
Hydra: A Scalable Decentralized P2P Storage

Federation for Large Scientific Datasets
Justin Presley∗, Xi Wang∗, Xusheng Ai†, Tianyuan Yu§, Tym Brandel∗, Proyash Podder‡,

Varun Patil§, Alex Afanasyev‡, F. Alex Feltus†, Lixia Zhang§, Susmit Shannigrahi∗

∗Tennessee Tech
†Clemson University

‡Florida International University
§UCLA

Abstract—An increasingly collaborative and distributed

nature of scientific collaborations, along with the exploding

volume and variety of datasets point to an urgent need

for data publication frameworks that allow researchers

to publish data rapidly and reliably. We present Hydra,

a peer-to-peer, decentralized storage system that enables

decentralized and reliable data publication capabilities.

Hydra enables collaborating organizations to create a

loosely interconnected and federated storage overlay atop

community provided storage servers. The Hydra overlay

is entirely decentralized. Hydra enables secure publica-

tion and ensures automatic replication of published data,

enhancing availability and reliability. Hydra also makes

replication decisions without a central controller while

accommodating local policies. Hydra embodies a significant

stride toward next-generation scientific data management,

fostering a decentralized, reliable, and accessible system

that fits the changing landscape of scientific collaborations.

I. INTRODUCTION

Several scientific communities, such as genomics,

climate science, and high-energy particle physics, are in-

creasingly focusing on data-driven science, contributing

to an exponential increase in the volume and diversity of

generated datasets. Scientific collaborations are also be-

coming increasingly ad-hoc and peer-to-peer in nature[2].

Unfortunately, the current data publication and access

models do not match this evolving paradigm. In the

current scientific landscape, datasets are often distributed

through centralized repositories, limiting the pace of data

publication and imposing restrictions on the types and

volumes of datasets that can be made publicly available.

These restrictions often lead researchers to use ad-hoc

repositories. These repositories lack critical features like

automated data replication, fault tolerance, standard pub-

lication and access APIs, and robust search capabilities

contributing to the overall data management problem.

To address these challenges, we introduce Hydra,

a software framework for building decentralized, peer-

to-peer storage federations using community-provided

servers. Hydra establishes this federation and eliminates

the need for a central controller by leveraging the prim-

itives of Named Data Networking (NDN) [10]. Hydra

enhances resiliency through automated data replication

while providing individual nodes with complete control

over what types of data they store. This control, exer-

cised using the Favor parameter, guide data replication

decisions. Hydra also integrates automated recovery from

node failures. Hydra establishes a robust data federation

that improves data publication, access, and compliance

with the FAIR [7] principles – Findability, Accessibility,

Interoperability, and Reusability.

The primary contributions of this work are as follows:

(a) we describe the building blocks and system archi-

tecture needed to build a secure decentralized storage

federation; (b) we discuss our experiences in a proof-

of-concept implementation, preliminary deployment, and

evaluations; (c) we discuss how the system benefits

science workflows in the context of data publication,

access, and FAIR principles.

II. SYSTEM OVERVIEW

The Hydra framework solves the problems of data

publication and reliable access by creating a federation

of geographically distributed data repositories directly

connected. Hydra’s architectural blueprint comprises two

principal components: (a) Storage nodes: Hydra stores

data on a set of storage nodes provided by members of

the federation, which may be organizations or individual

researchers. These nodes form a peer-to-peer federation

and handle all functions of data publication, access, and

replication. At the same time, operators of individual

nodes retain autonomy over the nodes they control; they

may define storage-level policies and exercise control

over the datasets replicated to their nodes. Nodes may

also freely join and leave the federation at any time.

(b) Network Operations Center: The Hydra NOC

disseminates certificates that are used for establishing





internal database mapping email addresses authorized

to publish datasets. This database relies on pre-existing

real-world relationships, such as those between Principal

Investigators (PIs) and their students. Second, publishers

can only modify namespaces for which they possess the

requisite certificates. For example, a publisher who pub-

lishes data under the namespace “/human/genome/dna

/hg38” could perform file operations under that specific

namespace. After this initial setup, the remaining boot-

strapping process becomes automated. When a publisher

requests a certificate for a particular namespace, the NOC

cross-references its database to validate the request. A

certificate is issued upon successful verification, enabling

the publisher to conduct secure operations within the

Hydra system. Hydra currently supports public data pub-

lication, meaning only publishers (and not consumers)

need to undergo this bootstrapping process.

C. Decentralized control plane

The decentralized control plane serves as the back-

bone of Hydra’s peer-to-peer federation. At its core, the

control plane comprises two essential elements: a syn-

chronized state, known as the “global view,” and a dis-

tributed decision-making framework. These components

collaboratively enable robust, decentralized governance

within the Hydra federation.

Synchronized state or Global View: In Hydra, the

“Global View” serves as a local database for each node,

capturing a comprehensive snapshot of the system’s state.

Contrary to its name, the Global View is not stored in a

universally accessible location; each node maintains its

own version. Throughout the system’s operation, nodes

synchronize their local Global Views by continuously

exchanging group messages.

Integral to the Global View is the concept of “state

vector”[4]. The state vector signifies a sequence of mes-

sages with monotonically increasing sequence numbers

assimilated into the Global View, thereby serving as an

index for understanding its current state and reconciling

any state differences. The Global View encapsulates a

variety of information, including details of all partici-

pating nodes and specifics of each file. For each file, the

Global View identifies the nodes currently possessing the

file and those eligible for backup responsibilities. It also

includes metadata like file size, origin node, number of

copies, and other attributes.

Distributed decision making using “Favor”: In Hy-

dra’s federated architecture, which spans multiple orga-

nizations, the diversity and dynamism of node conditions

present unique challenges. Notably, these nodes vary in

hardware, storage, bandwidth, and security protocols, all

subject to rapid changes. Complicating matters further is

the existence of differing administrative domains, making

enforcing uniform policies across the federation difficult.

Consequently, efficient data replication becomes a multi-

optimization problem involving several conflicting con-

straints such as storage availability, bandwidth, and cost.

To address these complexities, Hydra introduces a

mechanism known as “Favor.” The current Favor calcula-

tion uses a weighted formula of three factors - available

storage capacity, network bandwidth, and disk read/write

speed. However, other more advanced approaches, such

as using a multi-objective genetic algorithm to optimize

conflicting constraints like storage capacity, network

costs, and replication time is also possible[6]. Post-

replication, nodes update their Favor scores to reflect new

conditions, such as changes in available storage capacity.

D. Named Content and Service Endpoints

Named Content In Hydra, the system adopts a

publisher-centric approach to naming datasets, offering

high flexibility and community-specific customization.

For instance, in the field of genomics, it is entirely

feasible for the naming to align with the well-established

taxonomical structures such as the tree of life [8]. Such

a name might look like “/human/genome/dna/hg38”.

Hydra uses these names for all data-related operations

such as publication, replication, and access.

Named Services: In Hydra, the architecture employs

a streamlined set of named service endpoints, includ-

ing content publication, deletion, and retrieval. Hydra

commonly uses a generic prefix for commands gen-

erated by publishers, such as Insert and Delete, and

internal communications within the Hydra federation.

For example, Hydra could select the prefix “/Hydra”

or “/genomics”. In the first case, data insertion and

deletion namespaces can be “/Hydra/insert” or “/Hydra

/delete”. For internal communications, Hydra uses spe-

cific namespaces such as “/Hydra/group-messages” and

“/Hydra/heartbeat” to distribute group messages and

heartbeats to all nodes participating in the federation.

IV.HYDRA OPERATIONS

This section discusses the operational aspects of

the Hydra federation, elaborating on how Hydra builds

services using the building blocks as shown in Fig-

ure 1. Specifically, we discuss the construction and

maintenance of a federation, node failure detection and



recovery, and procedures for data insertion, automated

replication, and data retrieval.

A. Building and maintaining a federation

The Hydra federation structure relies on a multi-

step establishment and ongoing maintenance process.

Initially, each node undergoes a node bootstrapping

phase where it installs the requisite Hydra software and

acquires security credentials (i.e., a digital certificate)

from the NOC. This ensures secure and authenticated

interactions within the federated environment.

Post-bootstrapping, nodes join the Hydra pub-sub

namespace that is built using SVS[4]. This connection

enables nodes to exchange messages between them-

selves, including heartbeat and update messages. Heart-

beat messages are multicast periodically over the pub-

sub namespace (e.g., “/Hydra”). They also exchange

all update messages over this namespace. Each node

creates and maintains a local database (a.k.a., the global

view) representing its perspective of the federation. This

database includes information about other nodes, file

attributes, and other metadata. The local databases are

synchronized across nodes to achieve a unified state

across the federation. When this state changes, nodes

send an update, and the other nodes authenticate and

apply it to their global views. Hydra assumes an eventual

consistency among the global views of the nodes.

B. Failure detection and recovery

Heartbeat messages serve as the built-in failure de-

tection mechanism. A failure mode triggers when a

node misses three consecutive heartbeats, initiating the

recovery protocol. During recovery, each node identifies

files needing replication, especially those from the failed

node, guided by the global “Favor” metric. If a node

ranks highest, it begins replication.

Upon recovery from a failure, the node resumes

heartbeats while other nodes do not take immediate

corrective action. Instead, the reactivated node listens for

incoming group messages and updates the ones it missed.

If any state data survived, the node calculates the state

difference, requesting missing data from other nodes. If

no prior state data exists, the node joins as new, updating

its state accordingly. This design ensures functional data

retrieval during individual node failures as long as one

operational node remains in the federation.

C. Data Insertion and Deletion

Within the Hydra framework, both data insertion and

deletion follow a secure procedure. When a publisher

wants to insert data, the process is initiated by the

publisher making contact with a Hydra node. The user

sends an Interest and NDN routing brings this Interest to

a Hydra node. Concurrently, the user prepares the data

for download and listens on a designated data publication

namespace. Upon authenticating the user as a legitimate

publisher, the node downloads the user’s prepared data,

completing the insertion and notifies the user and other

federation nodes about the new file.

For data deletion, the original publisher contacts a

Hydra node. The node authenticates and processes the

deletion command. If the file exists locally, the node

deletes it and updates its local state, subsequently dis-

seminating a group message to inform the federation. If

the file does not exist on the local storage, the node will

still update its local state and issue a federation-wide

group message, indicating that the file is to be deleted.

The Hydra framework operates under the assumption

of eventual consistency, ensuring that even if a group

message is lost, the system will eventually detect the

discrepancy and execute the file deletion.

D. Automated replication

In Hydra’s distributed storage framework, data repli-

cation is essential for high availability, durability, and ef-

ficient data distribution across a geographically dispersed

federation of nodes. Replication occurs automatically

when a new file is ingested or an existing node fails. On

ingestion of a file, a node broadcasts a group message.

Other nodes check the replication status of this file, and

if below a threshold (default is three replicas), nodes

with the highest Favor lead replication. Hydra’s unique

feature is its decentralized approach. Unlike systems like

Cassandra with centralized coordination, Hydra shares

Favor values among nodes, enabling each to self-identify

if they need to participate in replication tasks. Nodes then

express intent to replicate via group messages.

E. Data retrieval

In the Hydra framework, any node is capable of

handling a user’s file retrieval requests, irrespective of

whether the node physically stores the file in question

or not. To retrieve a file, a user dispatches an Interest

bearing the file’s name, adhering to the naming schema

“/human/genome/dna/hg38”. Subsequent to this action,

three possible scenarios may occur: (a) Should the file

not exist within the Hydra ecosystem, the system returns

a Negative Acknowledgement (NACK) to the user; (b)

If the file is indeed present on the node that was initially







congestion or network partition, an unsynchronized state

can lead to the ingested file remaining inaccessible and

unreplicated until state synchronization. We have yet to

comprehensively grasp the ramifications of autonomous

replication decisions on the entire system. Can a scenario

arise in which a file remains unreplicated not because of

resource constraints but rather due to policy limitations?

We are currently exploring answers to these questions.

VII.RELATED WORK

There have been several attempts to create distributed

data repositories in the past, and some of these have been

successfully deployed. Popular distributed databases such

as Cassandra, Bigtable, and Dynamo [5] and other similar

solutions can store large amounts of data and perform

replication functions. These systems are tightly coupled,

generally require significant manual configuration and

maintenance, and, most importantly, require a single

administrative control for the configuration of replication

and other system functions – a model that is unfit to serve

a community of scientists, where individual machines

may be owned by different parties and require some

degree of autonomy in their operations.

Other distributed data management infrastructures

also exist in scientific communities, including Xrootd,

iRods, Rucio, and Globus[9]. These solutions hide the

complexity of a location-independent infrastructure over

TCP/IP at the application layer by creating a location-

transparent overlay. However, they still need to maintain

data locations which makes them complex, requiring

substantial manual configuration and maintenance.

There have been a few incarnations of storage repos-

itories over NDN such as repo-ng, Fast Repo for NDN-

RTC streams, NDNts for web applications, and ndn-

python-repo. These NDN based repositories are single-

instance implementations of storage that can be accessed

over the network, but not a distributed storage system.

VIII.CONCLUSION AND FUTURE WORK

In addressing the challenges posed by big data sci-

entific research on networked systems, Hydra offers a

secure, scalable, and resilient storage service by leverag-

ing a decentralized federation of individual user-provided

storage servers. Grounded on Name Data Networking

(NDN), Hydra exemplifies that loosely coupled, name-

based systems can be both lightweight and robust. This

work has afforded us valuable insights into the intricacies

of crafting a secure, data-centric distributed network

without micromanaging every individual node.

Several areas of improvement are under exploration.

Key among these is the optimization of the data plane

for higher throughput, dynamic adjustment of the favor

parameter based on near real-time performance metrics,

and benchmarking against existing solutions.

ACKNOWLEDGMENT

This work was supported by the National Science

Foundation under Grant No OAC-2126148.

REFERENCES

[1] BALDIN, I., NIKOLICH, A., GRIFFIOEN, J., MONGA, I. I. S.,

WANG, K.-C., LEHMAN, T., AND RUTH, P. Fabric: A

national-scale programmable experimental network infrastruc-

ture. IEEE Internet Computing 23, 6 (2019), 38–47.

[2] EDWARDS, P. N., MAYERNIK, M. S., BATCHELLER, A. L.,

BOWKER, G. C., AND BORGMAN, C. L. Science friction:

Data, metadata, and collaboration. Social Studies of Science

41, 5 (2011), 667–690. PMID: 22164720.

[3] PRESLEY, J., WANG, X., BRANDEL, T., AI, X., PODDER, P.,

YU, T., PATIL, V., ZHANG, L., AFANASYEV, A., FELTUS,

F. A., ET AL. Hydra–a federated data repository over ndn.

arXiv preprint arXiv:2211.00919 (2022).

[4] SHANG, W., AFANASYEV, A., AND ZHANG, L. Vectorsync:

Distributed dataset synchronization over named data net-

working. In Proceedings of the 4th ACM Conference on

Information-Centric Networking (New York, NY, USA, 2017),

ICN ’17, Association for Computing Machinery, p. 192–193.

[5] STANSBERRY, D., SOMNATH, S., BREET, J., SHUTT, G., AND

SHANKAR, M. Datafed: Towards reproducible research via

federated data management. In 2019 International Conference

on Computational Science and Computational Intelligence

(CSCI) (Los Alamitos, CA, USA, dec 2019), IEEE Computer

Society, pp. 1312–1317.

[6] WANG, X., AI, X., FELTUS, F. A., AND SHANNIGRAHI, S.

Gnsga: A decentralized data replication algorithm for big

science data. In 2023 IFIP Networking Conference (IFIP

Networking) (2023), pp. 1–9.

[7] WILKINSON, M. D. E. A. The fair guiding principles for

scientific data management and stewardship. Scientific Data

3, 1 (Mar 2016), 160018.

[8] WOLF, Y. I., ROGOZIN, I. B., GRISHIN, N. V., AND KOONIN,

E. V. Genome trees and the tree of life. TRENDS in Genetics

18, 9 (2002), 472–479.

[9] WU, Y., MUTLU, F. V., LIU, Y., YEH, E. M., LIU, R.,

IORDACHE, C., BALCAS, J., NEWMAN, H., SIRVINSKAS, R.,

LO, M., SONG, S., CONG, J., ZHANG, L., TIMILSINA, S.,

SHANNIGRAHI, S., FAN, C., PESAVENTO, D., SHI, J., AND

BENMOHAMED, L. N-dise: Ndn-based data distribution for

large-scale data-intensive science. Proceedings of the 9th ACM

Conference on Information-Centric Networking (2022).

[10] ZHANG, L., AFANASYEV, A., BURKE, J., JACOBSON, V.,

CLAFFY, K., CROWLEY, P., PAPADOPOULOS, C., WANG, L.,

AND ZHANG, B. Named data networking. ACM SIGCOMM

Computer Communication Review 44, 3 (2014), 66–73.

[11] ZHANG, Z., YU, Y., AFANASYEV, A., AND ZHANG, L. NDN

certificate management protocol (NDNCERT). Technical Re-

port NDN-0050, NDN, Apr. 2017.


