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SUMMARY

Innovations in wearable technology and artificial intelligence have enabled consumer devices to process and
transmit data about humanmental states (cognitive, affective, and conative) throughwhat this paper refers to
as ‘‘cognitive biometrics.’’ Devices such as brain-computer interfaces, extended reality headsets, and fitness
wearables offer significant benefits in health, wellness, and entertainment through the collection and pro-
cessing and cognitive biometric data. However, they also pose unique risks to mental privacy due to their
ability to infer sensitive information about individuals. This paper challenges the current approach to protect-
ing individuals through legal protections for ‘‘neural data’’ and advocates for a more expansive legal and
industry framework, as recently reflected in the draft UNESCO Recommendation on the Ethics of Neurotech-
nology, to holistically address both neural and cognitive biometric data. Incorporating this broader and more
inclusive approach into legislation and product design can facilitate responsible innovation while safeguard-
ing individuals’ mental privacy.

INTRODUCTION

In recent years, the intersection of emerging technology and per-

sonal privacy has become a critical legal battleground.1 The pro-

liferation of digital devices embedded in our daily lives has

dramatically increased the volume, variety, and processing

speed of personal data collected. This exponential growth offers

unprecedented benefits—such as enhanced health monitoring,

improved user experiences, and advancements in human-com-

puter interactions—but also raises significant privacy concerns.

The ability of these devices to collect and analyze detailed per-

sonal information challenges existing legal frameworks designed

to protect individual privacy.

Among these privacy-sensitive types of data are those

related to neural activities, known as neural data. This includes

quantitative measurements of the structure, activity, and

function of the nervous system. Consumer-grade neurotechnol-

ogies, such as direct-to-consumer brain-computer interfaces

(BCIs), present privacy vulnerabilities including unsecured

data-sharing channels,2 ambiguous privacy policies, and sus-

ceptibility to malicious hacking.3 Recent advancements in arti-

ficial intelligence, particularly deep learning applied to neural

recordings, have further demonstrated the potential to establish

privacy-sensitive statistical correlations between neural data

and particular mental states.4 This capability, while beneficial

for personalized health and wellness applications, also poses

unique challenges to mental privacy,1,5 potentially leading to

unwanted surveillance and manipulation if not properly

regulated.

The urgency to regulate mental privacy risks has resulted in a

flurry of recent legal and ethical standards worldwide. However,

these regulations (see Table S2) often isolate neural data from

broader technological trends, failing to consider how other types

of data can also infer mental states. Privacy risks are not

confined to direct neural measurements; they can also stem

from seemingly innocuous sources such as facial expressions,

heart rate variability, and social media interactions. The conver-

gence of these data sources with neural measurements through

wearable technologies increases the complexity and scope of

privacy concerns,6 calling for comprehensive regulatory and

design-based solutions.

This paper proposes a legal and industry approach that ex-

pands the definition of neural data to a broader category called

‘‘cognitive biometrics.’’ Traditionally, ‘‘biometric’’ data refers to

measurable human characteristics used to identify individuals,

such as fingerprints or facial recognition. In this paper, we inter-

pret the term more broadly to encompass both traditional bio-

metric data and data collected through ‘‘biosensors’’—devices

that monitor physiological functions of the human body. This

category encompasses not only direct neural measurements

like electroencephalography (EEG) and magnetoencephalogra-

phy (MEG), but also other physiological and behavioral data

that can infer cognitive, affective, and conative mental states

(hereinafter ‘‘mental states’’). While the terms ‘‘cognitive biomet-

ric data’’ and ‘‘cognitive biometric information’’ are often used

interchangeably, with ‘‘information’’ typically referring to data

that has been structured and processed to reveal cognitive in-

sights, this paper uses ‘‘cognitive biometric data’’ to maintain
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alignment with existing legal language, as documents like

Convention 108 do not consistently distinguish between the

two terms.7 And while cognitive biometric data can be collected

from both consumer and medical devices, and in both everyday

and healthcare settings, the primary focus of this paper is on

closing the gap in protections for data collected outside tradi-

tional medical or healthcare contexts, where existing privacy

laws, such as the United States’ Health Insurance Portability

and Accountability Act (HIPAA), may not fully apply. By adopting

a more inclusive approach to data types that can be used to infer

mental states, this paper aims to bridge current gaps in privacy

protections and anticipate future technologies advances. This

proposed framework advocates for enhanced consumer privacy

laws and technological standards that ensure individuals can

benefit from these innovative technologies while maintaining

robust mental privacy protections.

COMMERCIAL NEURAL AND MENTAL DATA
COLLECTIONPRACTICESANDLEGALDEVELOPMENTS

Current industry practices on the collection and use of
cognitive biometrics
Neurotechnology comprises ‘‘devices and procedures used to

understand and/or influence, access, monitor, assess, emulate

or modulate the structure and function of the nervous system,’’

(according to the UNESCO draft, p. 4)8 QA allowing users to

interact with virtual environments, quantify their mental states,

and control physical objects.9 With an exponential increase in

the filing of BCI patents,10 and with some consumer-grade neu-

rotechnology companies already boasting hundreds of thou-

sands of users,11 the collection of neural data is becoming

increasingly mainstream. As major technology companies

move to embed neural sensors into everyday devices, like ear-

buds12,13 and wristbands,14 this market is projected to grow

from $9.8 billion in 2022 to a projected $17.1 billion in 2026.15

As neurotechnology becomes integrated into everyday con-

sumer products, they join a broader category of biometric data

collection devices that raise similar concerns about privacy

and ethical use. Biometric data, traditionally used to identify

and verify individuals throughmeasurable human characteristics

like fingerprints or facial recognition, now encompasses a

broader range of data collected by various categories of de-

vices.16 Biosensors, which monitor physiological functions

such as heart rate, brain activity, and eye movements, are

increasingly used not only for authentication but also to infer

mental states. These biosensors are embedded in a wide array

of consumer Internet of Things (IoT) devices—a network of inter-

connected gadgets that collect and exchange data, often

without human intervention. As neurotechnology becomes part

of this broader ecosystem, brain sensors used in these devices

are just one of many biosensors contributing to these inferences

about users’ brain and mental states.

Asmore devices, including XR systems and fitness wearables,

incorporate biometric sensors, the implications for privacy and

mental health become more pronounced. These devices, such

as augmented reality (AR) glasses, virtual reality (VR) headsets,

and mixed reality (MR) products,17 increasingly collect biometric

data to gain insights about users’ brains and mental states, such

as monitoring heart rates to assess stress levels18 and using eye

tracking data to understand intentions and cognition.19,20 Com-

panies like Meta,21 Sony,22 Microsoft,23 and Apple24 are driving

this trend, contributing to a global XR market expected to grow

from $54.58 billion in 2024 to $100.77 billion by 2026.25 Similarly,

fitness wearables like Fitbit26 and Apple Watch,27 which monitor

heart rate and other physiological functions, are regularly used

by over one in five Americans28 and are projected to expand

from an estimated global market size of $62.03 billion in 2024

to $290.85 billion by 2032.29

While the collection and analysis of data related to brain and

mental states offer significant consumer and medical benefits,30

they also raise profound ethical concerns about mental privacy.2

The term ‘‘cognitive biometric data,’’ introduced on page 5 of the

first draft of the UNESCO global standard on the ethics of neuro-

technology8 drafted collectively by AHEG members, including

authors Farahany and Ienca, provides a broader framework for

understanding these risks. This framework is essential because

data about brain and mental states of individuals, although valu-

able for various consumer and medical applications, has the po-

tential to reveal intimate information about users. Cognitive bio-

metric data, which includes neural data, is uniquely sensitive

because it ‘‘provide[s] deep insights into the pre-behavioral pro-

cesses that underpin’’ our cognitive, affective, and conative

functions (see page 22 of the UNESCO draft).8 Like ink on paper

that conveys meaning through specific arrangements, cognitive

biometric data gain ‘‘semantic value’’4 when analyzed to reveal

patterns corresponding to mental states or intentions. Raw

data such as EEG signals, heart rate variability, or eye-tracking

movements initially have no intrinsic meaning, but when pro-

cessed by sophisticated algorithms, they can be used to infer

an individual’s mental states, emotions, or intentions, much

like how words on a page acquire meaning through context.

As the UNESCO draft observes, ‘‘the complexity and sensitivity

of cognitive biometric data also arise from its ability to capture

metacognitive aspects such as self-awareness and introspec-

tion.’’ Consequently, these data can reveal detailed personal

information ‘‘even when collected for unrelated purposes’’

(page 22 of the UNESCO draft).8

Research has demonstrated the ability to predict highly per-

sonal traits using EEG, eye-tracking, and heart rate data with

remarkable accuracy. These traits include sexual orientation,31

personality traits,32 drug use,33 and mental health conditions34

(Table S3). When combined with contextual information, such

as the user’s location or visual field, cognitive biometric data

can reveal responses to environmental stimuli. For example,

EEG data can reveal whether a user finds a stimulus familiar,35

eye-tracking data can pinpoint what captures their attention,36

and heart rate data can measure emotional arousal.37 This tech-

nique, termed ‘‘biometric psychography’’ by Brittan Heller,38 has

even been employed to uncover sensitive information such as

proxies for users’ PIN numbers and bank account details,39

romantic attractions,40 and skill levels in various tasks.34

These concerns are compounded by lax industry practices

concerning the collection, storage, use, and sale of cognitive

biometric data. A recent white paper by the Neurorights

Foundation revealed that all thirty neurotechnology companies

they reviewed retained broad rights over the neural data they
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collected.41 In our review of the privacy policies of seventeen

BCI, XR, and fitness wearable brands, we found that all the

BCI and fitness wearable companies indicated that they collect

cognitive biometric data from users in at least some circum-

stances. Additionally, five of the six XR companies either explic-

itly collect these data or have vague privacy policies that appear

to permit its collection (Tables S4–S6). For examples, Sony’s pri-

vacy policy states that collected information ‘‘may include . [i]

nformation about the device you are using, any connected pe-

ripherals (such as controllers and VR headsets) and how you

have configured them’’), a broad category that could encompass

eye tracking data collected from its VR headset.42 Only Magic

Leap explicitly guarantees that biometric information is pro-

cessed on their Magic Leap 2 device by default and is never

collected by the company43 (Tables S4–S6). Aside from Magic

Leap,43 all the privacy policies we reviewed include the right to

collect contextual data such as location, social media informa-

tion, and application usage, which could be used to infer con-

sumers’ cognitive states in response to their environment

(Tables S4–S6). Most companies provide little information about

how the data they collect is stored. Of the companies whose pri-

vacy policies we reviewed, only Apple explicitly states that they

encrypt biometric data in a way that prevents even its own em-

ployees from accessing it44,45 (Tables S4–S6). The remaining

companies vary widely in their guarantees. For example, Meta’s

privacy policy offers virtually no insight into their data storage

practices.46 While six companies claim to use encryption for

some types of data, only Emotiv clearly indicates that this in-

cludes biometric data,47 and none mention that the encrypted

data are inaccessible to the company and its employees

(Tables S4–S6). Other companies offer only cursory descriptions

of their security measures, typically affirming that they ‘‘seek to

maintain appropriate technical and organizational security mea-

sures that conform to industry standards’’42 (Tables S4–S6).

These limited disclosures provide consumers with little assur-

ance that sensitive insights obtained from their cognitive biomet-

ric data will be kept confidential.

Although companies often justify the collection and central-

ized storage of data with legitimate purposes—such as freeing

up local storage and allowing users to access their data from

multiple devices—these purposes are frequently defined

broadly, enabling many alternative uses of the data that may

be only tangentially related to the functioning of the company’s

products. Instead of specifically delineating how biometric

data are used,most of the reviewed companies give wide-reach-

ing purposes like ‘‘providing the Services’’48 or ‘‘performance

management and product enhancement,’’49 which could

encompass many unanticipated uses (Tables S4–S6). Some of

the purposes outlined by the companies, like HTC’s goal ‘‘to un-

derstand you and your preferences,’’ could potentially be inter-

preted to authorize the decoding of mental states from cognitive

biometric data.50 Six companies (HTC, Meta, Microsoft, Sony

Interactive Entertainment, Samsung, and WHOOP) explicitly

state that they may use personal data for marketing purposes,

with Samsung and WHOOP indicating that this applies to bio-

metric data51,52 (Tables S4–S6).

Moreover, since de-identified and aggregate data are not

considered personal data under most privacy regulations, com-

panies often do not need to obtain consumer consent before us-

ing these types of data for various purposes. When disclosed,

these purposes are often vague: for instance, Emotiv and

Muse state that they share aggregate data for research pur-

poses, without specifying the aims, background, or underlying

ethical principles of this research.48,49

Many companies, including Meta,46 Microsoft,53 and

WHOOP,52 explicitly state that they do not sell users’ personal

data, including cognitive biometric data (Tables S4–S6). Howev-

er, under regulation like the California Consumer Privacy Act

(CCPA), a claim not to sell personal data does not preclude

companies from using that data to target users with advertise-

ments,54 as these three companies explicitly reserve the right

to do.52,53,55 These statements also do not restrict the sale or

use for advertising of aggregate or de-identified data, which

are not classified as personal data. Among the reviewed com-

panies that collect biometric data, nine indicate that they share

de-identified or aggregate data with third parties, while none of

the others clearly state that they do not (Tables S4–S6). Conse-

quently, these companies provide consumers with no guarantee

that sensitive insights derived from their biometric data will

not be sold, shared with unscrupulous third parties who may

re-identify the data, or used in ways inconsistent with their

interests or values.

Even de-identified or aggregated, cognitive biometric data

can still pose risks to mental privacy. When such data are com-

bined with other data sources, there is a potential for re-identifi-

cation or for sensitive inferences to be made about individuals’

mental states. This risk is especially concerning when de-identi-

fied data are aggregated and shared for purposes such as

marketing or product development. Our proposed framework

emphasizes that cognitive biometric data—whether de-identi-

fied, aggregated, or not—should be subject to heightened pro-

tections, recognizing the unique risks it poses when misused.

This includes stricter controls over how such data can be

used, shared, or repurposed, ensuring that even non-identifiable

cognitive biometric data are handled with care to protect individ-

uals’ mental privacy.

As these industries grow and the collection of personal data

expands, scholars and policymakers have increasingly called

for more robust protections for raw neural data.56 But most ef-

forts to date have focused on the collection of neural data from

neurotechnology devices. This approach may be both overspe-

cified and underinclusive in ensuring the ethical collection, pro-

cessing, transmission, and storage of information relating to

the nervous system and mental states. A broader framework

that holistically addresses cognitive biometric data is needed

to comprehensively tackle these concerns.

Existing consumer privacy and biometric laws
pertaining to neural and cognitive biometric data
Given the growing ethical concerns and legal developments sur-

rounding the collection and use of cognitive biometric data, it is

crucial to examine how existing consumer privacy laws address

these issues. In recent decades, dozens of countries, states,

and international organizations have passed general consumer

privacy laws that limit the ability of private corporations to

collect users’ data (Table S1).57 These legislative efforts reflect
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increasing public demand for privacy protections, particularly for

highly personal data.58,59 In addition to giving consumers rights

over any data associated with their identity—such as the right

to access, correct, and delete collected data—most laws also

provide additional protections for ‘‘special categories of per-

sonal data’’ or ‘‘sensitive data’’ (our term henceforth) that could

‘‘could create significant risks to the fundamental rights and free-

doms’’ (General Data Protection Regulation [GDPR], Recital

5160). While legal definitions vary, sensitive data often include in-

formation related to one’s ‘‘racial or ethnic origin, political opin-

ions, religious or philosophical beliefs, trade union membership,

health, sexual orientation and sex life, and biometric and genetic

data.’’61

Until recently, few if any of these general consumer privacy

laws specifically addressed whether neural and cognitive bio-

metric data are considered ‘‘sensitive’’ data. The CCPA, for

example, defines sensitive data to include government identi-

fiers, financial information, precise geolocation, communication

contents, genetic and biometric data, and information about

health, sex life, sexual orientation, race, religion, and unionmem-

bership (CCPA, 1798.140(ae)54). While neural datamay qualify as

a type of biometric data under certain privacy regulations

(Table S1), the CCPA’s protections are limited to biometric

data that ‘‘can be used, singly or in combination with each other

or with other identifying data, to establish individual identity’’

(CCPA, 1798.140(c)54). This means that neural data might be

treated as sensitive when used for identification purposes,62

but not when non-identifying neural data are used to infer a

user’s mental state. A similar concern arises with the Act’s defi-

nition of health data, which extends to ‘‘personal information

collected and analyzed concerning a consumer’s health’’

(CCPA, 1798.140(ae)(2)(B)54). This definition may exclude bio-

metric data, such as eye tracking data in VR headsets, that is

not typically collected or used for health purposes. S.B. 1223,

currently under consideration in the California Senate, seeks to

address some of these concerns by explicitly classifying neural

data as a category of sensitive data under the CCPA, though

its scope extends only to information ‘‘that can be processed

by, or with the assistance of, neurotechnology’’ (S.B. 1223,

Sec. 363).

Biometric laws like Illinois’s Biometric Information Privacy Act

(BIPA) tend to be even more restrictive. BIPA, for example, ex-

tends protection only to a consumer’s ‘‘biometric identifier[s],’’

narrowly defined as a ‘‘retina or iris scan, fingerprint, voiceprint,

or scan of hand or face geometry’’ (BIPA, Sec. 1064). Although

case law has broadened this protection somewhat—for

example, to cover facial geometry scans taken from photo-

graphs65,66 or captured for purposes other than identifica-

tion66,67—it remains doubtful whether the law, even when

broadly interpreted, covers biometrics such as EEG, heart rate,

and several types of eye tracking data, especially when these

are not used for identification.66 These laws are often overspeci-

fied and underinclusive, failing to protect comparably risky data

categories due to their narrow language.

Recognizing a gap in existing general privacy laws’ ability to

adequately protect mental privacy, at least twelve countries, re-

gions, and international organizations have proposed or passed

new laws, charters, or standard-setting documents since 2018

(Table S2). With lobbying support from the US-based Neuro-

rights Foundation, Chile became the first country in 2021 to

codify protections for ‘‘brain activity’’ and data derived from it

into their constitution.68,69 In 2023, the BCI company Emotiv

was compelled to delete EEG data it had collected on a former

Chilean senator as a direct consequence of Chile’s new legisla-

tion.70,71 In the United States, the state of Colorado passed a

2024 law amending the Colorado Privacy Act to protect ‘‘data

generated by the technological processing, measurement, or

analysis of an individual’s biological, genetic, biochemical, phys-

iological, or neural properties, compositions, or activities or of an

individual’s body or bodily functions.’’72 However, lobbying ef-

forts narrowed the law’s initial broad definition of ‘‘biological

data’’ to include only data used for identification,73 significantly

limiting the protections for cognitive biometric data, which can

reveal highly personal insights without being used for identifica-

tion purposes.

The majority of these mental privacy laws, charters, and doc-

uments have adopted narrow definitions of neural data, focusing

primarily on information obtained directly from the nervous sys-

tem (Table S2). While these legal approaches are crucial for pro-

tecting data directly tied to brain activity, they often exclude

broader categories of cognitive biometrics derived from non-

neural sources, such as heart rate variability, eye-tracking

data, and behavioral patterns. These exclusions mean that

many forms of data capable of being processed to infer mental

states are not covered, leaving significant gaps in mental privacy

protections.

Existing laws such as the EU GDPR60 and CCPA54 provide

baseline protections for personal data, including neural and

cognitive biometric data. However, these protections often fall

short of addressing the unique risks associated with data

collected outside traditional healthcare settings. Our proposed

framework aims to bridge this gap, focusing on enhancing pro-

tections for data gathered through consumer devices, where

current privacy laws, like HIPAA, may not apply. While the

emphasis is on consumer devices, the principles we propose

can also inform the protection of data from medical devices in

both clinical and non-clinical environments.

General data protection laws mandate consent, data minimi-

zation, and purpose limitation, but these measures are typically

broad and flexible, allowing for unintended uses of neural and

cognitive biometric data. For example, the broad consent

permissible under general data protection laws may not provide

individuals with a full understanding of how their neural and

cognitive biometric data might be used, including potential infer-

ences about their mental states. This issue is further complicated

by the fact that many current mental privacy laws, such as those

recently enacted in Chile, are primarily concerned with direct

brain activity data, leaving other forms of cognitive biometrics,

particularly those derived from non-neural sources, less likely

to be protected (Table S2). Classifying neural and cognitive bio-

metric data as sensitive data becomes crucial here, as it man-

dates explicit consent for each specific use, ensuring individuals

are fully aware of and agree to the precise ways their data will

be used.

Additionally, while general data protection laws enforce data

minimization and purpose limitation, they often permit the
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repurposing of data for compatible uses without requiring new

consent. This flexibility may not adequately protect neural and

cognitive biometric data, which can reveal deeply personal and

intimate insights. However, if these biometrics are classified as

sensitive data, the laws impose stricter limitations on data pro-

cessing, ensuring that data are only collected and used for the

specific purposes for which explicit consent has been given.

This tighter control minimizes the risk of data being repurposed

in ways not explicitly agreed to by the data subject, providing

stronger protection against misuse.

Finally, while general data protection laws mandate basic se-

curity measures, these might not be robust enough for neural

and cognitive biometric data, which is particularly vulnerable to

re-identification and the extraction of sensitive information

from even anonymized datasets. Sensitive data protections

require enhanced security protocols, such as stronger encryp-

tion and more rigorous access controls, precisely because of

the higher risks associated with these types of data. By classi-

fying neural and cognitive biometric data as sensitive data, legal

frameworks ensure that the highest levels of protection are

applied, addressing specific vulnerabilities and safeguarding in-

dividuals’ mental privacy against unauthorized access and

misuse. Recognizing these gaps, some countries have begun

to take more comprehensive approaches to protect neural and

cognitive biometric data.

Several countries have passed laws or charters taking a more

comprehensive approach to protecting neural and cognitive bio-

metrics data, while others are similarly moving to expand their

definition of biometrics for purposes other than identification.

In 2022, for example, Brazilian legislators introduced an amend-

ment to the Brazilian General Data Protection Law (LGPD) to

protect data collected ‘‘directly or indirectly’’ from the ‘‘central

nervous system.’’74 The Mexican Charter of Digital Rights

similarly gives privacy protections to data ‘‘obtained directly or

indirectly through the activity patterns of neurons.’’75 In Kenya

and Armenia, biometrics laws include physiological or biological

data used for any purpose, not just identification,76,77 and

several countries’ definition of sensitive data includes mental

or psychological health data, which could possibly be construed

broadly to include information about mental states (Table S1). In

the United States, the Federal Trade Commission (FTC) issued a

recent policy statement in which it defined biometrics as ‘‘data

that depict or describe physical, biological, or behavioral traits,

characteristics, or measurements of or relating to an identified

or identifiable person’s body’’78—a definition broad enough to

likely include all cognitive biometrics linkable to a specific indi-

vidual, in addition to data such as photographs often excluded

from biometric laws.66 This policy statement signals that the

FTC will pursue action against companies that mislead con-

sumers about their collection of biometric data or fail to mitigate

harms and risks associated with the collection of these data.79

In Europe, Article 4(1) of the GDPR60 and the CJEU Cases

(Breyer80 and Nowak81) consider data related to human brain

and mind to be personal data if it can single out the data subject

at stake. However, these data may not necessarily be consid-

ered sensitive unless it is related to one of the explicitly enumer-

ated categories of sensitive data under Article 9(1) of the GDPR

(e.g., data related to health, political opinions, sexual orientation,

etc.).60 This may even be the case if the data can be used to infer

highly personal mental states not related to these categories,

such as cognitive biometric data correlated with consumer pref-

erences or emotional states. While the 2024 AI Act’s classifica-

tion of emotion recognition algorithms as ‘‘high risk’’ provides

additional protections for some types of cognitive biometric

data, these protections do not appear to extend to the decoding

of non-affective mental states such as cognitive and conative

states (AI Act, Article 6(2) and Annex III82).

Table S1 lays out the surveyed approaches to this issue.

OUR PROPOSAL

Defining cognitive biometrics
The limitations of existing definitions of neural data in law may at

least in part be attributable to the mismatch between the scien-

tific categorization and the legal interests at stake.Whenmedical

or scientific terms like ‘‘neural data’’ are imported into law, defi-

nitions are often drawn directly from a healthcare or scientific

setting where the focus is on diagnosing and treating patients

or for ensuring precision in research.83,84 However, in legal

contexts, the purpose extends beyond identifying and treating

conditions to creating clear boundaries around personal data

to protect rights such as mental privacy and cognitive liberty.85

By relying on a narrow scientific definitions, existing laws have

often failed to protect other categories of information, like heart

rate or eye tracking data, which may not be directly related to

neural data scientifically but pose similar privacy risks.

This overreliance on scientific definitions is especially evident in

recent legislation, such as in Colorado, where two bills regulating

biometric datawere introduced at the start of 2024 and have since

passed. Colorado’s H.B. 24-1058 amended the Colorado Privacy

Act to classify ‘‘biological data,’’ including neural data, as a type of

sensitive data.72 In its Legislative Declaration, H.B. 24-1058 em-

phasizes that neural data are ‘‘extremely sensitive’’ because

they ‘‘can reveal intimate information about individuals, including

information about health, mental states, emotions, and cognitive

functioning.’’ While this rationale applies equally well to cognitive

biometrics like eye tracking data, H.B. 24-1058’s sensitive data

protections extend only to ‘‘information that is generated by the

measurement of the activity of an individual’s central or peripheral

nervous systems’’ and to non-neural biological data only when

used for ‘‘identification purposes.’’72 Similarly, H.B. 24-1130 re-

stricts protections to biometrics that ‘‘can be processed for the

purpose of uniquely identifying an individual’’86—a definition that

aligns with the two most recent entries in the National Institute

of Standards and Technology (NIST)Computer Security Resource

Center’s glossary87 but fails to account for privacy harms unre-

lated to identification, such as disclosure of non-identifying per-

sonal information. In each case, the undue weight given to tech-

nical definitions has led to the unequal application of legal

principles to equally risky categories of data.

Focusing narrowly on specific technologies or data sources,

rather than on the broader category of cognitive biometrics, re-

sults in underinclusive legal protections. Existing privacy pro-

posals often target specific data sources—such as eye tracking

data or facial recognition—rather than addressing the broader

class of data capable of inferring mental states.88–90 While
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some proposals, like those from Heller,38 Spivack and Berrick,91

and McGill92 have attempted to expand the scope, they often

remain limited to specific technological contexts like immersive

technologies, which comprise only a subset of devices using

cognitive biometrics.

We argue that the increasing convergence of technologies

enabling inferences about brain and mental states calls for a

technology-neutral approach. Adopting a more expansive term

like cognitive biometrics would allow regulators to treat similar

data alike based on inferences they enable and the risks they

pose to mental privacy. Cognitive biometrics, as used here, en-

compasses data from both neural sources and other biosensors

that can be processed to infer cognitive, affective, and conative

states—collectively referred to as mental states. Where ‘‘cogni-

tive’’ refers specifically to processes related to knowledge, un-

derstanding, and thinking, ‘‘affective’’ pertains to emotions and

feelings, and ‘‘conative’’ involves desires, volition, and related

behavioral intentions.

To guide future policy developments going forward, we

propose the following definition of cognitive biometric data, a

version of which was recently also included on page 5 of

UNESCO’s initial draft of a Recommendation on the Ethics of

Neurotechnology:

Cognitive biometric data: ‘‘Neural data, as well as other

data collected from a given individual or group of individ-

uals through other biometric and biosensor data,’’ which

could ‘‘be processed and used to infer mental states.’’8

This definition includes direct measurements of nervous sys-

tem activity, such as EEG and MEG,93 as well as data from other

biosensors, like heart rate and eye tracking, that can be pro-

cessed to infer mental states. This broader and more inclusive

approach ensures comprehensive protection of mental privacy

across technologies, regardless of the specific devices or

methods used. While the definition of cognitive biometric data

shares similarities with the definition of ‘‘mental data,’’ which is

defined as ‘‘any data that can be organized and processed to

infer the mental states of a person, including their cognitive,

affective, and conative states,’’94 cognitive biometric data spe-

cifically emphasize the biometric and biosensor origins of the

data used to infer mental states, which provides a clearer and

more actionable legal standard.

A potential objection to this approach is that the broad scope

of cognitive biometrics could complicate legislation.While neural

data are a specific category tied to neurotechnologies, cognitive

biometrics encompasses various biological signals and devices.

However, this challenge is neither insurmountable nor unique, as

biometric laws regulating identification data face similar ambigu-

ities, focusing on inferences about identification rather than

specific technologies. For data types that do not clearly enable

inferences about mental states, regulators can issue guidelines

to clarify their inclusion or exclusion under law.

This approach also offers a practical way to update existing

legal frameworks to address novel concerns about mental pri-

vacy. Instead of relying on private actors to adopt norms or

creating new legislation, it would allow existing privacy or bio-

metrics laws to be updated to include cognitive biometrics.

This could be done by revising the definition of sensitive data

in consumer privacy laws to explicitly include cognitive biomet-

rics, using the provided definition or a suitable variation. Alterna-

tively, broader definitions of biometrics, like those adopted by

the FTC,78 Kenya,76 and Armenia,77 could be used. While the

former approach is more tailored to protecting mental privacy,

the latter’s legal precedence may facilitate easier adoption.

Of the 193 member states of the UN,95 a clear majority have

adopted consumer privacy laws addressing sensitive data.96

However, some countries and regions lack such laws,96 and

many US states do not have existing consumer privacy laws at

all.97 For jurisdictions without these laws, we propose adopting a

privacy ‘‘floor’’ to protect mental privacy. This ‘‘privacy floor’’ es-

tablishes a baseline level of protections for mental privacy,

ensuring that regardless of jurisdiction, basic standards are met

to safeguard individuals’ cognitive biometric data. This approach

would align with the four categories of protections we outline

below, providing a uniformminimum standard that can be tailored

to specific cultural and normative differences across the globe.

A privacy ‘‘floor’’ for legislative protections of cognitive
biometrics
Our proposed privacy floor captures the essential features of ex-

isting consumer privacy laws that govern sensitive data. Despite

their differences, these laws exhibit striking consistency in four

key areas: informed consent, data minimization and purpose

limitation, data rights, and data security. The International Asso-

ciation for Privacy Professionals’ (IAPP) Global Comprehensive

Privacy Law Mapping Chart surveyed the 23 countries, US

states, and international bodies, and found the following:

(1) Informed consent: 17 jurisdictions promote informed con-

sent by both imposing notice/transparency requirements

and requiring opt-in consent before processing sensitive

data (or, in the case of Singapore, before processing

any personal data, subject to specified exceptions).57,98

(2) Data minimization and purpose limitation: 22 jurisdictions

require companies to limit data processing to specified

purposes and to minimize data collection to what is

necessary for these purposes.57

(3) Data rights: 22 jurisdictions grant consumers specific

rights to access, correct, and in some circumstances

delete personal data.57

(4) Data security: All 23 jurisdictions impose security require-

ments on the storage of personal data, such as the

GDPR’s mandate for ‘‘appropriate technical and organi-

zational [security] measures’’ (GDPR, Art. 32(1)60).57

These principles establish a high baseline of consumer

privacy.

d Informed consent ensures consumers are aware of and

agree to how their data are collected and processed.

d Data minimization and purpose limitation require com-

panies to collect and process only the data necessary for

specified purposes.

d Data rights provide consumers with ongoing control over

their data, allowing them to monitor and modify it as

needed.
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d Data security ensures that data are protected against un-

authorized access and misuse.

We propose that these four principles serve as a privacy floor

for policies governing the collection, storage, and use of cogni-

tive biometric data, reflecting the best practices of existing

privacy laws. This baseline set of standards would protect con-

sumers’ mental privacy while allowing for additional context-

specific safeguards as needed.

Our privacy floor is intended primarily for lawmakers to eval-

uate and update existing regulations and to guide new legislation

that alignswith global standards. It also serves as a guide for cor-

porations to align their data governance with ethical and legal

standards, ensuring consumers that their data will not be

misused.

This privacy floor is broad and technology neutral, applying to

various technologies that enable the collection and processing

of cognitive biometric data. Below, we outline how these princi-

ples can be implemented in law and industry privacy policies

specifically for cognitive biometrics.

Informed consent

Implementing informed consent for cognitive biometrics involves

two major shifts. First, it requires moving from an ‘‘opt-out’’

model, where blanket consent is presumed, to an ‘‘opt-in’’ model

where explicit, affirmative consent is obtained before processing

certain types of data. This shift has been proposed for BCIs,99 XR

headsets,90 and fitness wearables.100 Implementing dynamic

consent mechanisms, where users can modify their consent

choices in real time as their preferences and context evolves,

is also crucial.101 Second, it would require increased transpar-

ency across several dimensions of data processing. Specific

transparency measures for cognitive biometrics include clari-

fying where, by whom, why, and how data are processed and

stored,2,91 disclosing security measures,2 providing visibility

into the design and functionality of AI systems,90,99 and

improving data and technology literacy.102 These measures

aim to rectify the current reliance on click-through consent forms

that often lead to uninformed consent.103

Data minimization/purpose limitation

Data minimization is a key privacy safeguard for cognitive bio-

metrics, particularly in the context of BCIs,104 fitness wear-

ables,105 and immersive technologies like XR headsets.91,106

While data minimization often focuses on the quantity of data

collected,107 cognitive biometrics requires special attention to

the type of data collected. Since raw cognitive biometric data

are correlated with sensitive information unrelated to the pur-

pose of data processing (Table S3), data minimization may

involve collecting only inferences from cognitive biometric

data, or altering the raw data to remove identifying or sensitive

features.108,109 Apple Vision Pro collects eye tracking data only

related to ‘‘what you select, not what you are looking at.’’110

These methods support purpose limitation by tailoring data

collection to the specified purpose. However, minimizing data

in neural interfaces is challenging due to the difficulty in distin-

guishing purpose-specific signals from the vast array of underly-

ing brain activity. This complexity necessitates sophisticated

tools and techniques to accurately filter and process data while

protecting user privacy, such as the Brain Computer Interface

Anonymizer, a proposed device to selectively filter data to re-

move privacy-sensitive information.111

Data rights

Rights to access, correct, and request erasure of collected data

have been proposed for BCIs,2 immersive technologies,91 and

fitness wearables.91 These rights are particularly relevant to the

inferences companies extract from cognitive biometrics rather

than to the raw data itself. For example, the right to correct

datamay apply moremeaningfully to correcting faulty inferences

about a consumer than to correcting raw biometric data. While

our privacy floor encompasses the general data rights codified

in consumer privacy laws, consistent with the right to cognitive

liberty,1 other proposals advocate for more specific rights such

as neurorights85 or rights specific to domains like extended real-

ity.92 These specific rights could build upon the privacy floor.

Data security

To implement data security, companies should adopt the most

effective and practical encryption methods for the relevant

context and category of cognitive biometric data. For BCIs, dis-

cussed encryption methods include homomorphic encryp-

tion,112,113 blockchain,114 secure multiparty computing,113,115

and differential privacy,114 with the latter also proposed for eye

tracking data116 and wearable devices.117 Although not encryp-

tion per se, federated learning is noted for limiting access to

cognitive biometric data by keeping it on users’ devices.114,118

More broadly, keeping biometrics on users’ devices, rather

than on company servers (i.e., edge processing) is often

mentioned as a means to mitigate privacy concerns.38,91 While

not all of these security methods may be commercially prac-

tical—for example, Xia et al. note that encryption methods like

homomorphic encryption are ‘‘very computationally intensive’’

and ‘‘may not be suitable for real-time online BCI sys-

tems’’113—companies should aim to provide the highest reason-

able standard of security given the relevant constraints.

As formulated, these four principles do not require any specific

product design features. Nevertheless, we propose that these

principles may be effectively implemented in conjunction with

a ‘‘privacy by design’’119 or ‘‘data protection by design and by

default’’ (GDPR, Art. 2560) framework for cognitive biometrics.

According to this framework, raw cognitive biometric data

should by default either be processed on the edge or end-to-

end encrypted. These requirements would provide consumers

with a substantive assurance of privacy, aligning with the princi-

ples discussed.

Edge Processing

‘‘Edge processing’’ involves processing data close to its

source, such as on a smart device or a local gateway.120

With respect to cognitive biometrics, the most pertinent

form of edge computing involves processing data directly

on-device (often termed ‘‘ultra-edge’’)121 or on proximate

wearables, smartphones, or personal computers.

Edge processing of raw cognitive biometric data aligns with

three of the four principles constituting our privacy floor:

d Data minimization and purpose limitation: By processing

raw data locally, edge computing reduces the need to

transfer data to central servers, minimizing the amount of
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data collected and stored. It ensures that data collected for

one purpose are not repurposed for another.

d Data rights: Users maintain greater control over their raw

data, as it remains on their personal devices, allowing

them to manage security and storage directly.

d Data security: Keeping raw data on the edge limits the risk

of breaches that could occur if these data were stored on

central servers.

By shifting raw data processing to proximate, user-controlled

devices, edge processing allows applications to use cognitive

biometrics without exposing sensitive raw data to corporate

servers.122 This gives users greater confidence that their raw

cognitive biometric data will not be exposed or misused.

Edge processing is well suited to the IoT environment in which

most cognitive biometric devices operate. Many devices already

use edge processing due to its efficiency, speed, and privacy

benefits122,123 (Tables S4–S6). For example, devices like Apple

Vision Pro and Magic Leap 2 process eye tracking data entirely

on the edge,110,124 while applications from Muse and Emotiv

can function offline,125,126 indicating that their core functionality

is edge based (Table S4). However, some applications may

require more processing power or storage than edge devices

can provide or may require centralized for functionality or conve-

nience (e.g., making data available on multiple devices).127 In

such cases, end-to-end encryption should be the default

standard for raw data, ensuring users have full control over

data access and usage, providing comparable privacy to edge

processing.

End-to-End Encryption

For devices where edge processing of raw cognitive biometric

data is infeasible or undesirable—due to the need for long-

term data storage, processing power, or user preferences to

share data for research—end-to-end encryption should be im-

plemented. This means that data are encrypted from captured

to use, ensuring only the user or authorized parties can access

it.128 This approach provides strong privacy protections, similar

to edge processing, by keeping data inaccessible to unautho-

rized parties. Additionally, end-to-end encryption alone or in

combination with distributed ledger technology129 maintains

data integrity during transmission and storage, preventing

tampering and unauthorized modifications. This fosters user

trust and enables secure data sharing for legitimate research

and development purposes.130

While this design framework provides substantial protection

against the misuse of raw cognitive biometric data, it is not a

complete privacy solution by itself. A company could use edge

processing to extract sensitive insights from raw data and then

transmit these insights to their servers.131 A thorough approach

to processing cognitive biometric data requires adopting this

design framework alongside the broader privacy floor, particu-

larly the informed consent principle, which would prevent the

transmission of sensitive insights without consumer’s express

permission. Implementing these design standards would

address most of the privacy concerns discussed earlier,

ensuring companies do not access or sell to third parties the per-

sonal mental details about the user unrelated to their devices’

functions.

Conclusion
Despite robust safeguards provided by existing data protection

laws, such as HIPAA in the United States and the GDPR in the

European Union, significant gaps remain in protecting cognitive

biometric data collected outside of healthcare and clinical set-

tings. These gaps leave individuals’ mental privacy vulnerable

in an increasingly data-drivenworld. Expanding legal protections

from neural data to the broader category of cognitive biometric

data is essential to close these gaps and ensure comprehensive

privacy safeguards.

While broadening legal definitions of sensitive data or biomet-

ric data to include cognitive biometric data would represent a

crucial step forward, it alone cannot fully address the complex-

ities of mental privacy in the digital age. Risks persists, such as

the potential for malicious actors to hack user devices,132 or

for companies to violate or modify data use agreements without

adequate transparency.133 Additionally, practices like ‘‘tying’’

products and services to the mandatory sharing of personal

data further undermines mental privacy. The proposed

UNESCO standards on the ethics of neurotechnology offer a

more comprehensive solution,8 but implementing a privacy floor

that strengthens the protections for cognitive biometric data is a

necessary foundation.

Striking the right balance between protecting individual inter-

ests and fostering innovation remains a significant challenge.

In the private sector, data collection is often deemed necessary

for innovation and growth.134 Limiting cognitive biometric data

collection might slow innovation in these nascent technologies,

impacting both medical and consumer devices, and affect

venture capital funding reliant on data generation and sales.

Our proposed privacy floor addresses these concerns by allow-

ing data use for product refinement with affirmative consent. This

approach empowers consumers to opt into limited data collec-

tion and even consent to data transfer voluntarily, potentially

even for compensation,135 fostering a more ethical and trans-

parent relationship between users and companies. This will

require companies to demonstrate to users that data sharing is

beneficial to both individuals and the collective, empowering

them as data co-creators rather than unwilling data subjects.136

In the public sector, the vast datasets held by commercial BCI

companies, far exceeding those of traditional academic studies,

could be used to advance science, medicine, and the public

good. Real-world examples, such as the large-scale studies

conducted by Apple and Google Fitbit, demonstrate that

informed, opt-in consent can support both ethical standards

and research and progress, showing that ethical data practices

are not only feasible, but also beneficial.137–139

Just as the Genetic Information Non-Discrimination Act (GINA)

of 2008140 empowered individuals to share their genetic data

without fear of misuse, adopting robust measures to protect

cognitive biometric data could similarly empower individuals to

secure their mental privacy. By choosing whether, when, and

how to share their cognitive biometric data, individuals can

contribute to advancements in technology and medicine while

maintaining control over their personal information. This

balanced approach ensures that innovation and privacy can

coexist, leading to a future where both are protected and re-

spected.
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