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Abstract—Recent work highlights how gradient-level access can
lead to successful inference and reconstruction attacks against
federated learning (FL). In such settings, differentially private (DP)
learning is known to provide resilience. However, approaches used
in the status quo (i.e., central and local DP) introduce disparate
utility vs. privacy trade-offs. In this work, we mitigate such
trade-offs through hierarchical FL (HFL). For the first time, we
demonstrate that by the introduction of a new intermediary level
where calibrated noise can be added, better trade-offs can be
obtained; we term this hierarchical DP (HDP). Our experiments
with 3 different datasets (commonly used as benchmarks for FL
in prior works) suggest that HDP produces models as accurate
as those obtained using central DP, where noise is added at a
central aggregator at a lower privacy budget.

I. INTRODUCTION

In federated learning (FL), clients share the gradient updates

associated with local learning with a central aggregator (CA)

which uses them to obtain a global model update. FL is assumed

to provide privacy [1]: the data never leaves the federated

clients. However, recent work [2], [3], [4] has shown that FL

is susceptible to attacks where the private training data can be

reconstructed by observing the shared gradients. Differential

privacy [5] (DP) provides guarantees on privacy leakage of

various mechanisms, including those used by FL [6], [7], [8].

It has been shown that DP learning algorithms alleviate the

aforementioned attacks [9], [10]. However, they introduce a

trade-off between protecting data privacy, and utility of the

model learned.

Thus far, DP guarantees in FL have been investigated at

two levels: at the CA [11] (i.e., central DP or CDP), or at

the client level (i.e., local DP or LDP) [12], [13], [14]. The

former assumes that the clients trust the CA, while the latter

does not, and both approaches introduce disparate privacy

vs. utility trade-offs. In this work, we aim to understand

if a compromise can be reached through an intermediary

approach, by introducing hierarchies in the FL pipeline. We

call this hierarchical DP (or HDP). Clients form, or belong

to zones; updates from clients within a zone are aggregated

by a super-node (an elected/chosen client), and the updates

from zones (i.e., super-nodes) are aggregated at the CA.

Such hierarchies are omnipresent in daily computing systems

(e.g., telecommunication networks, the internet infrastructure,

etc.) [15]. These “naturally occurring” clusters of clients have

embedded trust in their formation [16].

In this paper, we take the first step in analyzing how

hierarchies are beneficial with respect to privacy, and what are

the key technical challenges to be solved. In fact, this paper is

the first to address the following challenges in this space. The

first challenge is in constructing such a hierarchy. We analyze

different approaches that reflect the aforementioned scenarios

and discuss the trade-offs in § IV-A. The second challenge

involves making modifications to the standard approaches to

FL to ensure that the newly proposed HFL approach learns the

same model as in the status quo. We discuss this in § IV-B. The

third challenge involves formalizing an algorithm (to provide

DP) to be used in an HFL ecosystem. Determining the exact

mechanism has direct implications on the privacy vs. utility

trade-off, and provides avenues for privacy amplification, which

we discuss in § IV-C with our novel algorithm. We are also the

first to generalize the approach by considering 7 different

case scenarios of simultaneous needs for employing LDP,

HDP and CDP in the same FL setting, in § V. Our final

challenge is understanding the various threats faced by our

new constructions (§ VII) in an experimental manner.

We first validate that HDP is robust to reconstruction

adversaries. We also analyze faulty behavior at an intra- and

inter-zonal granularity, and describe the information leakage

by adversaries in such settings, even when an adversarial client

is elected as a super-node. We also analyze prior attacks in

the FL setting, and comment on the applicability of the same

in the context of hierarchical FL. In particular, we look into

adversaries in super-node level and discuss potential adversarial

inferences they may perform. We show that HDP can thwart

such attacks. Finally, we experimentally study the privacy vs.

utility trade-off on different datasets (which are used in prior

work related to this topic) and setups. We demonstrate that

the (privacy and utility) performance of hierarchical FL sits

between local and CDP. Surprisingly, we observe that the utility

benefits obtained through our proposal are very close to that

obtained by learning a model with CDP.

II. BACKGROUND & RELATED WORK

Federated Learning (FL) involves learning with many feder-
ated clients in a decentralized manner [11]. At each round, the

central aggregator (CA) shares its weights with all federated

clients. At any given point in time, only k ≤ n clients

may be online. Each client performs training (on its private

dataset) for multiple epochs (FedAvg [1]) or a single epoch

(FedSGD [17]) and shares the update with the CA. Once

aggregated, the CA updates its weights and shares it to all

clients to be used as the starting point for the next round. FL is

assumed to provide privacy by design. However, recent work

invalidates this assumption [4], [3].

Differential Privacy (DP) was proposed by Dwork et al. [5].

Let ε be a positive real number, and A be a randomized

algorithm that takes a dataset as input. The algorithm A is

said to provide ε-DP if, for all datasets D1 and D2 that differ
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on a single element, and all subsets O of the outcomes of

running A: Pr[A(D1) ∈ O] ≤ eε · Pr[A(D2) ∈ O] where

the probability is over the randomness of the algorithm A.

Parameter ε is also known as the privacy budget.
Central & Local DP: The traditional model defined earlier,

also known as the central DP (CDP ) model, implicitly

assumes the existence of a trusted entity that does not deviate

from protocol specification. However, such an assumption may

not always hold. Local DP (LDP ) [12] assumes that each data

contributor adds the noise in-situ. Naturally, such a mechanism

has limited knowledge of the overall function being computed

on all the data, and overestimates the amount of noise required.

The relationship between LDP and CDP is dependent on the

mechanism used to achieve DP. For example, the Laplacian

mechanism [5] ensures that ε-LDP also provides ε-CDP.

FL with DP: [18] propose the first approach where DP can

be combined with FL to provide formal privacy guarantees.

Similar ideas are proposed in the work of [10]. In both settings,

however, CA is able to observe either noise-free gradients

or noisy gradients from corresponding clients. To break this

connection, [19], [20] propose the notion of secure aggregation,

a variant of MPC, which provides the CA an aggregated view

of all gradients (noisy/non-noisy) from the clients.

Hierarchical FL (HFL): [21] propose a mechanism to ensure

communication-efficient and coordinated learning in the context

of HFL. Here, the notion of hierarchies stems from the presence

of clients communicating with small base stations (or cellular

towers) which act as intermediaries, who further communicate

with macro base stations (or the CA). Similar claims are made

in the work of [22]. It is important to note that prior work

focuses on improving the scalability/communication-efficiency

of FL through the introduction of hierarchies, whilst ours is

studying the implications on privacy.

Hierarchical DP (HDP): Prior work by Shi et al. [23]

considers noise addition in a hierarchical manner. However,

their proposal does not consider noise addition at every round

but at specific rounds; this is a deviation from traditional

approaches with serious consequences. Particularly, we remark

that the privacy analysis is flawed as the authors consider

situations where the gradient is clipped at only specific

iterations and not all; convergence analysis of private learning

mechanisms requires that the gradients be clipped and noise at

all iterations. They also do not evaluate the resilience of their

proposal to practical privacy attackers (such as reconstruction

adversaries as we do). Finally, they do not consider the

ramifications of their work in settings where DP noise is not

added at specific iterations but the gradients are shared with

edge-server, providing the edge-server access to unmodified

data, whereas our proposal circumvents this by requiring secure

aggregation to ensure that the edge-server never sees gradients

from clients, but only sees an aggregate view.

III. ARCHITECTURAL OVERVIEW

A. Approach & Hierarchical DP

Typically in FL, there is a total of two actors at two

conceptual levels of a hierarchy i.e., client(s) at level 0 and

Fig. 1: Architectural overview of our approach (§ III).

the server at level 1. In our proposal, we assume the existence

of three main actors at three different (conceptual) levels of

the hierarchy (as noted in Figure 1). At level 0, we have the

clients who hold private data. At level 2, we have the CA.

The key difference lies in the middle: at level 1 (i.e., the

intermediate level), we introduce a new entity called the super-
node, responsible for processing requests from the online clients

in a particular region (i.e.,zone i ∈ [s]; s is the total number

of zones). The presence of level 1 introduces a hierarchical

approach for FL. An added feature in our proposal revolves

around the selection of the super-node: they can either (a) be

elected by a pool of their peers and thus are within the same
trust boundary/region as their peers, or (b) be chosen as an

entity in a different trust region (to both the clients and the

CA). Note: in practice, there can be many intermediary layers;

we stick to one for the paper’s remainder.

In the status quo, DP guarantees are obtained through two

mechanisms: noise addition at the CA (i.e., CDP), or noise

addition locally at each federated client (i.e., LDP). Empirical

evidence suggests that the CDP mechanism will result in a

final model with higher accuracy at the expense of trusting the

CA. The LDP mechanism removes this trust assumption, but

requires greater noise addition at each client. To provide the

best of both worlds, we propose hierarchical DP (or HDP).

From Figure 1, note that the functionality of the super-nodes

is similar to that of the CA. Consequently, the formal definition

of Hierarchical DP (HDP) is the same as that of CDP, adjusted

for the participation of intra-zonal clients.

Definition III.1 (Hierarchical DP). A εHDP -hierarchical

randomizer R : D → O is a differentially private algorithm

that takes a database of arbitrary sizes (from the same zone

i). That is Pr[R(Di) = o] ≤ eεHDP · Pr[R(D′
i) = o] for all

Di, D
′
i ∈ D (∀i ∈ [s]) such that they differ by a single row,

and all o ∈ O. The probability is taken over the randomness

of the procedure R. Note, that the elements of the database

may already be noisy due to effects of local randomizers.

Prior Work: [23] also considers noise addition in a hierarchical

manner. However, they do not consider noise addition at every
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round; this is a deviation from traditional approaches and results

in flawed privacy analysis. Additionally, the authors consider

situations where the gradient is clipped at only specific rounds;

convergence analysis of private learning mechanisms requires

that the gradients be clipped and noised at all rounds.

B. Threat Model

We assume a minority of ζ (1 ≤ ζ < k
3 )1 online clients

are adversarial. These are honest-but-curious i.e., they can not

deviate from protocol specifications, but can collude. This is

the commonly followed threat model in most prior works [2],

[4]. Their sole goal is to infer information about the training

data of a target client (or group of clients). The only knowledge

these adversaries are privy to are the gradient updates shared

during training. In particular, the adversaries we consider are

able to view: (1) any updates they generate; (2) the joint update

shared from the CA; and (3) the update generated at the the

super-node, iff the adversary is located at said level.

Adversarial Goals. The adversary aims to: (a) identify if a

particular data-point (or a particular attribute within a data-

point) was used during training2, or (b) reconstruct the data

used for training by another client by observing the gradients

shared. These adversaries can utilize: (a) data inference [2], or

(b) data reconstruction [4], [24] to achieve their goals. Note that

the reconstruction attack can capture all effects of the inference

attack; once the adversary has access to the exact data used for

training, it can also infer if the data-point possesses specific

attributes (or not). While such an attack is computationally

more expensive than inference attacks, they are more realistic.

Note: Recent work [3], [25] formalize active adversaries whose

aim is to subvert different parts of the protocol. The setting they

assume is one where a CA is able to maliciously modify the

states shared to (different) participants so as to ensure efficient

input reconstruction. We stress that such an attack deviates

from our honest-but-curious adversarial model. Additionally,

and more importantly, the authors of both these works note that

obfuscating the gradient using DP (as we propose) extensively

minimizes attack efficacy.

IV. DESIGNING HIERARCHIES

A. Choosing Super-Nodes

1. Exploiting Inherent Hierarchies: Hierarchies exist in

communication networks [26]: this information can be used

to select super-nodes. For example, hierarchies are introduced

by edge computing, where the edge-based base-stations [15]

serve as an intermediary between the clients and the CA.

Traditionally, the manufacturer of various hardware components

are manufactured by different vendors [27]; we can assume

that the clients, super-nodes, and CA belong to different trust

regions, minimizing collusion between them.

2. Elections: Another approach is to elect the super-node in

a fully decentralized manner, i.e., the super-node is one of

the clients. This too, ensures that the super-node is from a

1Needed for fault tolerance, as we will explain later.
2A dataset comprises of many data-points, each of which comprises of

numerous attributes.

different trust region in comparison to the CA. First, clients are

grouped into zones; the grouping can be based on (a) geography,

(b) compute capabilities, or (c) some form of structured or

unstructured P2P overlay organization [28]. Then, a distributed

election protocol is run within a zone. Leader election protocols

can be drawn from past literature that studied it under the

context of super-node selection in P2P networks using different

assumptions, metrics, etc. [29], [30]. In our setting, such a

process assumes that the clients are aware of others who are

active in that particular zone for the particular round, a common

assumption [31], [19]. Another assumption made is that these

participants can communicate the outcome of the election

between each other. We do note that such assumptions induce

additional communication overheads, but they do not add to the

overall complexity of our proposal (as we see in Appendix V).

We request the curious reader to refer to these works (and this

survey [32]) for more details.

Election Integrity: One key requirement in our setting is that

the election of the super-nodes is randomized, i.e., a particular

client in a zone has bounded probability of being elected as the

super-node3. Once the super-node is down, then a new one is

elected to replace it. However, recall that a small fraction ζ of

online clients are adversarial, and can subvert the election

protocol through collusion. To this end, different election

protocols and assumptions provide different guarantees [33].

For example, to obtain conventional fault tolerance at zone

i, a majority of the ki clients must be honest [33] (i.e.,
ζi <

ki−1
2 ≤ ζ). Similarly, to obtain byzantine fault tolerance,

ζi ≤ ki−1
3 ≤ ζ [33]. While there exists no formal/principled

way to practically enforce such constraints, these limits serve

as bounds to understand the limitations of election integrity.

Note, however, that the elected super-node has complete

purview to the gradients from clients; these gradients may not

be masked through the addition of noise needed for DP. To this

end, we advocate for the usage of secure aggregation (SA) [20]

protocols (within zones) to ensure that the super-node gets an

aggregate view of the gradients from individual clients. In

our setting, SA needs to be applied in all zones, and prior

work suggests that SA protocols are practical (i.e., introduces

a tolerable time delay) for only a small number of clients [20].

Care must be taken in ensuring that the number of (online)

clients per zone is also small. How this is achieved can be

determined by future research. But we would like to stress that

the time taken for SA within the zone in the HFL setting will

be notably lower than in the status quo (without hierarchies)

since the number of online clients per zone (for HFL) will be

lower than the number of online clients overall (as needed by

the status quo).

B. Proposed Algorithm and Correctness

Algorithm for Hierarchical FL with DP: Algorithm 1 is based

on the approach taken by [18], with some key modifications to

incorporate hierarchical FL for s zones. From line 6, observe

3Assuming each client has a probability p of being randomly elected (where
p = 1

m
), the probability that the client is elected in all T rounds is pT which

is very low.
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1: Parameters
a. user selection probability q ∈ (0, 1]
b. per-user example cap ŵ ∈ R+

c. noise scale z ∈ R+

d. UserUpdate (for FedAvg or FedSGD)
e. ClipFn (FlatClip or PerLayerClip)
f. Parameter Wmin

2: Procedure:
3: Initialize model θ0

4: wk = min(nk
ŵ
, 1) for all users k

5: for each round t = 0, 1, 2, . . . do
6: for each zone i = 1, 2, . . . , s do
7: Ct

i ← (sample users with probability q)
8: W =

∑
k∈Ct

i
wk

9: for each user k ∈ Ct
i in parallel do

10: Δt+1
k ← UserUpdate(k, θt,ClipFn)

11: end for

12: Δ(i)t+1 =

⎧⎪⎪⎨
⎪⎪⎩

c

∑
k∈Ct

i
wkΔ

t+1
k

q·W for FlatClip
∑

k∈Ct
i
wkΔ

t+1
k

max(q·Wmin,
∑

k∈Ct
i
wk)

for PerLayerClip

13: Si ← (bound on ||Δt+1
k ||2 for ClipFn)

14: σi ←
{

zSi
q·W for FlatClip or 2zSi

q·Wmin
for PerLayerClip

}

15: θt+1 ← θt + 1
s

∑
i∈[s]

(
Δ(i)t+1 +N (0, Iσ2

i )
)

16: end for
17: end for

Algorithm 1: Modified FL mechanism with zonal privacy.

that gradient aggregation first occurs at a zonal level. This

in turn leads to re-calibration of various parameters (lines 7-

14) required to provide the DP guarantee4. Finally, the noised
zonal gradients are averaged and aggregated in line 15. Note

that in scenarios where uniform weighting is applied (i.e., the

contribution of each client is the same), wi =
1
k . Additionally,

the variance of the noise to be added (σi in line 14) is calculated

as a function of the online clients per zone (as noted by he

denominator term: q ·W or q ·Wmin), and not the total fraction

of clients across all zones, as W is re-calibrated based on the

selected clients per round per zone.

The proposed approach calculates the sensitivity based on

the clipping bound Si that is calculated across all clients across

all zones; obtaining this information in practice will require

additional communication between the super-nodes. Thus, this

is approximated through the existence of a global clipping

bound C such that C ≥ maxi∈[s] Si.

To ensure algorithmic correctness, we first generalize the

construction described earlier as follows: there are k online

clients, and a total of s zones (each with its own super-node).

Let us assume that each zone has an equal number of clients

m such that m · s = k. The clients within each zone clip their

gradients (as is commonly done [18]), and set the clipping norm

to a global constant. Recall that nodes in the zone utilize SA to

share an aggregated view of the gradients with the super-node.

Thus, each of the s super-nodes has received an update from

the corresponding online clients in their zone. These s super-

nodes will forward these updates to the CA, where another

4For more details on the various forms of clipping that can be employed,
refer the original work [18].

round of re-scaled averaging occurs5. In the baseline case,

this intermediary-level does not exist (and consequently, such

intermediary-level forwarding does not exist); noise addition

(should the approach utilize CDP) occurs at the CA. The super-

node can (a) apply noise required for DP as is to the aggregated

gradients from each zone (and averaging by the total number

of online clients for that round will occur at the CA), or (b)

average the gradients first (by the number of online clients in

the zone)6 before adding noise. Observe that the sensitivity of

case (b) will be lower than that of case (a); we advocate for

averaging at the super-node before noise addition.

C. Privacy Benefits

We begin by introducing preliminaries of the Gaussian

mechanism. Note that the formalism below is borrowed from

the work of [5].

1. �2-sensitivity: The �2-sensitivity of g : N|X| → Rk is

Δ2g = maxx,y∈N|X| ||g(x) − g(y)||2 where ||x − y||1 = 1,

||.||p denotes the p-norm, and X denotes some universe (such

as the universe of all databases).

2. Gaussian Mechanism (GM): Let the privacy budget

ε ∈ (0, 1). For some constant c2 > 2 log( 1.25δ ), the GM with

parameter σ ≥ cΔ2g
ε is (ε, δ) DP.

Based on these fundamentals, next, we proceed to define and

prove our novel lemma on privacy amplification that involves

the connection between LDP and CDP, when k clients are

involved.

Lemma (Privacy Amplification): If all k (online)

clients obtains (εLDP , δ) LDP using the GM, the CA

obtains (εCDP , δ) DP, where εCDP = εLDP√
k

.

Proof: Assume the existence of a global sensitivity bound

C, and k online clients each of which utilize the GM to

independently add noise to the gradients (denoted gj for j ∈ [k])
being computed to achieve (εLDP , δ) LDP guarantees. Thus,

each client utilizes constants cj for j ∈ [k] which satisfy the

above condition (in the definition of the GM), and samples

noise from distributions with standard deviation σj for j ∈ [k],
i.e., each client returns the following value: gj + ηj , ∀j ∈
[k] where ηj ∼ N (0, σ2

j ), ∀j ∈ [k]. The CA computes ĝ =
1
k

∑k
j=1(gj + ηj) (e.g., as required by FedAvg [11]). Note

that gj is the gradient calculated by client j multiplied by

the size of client j’s dataset, and then divided by the total

dataset size of all online clients. We know that the sum of

two Gaussian variables is Gaussian. Extending this, we know

that
∑k

j=1 ηj = η since
∑k

j=1 N (0, σ2
j ) = N (0,

∑k
j=1 σ

2
j ) =

N (0, σ̂2) (where η ∼ N (0, σ̂2)). We also know that σ̂2 =

5In the case with no intermediaries, the aggregator will average the gradient
based on the number of online parties k. To preserve correctness in the setting
with intermediaries, the aggregator first re-scales the gradient by the number
of online clients per zone, and then performs averaging based on the total
number of online clients. This preserves algorithmic correctness.

6We assume that the SA protocol returns just the sum, and not the average.
The protocol can easily be modified to return the average as well.
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Aggregator Super-node Client Privacy @ Center

C1 � � � ε√
k

C2 � � � ε√
s

C3 � � � ε√
β·s·m+(1−β)·s

C4 � � � ε
C5 � � � ε√

α.k+1

C6 � � � ε√
β.s+1

C7 � � � ε√
β·s·m+α·s+1

TABLE I: Different configurations that are possible with our

proposed hierarchical scheme. The 7 indicates no noise addition,

and the 3 indicates noise addition. The privacy budget presented

in the last column is (a) devoid of any amplification induced

due to shuffling (through the presence of SA), and (b) what

is viewed at the CA. We will explain when these cases are

realizable in § V.

∑k
j=1 σ

2
j ≥ Δ2g

2

ε2

∑k
j=1 c

2
j . Setting cj = C and σj = σ for all

j ∈ [k], we see that the CA is ( εLDP√
k

, δ) DP, if each client is

(εLDP , δ) LDP.

Amplification from Shuffling [34], [35]: Amplification allows

for stronger privacy (measured at the CA) when noise is added

at a lower level of the hierarchy (be it clients, super-nodes, or

both). Note that the stage where the noise is added dictates the

denominator term in the privacy budget (assuming amplification

induced only due to the sum of GMs):
√
k if noise is added

at each of the clients, and
√
s if noise is added at each of

the super-nodes. Since s < k, the privacy budget when the

noise is added at the super-nodes is more than when added at

the client-level. Intuitively, this suggests that a classifier learnt

using HDP is going to be more utilitarian than one learnt with

LDP. In § VII, we empirically validate this claim.

Why Use Super-Nodes? Because of the aforementioned

amplification result, one might wonder why we need to utilize

super-nodes to begin with: the clients themselves should be

able to re-calibrate the amount of noise they have to add locally

to achieve the desired privacy level at the center. However,

as discussed earlier in § IV-A, super-nodes who may (or not)

reside in a different trust boundary than the client or the CA,

are naturally existing in several settings (e.g., home or office

router, telco antenna, etc.) and would be only consequential

to examine their participation in an FL process such as HFL.

Additionally, the utility benefits are better than that of the re-

calibrated LDP (as we will see in § VII-A). Finally, the use of

super-nodes provides better scalability of the aforementioned

secured aggregation step due to the small number of clients

within a zone.

V. GENERALIZATION

In this section, we provide a generalization of the technique

discussed in this paper, with the corresponding privacy budgets

(using the basic composition theorem [5]). Assume a total of

k online clients per round, there are ki clients per zone such

that
∑

i∈[s] ki = k. To ease discussion, let us assume ki = m

(for all i). Several cases are possible, and analyzed next, for

the first time in the HFL with HDP setting:

Case 1 corresponds to pure LDP when all clients add the

required noise to obtain ε LDP. From the CA’s perspective, the

overall privacy is ε√
k

. This is visualized in Figure 1, towards

the far right (in the absence of SA).

Case 2 corresponds to pure HDP when all super-nodes add the

required noise to obtain ε HDP. From the CA’s perspective, the

overall privacy is ε√
s

. This is visualized in Figure 1 in zone 2

(in the absence of SA by the super-nodes). The privacy budget

calculated here is in an ideal setting, where the different clients

trust their corresponding super-node with de-noised gradients.

Case 3 is realizable when a fraction of all online clients choose

to add the required noise for LDP, but the remainder do not. To

ensure that the remaining clients receive privacy, the super-node

corresponding to these clients needs to add noise to ensure DP.

To simplify the math, let us assume that clients corresponding

to β · s super-nodes choose to utilize LDP and the remaining

(1−β) ·s super-nodes provide HDP. If each zone has m clients,

then at each of the β.s super-nodes, we observe ε√
m

DP. From

the CA’s perspective, the total privacy is ε√
β·s·m+(1−β)·s where

the second term in the sum is the contribution of the (1−β).s
super-nodes that provide ε HDP, and the first term is due to

the β · s ·m clients that provide ε LDP, and the sum itself is

due to basic composition.

Note: For the setup described in § III, all clients want ε
LDP guarantees (i.e., β = 1) and the super-nodes provide ε
HDP guarantees (i.e., two layers of noise addition), the overall

privacy at the center is ε√
m·s

Case 4 corresponds to the setting of pure CDP when only the
CA adds noise to obtain ε CDP. This is visualized in Figure 1,

towards the far left.

Case 5 corresponds to the setting where a fraction α of clients

do not trust the CA and consequently wish to achieve ε LDP.

To provide privacy to the remainder, the CA also adds noise.

Thus, the total privacy budget from the CA’s perspective is
ε√

α.k+1
, where the first term is due to the α fraction which

achieves LDP.

Case 6 is similar to Case 5, in that only a fraction β of super-

nodes add noise to achieve ε HDP. To provide privacy to the

remainder, the CA also adds noise. Thus, the total privacy

budget from the CA’s perspective is ε√
β.s+1

, where the first

term is due to the β fraction which achieves HDP.

Case 7 corresponds to the scenario where (a) clients in β.s
zones do not trust any entity and wish to achieve ε LDP, (b)

clients in α.s zones trust the super-nodes, and thus the super-

nodes achieves ε HDP, and (c) for the clients in the remaining

(1 − α − β) · s zones, the CA is responsible for providing

privacy. Thus, from the CA’s perspective, the total privacy

is ε√
β·s·m+α·s+1

, where the first term is due to (a), and the

second term is due to (b).

Note: All the calculations above are in the absence of the

amplification due to SA. Should it be considered, the only
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change would be a removal of the square root over all terms.

VI. IMPLEMENTATION

We implement our proposed approach using a combina-

tion of tensorflow-federated7 to provide the com-

ponents required for FL, and tensorflow-privacy8 to

provide the machinery required for private learning. To en-

sure correct accounting, we modify the accounting libraries

in tensorflow-privacy to accurately reflect sampling

probability and number of iterations (in this case, rounds).

To evaluate the efficacy of our approach, we consider the

three datasets listed in Table II; only the EMNIST dataset is

modified to exhibit the non-i.i.d property that is commonly

associated with FL. Note that the objective of our evaluation

is to understand the advantageous utility vs. privacy trade-offs

introduced by our scheme (relative to other privacy schemes).

To this end, how non-i.i.d the data is distributed between the

clients is not an important compounding factor. The evaluation

we will discuss can be considered as an average-case evaluation

of the proposed HDP approach.

Dataset Size # Samples # Classes n

EMNIST [36] 28× 28× 1 382705 10 3383
CIFAR-10 [37] 32× 32× 3 60000 10 500
CIFAR-100 [38] 32× 32× 3 60000 100 500

TABLE II: Dataset characteristics.

The datasets follow a standard 80:20 split. All our ex-

periments were executed on a server with 2 NVIDIA Titan

XP with 128 GB RAM and 48 CPU cores running Ubuntu

20.04.2. Due to computational constraints, and issues in

tensorflow-federated related to GPU execution9, our

experimental setup is conservative; we only perform a single run

of each configuration. We choose representative architectures

from prior work for the datasets we consider [1], [18]. In

particular, we consider (a) a shallow 1 hidden layer DNN for

EMNIST, and (b) 2 convolution layers followed by 2 fully

connected layers for both CIFAR-10 and CIFAR-100. We will

release all code used for our experiments on request.

For all experiments (unless explicitly specified otherwise),

we choose a setup where k = 100 users are randomly

sampled per federated round (this amounts to different values of

the sampling/user-selection probability for different datasets).

FedAvg [1] is used as the algorithm of choice, and each

client performs local training for 5 epochs. FL is performed for

200 rounds. All participating clients use SGD as the learning

algorithm, with a learning rate of 0.02 (this includes clients that

are super-nodes). The server’s learning rate is set to 1. These

parameters were chosen based on the prescribed guidelines

from the authors of tensorflow-federated and from

prior work [1], [18].

7https://github.com/tensorflow/federated/tree/v0.16.1
8https://github.com/tensorflow/privacy
9https://github.com/tensorflow/federated/issues/832

VII. EXPERIMENTAL EVALUATION

Through our experimental evaluation, we wish to answer

the following questions:

1) Does HDP provide advantageous privacy vs. utility trade-

offs in comparison to the baseline scenarios of using

(a) LDP and/or (b) CDP? Note that for this evaluation,

we assume that the clients trust the corresponding super-

nodes (i.e., it is a best-case evaluation of the efficacy of

the approach)

2) Does HFL create a new attack surface for an adversary

wishing to perform data (or membership) inference?

Recall from § IV-C, that HFL (with the GM for DP) leads to

privacy amplification. Thus, to ensure a fair comparison, we

only report the privacy budget (ε) calculated at the CA level

in our results.

Our results suggest that:

1) The theoretical intuition is corroborated in empirical
measurements of utility. As expected, HDP provides an

advantageous trade-off between utility and privacy, and

outperforms the LDP baseline.

2) HFL is also more resilient to data reconstruction at-

tacks [39]. In the scenario where the super-node is

adversarial, then it is able to perform perfect reconstruction

(under some assumptions about the batch-size of data

used for client-side learning, and/or in the absence of

SA). However, if the client is adversarial, we observe

that reconstruction efforts are less successful than in the

scenario with CDP.

Incorrect Baselines: One might consider an approach that

utilizes only SA as a baseline. However, such an approach

results in privacy leakage in active adversarial models [25], [3].

Thus, while such approaches do not result in utility degradation

(i.e., the models learnt in the presence of the cryptographic

aggregation protocols are the same without it), they are not

(differentially) private.

A. Privacy vs. Utility Trade-Off

We first train without DP to get an estimate of the 2-norm

of the gradients. This helps us estimate the clipping norm (C)

to be used during DP training. We also observe the training

duration (i.e., exact epoch number) at which the validation

accuracy saturates. Once this is obtained, we configure the

noise multiplier (z) so as to enable DP training and log the

privacy expenditure (measured by εCDP ).

LDP, HDP and CDP Privacy vs. Utility: To ensure a fair

comparison of privacy vs. utility, we convert the privacy ex-

penditure in all settings to that of the CDP privacy expenditure

(using the formulation presented in § IV-C)10. As an example,

recall that if we wish to achieve εLDP = 2 for k = 10
clients, the corresponding privacy budget (from the perspective

of the CA is ε̂CDP = 2√
10

(when the clients do not utilize

10Note that the privacy budget values we report are the ones obtained
without the amplification due to shuffling; SA is known to be communication
inefficient [19], [20] and we wish to provide insight on the privacy vs. utility
trade-offs in its absence as an average case estimate.

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 16,2025 at 18:27:39 UTC from IEEE Xplore.  Restrictions apply. 



1522

(a) EMNIST (b) CIFAR-10 (c) CIFAR-100

Fig. 2: We plot validation accuracy of training with differential privacy for 3 scenarios: (i) CDP (in orange), (ii) LDP (in green),

and (iii) HDP (in red), in comparison to training without privacy (in blue). This is done across three datasets: (a) EMNIST, (b)

CIFAR-10 and (c) CIFAR-100. Observe that HDP achieves better utility than LDP, and often close to CDP across datasets.

SA); the hat is used to denote that the privacy is calculated

from a particular vantage point. Training was performed for

each configuration (i.e., LDP, HDP, and CDP) such that the

privacy budget we were willing to expend was the same (i.e.,
εLDP = εHDP = εCDP = ε). In Figure 2, the privacy is

aligned i.e., all three schemes aim to achieve the same privacy

expenditure (i.e., εLDP = εHDP = εCDP ) = 3.06 for EMNIST,

and (εLDP = εHDP = εCDP ) = 24.80 for CIFAR-10. Thus,

Table III contains corresponding values of the privacy budget

achieved at the end of training (measured through ε̂CDP ). Our

baseline is one without DP training.

We consider a scenario where there are s = 10 super-nodes.

Observe that learning simple tasks such as EMNIST (refer

Figure 2a) with DP is achievable in all three settings; prior work

has demonstrated that learning with privacy for EMNIST can be

as performant as learning without privacy [18] i.e., the accuracy

degradation induced by LDP in comparison to CDP is minimal.

However, as expected, HDP provides advantageous trade-offs

(i.e., the privacy budget is lower than CDP for comparable

accuracy). The results are more interesting for complex datasets

such as CIFAR-10 and CIFAR-100. First, observe that for the

particular configuration we choose (i.e., n = 500, k = 100),

baseline accuracy is ∼ 63% and ∼ 28% for the two CIFAR

versions, respectively. Note that these values are comparable

to those achieved by [18] (refer Fig. 4). Training with CDP

degrades this accuracy further. However, as expected, HDP

is able to provide advantageous trade-offs. Note that CIFAR-

100 is a more complex learning task than CIFAR-10, and

yet (a) HDP achieves similar utility to CDP, and (b) much

higher utility than LDP; e.g., εHDP = 3.06 produces a more

utilitarian model than εLDP = 3.06 for EMNIST.

The Influence of s: From our analysis, we can see that

increasing the number of super-nodes (s) makes the scheme

more private (the privacy budget is inversely proportional to

the value of the number of parties where the noise is being

added; in the case of HDP, this is s). To better understand this

hyperparameter, we consider an experimental setting where we

vary the value of k to 100, 200, and 300. Across these 3 settings,

we vary the value of s to one of {10, 20, 30, 40, 50} across all

Dataset LDP HDP CDP

EMNIST 0.30 0.96 3.06
CIFAR-10 2.48 7.48 24.80
CIFAR-100 2.48 7.48 24.80

TABLE III: Privacy expenditure (measured by ε̂CDP ) across

datasets and DP methods, at the end of 200 rounds. Note: the

values for CIFAR-10 and CIFAR-100 are the same as the values

of n and k are the same in both settings, and both datasets

have the same size and are trained for the same duration.

datasets. All other hyperaprameters were kept the same as in

the earlier experiment. We then measure the validation accuracy

and vary the configurations of C and z to obtain the privacy

expenditure. We plot the relationship between the fully trained

model’s validation accuracy and the privacy budget expended

to achieve it in Figure 3. Across all datasets we observe a

common trend: the validation accuracy calculated increases as

the privacy expenditure (ε̂CDP ) does (as s decreases). For the

datasets we consider, increasing the value of k does not increase

the validation accuracy substantially. This is not indicative of

a more general trend; one would assume that increasing the

number of participants would result in a more accurate model.

Take-away: HDP provides advantageous privacy vs. utility

trade-offs in comparison to both CDP and LDP. Additionally,

increasing the value of s provides better privacy, which in-turn

leads to lower utility.

B. Attacks on Federated Learning

We wish to understand if HFL introduces a new attack

surface: through the introduction of adversarial entities at the

super-node level. In this subsection, we will discuss (a) the

capability of attackers in the status quo, (b) if the success

of attacks in the status quo increases in the new hierarchical

scheme, and (c) if any new attacks are possible due to the

introduction of hierarchies.

Level 0 Adversaries: Here, we consider scenarios where

the adversaries are at level 0, and aim to perform data
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(a) EMNIST (b) CIFAR-10 (c) CIFAR-100

Fig. 3: We plot validation accuracy as a function of privacy (obtained by varying the value of s) for 3 scenarios using HDP: (i)

k = 100 (in blue), (ii) k = 200 (in orange), and (iii) k = 300 (in green), across the three datasets: (a) EMNIST, (b) CIFAR-10,

and (c) CIFAR-100. Observe that the utility obtained by HDP improves with increasing privacy budget across all configurations.

Dataset LDP HDP CDP No DP

EMNIST 0.571 0.599 0.62 0.68
CIFAR-10 0.423 0.452 0.494 0.596
CIFAR-100 0.447 0.46 0.474 0.564

TABLE IV: Efficacy of data reconstruction: reconstruction,

measured by LPIPS (higher is better), is least effective when

LDP is used for DP training; HDP provides next best resilience.

reconstruction (of a particular client). Recall that in FL, the CA

adds the aggregated (client or super-node calculated) gradients

to its own weights before propagating new updates for the

next round. Based on the generalization proposed in § V, one

can observe that the noise addition required to provide DP

can occur at (one or all of the) three levels: (a) the clients

themselves add DP noise (i.e., LDP), (b) the CA adds noise

(i.e., CDP), and (c) the super-nodes add noise (i.e., a HDP

scheme). Regardless of which level adds the noise, we assume

that noise addition is performed and an adversarial client (at

level 0) receives the noisy update from the CA, and wishes to

use this information to enable data reconstruction. To do so, the

client is able to subtract its contribution from the aggregated

weight update shared, and run reconstruction attacks using

the remaining information (the strategy proposed by [2]). To

perform reconstruction, we implement the attack proposed

by [39], using the source code presented by the authors for

the datasets and models considered in the earlier section.

We measure the reconstruction capabilities using the Learned

Perceptual Image Patch Similarity (LPIPS) metric [40] (larger

values are more realistic). As noted in prior work, reconstruction

attacks are largely inefficient for large batch sizes (used for

local learning) and large values of k.

To simplify the setup, and highlight the merit of our scheme,

we consider a simple setup of s = 2 and k = 4, and where

one of these clients is adversarial and wishes to learn the data

of the other, when the batch size used is 1 (and no SA is

used). The results are presented in Table IV. Observe that HDP

provides better resilience than CDP, but is worse than LDP.

This is explained by the privacy guarantees provided by HDP

(which, again, lies between LDP and CDP).

Level 1 adversaries: Privacy attacks at the super-node level

can be caused by the adversary having complete purview to the

gradients from each client in that zone. While we advocate for

the usage of SA to alleviate this issue, we discuss the outcomes

if such a protocol can not be deployed. In such situations, as

denoted by Figure 1, the super-node can have direct access

to gradients from individual clients and can perform data

reconstruction attacks (to determine membership). We describe

what may happen in such scenarios: (1) In the pure LDP setting,

clients add noise to the gradients shared upstream. Thus, the

super-node adversary has a noisy view of each of the per-client

gradient it receives. In such settings, attacks such as the one

by [2] will be rendered ineffective (as this attack requires

exact gradient knowledge), and data reconstruction attacks

become less effective, as these attacks rely on correct gradient

information (refer Table IV). (2) In scenarios where clients do
not add noise, and the super-node is required to perform noise

addition (e.g., HDP), data reconstruction attacks are possible

if the super-node is adversarial as it has direct purview to

the gradients from the clients. However, if SA is utilized, the

adversarial super-node is provided an aggregated gradient; the

efficacy of these attacks is reduced i.e., reconstruction is not

of high fidelity (refer to the No DP column in Table IV).

To make level 1 adversaries less effective, (a) either client-

level noise needs to be added, or (b) an aggregated gradient (via

SA) needs to be shared to the super-node. LDP (i.e., client-level

noise addition) is a very computationally efficient procedure,

and its impacts on utility are well understood (i.e., it induces

an unfavorable utility vs. privacy trade-off). Protocols like SA,

on the other hand, do not harm the utility of the model (i.e., the

utility of the model in the absence of SA is the same with it).

However, it greatly increases the communication cost associated

with the protocol; each client needs to communicate with all

other clients (for each aggregation, in the worst case), leading

to communication complexity that is quadratic in the number of

clients. We measured the time required to perform SA using the

tff.learning.secure_aggregator module available
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as part of tensorflow-federated, and for the models

we described earlier. Per round, we needed between 2 and 30

seconds (time increases as a function of model size). These

numbers were consistent with the numbers presented earlier.

Level 3 adversaries: If the CA is adversarial, the setting is

the same as the level 2 adversary. Both LDP and HDP in

conjunction with SA can reduce such an adversary’s efficacy

of performing data reconstruction. However, there is a strategic

advantage of performing SA at the super-node level. In a simple

setting, assume the existence of s zones each with m clients,

and s << k (where k is the total number of online clients). It

is clear to see how the communication cost associated with

SA is lower in this setting (it is quadratic in s and not k).

Other Attacks: Collusion of super-nodes (operating at different

zones) will not yield a stronger privacy attack as prior work

has shown that access to client-level gradients is sufficient

to yield good reconstruction (i.e., more information is not

necessarily better). Thus, we strongly do not believe this to

be a problem. Similarly, for attacks like poisoning in FL, we

stress that approaches to safeguard such attacks in the status

quo will neatly be compatible with our approach; our primary

contribution is a new approach to facilitate noise addition at a

different location in FL.

Take-away: In addition to SA, (a) to defeat level 0 adversaries,

either LDP or HDP suffices; (b) to defeat level 1 adversaries,

LDP suffices; and (c) to defeat level 2 adversaries, LDP or

HDP suffices. However, HDP provides better utility than LDP,

and is preferred wherever possible.

VIII. DISCUSSION & OPEN QUESTIONS

Influence of k: The privacy accounting in federated learning

stems from multiple factors, primary of which is the sampling

probability; this determines the number of clients that are

online in each federated round. Contrary to our expectation,

our experimental results suggest that increasing the value of k
does not have a strong effect on the accuracy of the final model

learnt. We conjecture that this maybe the case due to the i.i.d

distribution of data associated with both the CIFAR-10 and

CIFAR-100 datasets. While EMNIST is non-i.i.d, the learning

task by itself is too simple to merit substantial utility difference

across the three settings we consider. However, a small value

for the sampling probability i.e., a small value of k greatly

improves the privacy of the model learnt (i.e., small values

of ε). We leave performing a more in-depth analysis of the

influence of k and ε for future work.

Privacy Amplification: New approaches for privacy ampli-

fication (such as randomized check-ins [41]) can easily be

incorporated with our scheme11. Oftentimes, amplification is a

byproduct of composing a process that provides randomization

with the actual function that needs to be made differentially

private. In our scheme, such a randomization effect is observed

through secure aggregation (which enables shuffling). In the

scenario where the s = k, there is no amplification provided

as the central aggregator views individual client gradients.

11Depending on the level applied, we obtain different amplification factor

However, when s < k, observe that the central aggregator

is only provided an aggregate view (of all gradients from a

particular zone). Determining if other sources of amplification

may exist is subject to future work.

Information Leakage: If the number of clients per zone

exceeds the number of federated rounds, then in expectation,

each client will be elected a super-node only once. A more

detailed understanding is needed to ascertain how much

information is leaked by exposing a super-node only once
to aggregate gradient information multiple times.

Run-time: In our work, we measure the privacy vs. utility

trade-offs of the proposed hierarchical ecosystem, assuming that

elections and secure aggregation are implemented using state-of-

the-art approaches, with individual microbenchmarks available

in the corresponding works. Microbenchmarks providing run-

times of the overall scheme, highlighting time taken for both

elections and secure aggregation, as a function of both n and

k, will help understand the practicality of the scheme.

Practical Topologies & Data Distribution: In our current

work, we prototype the proposal using simple topologies where

each super-node is responsible for the same number of clients.

One can theoretically show that varying the number of clients

per super-node will not influence the privacy guarantees of the

approach. However, this will have an impact on the utility of

the final model learnt.

Scalability: The introduction of hierarchies into the FL process

coupled with DP is not based on artificial assumptions or

construction of a system. Such hierarchies already exist in the

design and operation of many distributed systems and network

topologies used today (DNS, CDNs, ASs, etc.) and is only a

consequential step to study how such hierarchies can inter-play

with the FL process. Thus, and as shown here, they can be

used to improve model performance vs. privacy tradeoff. They

can also reduce potentially necessary communication costs

such as while executing secured aggregation: small number of

clients in each zone can perform this step in a more scalable

fashion and allow faster protocol convergence for model update

sharing.

Other Attacks: Collusion of super-nodes (operating at different

zones) will not yield a stronger privacy attack as prior work

has shown that access to client-level gradients is sufficient to

yield good reconstruction [25], [3] (i.e., more information is

not necessarily better). Similarly, for attacks like poisoning

in FL, we stress that approaches to safeguard such attacks in

the status quo will neatly be compatible with our approach;

our primary contribution is a new approach to facilitate noise

addition at a different location in FL.

Comparisons: Shi et al. [23] also do not evaluate the resilience

of their proposal to practical privacy attackers (such as

reconstruction adversaries as we do). They also do not consider

the ramifications of their work in settings where DP noise is

not added at specific rounds but the gradients are shared with

edge-server, providing the edge-server access to unmodified

data, whereas our proposal circumvents this by requiring secure

aggregation to ensure that the edge-server never sees gradients

from clients, but only sees an aggregate view.
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IX. CONCLUSION

In our work, we propose an approach for hierarchical FL

through super-node election from federated clients. We also

propose extensions for how it can be retrofitted to provide

DP guarantees. Our experiments suggest that the proposed

approach provides more advantageous privacy vs. utility trade-

offs compared to approaches in the status quo, while providing

resilience to inference adversaries.
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