
can occur at (one or all of the) three levels: (a) the clients
themselves add DP noise (i.e., LDP), (b) the CA adds noise
(i.e., CDP), and (c) the super-nodes add noise (i.e., a HDP
scheme). Regardless of which level adds the noise, we assume
that noise addition is performed and an adversarial client (at
level 0) receives the noisy update from the CA, and wishes to
use this information to enable data reconstruction. To do so, the
client is able to subtract its contribution from the aggregated
weight update shared, and run reconstruction attacks using
the remaining information (the strategy proposed by [2]). To
perform reconstruction, we implement the attack proposed
by [39], using the source code presented by the authors for
the datasets and models considered in the earlier section.
We measure the reconstruction capabilities using the Learned
Perceptual Image Patch Similarity (LPIPS) metric [40] (larger
values are more realistic). As noted in prior work, reconstruction
attacks are largely inefficient for large batch sizes (used for
local learning) and large values of k.

To simplify the setup, and highlight the merit of our scheme,
we consider a simple setup of s = 2 and k& = 4, and where
one of these clients is adversarial and wishes to learn the data
of the other, when the batch size used is 1 (and no SA is
used). The results are presented in Table IV. Observe that HDP
provides better resilience than CDP, but is worse than LDP.
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This is explained by the privacy guarantees provided by HDP
(which, again, lies between LDP and CDP).

Level 1 adversaries: Privacy attacks at the super-node level
can be caused by the adversary having complete purview to the
gradients from each client in that zone. While we advocate for
the usage of SA to alleviate this issue, we discuss the outcomes
if such a protocol can not be deployed. In such situations, as
denoted by Figure 1, the super-node can have direct access
to gradients from individual clients and can perform data
reconstruction attacks (to determine membership). We describe
what may happen in such scenarios: (1) In the pure LDP setting,
clients add noise to the gradients shared upstream. Thus, the
super-node adversary has a noisy view of each of the per-client
gradient it receives. In such settings, attacks such as the one
by [2] will be rendered ineffective (as this attack requires
exact gradient knowledge), and data reconstruction attacks
become less effective, as these attacks rely on correct gradient
information (refer Table IV). (2) In scenarios where clients do
not add noise, and the super-node is required to perform noise
addition (e.g., HDP), data reconstruction attacks are possible
if the super-node is adversarial as it has direct purview to
the gradients from the clients. However, if SA is utilized, the
adversarial super-node is provided an aggregated gradient; the
efficacy of these attacks is reduced i.e., reconstruction is not
of high fidelity (refer to the No DP column in Table IV).

To make level 1 adversaries less effective, (a) either client-
level noise needs to be added, or (b) an aggregated gradient (via
SA) needs to be shared to the super-node. LDP (i.e., client-level
noise addition) is a very computationally efficient procedure,
and its impacts on utility are well understood (i.e., it induces
an unfavorable utility vs. privacy trade-off). Protocols like SA,
on the other hand, do not harm the utility of the model (i.e., the
utility of the model in the absence of SA is the same with it).
However, it greatly increases the communication cost associated
with the protocol; each client needs to communicate with all
other clients (for each aggregation, in the worst case), leading
to communication complexity that is quadratic in the number of
clients. We measured the time required to perform SA using the
tff.learning.secure_aggregator module available
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as part of tensorflow-federated, and for the models
we described earlier. Per round, we needed between 2 and 30
seconds (time increases as a function of model size). These
numbers were consistent with the numbers presented earlier.
Level 3 adversaries: If the CA is adversarial, the setting is
the same as the level 2 adversary. Both LDP and HDP in
conjunction with SA can reduce such an adversary’s efficacy
of performing data reconstruction. However, there is a strategic
advantage of performing SA at the super-node level. In a simple
setting, assume the existence of s zones each with m clients,
and s << k (where k is the total number of online clients). It
is clear to see how the communication cost associated with
SA is lower in this setting (it is quadratic in s and not k).
Other Attacks: Collusion of super-nodes (operating at different
zones) will not yield a stronger privacy attack as prior work
has shown that access to client-level gradients is sufficient
to yield good reconstruction (i.e., more information is not
necessarily better). Thus, we strongly do not believe this to
be a problem. Similarly, for attacks like poisoning in FL, we
stress that approaches to safeguard such attacks in the status
quo will neatly be compatible with our approach; our primary
contribution is a new approach to facilitate noise addition at a
different location in FL.

Take-away: In addition to SA, (a) to defeat level O adversaries,
either LDP or HDP suffices; (b) to defeat level 1 adversaries,
LDP suffices; and (c) to defeat level 2 adversaries, LDP or
HDP suffices. However, HDP provides better utility than LDP,
and is preferred wherever possible.

VIII. DISCUSSION & OPEN QUESTIONS

Influence of k: The privacy accounting in federated learning
stems from multiple factors, primary of which is the sampling
probability; this determines the number of clients that are
online in each federated round. Contrary to our expectation,
our experimental results suggest that increasing the value of &
does not have a strong effect on the accuracy of the final model
learnt. We conjecture that this maybe the case due to the i.i.d
distribution of data associated with both the CIFAR-10 and
CIFAR-100 datasets. While EMNIST is non-i.i.d, the learning
task by itself is too simple to merit substantial utility difference
across the three settings we consider. However, a small value
for the sampling probability i.e., a small value of k greatly
improves the privacy of the model learnt (i.e., small values
of €). We leave performing a more in-depth analysis of the
influence of k£ and e for future work.

Privacy Amplification: New approaches for privacy ampli-
fication (such as randomized check-ins [41]) can easily be
incorporated with our scheme''. Oftentimes, amplification is a
byproduct of composing a process that provides randomization
with the actual function that needs to be made differentially
private. In our scheme, such a randomization effect is observed
through secure aggregation (which enables shuffling). In the
scenario where the s = k, there is no amplification provided
as the central aggregator views individual client gradients.

"Depending on the level applied, we obtain different amplification factor
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However, when s < k, observe that the central aggregator
is only provided an aggregate view (of all gradients from a
particular zone). Determining if other sources of amplification
may exist is subject to future work.

Information Leakage: If the number of clients per zone
exceeds the number of federated rounds, then in expectation,
each client will be elected a super-node only once. A more
detailed understanding is needed to ascertain how much
information is leaked by exposing a super-node only once
to aggregate gradient information multiple times.

Run-time: In our work, we measure the privacy vs. utility
trade-offs of the proposed hierarchical ecosystem, assuming that
elections and secure aggregation are implemented using state-of-
the-art approaches, with individual microbenchmarks available
in the corresponding works. Microbenchmarks providing run-
times of the overall scheme, highlighting time taken for both
elections and secure aggregation, as a function of both n and
k, will help understand the practicality of the scheme.
Practical Topologies & Data Distribution: In our current
work, we prototype the proposal using simple topologies where
each super-node is responsible for the same number of clients.
One can theoretically show that varying the number of clients
per super-node will not influence the privacy guarantees of the
approach. However, this will have an impact on the utility of
the final model learnt.

Scalability: The introduction of hierarchies into the FL process
coupled with DP is not based on artificial assumptions or
construction of a system. Such hierarchies already exist in the
design and operation of many distributed systems and network
topologies used today (DNS, CDNs, ASs, etc.) and is only a
consequential step to study how such hierarchies can inter-play
with the FL process. Thus, and as shown here, they can be
used to improve model performance vs. privacy tradeoff. They
can also reduce potentially necessary communication costs
such as while executing secured aggregation: small number of
clients in each zone can perform this step in a more scalable
fashion and allow faster protocol convergence for model update
sharing.

Other Attacks: Collusion of super-nodes (operating at different
zones) will not yield a stronger privacy attack as prior work
has shown that access to client-level gradients is sufficient to
yield good reconstruction [25], [3] (i.e., more information is
not necessarily better). Similarly, for attacks like poisoning
in FL, we stress that approaches to safeguard such attacks in
the status quo will neatly be compatible with our approach;
our primary contribution is a new approach to facilitate noise
addition at a different location in FL.

Comparisons: Shi et al. [23] also do not evaluate the resilience
of their proposal to practical privacy attackers (such as
reconstruction adversaries as we do). They also do not consider
the ramifications of their work in settings where DP noise is
not added at specific rounds but the gradients are shared with
edge-server, providing the edge-server access to unmodified
data, whereas our proposal circumvents this by requiring secure
aggregation to ensure that the edge-server never sees gradients
from clients, but only sees an aggregate view.
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IX. CONCLUSION

In our work, we propose an approach for hierarchical FL
through super-node election from federated clients. We also
propose extensions for how it can be retrofitted to provide
DP guarantees. Our experiments suggest that the proposed
approach provides more advantageous privacy vs. utility trade-
offs compared to approaches in the status quo, while providing
resilience to inference adversaries.
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