Hydra: A Scalable Decentralized P2P Storage
Federation for Large Scientific Datasets

Justin Presley”, Xi Wang*, Xusheng Ail, Tianyuan Yub, Tym Brandel*, Proyash Podder?,
Varun Patil’, Alex Afanasyev', F. Alex Feltus!, Lixia Zhang®, Susmit Shannigrahi*
*Tennessee Tech
fClemson University
{Florida International University
SUCLA

Abstract—An increasingly collaborative and distributed
nature of scientific collaborations, along with the exploding
volume and variety of datasets point to an urgent need
for data publication frameworks that allow researchers
to publish data rapidly and reliably. We present Hydra,
a peer-to-peer, decentralized storage system that enables
decentralized and reliable data publication capabilities.
Hydra enables collaborating organizations to create a
loosely interconnected and federated storage overlay atop
community provided storage servers. The Hydra overlay
is entirely decentralized. Hydra enables secure publica-
tion and ensures automatic replication of published data,
enhancing availability and reliability. Hydra also makes
replication decisions without a central controller while
accommodating local policies. Hydra embodies a significant
stride toward next-generation scientific data management,
fostering a decentralized, reliable, and accessible system
that fits the changing landscape of scientific collaborations.

I. INTRODUCTION

Several scientific communities, such as genomics,
climate science, and high-energy particle physics, are in-
creasingly focusing on data-driven science, contributing
to an exponential increase in the volume and diversity of
generated datasets. Scientific collaborations are also be-
coming increasingly ad-hoc and peer-to-peer in nature[2].
Unfortunately, the current data publication and access
models do not match this evolving paradigm. In the
current scientific landscape, datasets are often distributed
through centralized repositories, limiting the pace of data
publication and imposing restrictions on the types and
volumes of datasets that can be made publicly available.

These restrictions often lead researchers to use ad-hoc
repositories. These repositories lack critical features like
automated data replication, fault tolerance, standard pub-
lication and access APIs, and robust search capabilities
contributing to the overall data management problem.

To address these challenges, we introduce Hydra,
a software framework for building decentralized, peer-
to-peer storage federations using community-provided

servers. Hydra establishes this federation and eliminates
the need for a central controller by leveraging the prim-
itives of Named Data Networking (NDN) [10]. Hydra
enhances resiliency through automated data replication
while providing individual nodes with complete control
over what types of data they store. This control, exer-
cised using the Favor parameter, guide data replication
decisions. Hydra also integrates automated recovery from
node failures. Hydra establishes a robust data federation
that improves data publication, access, and compliance
with the FAIR [7] principles — Findability, Accessibility,
Interoperability, and Reusability.

The primary contributions of this work are as follows:
(a) we describe the building blocks and system archi-
tecture needed to build a secure decentralized storage
federation; (b) we discuss our experiences in a proof-
of-concept implementation, preliminary deployment, and
evaluations; (c) we discuss how the system benefits
science workflows in the context of data publication,
access, and FAIR principles.

II. SYSTEM OVERVIEW

The Hydra framework solves the problems of data
publication and reliable access by creating a federation
of geographically distributed data repositories directly
connected. Hydra’s architectural blueprint comprises two
principal components: (a) Storage nodes: Hydra stores
data on a set of storage nodes provided by members of
the federation, which may be organizations or individual
researchers. These nodes form a peer-to-peer federation
and handle all functions of data publication, access, and
replication. At the same time, operators of individual
nodes retain autonomy over the nodes they control; they
may define storage-level policies and exercise control
over the datasets replicated to their nodes. Nodes may
also freely join and leave the federation at any time.
(b) Network Operations Center: The Hydra NOC
disseminates certificates that are used for establishing



and maintaining trust relationships among the nodes and
users in the federation. Note that the NOC’s role is
limited to certificate distribution, and it does not exercise
any other control over the Hydra infrastructure. The NOC
can also be replicated for resiliency. As such, the NOC
is not single point of failure in a running federation.

The distinguishing feature of Hydra is the usage of a
semantic name on each piece of data. Through the utiliza-
tion of name-based APIs and anycast routing via Named
Data Networking (NDN), Hydra enables the “publication
and access from anywhere” of data. Hydra eliminates
the end-user data locations. Instead, it uses names as the
primary identifier for objects stored within the system.
These names are used for all object-related operations,
including publication, access, replication, and security
and data validation. The peer-to-peer federation of stor-
age nodes under the Hydra framework offers member
organizations complete operational autonomy, allowing
them to set their own storage-level policies. Finally,
Hydra leverages Named Data Networking (NDN) and
name-based APIs to eliminate the need for data locations,
further advancing its decentralized architecture.

III.ARCHITECTURAL PIECES

This section discusses the architectural pieces needed
to create this peer-to-peer storage server federation.
Figure 1 shows these building blocks. It also shows
the necessary interactions between these pieces that we
describe later in Section IV.

,”"’H dra NOC FiURepo
¢ { ? E —
lomaiview storam
NOC distributes ﬁ @ ,
user and Nade

certificates Hearibests Carticat
Periodically i

Generate Heartbeat
Updates

(out-of-band)

s 8
4

UCLA Repo )
2 Generate Syne Request File

E S | Updates Updates (Anycast)
Publisher A View s«mi- u

) (Anycast) pdates
Trust schema based User A

3 ) Aceess control + TTU Repo
Publisher

7
signs/encrypts
File

Retrieve File +

iTrust schema based
{Access control

iow +
Replicate File

Haartbasts Cartficates|

Fig. 1: A High-level overview of Hydra[3]
A. Base Communication Infrastructure

Underlying Infrastructure: The Hydra federation
comprises storage endpoints, known as “Hydra nodes.”
These nodes must have network connectivity among
themselves, which can be either through TCP/IP over
Layer 3 or directly atop Ethernet at Layer 2 (e.g., with
VLANs) without the need for TCP/IP. Hydra employs

Named Data Networking (NDN) as the transport layer
on these underlying connectivity layers. To participate
in this federation, each node must establish a Hydra
endpoint by installing the requisite Hydra software and
joining an NDN-based publish-subscribe group[4] among
the nodes.

NDN-based anycast: NDN’s anycast functionality
plays a pivotal role in directing both data publication
and consumption requests to appropriate nodes in a
Hydra federation. This is particularly beneficial for data
publishers because it allows them to upload their data
to the closest or most efficient storage node, optimizing
resource utilization and reducing latency. Similarly, data
consumers can retrieve data from the most convenient
location, which could be determined by proximity, load,
or even the cost associated with data retrieval.

Forwarding hints In NDN, forwarding hints are
additional information attached to Interest packets, guid-
ing them through specified forwarding paths, potentially
bypassing the default routing protocols. In the context of
Hydra, forwarding hints are used to redirect a request to
a specific node when a contacted node does not have a
particular piece of data.

B. Security Primitives

This section describes the security building blocks
necessary for Hydra’s function.

Node Bootstrapping: In the Hydra ecosystem, each
participating node undertakes a security bootstrapping
process to acquire essential components for subsequent
secure communications, including a trust anchor, NDN
certificate, and trust schemaso that Hydra nodes can sign
and validate NDN packet securely. The node bootstrap-
ping process includes achieving mutual authentication
between NOC and new node, installing trust anchor and
certificate from Hydra software package, getting name
assignment, and request certificate from the NOC using
the NDNCERT protocol [11]. Provided that the NOC
successfully validates the new node’s credentials and
verifies the node’s eligibility to join the federation, a
certificate is issued. The node uses this certificate to sign
all subsequent messages.

Publisher Bootstrapping In the Hydra ecosystem,
publishers—those who can manipulate files—undergo a
security bootstrapping process. Distinct from node boot-
strapping, user trust establishment has some specificities.
First, an email address serves as a publisher’s verifiable
identifier, authenticated through OAuth mechanisms like
campus-based or Google accounts. The NOC keeps an



internal database mapping email addresses authorized
to publish datasets. This database relies on pre-existing
real-world relationships, such as those between Principal
Investigators (PIs) and their students. Second, publishers
can only modify namespaces for which they possess the
requisite certificates. For example, a publisher who pub-
lishes data under the namespace “/human/genome/dna
/hg38” could perform file operations under that specific
namespace. After this initial setup, the remaining boot-
strapping process becomes automated. When a publisher
requests a certificate for a particular namespace, the NOC
cross-references its database to validate the request. A
certificate is issued upon successful verification, enabling
the publisher to conduct secure operations within the
Hydra system. Hydra currently supports public data pub-
lication, meaning only publishers (and not consumers)
need to undergo this bootstrapping process.

C. Decentralized control plane

The decentralized control plane serves as the back-
bone of Hydra’s peer-to-peer federation. At its core, the
control plane comprises two essential elements: a syn-
chronized state, known as the “global view,” and a dis-
tributed decision-making framework. These components
collaboratively enable robust, decentralized governance
within the Hydra federation.

Synchronized state or Global View: In Hydra, the
“Global View” serves as a local database for each node,
capturing a comprehensive snapshot of the system’s state.
Contrary to its name, the Global View is not stored in a
universally accessible location; each node maintains its
own version. Throughout the system’s operation, nodes
synchronize their local Global Views by continuously
exchanging group messages.

Integral to the Global View is the concept of “state
vector”’[4]. The state vector signifies a sequence of mes-
sages with monotonically increasing sequence numbers
assimilated into the Global View, thereby serving as an
index for understanding its current state and reconciling
any state differences. The Global View encapsulates a
variety of information, including details of all partici-
pating nodes and specifics of each file. For each file, the
Global View identifies the nodes currently possessing the
file and those eligible for backup responsibilities. It also
includes metadata like file size, origin node, number of
copies, and other attributes.

Distributed decision making using “Favor”’: In Hy-

dra’s federated architecture, which spans multiple orga-
nizations, the diversity and dynamism of node conditions

present unique challenges. Notably, these nodes vary in
hardware, storage, bandwidth, and security protocols, all
subject to rapid changes. Complicating matters further is
the existence of differing administrative domains, making
enforcing uniform policies across the federation difficult.
Consequently, efficient data replication becomes a multi-
optimization problem involving several conflicting con-
straints such as storage availability, bandwidth, and cost.

To address these complexities, Hydra introduces a
mechanism known as “Favor.” The current Favor calcula-
tion uses a weighted formula of three factors - available
storage capacity, network bandwidth, and disk read/write
speed. However, other more advanced approaches, such
as using a multi-objective genetic algorithm to optimize
conflicting constraints like storage capacity, network
costs, and replication time is also possible[6]. Post-
replication, nodes update their Favor scores to reflect new
conditions, such as changes in available storage capacity.

D. Named Content and Service Endpoints

Named Content In Hydra, the system adopts a
publisher-centric approach to naming datasets, offering
high flexibility and community-specific customization.
For instance, in the field of genomics, it is entirely
feasible for the naming to align with the well-established
taxonomical structures such as the tree of life [8]. Such
a name might look like “/human/genome/dna/hg38”.
Hydra uses these names for all data-related operations
such as publication, replication, and access.

Named Services: In Hydra, the architecture employs
a streamlined set of named service endpoints, includ-
ing content publication, deletion, and retrieval. Hydra
commonly uses a generic prefix for commands gen-
erated by publishers, such as Insert and Delete, and
internal communications within the Hydra federation.
For example, Hydra could select the prefix “/Hydra”
or “/genomics”. In the first case, data insertion and
deletion namespaces can be “/Hydra/insert” or “/Hydra
/delete”. For internal communications, Hydra uses spe-
cific namespaces such as “/Hydra/group-messages” and
“/Hydra/heartbeat” to distribute group messages and
heartbeats to all nodes participating in the federation.

IV.HYDRA OPERATIONS

This section discusses the operational aspects of
the Hydra federation, elaborating on how Hydra builds
services using the building blocks as shown in Fig-
ure 1. Specifically, we discuss the construction and
maintenance of a federation, node failure detection and



recovery, and procedures for data insertion, automated
replication, and data retrieval.

A. Building and maintaining a federation

The Hydra federation structure relies on a multi-
step establishment and ongoing maintenance process.
Initially, each node undergoes a node bootstrapping
phase where it installs the requisite Hydra software and
acquires security credentials (i.e., a digital certificate)
from the NOC. This ensures secure and authenticated
interactions within the federated environment.

Post-bootstrapping, nodes join the Hydra pub-sub
namespace that is built using SVS[4]. This connection
enables nodes to exchange messages between them-
selves, including heartbeat and update messages. Heart-
beat messages are multicast periodically over the pub-
sub namespace (e.g., “/Hydra”). They also exchange
all update messages over this namespace. Each node
creates and maintains a local database (a.k.a., the global
view) representing its perspective of the federation. This
database includes information about other nodes, file
attributes, and other metadata. The local databases are
synchronized across nodes to achieve a unified state
across the federation. When this state changes, nodes
send an update, and the other nodes authenticate and
apply it to their global views. Hydra assumes an eventual
consistency among the global views of the nodes.

B. Failure detection and recovery

Heartbeat messages serve as the built-in failure de-
tection mechanism. A failure mode triggers when a
node misses three consecutive heartbeats, initiating the
recovery protocol. During recovery, each node identifies
files needing replication, especially those from the failed
node, guided by the global “Favor” metric. If a node
ranks highest, it begins replication.

Upon recovery from a failure, the node resumes
heartbeats while other nodes do not take immediate
corrective action. Instead, the reactivated node listens for
incoming group messages and updates the ones it missed.
If any state data survived, the node calculates the state
difference, requesting missing data from other nodes. If
no prior state data exists, the node joins as new, updating
its state accordingly. This design ensures functional data
retrieval during individual node failures as long as one
operational node remains in the federation.

C. Data Insertion and Deletion

Within the Hydra framework, both data insertion and
deletion follow a secure procedure. When a publisher

wants to insert data, the process is initiated by the
publisher making contact with a Hydra node. The user
sends an Interest and NDN routing brings this Interest to
a Hydra node. Concurrently, the user prepares the data
for download and listens on a designated data publication
namespace. Upon authenticating the user as a legitimate
publisher, the node downloads the user’s prepared data,
completing the insertion and notifies the user and other
federation nodes about the new file.

For data deletion, the original publisher contacts a
Hydra node. The node authenticates and processes the
deletion command. If the file exists locally, the node
deletes it and updates its local state, subsequently dis-
seminating a group message to inform the federation. If
the file does not exist on the local storage, the node will
still update its local state and issue a federation-wide
group message, indicating that the file is to be deleted.
The Hydra framework operates under the assumption
of eventual consistency, ensuring that even if a group
message is lost, the system will eventually detect the
discrepancy and execute the file deletion.

D. Automated replication

In Hydra’s distributed storage framework, data repli-
cation is essential for high availability, durability, and ef-
ficient data distribution across a geographically dispersed
federation of nodes. Replication occurs automatically
when a new file is ingested or an existing node fails. On
ingestion of a file, a node broadcasts a group message.
Other nodes check the replication status of this file, and
if below a threshold (default is three replicas), nodes
with the highest Favor lead replication. Hydra’s unique
feature is its decentralized approach. Unlike systems like
Cassandra with centralized coordination, Hydra shares
Favor values among nodes, enabling each to self-identify
if they need to participate in replication tasks. Nodes then
express intent to replicate via group messages.

E. Data retrieval

In the Hydra framework, any node is capable of
handling a user’s file retrieval requests, irrespective of
whether the node physically stores the file in question
or not. To retrieve a file, a user dispatches an Interest
bearing the file’s name, adhering to the naming schema
“/human/genome/dna/hg38”. Subsequent to this action,
three possible scenarios may occur: (a) Should the file
not exist within the Hydra ecosystem, the system returns
a Negative Acknowledgement (NACK) to the user; (b)
If the file is indeed present on the node that was initially



contacted, the data corresponding to the Interest is di-
rectly returned to the user; (¢) In the event that the file
exists within the Hydra system but is not on the node
first contacted, that node responds with a “forwarding
hint” that directs the user to another node where the
file is stored. After this, the client initiates a standard
Interest/Data exchange procedure for file retrieval.

V. TRIAL DEPLOYMENT AND EVALUATION

Hydra

node 5
site 2
node 4
site 2
node 2
site 1

5

Client

node 3
site 1

Fig. 2: Hydra topology on FABRIC[3]

This section describes our preliminary deployment of
Hydra on the FABRIC testbed[1]. The primary objective
of this deployment is to assess the control plane of
Hydra, thereby shedding light on the ramifications of our
design choices. As depicted in Figure 2, our initial setup
comprises provisioned nodes on FABRIC, with one node
designated as a client and the remainder as Hydra nodes.
The Network Operations Center (NOC) is external to
FABRIC and not displayed in the figure.

We elected to employ five nodes to showcase Hy-
dra’s capabilities preliminarily; four nodes serve as the
minimal requisite for replication (the default degree of
replication is 3), with an additional node functioning as
the client. Each Hydra node had 2 CPU cores, 8GB of
RAM, and 20GB of SSD disk storage. A Layer 2 network
was established among these nodes, as Figure 2 shows.

A. Evaluation

It is important to note that as an initial proof-of-
concept, our goal was to demonstrate Hydra’s capabilities
rather than directly compare to other systems.

State Overhead: This experiment evaluates the stor-
age requirements for the local state in Hydra nodes.
As Figure 3 shows, in the initial configuration with
five nodes and no files, the total state consumed was
32KB, with only 30 bytes attributed to node names. Upon
uploading 1,000 files, the total state per node increased
to approximately 250KB, of which about 70KB was ded-
icated to both node and file names. The results suggest
that local state requirements in Hydra are relatively low

but are subject to increase with longer name lengths. For
example, using scientific data names averaging 120-130
characters would add an estimated 130KB to the total
state for 1,000 files, resulting in an overall state size of
approximately S00KB, which is still small.

Communication Overhead: The lack of a global
controller or shared state comes with additional commu-
nication overhead. We measure the number of Interests
and Data packets over time to quantify this overhead. The
messages in this measurement include sync messages,
heartbeat messages, and prefix registration and manage-
ment. Figure 4 illustrates this communication overhead,
revealing that background Interest/Data exchanges typi-
cally generate fewer than 100 Interests and tens of Data
packets. However, this overhead is contingent on the
number of events within the federation. With five Hydra
nodes, the packet count escalates to nearly 4000 Interests
and 1300 Data packets within an hour. To contextualize
this, NDN’s default packet size is 8800 Bytes, equating
to an additional 35MB of network traffic over one hour.

In this experiment, we make several interesting obser-
vations. Firstly, there is a disparity between the number
of Interests and Data packets. Sync Interests inform
nodes of state changes, operating autonomously and
remaining unacknowledged, thus not generating Data
packets. Figure 4 also highlights the relatively small scale
of the overall state exchange.

Publication Overhead Since publication in Hydra
triggers update messages to the federation, we looked
at the overhead of publication as Figure 5 shows. We
start counting the packets when a file is ingested, and an
announcement goes out to the federation. The counting
stops when replication decisions are made, and the mes-
sages confirming the replication decision go out. For 25
file insertions over a 10-minute timespan, we noticed an
additional 1400 Interests. The per-file insertion overhead
is approximately 25 Interests, including the insertion
command to Hydra, sync Interests, and background traf-
fic. Note that we are measuring the control overhead here,
not the actual data overhead. The data overhead is equal
to the number of replications.

Replication decision: In Hydra, the default degree of
replication is three. Hydra uses either new file insertion
or node failure to trigger replication. This experiment
quantifies how long it takes to make these replicate
decisions. In this experiment, we measured the time
between detecting a new file (or a node failure) and
the time for the other two nodes to make the replication
decision. After the group message goes out to the nodes



M Total State M Names Only

250000 5000

200000 4000

143360

150000 3000

100000 2000

Size in Bytes Per Node
Number of Packets

803
spoon 32768 32758 32768 85030 1000 m— 312
12349 11
0 — e
1 10

Fig. 3: State size vs. Number of Files
Published

announcing a new file, the first node took 8.344414.40
milliseconds to start replicating the content. The second
node needed 38.404113.24 ms to start replication. The
exact time to start replication depends on factors such as
distance to the original node, congestion, and node load.

Node joining and failure detection: In Hydra, a
heartbeat message goes out to the federation once a
new node joins and . a lack of heartbeats signifies node
failure. In this test, we added nodes to the federation
to quantify the time it takes to get the node to join it.
We also randomly failed nodes to quantify how long the
other nodes took to detect the failure. We found after ten
runs that the time for a new node to join the federation is
55.428+0.238 seconds. Note that this time varies based
on when the heartbeat goes out to the group. Each node
sends out a heartbeat every 15 seconds. Each node also
waits for three heartbeats before updating the local state.
The total time includes three heartbeats, time to register
prefixes, and start up the Hydra software framework. In
our experiments, after ten runs, we found the average
failure detection time was 94.608+ 5.38 seconds. The
failure detection routine in Hydra runs every 30 seconds.
The total time here includes three heartbeat detection
cycles and time to process the failure.

Distributed decision making: We mentioned pre-
viously how Hydra nodes make replication decisions
based on the Favor parameter. This experiment aimed
to evaluate the execution times of the Favor calculation
process using different numbers of nodes (5 and 10)
under a bandwidth constraint of 100 Gbps. The process
involved calculating the Favor using a greedy algorithm
for establishing the replication order and calculating
multi-objective optimization. The time required for Favor
calculation for replicating 1, 5, 10, 20, 50, and 100 files
were between 3-5seconds=t1second. Note that this value
is calculated and stored separately in Global View and
does not affect Hydra’s operation.

249856 B hydrainterests M hydra data

3087
1742
1268
1047
(607
14 18 21
0

25 45 60

Time in Minutes

Fig. 4: Network Overhead of Hydraw-
ithout any Client Interaction

nfdinterests M nfd data @ NDN Interests [l NDN Data

1500
4034

1000

Number of Packets

0 uf 5 10 25

Number of Files Published in a 10 Minute Span

Fig. 5: Network Overhead of Hydraw-
ith Client Interaction

VI.DISCUSSIONS AND LESSONS LEARNED

Advancing FAIR Principles through Secure De-
centralization: In light of the technical specifications
described earlier, we examine the implications of Hy-
dra’s architecture for scientific workflows in terms of
data publication, access, and adherence to FAIR prin-
ciples. Hydra’s decentralized architecture liberates data
from being tied to specific physical locations through
name-based data retrieval, enhancing Findability. Hydra’s
name-based access mechanisms and in-network caching
allow for efficient data retrieval, addressing the Accessi-
bility aspect of FAIR principles. Utilizing data names for
all operations, Hydra ensures data formats and structures
are transparent and interoperable. Hydra’s decentralized
trust model boosts security by letting users set their trust
anchors and supports publisher authentication for secure
data management. Finally, the decentralized architecture
of Hydra supports scalable and resilient scientific work-
flows, eliminating single points of failure.

Limitations and Implications of Eventual Con-
sistency in Hydra: In this section, we lay out some
limitations of the Hydra system. First, Hydra assumes a
federation of organizations has some knowledge of which
nodes and users can join the Hydra federation. This
knowledge (DNS names for nodes and email addresses
of users) is built into the NOC.As mentioned earlier, the
NOC’s role is limited to certificate distribution, and it
does not exercise any other control over the Hydra infras-
tructure. As such, the NOC is not a single point of failure
in a Hydra federation. Hydra operates under an eventual
consistency model, implying that data replication and
state synchronization occur on a best-effort basis rather
than in real time. Any delays in the ingestion notification
can result in file replication remaining below the pre-
ferred degree. Nevertheless, the file becomes accessible
to consumers once the global view is synchronized,
which is quick as Figure 4 illustrates. In the event of



congestion or network partition, an unsynchronized state
can lead to the ingested file remaining inaccessible and
unreplicated until state synchronization. We have yet to
comprehensively grasp the ramifications of autonomous
replication decisions on the entire system. Can a scenario
arise in which a file remains unreplicated not because of
resource constraints but rather due to policy limitations?
We are currently exploring answers to these questions.

VII.RELATED WORK

There have been several attempts to create distributed
data repositories in the past, and some of these have been
successfully deployed. Popular distributed databases such
as Cassandra, Bigtable, and Dynamo [5] and other similar
solutions can store large amounts of data and perform
replication functions. These systems are tightly coupled,
generally require significant manual configuration and
maintenance, and, most importantly, require a single
administrative control for the configuration of replication
and other system functions — a model that is unfit to serve
a community of scientists, where individual machines
may be owned by different parties and require some
degree of autonomy in their operations.

Other distributed data management infrastructures
also exist in scientific communities, including Xrootd,
iRods, Rucio, and Globus[9]. These solutions hide the
complexity of a location-independent infrastructure over
TCP/IP at the application layer by creating a location-
transparent overlay. However, they still need to maintain
data locations which makes them complex, requiring
substantial manual configuration and maintenance.

There have been a few incarnations of storage repos-
itories over NDN such as repo-ng, Fast Repo for NDN-
RTC streams, NDNts for web applications, and ndn-
python-repo. These NDN based repositories are single-
instance implementations of storage that can be accessed
over the network, but not a distributed storage system.

VIII.CONCLUSION AND FUTURE WORK

In addressing the challenges posed by big data sci-
entific research on networked systems, Hydra offers a
secure, scalable, and resilient storage service by leverag-
ing a decentralized federation of individual user-provided
storage servers. Grounded on Name Data Networking
(NDN), Hydra exemplifies that loosely coupled, name-
based systems can be both lightweight and robust. This
work has afforded us valuable insights into the intricacies
of crafting a secure, data-centric distributed network
without micromanaging every individual node.

Several areas of improvement are under exploration.
Key among these is the optimization of the data plane
for higher throughput, dynamic adjustment of the favor
parameter based on near real-time performance metrics,
and benchmarking against existing solutions.

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation under Grant No OAC-2126148.

REFERENCES

[1] BALDIN, I., NIKOLICH, A., GRIFFIOEN, J., MONGA, I. I. S.,
WANG, K.-C., LEHMAN, T., AND RUTH, P. Fabric: A
national-scale programmable experimental network infrastruc-
ture. /[EEE Internet Computing 23, 6 (2019), 38-47.

[2] EDWARDS, P. N., MAYERNIK, M. S., BATCHELLER, A. L.,
BOWKER, G. C., AND BORGMAN, C. L. Science friction:
Data, metadata, and collaboration. Social Studies of Science
41, 5 (2011), 667-690. PMID: 22164720.

[3] PRESLEY, J., WANG, X., BRANDEL, T., AI, X., PODDER, P.,
Yu, T., PATIL, V., ZHANG, L., AFANASYEV, A., FELTUS,
F. A., ET AL. Hydra—a federated data repository over ndn.
arXiv preprint arXiv:2211.00919 (2022).

[4] SHANG, W., AFANASYEV, A., AND ZHANG, L. Vectorsync:
Distributed dataset synchronization over named data net-
working. In Proceedings of the 4th ACM Conference on
Information-Centric Networking (New York, NY, USA, 2017),
ICN 17, Association for Computing Machinery, p. 192-193.

[5] STANSBERRY, D., SOMNATH, S., BREET, J., SHUTT, G., AND
SHANKAR, M. Datafed: Towards reproducible research via
federated data management. In 2019 International Conference
on Computational Science and Computational Intelligence
(CSCI) (Los Alamitos, CA, USA, dec 2019), IEEE Computer
Society, pp. 1312-1317.

[6] WANG, X., Al, X., FELTUS, F. A., AND SHANNIGRAHI, S.
Gnsga: A decentralized data replication algorithm for big
science data. In 2023 IFIP Networking Conference (IFIP
Networking) (2023), pp. 1-9.

[71 WILKINSON, M. D. E. A. The fair guiding principles for
scientific data management and stewardship. Scientific Data
3, 1 (Mar 2016), 160018.

[8] WOLF, Y. 1., ROGOzZIN, I. B., GRISHIN, N. V., AND KOONIN,
E. V. Genome trees and the tree of life. TRENDS in Genetics
18, 9 (2002), 472-479.

[91] Wu, Y., MutLu, F. V., Liu, Y., YEH, E. M., Liu, R,,
IORDACHE, C., BALCAS, J., NEWMAN, H., SIRVINSKAS, R.,
Lo, M., SONG, S., CONG, J., ZHANG, L., TIMILSINA, S.,
SHANNIGRAHI, S., FAN, C., PESAVENTO, D., SHI, J., AND
BENMOHAMED, L. N-dise: Ndn-based data distribution for
large-scale data-intensive science. Proceedings of the 9th ACM
Conference on Information-Centric Networking (2022).

[10] ZHANG, L., AFANASYEV, A., BURKE, J., JACOBSON, V.,
CLAFFY, K., CROWLEY, P., PAPADOPOULOS, C., WANG, L.,
AND ZHANG, B. Named data networking. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 66-73.

[11] ZHANG, Z., YU, Y., AFANASYEV, A., AND ZHANG, L. NDN
certificate management protocol (NDNCERT). Technical Re-
port NDN-0050, NDN, Apr. 2017.



