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Abstract: Hyperspectral cameras collect detailed spectral information at each image pixel, contribut-
ing to the identification of image features. The rich spectral content of hyperspectral imagery has led
to its application in diverse fields of study. This study focused on cloud classification using a dataset
of hyperspectral sky images captured by a Resonon PIKA XC2 camera. The camera records images
using 462 spectral bands, ranging from 400 to 1000 nm, with a spectral resolution of 1.9 nm. Our
preliminary/unlabeled dataset comprised 33 parent hyperspectral images (HSI), each a substantial
unlabeled image measuring 4402-by-1600 pixels. With the meteorological expertise within our team,
we manually labeled pixels by extracting 10 to 20 sample patches from each parent image, each patch
consisting of a 50-by-50 pixel field. This process yielded a collection of 444 patches, each categorically
labeled into one of seven cloud and sky condition categories. To embed the inherent data structure
while classifying individual pixels, we introduced an innovative technique to boost classification
accuracy by incorporating patch-specific information into each pixel’s feature vector. The posterior
probabilities generated by these classifiers, which capture the unique attributes of each patch, were
subsequently concatenated with the pixel’s original spectral data to form an augmented feature vector.
We then applied a final classifier to map the augmented vectors to the seven cloud/sky categories.
The results compared favorably to the baseline model devoid of patch-origin embedding, showing
that incorporating the spatial context along with the spectral information inherent in hyperspectral
images enhances the classification accuracy in hyperspectral cloud classification. The dataset is
available on IEEE DataPort.

Keywords: multi-spectral and hyperspectral remote sensing; cloud classification; feature vector
augmentation; spatial contextual guidance; patch-origin embedding; transfer learning

1. Introduction

Hyperspectral imagery (HSI) has applications in diverse areas, including agricul-
ture, forestry, detection of mineral resources, land use classification for land management,
and meteorology [1–5]. Airborne and spaceborne HSI have increasingly become powerful
tools in atmospheric sciences for air quality analysis, measuring concentrations of water
vapor and other atmospheric gases, and characterizing weather systems and clouds [4].
Ground-based hyperspectral sky imaging has also been used in many applications, includ-
ing the retrieval of cloud microphysical and optical properties in both thin water clouds
and cirrus clouds [6,7]. The use of ground-based hyperspectral sky imaging for the classifi-
cation of clouds is an emerging field. Clouds of various types form at different levels in the
Earth’s atmosphere and have varying degrees of opacity to solar and terrestrial radiation.
As a result, cloud type is an important factor in determining the flux of solar radiation at
both the Earth’s surface and the top of the atmosphere. The influence of cloud type on
the Earth’s radiation budget has been found to be as important as that of cloud amount.
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Therefore, the regional and global climates are closely tied to the frequency of occurrence
of different cloud types [8]. Major cloud genera are based on cloud height, morphology,
and microphysical properties. Some of the major cloud genera, such as nimbostratus, infre-
quently occur at the location where our hyperspectral camera captures cloud/sky images
to create the dataset for the study. The dataset we created emphasizes the small-scale
(50 × 50 pixels) cloud/sky features that can be directly observed by a ground-based camera
and related to the microphysical and radiative properties of clouds and a clear sky. It may
be possible to deduce other cloud features related to cloud morphology from the analysis
of the larger-scale images from which we took the small-scale samples, making it possible
to identify cloud genera.

This study focused on the classification of regions within hyperspectral images into
seven distinct cloud/sky categories. While each pixel in a hyperspectral image contains a
wealth of spectral information, including textural details can improve the determination
of membership in a particular cloud/sky category. Texture and the spatial extent of
cloud elements are important factors in traditional methods for cloud classification. One
approach to include texture would be to input a group of neighboring pixels into a classifier,
such as a neural network. However, that approach does not necessarily optimize single-
pixel classifier performance or feature extraction. A better method for feature extraction
involves utilizing the contextual information contained in neighboring pixels within the
images in a manner similar to positional embedding techniques recently popularized by
transformers [9].

We propose a novel approach to pixel classification that includes the original spectral
features but also enriches the data by incorporating contextual/textural information derived
through the proposed augmentation algorithm. This algorithm, which we term “patch-
origin embedding”, augments the pixel feature vector with the posterior probabilities from
several classifiers that identify the patch-origin of a pixel. Since each patch may represent
a distinct texture, features that distinguish these textures or highlight their similarities
can be beneficial. This enriched dataset is designed to enhance the distinctiveness of the
spectral features, thereby improving the classifier’s ability to discriminate between different
cloud/sky types.

By comparing the classification performance on the original dataset against the aug-
mented (enriched) dataset, this study aimed to demonstrate the potential benefits of our
proposed method in enhancing the accuracy and reliability of hyperspectral cloud classifi-
cation. The dataset is available on IEEE DataPort [10].

2. Collection of the Hyperspectral Dataset

This section describes the collection and post-processing of hyperspectral images and
the sampling of pixels from those images to produce the dataset used in this study.

2.1. Image Data Acquisition

The Resonon PIKA XC2 hyperspectral camera used in this study operates as a scanning
spectrometer. The camera first captures a small ribbon-like image of the sky within its
integration field of view, and then it rotates clockwise around a vertical axis to capture
an image of the abutting ribbon and appends it to the preceding image. It continuously
rotates, captures, and appends until an entire image is accumulated. The result is an image
of 4402 × 1600 pixels, with each pixel containing 462 bands of spectral data. The working
principle of the Resonon camera is illustrated in Figure 1.
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Figure 1. Working principle of Resonon Hyperspectral Imager (inspired from [11]).

The camera is mounted on an Oben VH-R2 tilt head attached to a rotational scanning
stage [12]. The tilt head maintains the vertical orientation of the camera at a stable and
specific elevation angle during the scanning process. Figure 2 shows how the camera is
set up. To seamlessly capture a high-quality image without blurring, the scan rate (SR),
the number of degrees the stage pans per second, the frame rate (FR), and the number
of individual exposures the camera captures per second must be synchronized. For our
camera, the scan rate and frame rate were related by the following:

SR = 0.02035 FR (1)

Figure 2. Resonon Pika XC2 camera mounted on a tilt head and attached to a rotational stage that
captures sky images covering a 90-degree range in azimuth [12].

The camera captures spectral data across 462 channels, spanning wavelengths from
400 nm to 1000 nm, with measurements taken at intervals of approximately 1.31 nm and a
spectral resolution of 1.9 nm FWHM (full width at half maximum) [13]. This configuration
ensures a detailed spectral resolution across the visible to near-infrared spectrum. Thus, our
HSI dataset has each pixel containing 462 channels, numbered from 0 to 461. The channels
are organized in ascending order by wavelength, which supports a more intuitive analysis
and data processing. The camera is equipped with an objective lens with a 17 mm focal
length, giving a field of view of 30.8 degrees distributed over 1600 spatial pixels. The large
number of spatial pixels and the small integration field of view of 0.71 mrad give the camera
a spatial resolution high enough to reveal fine details in the cloud structure.
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2.2. Image Data Processing Using Radiance Calibration and Normalization

Raw images (e.g., Figure 3) captured by the PIKA XC2 were calibrated in a post-
processing step to obtain images for which the digital number of each wavelength channel
is equal to monochromatic radiance in units of µflicks. The calibration was performed using
Resonon’s Spectronon software (version 3.5.5) and calibration data from Resonon.

After the calibration, to address variations in total radiance, which can arise from
factors like atmospheric conditions and sensor sensitivity, the spectra were normalized
using a method that involves dividing each value of monochromatic radiance by the
radiance at a specific wavelength (586 nm), which is proportional to the spectrally averaged
radiance under all sky conditions. This approach utilizes the radiance at 586 nm as a proxy
for the spectrally averaged radiance, as it simplifies the process, and is effective for our
purpose. The normalization formula is given by the following:

R′(λ) =
R(λ)

R(586 nm)
(2)

where R′(λ) represents the normalized radiance at wavelength λ, and R(λ) is the monochro-
matic radiance at wavelength λ.

Normalization emphasizes the chromatic content of the data. The sky radiance in
a clear sky regions is dominated by short-wavelength light originating from Rayleigh
scattering by air molecules. In contrast, the sky radiance in cloudy regions is dominated by
Mie scattering by cloud particles, which occurs more uniformly with wavelength [14–18].
By emphasizing the chromatic content of the images, the chromatic differences between
dense clouds, thin or semi-transparent clouds, and clear sky are also highlighted. Figure 4
shows exemplary patches for each cloud/sky category. Figures 5–10 show the contribution
of the normalization to the comparability of spectral signatures by standardizing variations
in total radiance. Although normalization using the L2 (or L1) norm could be considered
for multispectral imaging due to its ability to account for variations in total radiance
across multiple wavelengths, we decided against using it. This decision was based on
its computational complexity and the greater benefits derived from focusing on specific
critical wavelengths tailored to potential multispectral applications. The L2 norm method
would be represented as follows:

R′(λ) =
R(λ)√

∑λ R(λ)2
(3)

However, instead of the costly integration over the full set of wavelengths in the
denominator, by identifying 586 nm as a key wavelength and using it in Equation (2), we
reduce computational requirements and enhance our ability to generalize our approach to
more cost-effective multispectral studies in the future.

2.3. Dataset Preparation

A total of 33 images, referred to as parent images, were selected for preparing the
dataset for this research project. Using Resonon’s Spectronon software, we extracted 10
to 20 sample patches from each parent image, each with a 50 × 50 pixel field. Based on
our experiments and observations, we decided to use a sample patch size of 50 × 50 pixels
to exclude many unwanted pixels surrounding the cloud of study in the parent image.
As a result, we obtained cleaner pixel data for each cloud/sky category used for this study.
Figure 3 presents a parent image with 10 selected sample patches, highlighted by red
squares, indicating their respective locations.

Each sample patch was also saved as an image, referred to as a patch image. This
process yielded a collection of 444 patches. These patches were manually labeled into
seven cloud/sky categories based on the meteorological expertise within our team. Table 1
lists the seven cloud/sky categories used in this work and the number of patches in each
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category. The panels (a)–(g) of Figure 4 display exemplary patches from all seven sky/cloud
categories in context.

Figure 3. A sample parent image with some sample patches marked in red squares.

Figure 4. Sample patch examples for each cloud/sky category. (a) Dense dark cumuliform clouds
(c01). (b) Dense bright cumuliform clouds (c02). (c) Semi-transparent cumuliform clouds (c03).
(d) Dense cirroform clouds (c04). (e) Semi-transparent cirroform clouds (c05). (f) Low aerosol clear
sky (c06). (g) Moderate/high aerosol clear sky (c07).

Although using the texture in the entire patch is the simplest approach, the advan-
tage of HSI cameras lies in the richness of individual pixels, which is why we focused on
pixel classification in this study. Once individual pixels can be classified most effectively,
a patch-based classification study can follow, potentially achieving even higher accura-
cies. Our study leveraged spatial information through “patch-origin embedding”, which
enhances pixel representation by capitalizing on each pixel’s patch membership. This
approach, detailed in Section 3, utilizes predictor features indicative of the patch ID to
enhance pixel representation without explicitly analyzing the entire 50 × 50 pixel field for
texture. By concentrating on hyperspectral pixel classification, we leverage the detailed
spectral information provided by HSI data. This method, which falls under the umbrella of
transfer learning, is enabled by creating auxiliary classes using contextual guidance (spatial
relations among pixels) and inspired by our past studies [19,20]. It can be extended to other
applications within the field of remote sensing.
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It is expected that each category of the labeled dataset has its signature.
Figures 5, 7 and 9 display the spectral signatures of the three main categories: cumuli-
form (c01), cirroform (c04), and clear sky (c07). Each waveform represents the spectral
data from a single pixel extracted from the central location (25,25) of a 50 × 50 patch for
each category. Figures 6, 8 and 10 display the normalized spectral data for each category
(as described in Equation (2)). In these six figures, the red dashed-line plots represent the
average spectrum for each class, while the other colors illustrate three exemplary individual
pixels. For instance, Figure 6 simplifies the signature so that it is more effectively processed
by the downstream classifier, in contrast to the unnormalized spectra shown in Figure 5.
Each plot in other colors represents the spectrum from a single pixel, with three such pixels
provided as examples for each class.

Table 1. The cloud/sky categories and the distribution of our 444-patch dataset among these
seven categories.

CategoryID Category Description Total Patches

c01 Dense Dark Cumuliform Cloud 54

c02 Dense Bright Cumuliform Cloud 79

c03 Semi-transparent Cumuliform Cloud 76

c04 Dense Cirroform Cloud 46

c05 Semi-transparent Cirroform Cloud 56

c06 Clear Sky—Low Aerosol Scattering (Dark) 68

c07 Clear Sky—Moderate to High Aerosol Scattering (Bright) 65

Total 444

Figure 5. Spectra of three exemplary pixels obtained from three separate cumuliform cloud patches,
each with 462 bands.
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Figure 6. Normalized version of the cumuliform spectra of the three pixels and the class average of
the normalized spectra.

Figure 7. Spectra of three exemplary pixels obtained from three separate cirroform cloud patches,
each with 462 bands.

Figure 8. Normalized versions of the cirroform spectra of the three pixels and the class average of the
normalized spectra.
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Figure 9. Spectra of three exemplary pixels obtained from three separate clear-sky patches, each with
462 bands.

Figure 10. Normalized version of the clear-sky spectra of the three pixels and the class average of the
normalized spectra.

We established a structured naming convention for our image files to ensure systematic
organization and straightforward interpretation of our images. Although this dataset,
including HSI image files encoded with extensive metadata, is available at [10], we provide
a detailed explanation of our naming convention here. This clarification aims to make this
paper a useful guide for users of the dataset and to facilitate its ease of use. The filenames
for the parent image files are structured as follows:

SCAN_<date>_<time>_<azimuth>_<elevation>_<location>_<calibration>

where each component in the filename represents the following:

• <date>: The date the image was captured, formatted as MM-DD-YYYY.
• <time>: The time the image was captured, formatted as HHMM.
• <azimuth>: The azimuth angle of the camera at the beginning of the scan is in degrees,

formatted as AZ###. AZ is the horizontal angle measured clockwise from North to the
direction the camera was aimed at when the scan began.



Remote Sens. 2024, 16, 3315 9 of 19

• <elevation>: The elevation angle of the camera at the time of capture, formatted
as EL##. EL is the vertical angle between the local horizon and the direction the
camera was aiming at, measured in degrees. The elevation angle was constant during
a given scan.

• <location>: The location of the camera during image capture, either Ground (G) or
roof of the AUM library (L).

• <calibration>: The indicator of whether the image has undergone radiance calibra-
tion, denoted as calibrated to spectral raDiance (D) or raW (W).

Extensions for these files are .bip for the data and .bip.hdr for the header. The .bip
extension indicates a binary file with interleaving by pixel. For each patch image file, we
append the following suffix before the file extension to provide specific information about
the patch:

_<category>_<x_coord><y_coord><width><height>

This suffix includes the following:

• <category>: The classification of the patch, formatted as c## (c01 through c07 corre-
sponding to our seven categories).

• <x_coord>, <y_coord>: The x and y coordinates indicate the position of the patch
within the parent image, each formatted as four digits.

• <width>, <height>: The dimensions of the patch in pixels, formatted as two dig-
its each corresponding to the number of samples and the number of lines in the
patch, respectively.

When displayed as a so-called waterfall image, the left-hand side of an image cor-
responds to those pixels with the highest elevation, i.e., the upward direction from the
horizon is to the left of the displayed image. Pixels located at the top of the waterfall image
have an azimuth equal to that at the beginning of the scan, i.e., the downward direction on
the displayed image is counterclockwise from the beginning azimuth. The origin of the x, y
coordinate system, used to identify pixel position, is located in the upper left-hand corner
of the waterfall image. The x-coordinate increases to the right and is also referred to as the
sample number since each pixel along a horizontal line was imaged during the same expo-
sure of the integration field of view. The y-coordinate increases toward the bottom of the
waterfall image and is also referred to as the line number since it numbers the exposures of
the integration field of view sequentially. Figure 11 shows the coordinate system displayed
with increasing elevation toward the top of the image and increasing azimuth to the right,
i.e., the waterfall image is rotated ninety degrees clockwise. The suffix appended to the
name of each patch image indicates the x and y coordinates of the upper left corner of the
patch within the parent image when the image is viewed as a waterfall image.

Figure 11. Notations used for the origin of a parent image and the location and size of a patch in the
parent image.
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Figure 12 shows an example of a parent image file name demonstrating the naming
convention. Figure 13 shows the extension added to the name of a parent image to produce
the name of a patch selected from the parent image.

Figure 12. Parent image file naming convention of the dataset [10].

Figure 13. Patch image file naming convention of the dataset [10].

Although the whole fully-processed dataset is also available, to enhance data acces-
sibility and facilitate straightforward spreadsheet-based predictive analysis, 100 pixels
are randomly selected from each sample patch. This process yields a data matrix with
dimensions of 44, 400 × 462. In addition to the spectral channel data, each pixel (each
row of the data matrix) also includes the category of sky/cloud to which it is classified,
the ID of the parent image, and the ID of the patch image. These features enhance the
granularity and contextual content of the dataset instances. All 444 patch images, with
their corresponding appended information, are recorded in a CSV file and made available
on IEEE DataPort [10]. The patch and parent images as HSI files (.bip and .hdr) are also
available upon request. Each parent image contains a 6.36 GB .bip file and a 5 KB .hdr file.
Each sample patch contains a 2.25 MB .bip file and a 5 KB .hdr file. As the parent files are
very large image files, we also made 30 smaller unlabeled samples, each approximately
800 × 800 pixels in size, available on IEEE DataPort [21].

3. Proposed Classification Method with Patch-Origin Embedding

The proposed method aims to enhance classification accuracy by integrating patch-
specific information into each pixel’s feature vector. This method generates posterior
probabilities for each pixel from classifiers trained on these patches, which are combined
with the original spectral data to create an enriched feature vector. These vectors are
subsequently merged and then classified into the seven categories using a final classifier.
We tested logistic regression (LR) and convolutional neural networks (CNNs) to enrich the
dataset. The enrichment was achieved by LR and CNN using the posterior probabilities as
features and deriving features from the hidden layers of CNNs that are trained to predict
those posteriors. There are alternative methods for generating such patch-embedding
features that we experimented with in this study. These features make explicit the dis-
criminative information in a pixel’s spectrum. We called adding these features to the
original dataset “patch-origin embedding”. The rationale for relying on such features is
rooted in transfer learning in deep learning and positional embedding in transformers.
The models trained on the base task to predict the original patch from which each pixel is
derived serve as the base task in the parlance of transfer learning [20,22,23]. Once they are
learned, they enrich the original dataset, and together, they are used to train-test the target
task [20,23,24], which in our application is the supervised 7-class cloud/sky classification
task. In this section, we review LR and the computation for the posterior probabilities of
patch-origins and describe how the feature set is enriched. We also test CNNs for the same
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task of modeling patch-origin prediction, as detailed in the Experimental Results. After the
enrichment, a Random Forest (RF) classifier is used as one of the target task classifiers. RF is
known to have high performance and simplicity [25–28]. As detailed in the Results section,
LR and RF are applied to both the original and enriched datasets, and we compared their
performances. The RF classifier has proven to be a robust ensemble of decision trees [28,29].

In its most basic form, the proposed classification method with patch-origin embed-
ding employs LR for linear classification. LR, in its application to binary classification
(i.e., K = 2), models the probability that a given input belongs to the class labeled as
“1” (as opposed to class “0”). This is achieved by using a logistic function to map the
predicted values to probabilities. The logistic function, also known as the sigmoid function,
is defined as follows:

σ(z) =
1

1 + e−z , (4)

where z is the linear combination of the input features (x) weighted by the coefficients
(βi) from the model, expressed as z = β0 + β1x1 + β2x2 + · · ·+ βnxn. In summary, LR
calculates a boundary line between the two classes for binary classification. This boundary
line’s probability is 0.5, which exemplifies an equal likelihood of the data belonging to either
class. If p > 0.5, it resides on the positive side of the boundary line for class 1, symbolizing
a greater probability of being related to class 1. For p < 0.5, it is more likely to belong to
class 0. Thus, the probability of the negative residing data value to class 0 would be the
complement of the probability of residing in class 1 [27].

The logistic regression model, thus, predicts the probability p that an observation
belongs to the class 1 as follows:

p = σ(β0 + β1x1 + β2x2 + · · ·+ βnxn). (5)

This probability p can be interpreted as the likelihood that a given pixel belongs to a
cloud/sky category based on its spectral characteristics. Logistic regression is particularly
advantageous in scenarios where a clear probabilistic interpretation is required, making it
suitable for classifying pixels in hyperspectral images where each pixel’s class membership
(such as cloud/sky category) needs to be probabilistically quantified.

For scenarios involving multiple classes (i.e., K > 2), the binary logistic regression
model is extended to multinomial logistic regression, also known as softmax regression.
This model handles multiple categories by modeling the probability that a given input
belongs to each class. The decision rule for multinomial logistic regression involves com-
puting a set of probabilities for each class using the softmax function, defined as

P(y = k|x) = ex⊤βk

∑K
j=1 ex⊤β j

, (6)

where P(y = k|x) is the probability that the observation x belongs to class k, βk is the
coefficient vector for class k, x⊤βk is the dot product of the transpose of the input pixel
feature vector x and the coefficient vector βk, and K is the total number of classes.

The predicted class label ŷ for an observation is then given by the class that has the
highest probability:

ŷ = arg max
k

P(y = k|x), (7)

where arg maxk denotes the argument of the maximum, which identifies the class k that
maximizes the probability P(y = k|x).

Rather than applying arg maxk to the logistic regression output for obtaining a nominal
value for decision-making, our study utilizes the calculated probabilities as posterior
probabilities (each pixel’s likelihood of belonging to each one of the K patches). We employ
both a single-shot version, with K set to the number of all patches in the training set, and a
combination of multiple runs with smaller K values and, thus, fusing posterior probabilities
from multiple such K-class classifications. Specifically, we perform a procedure where K



Remote Sens. 2024, 16, 3315 12 of 19

classes are randomly selected, and we compute the merged posterior probabilities over
these classes. This process is repeated N times to ensure generalization in the predictions.
For our study, we set K = 30 and N = 20, allowing us to capture a broad spectrum of
scenarios and reduce the influence of any single random selection of classes. The specific
details of incorporation of the contextual information can be varied; to that end, we also
performed another alternative in which we used the shattering in VC-dimension: we
randomly picked a set of patches as class-1 and the rest as class-0 and repeated such
random splits N times to ensure there is rich enough contextual information embedded
into the feature vector.

The enhancement process involves stacking the posterior probabilities pi,k for each
pixel i across multiple classes k and potentially across multiple model runs (iterations).
For the multi-selection approach where N random selections of K classes are considered,
the stacked vector for each pixel i is constructed as follows:

vi =
[
xi, p(1)

i , p(2)
i , . . . , p(N)

i

]
, (8)

where

• xi is the original spectral feature vector of pixel i.

• p(n)
i represents the output of a softmax (or hidden) layer of the network for pixel i

obtained from the n-th run. This vector contains the probabilities for each class k,
which are computed by the network. Specifically,

p(n)
i =

[
p(n)i,1 , p(n)i,2 , . . . , p(n)i,K

]
,

where p(n)i,k is the probability of pixel i belonging to class k in the n-th run, and K is the
total number of classes.

• vi is the enhanced feature vector for pixel i, created by concatenating the original
feature vector xi with the hidden layer outputs from all N runs.

These enhanced vectors vi are then utilized as the input for the final classifier, such as
a Random Forest. The RF utilizes decision trees in its evaluation to produce a probability of
belonging. At each level of the decision tree, the data are tested and branch onto the next
corresponding node that matches the evaluation outcome. This process continues until
it ends at a leaf node, where further testing will guarantee the same results. It is crucial
to note that decision trees do not assume a linear relationship and constantly adapt the
discriminate tests accordingly. The combined results of multiple decision trees, the most
frequent result or majority vote, produce a probability of belonging [27,30]. This method
ensures that each classifier not only utilizes the inherent spectral characteristics of each pixel
but also leverages the learned probabilistic distinctions between patches, thereby capturing
both the spectral and contextual information crucial for accurate cloud classification.

4. Results

This section presents a concise analysis of the experimental results obtained by sys-
tematically varying the feature sets used to train our classifiers, thereby assessing the
efficacy of different feature enrichment techniques in hyperspectral image classification.
For training/testing the classifier models and for computing the embeddings, the Group
Shuffle Split (GSS) technique was used to prevent class-label leakage between the training
and test sets. GSS effectively ensures that all pixels from the same patch are allocated
exclusively to either the training set or the test set, rather than being dispersed across
both. We applied GSS to our dataset of 444 patches, designating 20% as the test size. This
approach resulted in 355 patches being used for training in each experimental run and
89 patches for testing. Results were averaged over ten runs to enhance the reliability and
robustness of our findings.
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We start this section by demonstrating the challenging nature of the problem. Using
an 80-20 train–test split with a decision tree on the raw (unnormalized) data for the initial
evaluation yields low classification results with an accuracy of 71.90% out of 8900 test
examples. The results summarized in Tables 2 and 3 indicate the difficulty of the classifica-
tion problem. The imbalance of class labels and similarity among different classes (such
as cumuliform classes c01/c02/c03 and cirroform classes c04/c05) contribute to the chal-
lenge, as evidenced by the varying precision, recall, F-measure, and Matthews Correlation
Coefficient (MCC) values for each class. The results presented in Tables 2 and 3 benefit
from additional examples from class c04, which helps improve its classification accuracy.
However, distinguishing between the closely related cirroform classes c04 and c05 remains
challenging, indicating the need for further refinement in future dataset updates [10].

Table 2. Detailed accuracy by class for the initial analysis using a simple decision tree classifier,
without radiance normalization, and without contextually guided feature augmentation.

Class TP Rate FP Rate Precision F-Measure MCC

c01 0.672 0.047 0.511 0.580 0.551

c02 0.802 0.036 0.848 0.824 0.782

c03 0.684 0.072 0.674 0.679 0.608

c04 0.672 0.029 0.723 0.697 0.664

c05 0.364 0.054 0.366 0.365 0.311

c06 0.847 0.061 0.737 0.788 0.744

c07 0.738 0.028 0.868 0.798 0.755

Weighted Avg. 0.683 0.047 0.675 0.676 0.631

Table 3. Confusion matrix on the sample test set for the initial analysis using a simple decision tree,
without radiance normalization, and without contextually guided feature augmentation.

Predicted Class

Actual Class c01 c02 c03 c04 c05 c06 c07

c01 = Cumuliform-1 403 28 96 57 16 0 0

c02 = Cumuliform-2 156 1443 191 2 7 0 1

c03 = Cumuliform-3 175 125 1094 50 152 2 2

c04 = Cirroform-1 20 1 20 605 254 0 0

c05 = Cirroform-2 35 4 193 123 255 87 3

c06 = Clear-Sky-1 0 0 21 0 12 1271 196

c07 = Clear-Sky-2 0 100 7 0 0 365 1328

In addition to the pixel classification study, we explored the effectiveness of RGB
renders for classification by employing both custom-built and pre-trained deep learning
models. We used these models to classify 50× 50 patches from the dataset into seven classes,
splitting the 444 image patches into training and test sets (80:20 ratio). Models trained
from scratch achieved only about 40% accuracy. Testing several pre-trained models, includ-
ing VGG16, EfficientNetV2, ResNetV250, InceptionV3, MobileNetV2, and DenseNet121,
with dataset-specific fine-tuning improved accuracy but still fell short compared to our
proposed pixel classification method. These experiments show that differentiating sub-
classes was particularly challenging. We reclassified the seven original classes into three
broader categories: merging the first three cumuliform classes into one, combining the
next two cirroform classes into another, and grouping the last two clear-sky classes into a
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final category. Using this revised three-class classification scheme, the custom-built CNN
model (see Figure 14) achieved an average validation accuracy of 76% across ten data
splits. Similarly, pre-trained models yielded validation accuracies between 74% and 76%,
comparable to the custom-built model. The model that achieved the highest accuracy was
structured as follows.
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1 model = Sequential ([
2 Conv2D (32, 3, activation=’relu’, input_shape =(50 ,50 ,3)),
3 MaxPooling2D ((2,2)),
4 Conv2D (64, 3, activation=’relu’),
5 MaxPooling2D (),
6 Conv2D (128, 3, activation=’relu’),
7 MaxPooling2D (),
8 Conv2D (256, 3, activation=’relu’),
9 MaxPooling2D (),
10 Flatten (),
11 Dense (256, activation=’relu’),
12 Dropout (0.3) ,
13 Dense (128, activation=’relu’),
14 Dropout (0.3) ,
15 Dense(7, activation=’softmax ’) # 7 cloud/sky categories
16 ])

Figure 14. CNN architecture used for patch classification using the RGB renders
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the output’s spatial dimensions, which helps reduce computation and control overfit- 403

ting. This is accompanied by a dropout layer with a rate of 0.2 to further regularize 404
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Figure 14. CNN architecture used for patch classification using the RGB renders.

The proposed techniques, utilizing normalization and feature enrichment via contex-
tual guidance, significantly improve these poor initial results as follows. Table 4 provides a
detailed overview of these feature sets along with their respective dimensions. The original
dataset comprises 462 dimensions. In addition to this, three other feature sets were utilized:
CNN Hidden, CNN Posterior, and LR Posterior. These three are designed for incremental
learning, which is advantageous for managing and processing large datasets effectively
with K = 30 and N = 20 as outlined in Equation (8).

For our proposed incremental approach, for each one of the N = 20 classifiers, we
randomly selected K = 30 classes from a total of 355 training patches at a time and trained
a CNN to compute posterior probabilities for these classes. As Table 4 shows, the resulting
30 × 20 features are appended to the original 462-dimensional pixel feature vector, cre-
ating the “CNN Posterior” feature set with a total of 462 + 20 × 30 dimensions for each
pixel. Alternatively, the “CNN Hidden” feature set utilizes features from the intermediate
layers of the CNNs to enrich the original spectral data. This method incorporates spatial-
contextual features extracted from hidden layers, enhancing the base 462 spectral features
with additional data from 20 convolutional filters in a key hidden layer. Each filter produces
32 feature maps, resulting in a total of 1102 features. The CNN significantly augments
the dataset with informative features crucial for precise classification by capturing and
encoding complex spatial relationships within the hyperspectral images.

Both the CNN Hidden and CNN Posterior methods utilize features extracted by the
CNN architecture illustrated in Figure 15. In this architecture, the final layer employs a
softmax activation function to generate posterior probabilities of patch memberships for
each input pixel, as utilized in Equation (8) for the CNN Posterior method. Additionally, we
implemented the CNN Hidden approach, which extracts features from the hidden layers
of the CNN. This approach is a well-established practice in transfer learning and deep
learning, recognized for its effectiveness in feature extraction and serving as an excellent
initialization point for downstream classification tasks [20,22,31]. Our CNN architecture in
Figure 15 begins with an input layer designed to process hyperspectral images, which are
input as 1D arrays (n_channels = 462) with dimensions corresponding to the number of
spectral channels (it is designed to process a single pixel as input).
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1. First Convolutional Layer: This layer uses 32 filters with a kernel size of 25 and a
stride of 4. The use of a relatively large kernel size in the initial layer is intended to
capture broader spectral features early in the network.

2. Pooling and Dropout: Following the first convolution, a max pooling layer reduces
the output’s spatial dimensions, which helps reduce computation and control overfit-
ting. This is accompanied by a dropout layer with a rate of 0.2 to further regularize
the model.

3. Subsequent Convolutional Layers: Additional convolutional layers with smaller ker-
nels enhance the network’s ability to learn more refined features. Each convolutional
stage is followed by dropout and max pooling layers.

4. Global Max Pooling and Dense Layers: The final stages of the network flatten the
output and transition to dense layers, culminating in a softmax output layer that
classifies each pixel into one of the K classes.
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Figure 15. CNN architecture used for feature extraction. Outputs from the network’s GlobalMaxPool-
ing layer serve as features to downstream classifiers, either LR or RF.

After the patch-origin embeddings are learned from the base task using the 355 training
patches, we initiate the target (downstream) task, which involves classifying pixels into
seven cloud/sky classes. For this, pixels from the 20% of patches reserved for testing are
processed through the K-class classifiers to compute their resemblances to the training
patches. This process aims to augment the test set in a manner analogous to the training
set preparation, ensuring consistency in feature representation across both sets. These en-
hanced training and test sets are then input into a final classifier, either Logistic Regression
(LR) or Random Forest (RF), chosen for their simplicity. This choice allows us to more
effectively evaluate the enhancement’s contributions without retraining a complex deep
network for the seven-class classification task. The RF classifier operates on a majority
voting principle among a number of decision trees, and we used the default configuration
in the scikit-learn implementation that employs 100 trees [29,30].

Table 5 demonstrates that the classification accuracy suffers without the normalization
process outlined in Equation (2). As shown in Table 6, the normalization addresses varia-
tions in total radiance and emphasizes chromatic content, leading to better differentiation
between the signatures of cloud types and clear sky. The results presented in Table 6
evaluate and compare the performance of the classifiers with different feature sets based on
the accuracy that measures the proportion of correctly classified instances and on Matthews
Correlation Coefficient (MCC) that provides a more informative metric than accuracy,
especially with imbalanced datasets. MCC balances for the bias created by classes with
higher prior probabilities. An MCC of 1 indicates a perfect prediction, while an MCC of 0
indicates a prediction no better than random guessing based on the probability distribution
of the priors [32].
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Figure 16 shows four sample images from [21], which contains 30 large images
(approximately 800 × 800 pixels) not used in the training set of this study. The first column
displays the original image. For the middle and rightmost columns, we applied the trained
model to classify each pixel individually. The middle column presents the classification
results using the original features with a Random Forest classifier. The rightmost column
illustrates the results using CNN Hidden features combined with a final Random Forest
classifier. The middle column offers a more readily interpretable segmentation. However,
the rightmost column reveals additional details concerning brightness that are missed in
the middle column. In some cases (e.g., the third row), this column appears to blur the
segmentation by adding details not discernible in the original render, although these details
may be present in the richer data.

Figure 16. Classification results on sample parent images (from [21]), which are large images not
included in the training dataset. The results demonstrate the performance of the classification model
on new, unseen data.
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Table 4. Overview of feature sets and their dimensionalities.

Feature Set Description Dimensions Total Features

Original Raw hyperspectral data 462 462
CNN Hidden Original + CNN Hidden Layer Features 462 + 20 × 32 1102

CNN Posterior Original + CNN Softmax Outputs 462 + 20 × 30 1062
LR Posterior Original + Incremental LR Posteriors 462 + 20 × 30 1062

Table 5. Classifier performances without the radiance normalization.

Classifier Feature Set Accuracy (%) MCC (%)

RF Original 78.12 ± 2.88 74.51 ± 3.09
RF LR Posterior 79.19 ± 2.50 75.75 ± 2.71
LR Original 74.91 ± 3.81 70.73 ± 4.35
LR LR Posterior 75.11 ± 3.36 70.95 ± 3.79

Table 6. Classifier performances with the radiance normalization on all feature sets.

Classifier Feature Set Accuracy (%) MCC (%)

RF Original 80.60 77.30
RF CNN Hidden 82.90 79.96
RF CNN Posterior 81.79 78.81
RF LR Posterior 81.80 78.69
LR Original 77.94 74.27
LR CNN Hidden 80.95 77.65
LR CNN Posterior 79.28 75.70
LR LR Posterior 78.14 74.48

5. Discussion

Our study was supported by a rigorously collected, calibrated, and normalized dataset,
enhanced with metadata such as azimuth, elevation, date–time, and patch-membership.
Each image in our dataset underwent processing to ensure uniform radiance levels,
with bounding boxes designating patches that were subsequently class-labeled for su-
pervised learning in a seven-class classification problem. Now made publicly available,
this dataset effectively facilitates the analysis of cloud/sky conditions, serving as a valuable
resource for climate analysis and related HSI research.

The analysis of the dataset collected clearly demonstrates that both Random Forest (RF)
and Logistic Regression (LR) classifiers benefit from the integration of enhanced feature
sets, with improvements in accuracy, Matthews Correlation Coefficient (MCC), and visually
more plausible classification results on the new large test images. The experimental results
provide a comprehensive evaluation of two classifiers, RF and LR, where RF consistently
outperforms LR in terms of both mean accuracy and MCC on the original feature set.
This outcome is expected because of the nonlinear capabilities of RF [25]. Additionally,
as the comparison between Tables 5 and 6 shows, the normalization process outlined in
Equation (2) improves the classification accuracy of all classifiers on all features sets.

Overall, our results highlight that CNNs work favorably in extracting informative
features, and their contextual enrichment significantly enhances pixel classification perfor-
mance. Moreover, our contextual guidance approach, which was successful in this study,
can be extended to other applications beyond remote sensing.

Our experimental results demonstrate that enriching the dataset with additional
examples from undersampled classes improves classification accuracy. Therefore, as future
work, we plan to enhance the dataset hosted in repository [10]. Future updates will include
adding more classes and increasing the number of patches to provide a more comprehensive
representation of cloud and sky conditions. These updates will be implemented within the
same repository and made available as Open Access to ensure broader academic use in
hyperspectral image analysis and cloud classification.
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